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ABSTRACT

Comprehensive studies of synthetic optical flow datasets have attempted to reveal
what properties lead to accuracy improvement in learning-based optical flow esti-
mation. However, manually identifying and verifying the properties that contribute
to accurate optical flow estimation require large-scale trial-and-error experiments
with iteratively generating whole synthetic datasets and training on them, i.e.,
impractical. To address this challenge, we propose a differentiable optical flow data
generation pipeline and a loss function to drive the pipeline, called DFlow. DFlow
efficiently synthesizes a dataset effective for a target domain without the need for
cumbersome try-and-errors. This favorable property is achieved by proposing an
efficient dataset comparison method that uses neural networks to approximately
encode each dataset and compares the proxy networks instead of explicitly compar-
ing datasets in a pairwise way. Our experiments show the competitive performance
of our DFlow against the prior arts in pre-training. Furthermore, compared to
competing datasets, DFlow achieves the best fine-tuning performance on the Sintel
public benchmark with RAFT.

1 INTRODUCTION

Optical flow is a fundamental computer vision problem to find dense pixel-wise correspondences
between two subsequent frames in a video. Optical flow is indeed a key building block in many
practical applications, including video understanding, action analysis, video enhancement, editing,
3D vision, etc. Recently, optical flow has been significantly advanced by learning-based approaches
with deep neural networks (Fischer et al., 2015; Ilg et al., 2017; Ranjan & Black, 2017; Hui et al.,
2018; Sun et al., 2018; Teed & Deng, 2020) in terms of accuracy and efficiency.

A driving force of these prior arts is large-scale supervised datasets. However, it is difficult to collect
a reasonable amount of real-world optical flow labels. Thus, they exploited large-scale synthetic
datasets, e.g., Fischer et al. (2015); Mayer et al. (2016), which has become the standard in optical flow,
e.g., training on FlyingChairs (Fischer et al., 2015) followed by FlyingThings3D (Mayer et al., 2016).
After the seminal studies, there have been various efforts to build different synthetic datasets (Gaidon
et al., 2016; Richter et al., 2017; Lv et al., 2018; Oh et al., 2018; Aleotti et al., 2021). Despite the
vast efforts of these studies, it remains unclear which factors are important for an effective synthetic
dataset construction against the target domain.

Instead of manually identifying important design criteria, AutoFlow (Sun et al., 2021) pioneers the first
learning-based approach to go beyond being heuristic by posing data generation as a hyperparameter
optimization problem maximizing validation performance on a target dataset. AutoFlow generates
data samples by composing simple 2D layers with non-differentiable hyperparameters, which are
optimized by sampling-based evolutionary search. The use of evolutionary search requires large
resources, which is burdensome because each target scenario requires to re-generate different datasets.

To address this challenge, we propose DFlow, which is an efficient synthetic optical flow dataset
generation method. We compose each data sample by simple differentiable graphic operations, such
as warping layer and real-world effects, so that each sample can be parameterized in a learnable
manner. This allows us to exploit efficient gradient descent methods to generate each sample, and
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thereby DFlow is more than an order of magnitude efficient than AutoFlow in GPU hours when
constructing the same amount of training data.

We also introduce a new loss function that learns the data parameters by contrasting a target dataset
from a base dataset, e.g., FlyingChairs. Since directly using large datasets in the contrastive learning
process is cumbersome, we approximate the base and target datasets by two neural networks trained
on respective datasets as proxies. This approximation allows an end-to-end differentiable pipeline
from the data parameters to the loss function.

Through comprehensive experiments, we show that DFlow is effective in both pre-training and fine-
tuning. The DFlow data has a size of 512 × 384, which is the same as FlyingChairs, but the RAFT
network (Teed & Deng, 2020) pre-trained on DFlow achieves comparable performance compared to
the high-resolution competing datasets (Sun et al., 2021; Mayer et al., 2016). In addition, compared
to competing datasets, the RAFT model initially pre-trained on DFlow achieves the best fine-tuning
performance on the Sintel public benchmark. We summarize our contributions as follows:

• A simple and efficient differentiable data generation pipeline for optical flow (refer to Table 1);

• A contrastive-style learning scheme and its loss function by approximating expensive dataset-to-
dataset comparison by leveraging proxy neural networks (refer to Sec 3);

• Compared to competing datasets, DFlow achieves the best fine-tuning performance on the Sintel
public benchmark with RAFT. (refer to Table 4).

2 RELATED WORK

Optical Flow. Dense optical flow estimation is to find pixel-wise correspondences from the bright-
ness patterns of images (Gibson, 1950; Gibson & Carmichael, 1966; Horn & Schunck, 1981). After
conventional optimization algorithms (Black & Anandan, 1993; Zach et al., 2007), deep-learning
algorithms (Fischer et al., 2015; Ilg et al., 2017) become dominant due to their computational effi-
ciency and reasonable performance. Prior arts (Xu et al., 2017; Bailer et al., 2017; Wulff et al., 2017;
Sun et al., 2018) have attempted to implement explicit neural modules that are suitable for optical
flow estimation. Recently, RAFT (Teed & Deng, 2020) adopts recurrent architectures and achieves a
notable performance improvement, which is represented as state-of-the-art.

Those recent advances in learning-based approaches require large-scale data with ground-truth, but
labeling dense optical flow is a highly undetermined task, i.e., challenging (Fischer et al., 2015). The
previous real-world datasets have been built under sophisticated labeling conditions, including the
special sensor hardware, controlled environment, or limited objects (Scharstein & Szeliski, 2002;
Scharstein & Pal, 2007; Geiger et al., 2012; Kondermann et al., 2014). It leads to the limitation of the
size of datasets. To relieve this issue, synthetic datasets (Fischer et al., 2015; Mayer et al., 2016) have
been proposed and achieved remarkable accuracy despite the gap between real and synthetic datasets.
After that, previous arts endeavor to construct more realistic synthetic datasets (Gaidon et al., 2016;
Richter et al., 2017; Lv et al., 2018). The prior arts (Aleotti et al., 2021; Han et al., 2022) generate
the subsequent frames and ground-truth optical flow by warping the previous frame. These do not
handle the photometric inconsistency that is common in real-world scenes. In this work, we propose
a differentiable synthetic data generation pipeline with the target knowledge so that the generated
dataset could improve its performance more.

Learning-based Optical Flow Dataset. AutoFlow (Sun et al., 2021) is the first learning-based
data generation approach in optical flow, but with the sampling-based evolutionary search for non-
differentiable optimization. It is our closest related work in the sense that they learn the data generation
parameters for performance improvement on the specific target dataset. However, distinctively, our
method is the first differentiable method to learn data generation parameters, which leads to a more
efficient pipeline than AutoFlow in terms of computation cost and GPU hours for data generation. We
list other differences in Table 1. Recently, RealFlow (Han et al., 2022) proposes an iterative learning
framework that learns enhanced flow estimation and pseudo ground-truth generation, alternatively.
Different from our work, this work suggests a framework including iterative model training and
dataset generation, and does not suggest a goodness measure of a resulting dataset, which we address.
Other than optical flow, there are also interesting attempts to generate synthetic data in learnable
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AutoFlow (Sun et al., 2021) DFlow (Ours)

Learning method Evolutionary search Gradient descent
Computational resource 48 P100 GPUs A single V100 GPU
GPU hours for constructing a dataset 336 days / P100 9.3 days / V100
Data resolution 1280× 720 512× 384

Table 1: Comparison of dataset generation methods of AutoFlow and DFlow (ours).

ways (Sixt et al., 2018; Yang & Deng, 2020; Kaspar et al., 2019; Zhao et al., 2021) for other computer
vision applications.

3 DIFFERENTIABLE DATA GENERATION PIPELINE

Our data generation pipeline synthesizes subsequent frames It and It+1, and a flow (motion) map
FGT between those two frames. We concisely denote a pair of subsequent frames and a flow map as a
data sample. We parameterize each data sample with a learnable parameter vector θ that characterizes
a composition of elemental graphic operations, such as color perturbation and geometric warping.
We refer to the composition process as a data generator, which is designed to be differentiable.

Data parameter
𝐿!"#$ + 𝐿%&'

Loss
{𝜽(}()*+

Update {𝜽(}()*+

Differentiable data generation pipeline (DFlow)

Differentiable
data

generator

Figure 1: An overview of DFlow. We parameter-
ize data samples to be synthesized. The learnable
data parameters {θ} are updated by our proposed
loss function.

With this differentiable data generator part, we
specifically seek to synthesize optical flow data
improving the accuracy on the target dataset.
We define a loss function Ltotal = Ltask + Lreg
to effectively update the learnable parameters,
which drives the data generation to an improving
direction. With this loss, we efficiently learn the
parameters {θ} in a fully-differentiable way.

The overview of our data generation pipeline is
illustrated in Fig. 1, called DFlow. In Sec. 3.1,
we first describe the design of the loss func-
tion. In Sec. 3.2, we describe the data generator
method from the data parameters {θ}. Further
detailed descriptions and implementation details can be found in Appendix A.

3.1 TASK LOSS FUNCTION

Given our differentiable data generator, a sample parameter θ is rendered to a data sample, i.e., a pair
of subsequent frames It(θ) and It+1(θ) and those corresponding flow map FGT (θ). By rendering
a collection of data samples with the data generator and a set of {θ}, we can construct a dataset.
To find an updated parameter θ∗ that improves the accuracy of the optical flow model, we need an
effective criterion to drive the parameter update.

As a tractable criterion to efficiently find such a dataset, we are motivated by learning-to-augment
and dataset condensation approaches (Sixt et al., 2018; Kaspar et al., 2019; Zhao et al., 2021).
They synthesize data to have characteristics similar to target data under the motivation that learning
with two similar datasets is likely to yield accuracy improvement (Ben-David et al., 2010; Kaspar
et al., 2019), which is typically achieved by distribution matching. However, directly comparing
combinatorial pairs of samples in the target dataset and synthesized one is computationally expensive,
and even intractable during iteratively updating a synthesized dataset.

To efficiently deal with this issue, we propose to encode the target dataset into a proxy neural network,
called target network. With an optical flow neural network ftarget(It, It+1) → F, we pre-train the
network with a given small target optical flow dataset, which yields the trained target network. We
deem the target network as a differentiable proxy of the target dataset that encodes the knowledge
of target data. Compared to using the target data as a set in set-to-set comparison, leveraging this
differentiable proxy allows the whole procedure to be tractable. With the target network, we define
a target loss Ltarget (ftarget (It(θ), It+1(θ)) ,FGT (θ)) that measures flow errors for a data sample
associated with θ in the view of the target domain. We use the same loss used for pre-training the
target network, e.g., the sequence loss for RAFT (Teed & Deng, 2020), for the target loss Ltarget(·).
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With the target network and loss, we could first attempt to update the parameters {θ} by

{θ∗} = argmin{θ}
∑

i
Ltarget (ftarget (It(θi), It+1(θi)) ,FGT (θi)) . (1)

If the target loss is small for a data sample, it means that the target network is familiar with the
given data sample, and the sample is close to one of the target data, i.e., similar characteristics to
the target data. In this sense, Eq. (1) distills the target knowledge into generated data. However, in
our empirical preliminary study, we observed instability and under-fitting issues with Eq. (1), where
optimizing the loss is stuck at a high value. We assume that target networks trained on the popular
benchmarks (Butler et al., 2012; Menze & Geiger, 2015) may not produce sufficiently rich training
signals for synthesizing data, which might be due to limited scales of those real-world benchmarks.

To complement more informative training signals, we employ the contrastive-style learning scheme by
using another comparator network, called base network, which is trained with a common large-scale
synthetic dataset, e.g., (Fischer et al., 2015; Mayer et al., 2016), as a base dataset. Similar to the
target network, we pre-train the base network but on a large-scale dataset, FlyingChairs (Fischer et al.,
2015), which is randomly generated. We use the base network similarly to the target network except
for maximizing flow errors Lbase to implement a contrastive behavior, so that a resulting data sample
should be closer to the target dataset while being different from the base (common) dataset. This
contrastive behavior can generate combinatorial diversity of gradient signals by pairwise contrasting,
which may more strongly drive the data generation to an improving direction in favor of a target
domain than using the target network alone. To implement the contrastive behavior, we define a
wrapping loss function, Ltask(Ltarget,Lbase):R2→R, called task loss.

Form Ltask
Dataset

Sintel clean Sintel final

Multiplication
Exponential 4.26 4.49

Sigmoid 4.12 4.35
Tanh 2.02 3.35

Addition
Exponential 1.85 3.09

Sigmoid 2.00 3.13
Tanh 1.95 3.21

*Bold denotes the best.

Table 2: AEPE of different forms of Ltask.
We train the RAFT network with different loss
forms. The addition form with exponential
shows promising results. Refer to Appendix
A.2 for details.

What Function Type is Suitable for Ltask . There
are many candidates for Ltask satisfying the aforemen-
tioned criteria. As a function form, we are first mo-
tivated by sample-wise weighting distillation (Zhou
et al., 2021), where the loss function is dynamically
weighted according to each data sample. The loss
function is weighted by the target and base losses
in a multiplication form. We additionally examine
addition forms to select the best one. We consider
tanh, sigmoid, and exponential functions to imple-
ment bounded contrasting behaviors.1 Table 2 shows
the accuracy comparison of different forms of loss
functions using 1, 000 data samples generated with
the Sintel dataset (Butler et al., 2012) as a target. The
addition form with the exponential function shows
promising results in terms of performance, which corresponds to

Ltask(Ltarget,Lbase) = Ltarget + α exp(−β Lbase
Ltarget+ϵ + γ), (2)

where we set the balance parameters {β, γ} to {1, 0}, and especially set α to 20 for the experiments
in Table 2. We found that, depending on α, generated data characteristics are distinctive. When
generating our final dataset, we first generate subsets of data with different α values, and ensemble
the subsets into a single dataset by taking union, denoted as {α} combination. This is found to be
notably effective. More details of the total loss can be found in Appendix.

3.2 DATA GENERATOR

In this section, we describe the differentiable data generator that synthesizes a data sample from a
parameter θ. As shown in Fig. 2, the data generator is composed of geometric warping, flow field
translation, layer composition, color perturbation, and real-world effects. The data generator takes N
pairs of layer images and masks, {Ll

0}Nl=1 and {Ml
0}Nl=1. Similar to Oh et al. (2018), We randomly

sample the layer images from public image datasets (Kuznetsova et al., 2020; Perazzi et al., 2016;
Mayer et al., 2016; Lin et al., 2014) and layer masks from a segmentation dataset (Everingham et al.,

1We observe that contrasting without bounds may lead to instability and divergence. We list the specific
equations of the used loss functions in Appendix A.2.
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Figure 2: Schematic of data generator. The data generator is composed of color perturbation, two
steps of geometric warpings, flow field translation, layer composition, and real-world effects. The
whole pipeline is differentiably parameterized.

Algorithm 1: PyTorch-style pseudo-code for data generator.
# W1, W2: geometric warping parameters
# Ds: translation parameters
# C: white balance parameters
# R: Real-world effect parameters
# images0, masks0: initial layer images and masks

# Applying color perturbation
images0 = ColorPerturbation(images0, C)

# Warping the images and masks
images1, masks1 = GeometricWarping(images0, masks0, W1)
W2s = FlowFieldTranslation(W2, Ds)
images2, masks2 = GeometricWarping(images1, masks1, W2s)

# Superimposing the images, masks, and flow fields
image1 = LayerComposition(images1, masks1)
image2 = LayerComposition(images2, masks2)
flow = LayerComposition(W2s, masks1)

# Applying real-world effects to the subsequent images
image1, image2 = RealworldEffect(image1, image2, R)

2010). The data generator then outputs synthesized subsequent frames It and It+1 with ground-truth
optical flow FGT . All the following pipeline is parameterized by θ.

Geometric Warping. Geometric warping consists of rigid transformation, perspective warping, and
grid warping. The geometric warping generates a warping field. In the first geometric warping, we
apply the same warping field W0→t+1 to {Ll

0}Nl=1 and {Ml
0}Nl=1 and generate the layer images and

masks at the frame t+ 1, {Ll
t+1}Nl=1 and {Ml

t+1}Nl=1. In addition to this globally shared geometric
warping, we model the local movement of each layer, i.e., segmented objects, in the second geometric
warping step. To generate complex optical flows of the frame t, we can apply independent warping
fields to each layer image and mask. However, we observe poor optimization behaviors when we
use all independent warping fields on each layer. Thus, we propose to use decomposed warping
parameters for time t to reduce the number of parameters. We use a anchor geometric warping,
Wt+1→t, shared across all layers and flow field translation (∆x,∆y), {Dl ∈ R2}Nl=1, for each layer,
and construct each warping of layers by Wl

t+1→t = (Dl ◦Wt+1→t), where ◦ denotes the warping
operation. This strategy is also beneficial in terms of optimization stability. Finally, the operations of
geometric warping and flow field translation are as follows:

Ll
t+1 = W0→t+1 ◦ Ll

0, Ll
t = Wl

t+1→t ◦ Ll
t+1 = (Dl ◦Wt+1→t) ◦ Ll

t+1 (3)

Ml
t+1 = W0→t+1 ◦Ml

0, Ml
t = Wl

t+1→t ◦Ml
t+1 = (Dl ◦Wt+1→t) ◦Ml

t+1. (4)
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Figure 3: Generated data samples. (top) current frames; (bottom) optical flow visualizations.

Layer Composition. After the geometric warping, we have N pairs of layer images, masks, and
warping fields in order of depth. We superimpose each stack of layers to generate subsequent frames
It and It+1, with ground-truth optical flow FGT . We can leverage alpha blending and softmax
splatting (Niklaus & Liu, 2020). Both strategies show comparable performance, but we mainly use
the softmax splatting strategy in our experiments. The comparison of alpha blending and softmax
splatting can be found in Sec. 4.

Color Perturbation and Real-world Effects. Prior studies (Mayer et al., 2018; Sun et al., 2021)
have shown that synthetic data containing real-world effects, such as texture noises, fog, and motion
blur, often brings the performance improvement of optical flow networks in generalization. Inspired
by the observations, we introduce color perturbation and real-world effects into our data generator as
well. Color perturbation adjusts the white balance of each layer image, and our real-world effects
apply texture noises, fog, and motion blur, which are all parameterized to be controlled and updated.

We synthesize optical flow data by applying the above components: {Ll
0}Nl=1, {Ml

0}Nl=1 →
{It, It+1,FGT } . Note that we apply regularizations to the grid warping and texture noise, i.e.,
grid and noise regularizations. The detail of each component, including regularizations, can be found
in Appendix A.3-A.6. The overall differentiable data generator pipeline is summarized in Algorithm 1
as a pseudo-code. Each component has its own parameters, which are updated by our task loss and
regularizations. See generated samples in Fig. 3.

Summarization. We provide the summarization of DFlow below:

1. We train base and target networks on base and target datasets, respectively.
2. We fix both networks and update the data parameter θ using our loss function.
3. We train optical flow networks with the generated dataset.

4 RESULTS

In this section, we analyze the effects of our method in pre-training and fine-tuning perspectives with
different optical flow models. We report the average end-point error (AEPE) for Sintel (Butler et al.,
2012) and AEPE & F1 for KITTI 2015 (Menze & Geiger, 2015). From this section, we refer to our
dataset generated by targeting Sintel with RAFT proxy models as DFlow, unless specified otherwise.
Other details of experiment setups and implementation can be found in Appendix B.

Pre-training RAFT Results. Pre-training performance is one of the key factors in evaluating the
applicability of optical flow datasets (Fischer et al., 2015; Mayer et al., 2016; 2018; Aleotti et al.,
2021; Sun et al., 2021) by testing on benchmarks, i.e., Sintel and KITTI 2015 datasets. We train the
RAFT networks (Teed & Deng, 2020) from scratch on respective competing datasets, including our
DFlow. Table 3-(a) shows the pre-training results of each dataset. Compared to FlyingChairs which
has the same data resolution as DFlow, the model trained on DFlow outperforms the one trained
on FlyingChairs in both Sintel and KITTI 2015 datasets. Despite the fact that DFlow is around 1

4
resolution of AutoFlow, DFlow achieves the best performance on the KITTI 2015 and Sintel clean
datasets. We postulate that the real-world textures used in DFlow led to performance improvement
on KITTI 2015. Also, we use both Sintel clean and final as the target datasets to generate DFlow,
unlike AutoFlow using Sintel final only. It might affect performance on the Sintel clean and final
datasets. Figure 4 shows the qualitative results obtained from FlyingChairs and DFlow. These results
show that DFlow is effective for learning an accurate model in challenging scenes, such as shaded,
foggy, and motion-blurred scenes.
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Table 3: Pre-training results. We train the (a) RAFT (Teed & Deng, 2020) and (b) FlowNet (Fischer
et al., 2015) (c) GMA (Jiang et al., 2021) networks on respective pre-training datasets, and evaluate
on the evaluation datasets, i.e., Sintel and KITTI 2015. Chairs→Things denotes the heterogeneous
dataset experiment pre-training on FlyingChairs followed by FlyingThings3D.

Evaluation dataset

Sintel clean Sintel final KITTI 2015Model Pre-training dataset

AEPE AEPE AEPE / F1

FlyingChairs 2.28 4.51 9.85 / 37.56
AutoFlow 2.08 2.75 4.66 / -
DFlow (Ours) 1.81 2.93 4.59 / 15.03(a) RAFT

Chairs→Things 1.43 2.71 5.04 / 17.40

FlyingChairs 4.71 6.22 20.36 / 62.20
AutoFlow 5.43 6.03 19.64 / 43.95(b) FlowNet
DFlow (Ours) 3.45 4.73 12.94 / 38.95
Chairs→Things - - 4.69 / 17.10(c) GMA DFlow-GMA (Ours) - - 4.47 / 13.10

*Bold denotes the best.

FlyingChairs

Ground Truth

Input Image 𝐼𝑡

DFlow

Ground truth FlyingChairs DFlow

Figure 4: Qualitative results. Top: pre-training results on the Sintel final pass. Bottom: pre-training
results on KITTI 2015. The RAFT network pre-trained on DFlow shows robust results in challenging
shaded, foggy, and motion-blurred scenes.

Model Generalization Property. Since DFlow is generated with RAFT proxy networks, a question
naturally arises about the effectiveness of the generated dataset and data generation pipeline on other
model architectures. To evaluate the generalization ability of the generated dataset, i.e., DFlow, we
pre-train the Flownet network on the DFlow dataset generated with the RAFT network. As shown in
Table 3-(b), FlowNet pre-trained on DFlow shows noticeable improvement over the ones pre-trained
on the competing datasets. We further investigate the generalization ability of the data generation
pipeline. In this experiment, we select the KITTI 2015 dataset as the target dataset and generate
the DFlow-GMA dataset using the GMA network (Jiang et al., 2021). Using our DFlow-GMA
dataset, we train the GMA network and list the performance on KITTI 2015 in Table 3-(c). The
GMA network trained on our DFlow-GMA achieves higher performance than the one trained on
FlyingChairs followed by FlyingThings3D. From these observations, we postulate that our generated
data and generation pipeline are agnostic to the deep network structure.
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Table 4: Fine-tuning results on public benchmarks. We report F1 scores for KITTI 2015 and
AEPE for Sintel public benchmarks. C, K, S, T, and H denote FlyingChairs, KITTI 2015, Sintel,
FlyingThings3D, and HD1K (Kondermann et al., 2014). The results of Sintel public benchmarks are
evaluated without the warm-start initialization (Teed & Deng, 2020).

Dataset schedule Sintel clean Sintel final KITTI 2015

C → T → TSKH/K (Teed & Deng, 2020) 1.94 3.18 5.10
AutoFlow → TSKHV (Sun et al., 2021) 2.01 3.14 4.78
DFlow (Ours) → TSKH/K 1.62 3.07 5.03

*Bold denotes the best.
Table 5: Analysis of data generation components. We analyze the effects of each generation
component. The experiments are conducted by adding or removing one of the generation components.
The default setting is with all components and the number of foregrounds parameter in the range of 8
to 12 except the {α} combination, which is annotated with underlines.

Evaluation dataset

Sintel clean Sintel final KITTI 2015
Experiments State AEPE AEPE AEPE / F1

Data update On 1.86 3.04 5.21 / 16.27
Off 9.70 9.67 17.31 / 46.84

{α} combination Off 1.86 3.04 5.21 / 16.27
On 1.90 3.02 4.90 / 15.78

Layer composition softmax splatting 1.86 3.04 5.21 / 16.27
alpha blending 1.95 2.83 5.23 / 16.06

0 4.10 4.89 7.56 / 23.76
2 2.15 3.32 5.73 / 17.60Number of
4 2.00 3.15 5.41 / 16.33foregrounds

8-12 1.86 3.04 5.21 / 16.27

Color perturbation On 1.86 3.04 5.21 / 16.27
Off 2.07 3.20 4.87 / 16.09

Motion blur On 1.86 3.04 5.21 / 16.27
Off 1.95 3.57 5.06 / 16.24

Fog On 1.86 3.04 5.21 / 16.27
Off 1.98 3.20 5.04 / 15.68

Texture noise On 1.86 3.04 5.21 / 16.27
Off 2.02 3.15 5.47 / 16.56

Noise regularization On 1.86 3.04 5.21 / 16.27
Off 1.91 3.09 4.97 / 15.87

Grid regularization On 1.86 3.04 5.21 / 16.27
Off 1.88 3.10 5.09 / 16.35

Target dataset Sintel 1.86 3.04 5.21 / 16.27
KITTI 2015 2.14 3.79 4.31 / 14.29

Fine-tuning Results on Public Benchmarks. Table 4 shows the fine-tuning results on the public
benchmark test sets with corresponding dataset schedules. DFlow improves the original RAFT recipe
(C→T→TSKH/K) on both benchmarks by replacing the conventional initial dataset schedule, i.e.,
FlyingChairs followed by FlyingThings3D (C→T), with our DFlow. In particular, compared to the
competing datasets, DFlow achieves the best fine-tuning performance on the Sintel with RAFT. This
result validates that DFlow as a pre-training dataset effectively affects fine-tuning results.

Analysis of Components. We analyze the effects of each generation pipeline component: {α}
combination, the number of foregrounds, color perturbation, real-world effects, regularizations, and
target dataset. For the fair and quick experiments, we generate 2k training data and train RAFT
networks with the same training details. As shown in Table 5, we add or remove each of the
components from a default setting to measure their effects with the pre-training experiment. The
default setting indicates the dataset with all components and the number of foregrounds parameter in
the range of 8 to 12 except the {α} combination. We observe that applying each component brings
consistent performance improvement on the target dataset, i.e., Sintel, which is used for generating
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DFlow; whereas the results on KITTI 2015, which is not a target data of DFlow, are inconsistent with
the results of Sintel.

• Data update. This analysis compares DFlow with randomly initialized data without any optimiza-
tion, i.e., randomly generated by our pipeline. We train and compare the RAFT networks with
those datasets, which show the effectiveness gap between the two datasets.

• {α} Combination. We collect the same amount of data by combining subsets of data, which
are obtained from diverse α values. This balances the performance between evaluation datasets
because of the regularization effect.

• Layer composition. The softmax splatting and alpha blending show comparable performance on
Sintel. The softmax splatting improves the performance in the Sintel clean pass, but shows the
performance drop in the Sintel final pass.

• Number of foregrounds. Without any foreground, we observe the significant performance drop on
Sintel and KITTI 2015. Adding only 2 foregrounds brings notable performance improvement.

• Color perturbation and real-world effects. Without the color perturbation, the performance on
Sintel drops moderately. Removing the motion blur significantly affects the accuracy on Sintel,
especially in the Sintel final pass. The effects of fog and texture noise are moderate.

• Regularizations. Removing the regularizations shows a slight performance drop in Sintel.
• Target dataset. The generated dataset optimized to KITTI 2015 shows a notable performance

gain on KITTI 2015, while the performance on Sintel significantly drops. This may be caused by
the distribution gap between the two datasets.

Dataset Rainy scene
AEPE / F1

FlyingChairs 7.22 / 24.95
RealFlow 7.75 / 27.57
DFlow 5.87 / 22.89
DFlow-V 3.11 / 12.61

*Bold note the best.

Table 6: Analysis of photometric inconsis-
tency scenario.

Robustness to Corrupted Data (Whether Arti-
fact). The photometric inconsistency degrades the
robustness of optical flow estimation. For example,
the rainy scene occurs photometric inconsistency. We
evaluate the performance of RAFT on rainy scenes
of Virtual KITTI (Gaidon et al., 2016). We choose
FlyingChairs and RealFlow (Han et al., 2022) as base-
lines. Using the rainy scenes of Virtual KITTI as
a target dataset, we generate an additional dataset,
DFlow-V. Note that the target of DFlow is the Sin-
tel dataset. Table 6 lists the performance of rainy
scenes of virtual KITTI. As Han et al. (2022) have
mentioned their limitation of discontinuous illumi-
nation, the performance of RealFlow is lower than
others. DFlow outperforms the baselines, and DFlow-
V, which of the target is Virtual KITTI, shows much higher performance rather than others. From
these results, we assume that our method can distill the characteristics of photometric inconsistency.

5 CONCLUSION AND DISCUSSION

We propose a new data generation pipeline for training optical flow networks. Our pipeline consists
of geometric warping, real-world effects, etc., which are all parameterized differentiably. We propose
a new objective function that drives our data optimization by leveraging the compressed knowledge
of the proxy networks pre-trained on target and base datasets, respectively. Optical flow models
trained on our datasets achieve favorable or superior performance against the competing datasets on
pre-training and fine-tuning experiments. We conclude our paper with a discussion section.

Discussion. We use the pre-defined elementary data generation operations, e.g., fog, geometric
warping, etc. While DFlow shows effectiveness in the real-world dataset, i.e., KITTI 2015, the
pre-defined and restricted operations might not span all the real-world effects. Thus, diverse and
complementary operations would further improve expressiveness and may lead to additional perfor-
mance improvement. Our method also aims at a specific target dataset. For that, we need a target
network trained on the target dataset, which requires at least some amount of optical flow annotations.
To mitigate the requirement of the supervised data, it would be an interesting future direction to
investigate the way to train the target network in an unsupervised method.
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Hofmann, Claus Brenner, and Bernd Jähne. Stereo ground truth with error bars. In Asia Conference
on Computer Vision (ACCV), 2014.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper R. R. Uijlings, Ivan Krasin, Jordi Pont-Tuset,
Shahab Kamali, Stefan Popov, Matteo Malloci, Tom Duerig, and Vittorio Ferrari. The open images
dataset V4: unified image classification, object detection, and visual relationship detection at scale.
In International Journal of Computer Vision (IJCV), 2020.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision (ECCV), 2014.

Zhaoyang Lv, Kihwan Kim, Alejandro Troccoli, Deqing Sun, James M Rehg, and Jan Kautz. Learning
rigidity in dynamic scenes with a moving camera for 3d motion field estimation. In European
Conference on Computer Vision (ECCV), pp. 468–484, 2018.

Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, and
Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and scene
flow estimation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Nikolaus Mayer, Eddy Ilg, Philipp Fischer, Caner Hazirbas, Daniel Cremers, Alexey Dosovitskiy,
and Thomas Brox. What makes good synthetic training data for learning disparity and optical flow
estimation? International Journal of Computer Vision, 126(9):942–960, 2018.

Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3061–3070, 2015.

Simon Niklaus and Feng Liu. Softmax splatting for video frame interpolation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 5437–5446, 2020.

Tae-Hyun Oh, Ronnachai Jaroensri, Changil Kim, Mohamed Elgharib, Fr’edo Durand, William T
Freeman, and Wojciech Matusik. Learning-based video motion magnification. In European
Conference on Computer Vision (ECCV), pp. 633–648, 2018.

Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander
Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

11



Published as a conference paper at ICLR 2023

Anurag Ranjan and Michael J Black. Optical flow estimation using a spatial pyramid network. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Stephan R Richter, Zeeshan Hayder, and Vladlen Koltun. Playing for benchmarks. In IEEE
International Conference on Computer Vision (ICCV), pp. 2213–2222, 2017.

Daniel Scharstein and Chris Pal. Learning conditional random fields for stereo. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2007.

Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International journal of computer vision, 2002.

Leon Sixt, Benjamin Wild, and Tim Landgraf. RenderGAN: Generating realistic labeled data.
Frontiers in Robotics and AI, 5:66, 2018.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun Jampani, Michael Krainin, Huiwen Chang,
Ramin Zabih, William T Freeman, and Ce Liu. Autoflow: Learning a better training set for optical
flow. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In European
Conference on Computer Vision (ECCV), 2020.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605, 2008.

Jonas Wulff, Laura Sevilla-Lara, and Michael J Black. Optical flow in mostly rigid scenes. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
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APPENDIX

We present implementation details and additional experimental results. The contents are listed as
follows:
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A DETAILS OF DIFFERENTIABLE DATA GENERATION PIPELINE

In this section, we describe the implementation details of the differentiable data generation pipeline.

A.1 BASE AND TARGET NETWORKS

Base Network. For the architecture, we use the same architecture for both base and target networks.
We use the published weight of RAFT (Teed & Deng, 2020) as base network2, which is pre-trained
on FlyingChairs (Fischer et al., 2015) for 100k iterations with a batch size of 12, 496× 368 image
size, and learning rate 4× 10−4.

Target Network. We fine-tune the base network on the Sintel datasets (Butler et al., 2012) for the
target network. During fine-tuning, we only use the image crop as data augmentation and fine-tune
the base network for 20k iterations with a batch size of 6, 768× 368 image size, and learning rate
1.25× 10−4.

A.2 THE FORM OF TASK LOSS FUNCTIONS

We introduce our task loss function Ltask(Ltarget,Lbase) for contrastive-style learning and evaluate the
candidate of the loss function in Sec. 3.1. Table 7 shows the used task loss functions in experiments of
Table 2. We use the sequence loss of flow estimates of RAFT (Teed & Deng, 2020) for L{target,base}.
Algorithm 2 is the pseudo-code for updating the parameters of each data sample.

Table 7: The forms of task loss function. We list the used forms of task loss function in Sec. 3.1.
The form is the combination of {Multiplication, Addition} and {Exponential, Sigmoid, Tanh}. The
task loss functions have the hyperparameters, α, β, and γ.

Task loss function Ltask(Ltarget,Lbase)

Multiplication & Exponential (1− α exp(βLbase/(Ltarget + ϵ) + γ))Ltarget
Multiplication & Sigmoid (1 + αsigmoid(βLtarget/(Lbase + ϵ) + γ))Ltarget
Multiplication & Tanh (1 + αtanh(βLtarget/(Lbase + ϵ) + γ))Ltarget
Addition & Exponential Ltarget + α exp(−βLbase/(Ltarget + ϵ) + γ)
Addition & Sigmoid Ltarget + αsigmoid(βLtarget/(Lbase + ϵ) + γ)
Addition & Tanh Ltarget + αtanh(βLtarget/(Lbase + ϵ) + γ)

A.3 GEOMETRIC WARPING AND FLOW FIELD TRANSLATION.

Given N pairs of layer images and masks, {Ll
0}Nl=1 and {Ml

0}Nl=1, we generate subsequent frames,
It and It+1, with ground-truth optical flow FGT ,

{Ll
0}Nl=1, {Ml

0}Nl=1 → {It, It+1,FGT } . (5)

We apply two steps of geometric warping with warping fields W0→t+1 and Wt+1→t which are
computed from combinations of rigid transformation, perspective warping, and grid warping. First,
we warp the layer images and masks, {Ll

0}Nl=1 and {Ml
0}Nl=1, to be the layer images {Ll

t+1}Nl=1 and
masks {Ml

t+1}Nl=1 at the t+ 1 frame by applying the same warping field W0→t+1 to {Ll
0}Nl=1 and

{Ml
0}Nl=1.

Ll
t+1 = W0→t+1 ◦ Ll

0, Ml
t+1 = W0→t+1 ◦Ml

0, (6)
where ◦ denotes the geometric warping operation according to a given warping field. In the next
step, each layer image Ll

t and mask Ml
t at the t frame is generated from the ones at the t+ 1 frame,

i.e., Ll
t+1 and Ml

t+1. To simulate complex optical flows with minimal parameters, we introduce the
flow field translation {Dl}Nl=1, which translates the warping field Wt+1→t and obtains each warping
of layers: Wl

t+1→t = (Dl ◦Wt+1→t). Using each warping of layers Wl
t+1→t, we warp the layer

images and masks at the t+ 1 time.

Ll
t = (Dl ◦Wt+1→t) ◦ Ll

t+1, Ml
t = (Dl ◦Wt+1→t) ◦Ml

t+1. (7)

2https://github.com/princeton-vl/RAFT
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Algorithm 2: PyTorch-style pseudo-code for DFlow.
# G: data generator
# B: base network
# T: target network
# L: our task loss function
# Lt: target loss function
# Lb: base loss function
# θ: data parameters
for l, m in loader:

# Generate optical flow data
# l: layer images, m: layer masks
image1, image2, label = G(l, m, θ)

# loss
lt = Lt(B(image1, image2), label)
lb = Lb(T(image1, image2), label)
loss = L(lt, lb)

# Update θ
loss.backward()
optimizer.step()

The above parameterization is efficient for approximating multi-layer geometric warpings because it
only introduces two additional parameters per layer to generate the local movement of each layer
from a single warping field Wt+1→t. As aforementioned, we propose to use the two steps of warping
with W0→t+1 and Wt+1→t. This is distinctive from the existing works, including Fischer et al.
(2015); Sun et al. (2021), where they only use a single step of warping from a randomly generated
image to a synthetic next frame. This only parameterizes the next frames, not the reference frames
randomly generated. This could not update the textures and mask shapes of the reference frames,
whereas our method parameterizes both frames with two warping fields, W0→t+1 and Wt+1→t. It
allows us to jointly update subsequent frames.

A.4 LAYER COMPOSITION

From the geometric warping, we have N pairs of layer images, masks, and warping fields in order
of depth. We adopt the softmax splatting (Niklaus & Liu, 2020) to compose the layer images at
subsequent frames and warping fields with flow field translation, i.e., Ll

t, L
l
t+1, and Wl

t+1→t. We
get the importance image Z and weight image K of each layer and frame,

Zl
t = Ml

ta
l − maxl(M

l
ta

l), (8)

Kl
t =

exp(Zl
t)∑N

l=1 exp(Z
l
t)
. (9)

where al = cl and c is a constant value which we set 6 for layer composition. As the value of c
increases, sharper boundaries can be obtained. The subsequent frames and ground-truth optical flow
are as follows:{

N∑
l=1

Kl
t+1 ⊙ Ll

t+1,

N∑
l=1

Kl
t ⊙ Ll

t,

N∑
l=1

Kl
t ⊙Wl

t+1→t

}
→ {It+1, It,FGT } , (10)

A.5 COLOR PERTURBATION AND REAL-WORLD EFFECTS

Color Perturbation. Color perturbation consists of N white balances to adjust the color intensity
of layer images. Each white balance has three-channel values from zero to one and has half of the
chance to be applied. Color perturbation is the same for subsequent frames and optimized.
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(b) (c) (d)(a)

Figure 5: Color perturbation and real-world effects. Real-world effects are composed of texture
noises, fog, and motion blur. From left to right: (a) color perturbation, (b) texture noises, (c) fog, (d)
motion blur. (a) is an overlaid image before (upper right) and after color perturbation (lower left).

Texture Noises. We simulate the shot noise to mimic real-world photos. We apply three-channel
texture noises to all of the pixels while masking the area where the noises are actually applied. Two
different texture noises, Nt and Nt+1, are applied to subsequent frames and optimized.

Fog and Motion Blur. Inspired by AutoFlow (Sun et al., 2021), we introduce two real-world effects;
fog and motion blur. To generate a random fog, we follow the implementation of AutoFlow and
superimpose the fog on It and It+1. However, one difference is that we adjust the three-channel values
of fog, which yields the colored fog. The fog is the same for the subsequent frames and is optimized
as well. For the motion blur, we randomly sample object masks from PASCAL VOC (Everingham
et al., 2010) and combine them to generate a motion blur mask. We use the 2D gaussian blur to
approximate the motion blur kernel, and the motion blurred frames are alpha-blended to It and It+1.
The standard deviation of each axis and angle of rotation are parameters to be updated.

Figure 5 shows the color perturbation and real-world effects including texture noise, fog, and motion
blur.

A.6 REGULARIZATION LOSS

The grid warping and texture noise may take shortcuts only to minimize task loss. These behaviors
are undesirable, and the generated data might not properly train the optical flow network. To handle
this potential issue, we propose a regularization term Lreg consisting of grid and noise regularization
losses, i.e., Lreg = Lgrid +Lnoise. The grid regularization Lgrid prevents from producing infeasible 2D
motion. We define the grid regularization loss Lgrid as follows:

Lgrid = max(0,
w∑

k=1

h−1∑
j=1

[Ct(k, j)−Ct(k, j + 1)] +

w−1∑
k=1

h∑
j=1

[Ct(k, j)−Ct(k + 1, j)]), (11)

where Ct is the warped coordinate by the geometric warping Wt+1→t. Lgrid gives a penalty when
the warped coordinates of the previous grid exceed those of the next grid. The noise regularization
Lnoise prevents from producing too noisy images. We define the noise regularization loss Lnoise as
follows:

Lnoise = (∥Nt∥1+∥Nt+1∥1), (12)

where Nt and Nt+1 are texture noises of the current and next frames, respectively. Finally, we obtain
our total loss by adding the regularization loss to the task loss as:

Ltotal = Ltask(Ltarget,Lbase) + Lreg. (13)

With the total loss Ltotal, we update the data parameters {θ}.

A.7 DETAILS OF LEARNABLE PARAMETER θ

Learning Rate of θ. We set the learning rate of real-world effects as 3× 10−2. and the others as
{1× 100, 1× 10−1, 2× 10−2} depending on whether they are pixel-unit operations (e.g., translation
parameters) or not. We decay the learning rates linearly over the update iterations; the decay factor is
(1− iteration/80), where 80 is the maximum iteration of updates. We distinguish the pixel-unit
operations and the others as:
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Table 8: Generation details of DFlow. Data augmentation used in generating DFlow.

Color jitter Random resize and cropData brightness contrast saturation hue min scale max scale image cropaugmentation 0.1 0.1 0.1 0.04 0.93 2.30 496 × 368

• Pixel-unit operation (learning rate of 1× 100: translation of the rigid transformation, grid warping,
perspective warping, and flow field translation

• Non-pixel-unit operation (learning rates of {1× 10−1, 2× 10−2}): rotation and scaling of the rigid
transformation

Initialization of θ. Following the implementation of AutoFlow (Sun et al., 2021), we sample the
initial data parameters θ from the uniform distributions ranging from a to b, i.e., [a, b].

• White balance: [0, 1]
• Rigid transformation (translation, rotation, scaling): ([-80, 80], [-5, 5], [0.75, 1.13])
• Grid warping: [0, 0]
• Perspective warping: [-25, 25]
• Flow field translation: [-50, 50]
• Texture noise: [-0.01, 0.01]
• Fog color: [0, 1]
• Motion blur (std of axis x, std of axis y, angle of rotation): ([1, 2], [3, 11], [0, 90])

B DETAILS OF EXPERIMENT SETUP

In this section, we present the generation details of the DFlow dataset. Then, we present the details of
pre-training and fine-tuning results in Sec. 4 of the main paper.

B.1 GENERATION DETAILS OF THE DFLOW DATASET

To generate the DFlow dataset, the data augmentation is included in the proposed differentiable data
generation pipeline. We randomly augment each data sample before inputting them into the base and
target networks. For stability of data generation, we stack 6 randomly augmented data samples and
input them into networks. Each data sample of DFlow is updated up to 80 times and saved depending
on the threshold 25 of the target network loss. The DFlow data has a size of 512 × 384, which is the
same as FlyingChairs. Table 8 summarizes the data augmentation applied to each data sample.

B.2 DETAILS OF PRE-TRAINING RESULTS

Except for the data augmentation, we set the training parameter settings by following the training
details of RAFT (Teed & Deng, 2020) on FlyingChairs (Fischer et al., 2015), and pre-train the RAFT
network on DFlow with a data size of 15k. We use the same data augmentation applied for generating
the DFlow dataset. We early stop the training at 95k iteration.

B.3 DETAILS OF MODEL GENERALIZATION PROPERTY RESULTS

For the FlowNet results, we use the Pytorch implementation of FlowNet3. We pre-train the FlowNet
model for 2700 epochs with batch size 8. Following the Pytorch Implementation of FlowNet, we
use the proposed data augmentation including translation, rotation, image crop, vertical flip, and
horizontal flip. For the AutoFlow result, we use the published AutoFlow dataset (Sun et al., 2021). To
generate the DFlow-GMA dataset, we replace the RAFT proxy networks with GMA networks (Jiang
et al., 2021) while selecting the KITTI 2015 dataset as the target dataset. The set α to 13 for the
DFlow-GMA dataset and pre-train the GMA network on DFlow-GMA with a data size of 2k.

3https://github.com/ClementPinard/FlowNetPytorch
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Figure 6: Data samples of the rainy scene of Virtual KITTI.
Table 9: Contrasting analysis in pre-training. The dataset generated with the contrasting effect
achieves comparable results at the target dataset, KITTI 2015. The contrasting effect leads to a
notable performance improvement on Sintel, which is not used for data generation.

Evaluation dataset
Contrasting Sintel clean Sintel final KITTI 2015effect

AEPE AEPE AEPE / F1

✗ 4.38 5.03 4.61 / 13.86
✓ 2.14 3.79 4.31 / 14.29

*Bold denotes the best.

B.4 DETAILS OF FINE-TUNING RESULTS

To achieve fine-tuning results on the public benchmarks, we fine-tune the RAFT model pre-trained
on DFlow. Except for the initial data schedule, i.e., FlyingChairs followed by FlyingThings3D, we
follow the same dataset schedule and training details of the original implementation (Teed & Deng,
2020).

B.5 DETAILS OF ROBUSTNESS AGAINST CORRUPTED DATA

The photometric inconsistency is the main cause of the error in optical flow estimation. In real-world
images, real-world effects, such as blur, fog, and illumination change, cause photometric inconsistency,
and these effects frequently occur. Since DFlow generates a dataset using the compressed knowledge
of the target dataset, we verify DFlow’s ability to generate the dataset for training a robust optical
flow network against photometric inconsistency. We use rainy scenes of Virtual KITTI (Gaidon et al.,
2016) because the photometric inconsistency is dominant, as shown in Fig. 6. To obtain the target
network, we further train the base network on the rainy scenes for 20k iterations and generate an
additional dataset, DFlow-V, by targeting the rainy scenes. We use the published weight of RAFT
trained on the RF-AB dataset for the result of RealFlow (Han et al., 2022).

C ADDITIONAL EXPERIMENTS

We analyze the contrasting effect of base and target networks in Sec. C.1, and evaluate the validation
performance with DFlow in Sec. C.2.

C.1 CONTRASTING EFFECT OF BASE AND TARGET NETWORKS

To evaluate the contrasting effect of base and target networks, we measure the pre-training perfor-
mance depending on the contrasting effect. The details will be presented in the following paragraphs.

Contrasting Analysis in Pre-training. For the contrasting analysis, we generate two types of
dataset with a sample size of 2k. For the first dataset, we use KITTI 2015 (Menze & Geiger, 2015) as
the target dataset, i.e., the target network is obtained by fine-tuning the base network on the KITTI
2015 dataset. To synthesize the first dataset with contrasting effect, we minimize and maximizes the
loss of the target and base networks, respectively. For the other dataset, we generate a new target
network that is pre-trained on the KITTI 2015 dataset. With the new target network, we generate a
new pre-training dataset that is synthesized to minimize the loss of the new target data network only,
i.e., the contrasting effect is not applied.
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target
base

ours (w. contrasting)
ours (wo. contrasting)

ours (initial)

Figure 7: t-SNE plot (van der Maaten & Hinton, 2008) of different datasets. We use the context
encoder of the base network trained on FlyingChairs as a feature extractor and extract the features of
several datasets. (Red): target datasets, e.g., KITTI 2015, (Blue): base dataset, e.g., FlyingChairs,
(Sky): our initial dataset before optimization, (green): updated our dataset without the contrasting
effect, (Yellow): updated our dataset with the contrasting effect. The features of our dataset with
the contrasting effect are getting closer to the features of the target dataset through the optimization
process than the features of other datasets.

Table 9 shows the pre-training results depending on the contrasting effect. With the contrasting effect,
the RAFT network achieves comparable results on the target dataset, i.e., KITTI 2015, compared
to the other network trained on the dataset generated with the new target network only. However,
without the contrasting effect, the network shows notable performance degradation on Sintel (Butler
et al., 2012), which is not used for data generation.

Table 10: Distance of feature mean be-
tween ours and KITTI 2015.

Datasets MMD

Ours wo. contrasting 6.6892
Ours w. contrasting 6.1454

We also visualize data features to identify the effect of
the contrasting effect. We embed the features of several
datasets, such as FlyingChairs, KITTI 2015, our datasets
with and without the contrasting effect, and our dataset
before optimization. We use the context encoder of the
base network as a feature extractor. As shown in Fig. 7,
ours with the contrasting effect is closer to the target than
one without the contrasting effect. We additionally com-
pute distances of feature mean between ours and KITTI 2015. As shown in Table 10, the maximum
mean discrepancy (MMD) (Gretton et al., 2012) of ours with the contrasting effect is lower than ours
without the contrasting effect. These results show that the contrasting effect drives the data generation
toward an improving direction in a target domain.

C.2 VALIDATION RESULTS

The advantage of the proposed pipeline is that the generated data can be used to improve the validation
performance on the unseen target dataset. We split the KITTI 2015 dataset into 50 training samples
and 150 validation samples; KITTI-50 and KITTI-150. Using the target network fine-tuned on
KITTI-50, we synthesize a dataset; OursKITTI-50. Therefore, any data or information on KITTI-150 is
not included in the data generation process. We fine-tune the base network on several combinations
of datasets with 20k iterations and evaluate the validation performance on KITTI-150. As shown in
Table 11, fine-tuning on the combination of Sintel and KITTI-50 shows comparable performance
with the one of fine-tuning on KITTI-50 alone. In contrast, we observe notable improvement in
validation performance when adding the same number of OursKITTI-50 to the training dataset. As our
data generation pipeline is not limited to the number of samples that can generate, we analyze the
effect of our data size and observe the improvement of validation accuracy.
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Table 11: Comparison of the validation performance of networks fine-tuned on different dataset
combinations. We fine-tune the base network on the combination of KITTI-50 and another dataset.
OursKITTI-50 notably improves the validation accuracy on the unseen KITTI dataset, KITTI-150.

Validation dataset

Fine-tune dataset Data size KITTI-150

AEPE / F1

KITTI-50 50 3.41 / 11.47
KITTI-50+Sintel 50+2082 3.39 / 11.21
KITTI-50+OursKITTI-50 50+2082 3.07 / 10.99
KITTI-50+OursKITTI-50 50+12003 2.98 / 10.70

*Bold denotes the best, and underline denotes the second best.

Table 12: Pre-training results depending on the amounts of DFlow data. We train the RAFT
networks on FlyingChairs (Fischer et al., 2015) and various amounts of DFlow dataset. We evaluate
the performance on the Sintel and KITTI 2015 datasets.

Evaluation dataset

Sintel clean Sintel final KITTI 2015Dataset Data size

AEPE AEPE AEPE / F1

FlyingChairs 22873 2.28 4.51 9.85 / 37.56
DFlow 100 2.72 4.03 9.15 / 23.09
DFlow 500 2.20 3.48 5.40 / 17.54
DFlow 1000 2.02 3.24 5.22 / 17.06
DFlow 2000 1.90 3.02 4.90 / 15.78
DFlow 4000 1.87 2.92 4.78 / 15.64
DFlow 8000 1.81 2.91 4.88 / 15.51
DFlow 15000 1.81 2.93 4.59 / 15.03

C.3 DATASET SIZE

The number of the dataset is a key factor for training accurate optical flow networks, and synthetic
optical flow data have an advantage because of the annotation efficiency compared to the real-world
data. We analyze the effect of data size in the optical flow network, RAFT (Teed & Deng, 2020)
We train the RAFT network on the various amount of DFlow data and evaluate the performance
on both Sintel and KITTI 2015 datasets. We determine FlyingChairs (Fischer et al., 2015) as a
competing dataset because FlyingChairs and DFlow have the same data resolution. As shown in
Table 12, the RAFT network trained on the 500 DFlow dataset outperforms the model trained on the
full FlyingChairs dataset. This result shows that DFlow data has more information with the same
data resolution. The overall performance on Sintel and KITTI 2015 datasets is also improved as the
data size increase, which shows that diverse texture and motion is effective for training the optical
flow network.

C.4 PRE-TRAINING PERFORMANCE ACCORDING TO MOTION MAGNITUDES

Table 13 summarizes AEPEs of RAFT pre-trained on respective FlyingChairs (Fischer et al., 2015)
and our DFlow according to different motion ranges. The model trained on DFlow shows higher
accuracy than that of FlyingChairs except for the minimal motion range. Performance gaps between
the models tend to be enlarged in larger motion. These results may be explained by human intuition
that the small motion hardly contributes to the error of optical flow networks. For the same reason,
most motion magnitudes of DFlow are in the middle and high motion ranges, as shown in Fig. 8.
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Table 13: Motion accuracy of the RAFT networks in different magnitude ranges. We evaluate
the AEPE score of models pre-trained on FlyingChairs and DFlow in different motion ranges. As the
motion magnitude increases, the model trained on DFlow achieves more considerable performance
improvements than that trained on FlyingChairs.

Pre-training Evalutaion Motion magnitude ranges
dataset dataset < 1 [1, 10] (10, 20] (20, 30] > 30

FlyingChairs Sintel Final 0.57 1.15 3.31 6.47 24.08
DFlow (Ours) 0.69 0.80 2.04 3.59 15.18
FlyingChairs KITTI 2015 0.74 1.67 2.65 3.86 21.32
DFlow (Ours) 1.16 0.81 1.31 2.10 9.72

*Bold denotes the best.
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Figure 8: Motion magnitude histograms. DFlow focuses more on the mid-high ranges of motion
than the other datasets, because small motion hardly contributes to errors of networks.
Table 14: Analysis of multi-target datasets. The target of DFlow is Sintel, DFlow-V rainy scenes of
Virtual KITTI. We denote DFlow+DFlow-V as the multi-target datasets. Multi-target datasets show
the trade-off in general but achieve the highest performance on KITTI 2015.

Evaluation dataset

Sintel clean Sintel final KITTI 2015 Rainy sceneDataset

AEPE AEPE AEPE / F1 AEPE / F1

DFlow 1.81 2.93 4.59 / 15.03 5.87 / 22.89
DFlow-V 2.57 3.86 5.98 / 15.16 3.11 / 12.61
DFlow + DFlow-V 1.99 3.14 4.39 / 14.84 4.30 / 16.91

*Bold and underline note the best and second best, respectively.

C.5 ANALYSIS OF MULTI-TARGET DATASETS

We focus on generating the dataset close to the target dataset. It is questionable whether multi-target
datasets can be used to generate the DFlow dataset consisting of diverse data samples. The targets
of DFlow and DFlow-V are Sintel and rainy scenes of Virtual KITTI. Table 14 lists the optical flow
performance on Sintel clean, Sintel final, KITTI 2015, and the rainy scene of Virtual KITTI. As
expected, DFlow-V achieves higher performance than DFlow on the rainy scene; but DFlow-V has
inferior performance on the other datasets. When combining DFlow and DFlow-V, we observe that
there is a trade-off; the performance of DFlow with DFlow-V is usually between the performance of
DFlow and DFlow-V. However, the mixture of DFlow and DFlow-V outperforms in KITTI 2015. It
indicates that exploiting multi-target datasets is a promising research direction.
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C.6 ADDITIONAL QUALITATIVE RESULTS

Ground truth FlyingChairs DFlow

Ground truth FlyingChairs DFlow

Input Image Ground truth FlyingChairs DFlow

Figure 9: Additional qualitative results. Top: pre-training results on the KITTI 2015 dataset.
Bottom: pre-training results on Sintel Final pass.
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D ADDITIONAL GENERATED DATA SAMPLES

Figure 10 shows additional data samples. Color perturbation, texture noise, fog, and motion blur can
be found in the data samples.

Figure 10: Additional generated data samples. Top: current frames; Middle: next frames; Bottom:
visualizations of ground truth optical flow.
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