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ABSTRACT

With the rapid growth in the number of Large Language Models (LLMs),
there has been a recent interest in LLM routing, or directing queries to the
cheapest LLM that can deliver a suitable response. We conduct a minimax
analysis of the routing problem, providing a lower bound and finding that a
simple router that predicts both cost and accuracy for each question can be
minimax optimal. Inspired by this, we introduce CARROT, a Cost AwaRe
Rate Optimal rouTer that selects a model based on estimates of the models
cost and performance. Alongside CARROT, we also introduce the Smart
Price-aware ROUTing (SPROUT) dataset to facilitate routing on a wide
spectrum of queries with the latest state-of-the-art LLMs. Using SPROUT
and prior benchmarks such as Routerbench and open-LLM-leaderboard-v2
we empirically validate CARROT’s performance against several alternative
routers.

)

1 INTRODUCTION

Large language models (LLMs) have demonstrated the capability to effectively address a
diverse array of tasks across academic, industrial, and everyday settings (Minaee et al., 2024).
This continued success has catalyzed the rapid development of new LLMs tailored for both
general and specialized applications (Myrzakhan et al., 2024). While this offers practitioners
increased flexibility, the vast number of available options may pose a daunting challenge in
their real-world deployment. Particularly, determining the optimal LLM for a given query
remains a significant challenge. In a perfect world, all queries can be routed to the most
powerful model, but for many, this may quickly become prohibitively expensive.

A common approach to address this issue is routing (Shnitzer et al., 2023; Hu et al., 2024; Ong
et al., 2024; Jain et al., 2023; Sakota et al., 2024; Chen et al., 2022; Nguyen et al., 2025). There
are two paradigms of routing; non-predictive routers repeatedly call LLMs and evaluate the
responses to select the best one for a given query. Examples include Fusion of Experts (FoE)
(Wang et al., 2023), Frugal GPT (Chen et al., 2024), and techniques that cascade answers
from weak to strong LLMs (Yue et al., 2024). The obvious disadvantage of non-predictive
routing is the required inference of many LLMs for all queries, even those that are not
suitable for the task at hand. As a workaround, researchers have also considered predictive
routers, which take LLM queries as inputs and output guesses at the most appropriate LLM.
A key limitation of the prior literature on predictive routing is the avoidance of the cost
prediction problem for text generation in unknown queries. For example, Shnitzer et al.
(2023) only considers performance prediction. In another direction, RouteLLM (Ong et al.,
2024) and RoRF (Jain et al., 2023) take a step forward and implicitly incorporate model cost
by creating binary routers that select between a large, costly model and a cheap, small model.
However, they do not predict the cost of individual queries and, as we shall see, the reduced
flexibility of binary routing leads to performance degradation in practice. A recent work, Hu
et al. (2024), introduces a router that considers cost and accuracy, but they assume that cost
is constant across all questions in the dataset. The works Chen et al. (2022); Nguyen et al.
(2025) consider dynamic vs. static cost prediction in routing, but their attention is limited
to classification tasks; as the inference cost of LLMs is heavily dependent on the number of
output tokens, studying this question for more open-ended prompts remains an important
problem. Finally, Sakota et al. (2024) considers cost prediction, but their method does not
generalize to unseen queries, undermining its use in more realistic applications. In summary,



they require prior knowledge of the test set queries, as test-time routing decisions are made
by solving a Linear Program for each query. In contrast, we will introduce a router that can
handle an unknown stream of questions at test time.

To quantify the importance of cost prediction in routing, we provide a minimax analysis of
the routing problem. In Theorem 3.6, we establish a lower bound on minimax excess risk for
any possible LLM router, in terms of the training sample size and certain quantities of the
underlying prompt and model cost/accuracy distribution. Next, in Theorem 3.9 we show
that a simple router based on predicting both LLM cost and accuracy from a given prompt
can achieve the minimax lower bound established in Theorem 3.6. Collecting adequate data
to train a router is challenging; for each LLM and every query one must collect a response
and an evaluation from a judge of that response. By necessity, this collection process must
include inference from closed source models. This makes the routing data gathering process
expensive; the following informal Theorem emphasizes the importance of cost prediction in
producing a router that makes the best use of this expensive data.

Theorem 1.1 (Theorems 3.6 and 3.9 informal). An LLM router that predicts both cost
and accuracy for every question and all models in a family can achieve optimal statistical

efficiency.

Inspired by these findings (and to test them empirically), we introduce CARROT: a Cost
AwaRe Rate Optimal rouTer and the Smart Price-aware ROUTing (SPROUT) dataset.
CARROT utilizes a simple two-stage approach. We first attain an estimator for each of
the metrics (e.g. cost and accuracy) for each model given a query, then we plug in these
estimators into the formed risk function and select a model that minimizes the appropriate
convex combination of the estimated metrics.

The key learning step is attaining these aforementioned predictors, and this is where SPROUT
comes into play. SPROUT covers 14 state-of-the-art language models (e.g., Llama-3-herd
(Grattafiori et al., 2024), GPT-4o0 (Achiam et al., 2024), etc.) and approximately 45k prompts
from 6 benchmarks covering RAG, science, reasoning, and GPT-4 generated user queries.
For all models, we use zero-shot prompting and corresponding chat templates to represent
practical use cases and collect input and output token counts to allow flexibility when
studying cost-performance trade-offs. As a sneak peek, in Figure 1, we present the ratio
of CARROT’s performance to GPT-40’s (Achiam et al., 2024) on several key benchmarks
across diverse use cases represented in SPROUT. At 30% of the cost, CARROT matches or
exceeds the performance of GPT-40 on each benchmark.

1.1 PAPER OUTLINE

In Section 2, we introduce the routing problem and the “plug-in" approach to routing that
CARROT utilizes. In Section 3, we provide our minimax analysis of the routing problem. In
Section 4, we introduce SPROUT and empirically test the theoretical ideas discussed in the
prior sections. To test CARROT’s efficiency compared with prior routers, we utilize it to
estimate the Pareto frontier of performance and cost trade-off on RouterBench(Hu et al.,
2024), open-LLM-leaderboard-v2 (Fourrier et al., 2024), and our new SPROUTdataset.

1.2 RELATED LITERATURE

Performance vs cost trade-off in LLM predictions. Several recent studies have
explored optimizing the cost and performance trade-offs in the implementation of large-
language models (LLMs). LLM-BLENDER (Jiang et al., 2023) ensembles outcomes from
multiple LLMs to select the best response. Frugal-ML, Frugal-GPT (Chen et al., 2020; 2024)
and FrugalFoE Wang et al. (2023) employ an LLM cascade to sequentially query LLMs until
a reliable response is found. AutoMix (Madaan et al., 2023) relies on a smaller model to
self-verify its response before potentially considering a larger model. While these approaches
rely on multiple LLM queries, our approach routes each query to a single LLM, an approach
also considered in Hu et al. (2024). We complement these works by providing a statistically
principled approach to learning this performance vs. cost trade-off.



Ensemble learning. The routing problem is apda__ 10% of GPT-4o cost
closely related to ensemble learning that com- ~ 20%of GPT-4o cost
bines multiple models to obtain better perfor-
mance. Classical ensemble methods include
bagging (bootstrap aggregating), boosting, and
stacking (model blending) (Breiman, 1996a;b;
Freund et al., 1996; Friedman, 2001; Wolpert,
1992). Most of these works implicitly assume
that the models in the ensemble have similar
expertise, and thus it is beneficial to aggregate
their predictions, whereas in our case, models
may have complementary expertise, and averag-
ing their outputs might be detrimental because
most of them may not be suitable for an input.
Therefore, we choose to predict using the model
with the best outcome, rather than aggregating
them.

30% of GPT-40 cost

Figure 1: Percent of GPT-40 performance
achieved by CARROT across datasets at
various discounted costs, where the blue
dotted line indicates similar (100%) per-
formance to GPT-4o.

Minimax studies in non-parametric clas-
sification. One of the earliest works on the
minimax rate of convergence in non-parametric
classification is Audibert and Tsybakov (2007).
These techniques were later adopted for investi-
gating the ability of transfer learning under a distribution shift (Kpotufe and Martinet, 2018;
Cai and Wei, 2019; Maity et al., 2022). All of these works consider binary classification with
0/1 loss. In comparison, our minimax investigation differs on two fronts: we extend the
settings to classification with more than two classes and general cost functions.

2  ROUTING PROBLEM AND PLUG-IN APPROACH

2.1 NOTATION AND PRELIMINARIES

To begin, let us introduce our notation. We have M pre-trained LLMs indexed as m € [M] =
{1,..., M} and K metrics indexed as k € [K] = {1,..., K}. We denote a generic input or
query as X € X, where X is the space of inputs. Thus, for any input X, the metrics of
interest are stored in a M x K matrix. We denote this matrix as Y € RM>*X  whose (m, k)-th
entry [Y],, r is the metric value for obtaining a prediction from the m-th model evaluated
with respect to k-th metric. For all metrics, we assume that a lower value is preferred. With
this convention, we shall also refer to them as risks. For a probability distribution P in the
sample space X x RM*K we assume that the training dataset D = {(X;,Y;)}™; is an iid
sample from P.

For the probability P defined on the space X x RM*¥  we denote the marginal distribution
of X by Px. Let us denote supp(-) as the support of a probability distribution. Within the
space R%, we denote A, as the Lebesgue measure, || - ||z and || - ||oo as the f5 and £o,-norms,
and B(z,r,¢3) and B(x,r, {) as closed balls of radius r and centered at x with respect to
the ¢35 and f..-norms.

2.2 THE ROUTING PROBLEM

We will consider a convex combination of our K metrics with coefficients y € AK-1 2
{(t1,- - tx) + pe > 0,>, e = 1} and a generic point (X,Y) ~ P. The p-th convex
combination of the risks (or, u-th risk) can be written as Y u € R, with the risk incurred
for obtaining a prediction from the m-th model is

Y il = Sy [¥ T -

We want to learn a predictive router g : X — [M], that takes X as an input and predicts the
index of the LLM to be used for inference. The average p-th risk for using the router g is

Rp(g. 1) = B[ X [V ulmI{g(X) =m}] . (2.1)



For a given p let us refer to the minimizer g;; as an oracle router. The objective of the
routing problem is to learn the oracle routers g, at every value of p.

2.3 PLUG-IN APPROACH

While one may minimize an empirical risk corresponding to Rp(g, i) to estimate the oracle
router at a particular u, this approach is not scalable, any small change in p would require
refitting a new router. Given this, we develop a plug-in approach which lets us estimate the
oracle routers at every value of p. The key intuition lies within an explicit form of the g},
that we provide in the next lemma.

Lemma 2.1. Let us define ®(x) = E[Y | X = z] and nym(x) = Zle k(@ (2)]m k. Then
for any p € AKX the oracle router that minimizes Rp(g, 1) is

g;(X) = argmin,, 7,.m,(X) = arg minm{ Zszl uk[@(X)]mﬁk} .

The key conclusion of 2.1 is the expression g7;(X) = arg minm{Zf:1 wE[®(X)|mik} It
suggests a straightforward approach to estimate gj;(X) at all values of u. Namely, we only
need to plug-in an estimate of ®(X) = E[Y | X] to the expression of g% (X). Compared to
minimizing empirical risk at different values of p, this plug-in approach is more scalable if
the practitioner plans on tuning pu.

CARROT

CARROT is implemented in the following steps:

1. Learn an estimate (IS(X) of ®(X) using a training split of a routing data set Dy,.

2. For a given convex combination of interest p, produce the router g,(X) =
PN ~ K =
arg min,, 7,m (X) where 7, m(X) = 35—y i [P(X)]m k-

3 STATISTICAL EFFICIENCY OF CARROT

In this section we establish that, under certain conditions, the plug-in approach to routing is
minimax optimal. First we establish an information theoretic lower bound on the sample
complexity for learning the oracle routers (cf. Theorem 3.6). Next, we establish an upper
bound for the minimax risk of plug-in routers (cf. Theorem 3.9). Finally, we show that under
sufficient conditions on the estimates of E[Y | X] the sample complexity in the upper bound
matches the lower bound. We will also generalize slightly to the setting where the last Ky
metrics are known functions of X, i.e. for m € [M],k € {K — Ky + 1,... K} there exist
known functions fy,  : X — R such that [Y]m = fmx(X). Since E[[Y]m i | X] = fx(X)
are known for k > K — K5 + 1 they don’t need to be estimated.

3.1 TECHNICAL ASSUMPTIONS

The technical assumptions of our minimax study are closely related to those in investigations
of non-parametric binary classification problems with 0/1 loss functions, e.g. Cai and Wei
(2019); Kpotufe and Martinet (2018); Maity et al. (2022); Audibert and Tsybakov (2007). In
fact, our setting generalizes the classification settings considered in these papers on multiple
fronts: (i) we allow for general loss functions, (ii) we allow for more than two classes, and
(iii) we allow for multiple objectives.

To clarify this, we discuss how binary classification is a special case of our routing problem.
Example 3.1 (Binary classification with 0/1-loss). Consider a binary classification setting
with 0/1-loss: we have the pairs (X,Z) € X x {0,1} and we want to learn a classifier
h:X — {0,1} to predict Z using X. This is a special case of our setting with M = 2 and
K =1, where for m € {0,1} the [Y],1 = I{Z # m}. Then the risk for the classifier h,
which can also be thought of as a router, is

Rp(h) =E[ 3 0,1y [YImaI{h(X) = m}] = B[I{h(X) # Z}] ,



the standard misclassification risk for binary classification.

We assume that supp(Px ) is a compact set in RY. This is a standard assumption in minimax
investigations for non-parametric classification problems (Audibert and Tsybakov, 2007; Cai
and Wei, 2019; Kpotufe and Martinet, 2018; Maity et al., 2022). Next, we place Holder
smoothness conditions on the functions ®%,. This controls the difficulty of their estimation.

For a tuple s = (s1,...,584) € (NU{0})¢ of d non-negative integers define |s| = Z?Zl S

and for a function ¢ : R? — R and = = (z1,...,74) € R? define the differential operator,
assuming that such a derivative exists:
151 gz
Dy(,x) = 5o 5 - (3.1)

oxyt.. .0z
Using this differential operator we now define the Holder smoothness condition:
Definition 3.2 (Hélder smoothness). For 8, Kg > 0 we say that ¢ : R* — R is (3, Kg)-
Hélder smooth on a set A C R® if it is | B|-times continuously differentiable on A and for
any x,y € A
6(y) — ¢S (y)| < Kpllz — I3, (3.2)

where qﬁggwj)(y) = ZISISL,@J D(¢, x){H?Zl(yj —x;)%} is the | B]-order Taylor polynomial
approximation of ¢(y) around x.

With this definition, we assume the following:
Assumption 3.3. Form € [M] and k € [K1] the [®(X)]m i is (Vi Ky x)-Holder smooth.

This smoothness parameter will appear in the sample complexity of our plug-in router. Since
the [®(X)]m,x are known for k > K7 + 1 we do not require any smoothness assumptions on
them.

Next, we introduce the margin condition, which quantifies the difficulty in learning the oracle
router. For a given u define the margin as the difference between the minimum and second
minimum of the risk values:
Wi T (2) — min g (2) i gi(2) £ (M)
A(w) = { mégu@ " m !
0 otherwise.

(3.3)

The margin determines the difficulty in learning the oracle router. A query X with a small
margin gap is difficult to route, because to have the same prediction as the oracle, i.e.
arg min,, 7, (X) = argmin,,,n" ,(X) we need to estimate 7, ,,(X) with high precision. In
the following assumption, we control the probability of drawing these “difficult to route”
queries.
Assumption 3.4 (Margin condition). For a, K, > 0 and any t > 0 the margin A, (3.3)
satisfies:

Px{0 < A, (X) <t} < Kot™. (3.4)

Following Audibert and Tsybakov (2007), we focus on the cases where a < d and for every
k the ay, < d. This helps to avoid trivial cases where routing decisions are constant over
Px for some p. Next, we assume that Px has a density px that satisfies a strong density
condition described below.

Assumption 3.5 (Strong density condition). Fix constants cg,r9 > 0 and 0 < pimin <
Pmax < 00. We say Px satisfies the strong density condition if its support is a compact
(co,r0)-regular set and it has density px which is bounded: pimin < px(x) < fmax for all
x within supp(Px). A set A C RY is (co,ro)-regular if it is Lebesque measurable and
for any 0 < r <wrg, © € A it satisfies

Ay(ANB(z,r, b)) > coNa(B(x,r, ls)). (3.5)

This is another standard assumption required for minimax rate studies in nonparametric
classification problems (Audibert and Tsybakov, 2007; Cai and Wei, 2019). All together, we
define P, as the class of probabilities P defined on the space & x ) for which Px is compactly
supported and satisfies the strong density assumption 3.5 with parameters (co, 70, fimin, fbmax),
and the Holder smoothness assumption 3.3 and the (a, K, )-margin condition in Assumption
3.4 hold. We shall establish our minimax rate of convergence within this probability class.



3.2 THE LOWER BOUND

Rather than the actual risk Rp(u,g), we establish a lower bound on the excess risk:

Ep(p,9) = Rp(p,9) — Re(i, ;) , (3.6)

that compares the risk of a proposed router to the oracle one. We denote I' = {g : X — [M]}
as the class of all routers. For an n € N we refer to the map A, : Z — I', which takes the
dataset D,, as an input and produces a router A, (D,) : X — [M], as an algorithm. Finally,
call the class of all algorithms that operate on D,, as A,,. The following Theorem describes
a lower bound on the minimax risk for any such algorithm A,,.

Theorem 3.6. For ann > 1 and A, € A,, define Ep(u, A,) = Ep, [Ep (u,An(Dn))] as the
excess risk of an algorithm A,,. There exists a constant ¢ > 0 that is independent of both n
and p such that for any n > 1 and p € AX~1 we have the lower bound

. K — kg e
> 2y +d . .
i s £ A) 2 o S ) 7

This result is a generalization of that in Audibert and Tsybakov (2007), which considers
binary classification.

Remark 3.7. Consider the binary classification in Example 3.1. Since K = 1, the lower
bound simplifies to O(n=""""*/21+4) “which matches with the rate in Audibert and Tsybakov
(2007, Theorem 3.5). Beyond 0/1 loss, our lower bound also establishes that the rate remains
identical for other classification loss functions as well.

3.3 THE UPPER BOUND

Next, we show that if the algorithm A,, corresponds to CARROT, the performance of g,
matches the lower bound in Theorem 3.6 (cf. equation 3.7). En-route to attaining g,,, we

need an estimate C/I;(X) of ®(X) = Ep[Y | X]. We begin with an assumption for a rate of
convergence for [®(X)] k-

Assumption 3.8. For some constants p1,p2 >0 and anyn > 1 and t > 0 and almost all
X with respect to the distribution Px we have the following concentration bound:

mas P{ max aj, [[B(X) ]k — [@(X)]mi| = 1} < prexp( = pat?) (38)

where for each k the {ag n;n > 1} C (0,00) is a sequence that decreases to zero.

Using this high-level assumption, in the next theorem, we establish an upper bound on the
minimax excess risk for CARROT that depends on both ay,, and px.

Theorem 3.9 (Upper bound). Assume 3.8. If all the P € P satisfy the margin condition
3.4 with the parameters (a, K,) then there exists a K > 0 such that for any n > 1 and
w € AK=L the excess risk for the router g, in Algorithm 2.5 is upper bounded as

max Ep, [Ep(gx, )] < K{ S Nkak,n}1+a : (3.9)

Remark 3.10 (Rate efficient routers). When ay ,, = n="*@+9 the upper bound in Theorem

3.9 has the O({ZkK:l1 pen R Gt It ate which is identical to the rate in the lower
bound (cf. Theorem 3.6), suggesting that the minimaz optimal rate of convergence for the
routing problem is

i K — k14«
Aglelfin max Ep(A,, N\ < (’)({ SOk pn m+d} ) . (3.10)

Following this, we conclude: When ay n, = n~ et D the plug-in approach in Algorithm 2.3,
in addition to being computationally efficient, is also minimax rate optimal.

An example of an estimator d that meets the needed conditions for Ak = n= M @vtd) g
hold is described in Appendix C.1.



4 ROUTING IN BENCHMARK CASE-STUDIES

We use CARROT (Algorithm 2.3) to perform routing on several benchmark datasets.

4.1 DATASETS

RouterBench: RouterBench (Hu et al., 2024) is a benchmark dataset for routing tasks
consisting of approximately 30k prompts and responses from eleven (M = 11) different
LLMs. The data includes prompts from 8 benchmarks covering commonsense reasoning,
knowledge-based understanding, conversation, math, and coding.

Open LLM leaderboard: The Open LLM leaderboard v2* (Fourrier et al., 2024) is an
open-source benchmarking platform that comprises responses and evaluations of a collection
of LLMs on six benchmarks comprising a diverse collection of tasks.

SPROUT: We introduce (and evaluate CARROT on) SPROUT, a large and diverse
dataset designed for training and evaluating routers. SPROUT integrates M = 15 state-of-
the-art language models (see Table 2) and prompts from 6 benchmarks, including GPQA
(Rein et al., 2023), MuSR (Sprague et al., 2024), MMLU-Pro (Wang et al., 2024), MATH
(Hendrycks et al., 2021b), OpenHermes (Teknium, 2023), and RAGBench (Friel et al., 2025).
Compared to existing routing benchmarks such as RouterBench, SPROUT offers several key
advantages:

1. SPROUT encompasses a highly diverse set of questions, including instruction queries.

2. Unlike previous benchmarks, it does not rely on few-shot prompting and utilizes chat
templates appropriate for each model, making it more representative of real-world use
cases.

3. Tt leverages LLaMa-3.1-70b-Instruct (Grattafiori et al., 2024) to evaluate LLM responses
against the ground truth, similarly to Ni et al. (2024). This is crucial for evaluating on
open-ended instruction queries as well as mitigating errors associated with traditional
automatic evaluation methods like exact match.

4. We provide input and output token counts for each LLM-prompt pair, enabling flexibility
when conducting cost-aware analysis.

We have released the SPROUT in huggingface and will open-source a platform that allows
practitioners to extend SPROUT by adding new queries and seamlessly evaluating state-of-
the-art models on them. For further details, please refer to Appendix A.

4.2 PLUG-IN ESTIMATES

CARROT requires an estimate for the function ®},(X) = Ep[Y,, | X]. In our benchmark
tasks, Y, is 2-dimensional, consisting of model performance measured as accuracy and model
cost measured in dollars. In all routing datasets, Y,cc m is binary, and thus we can view its
estimation as a binary classification problem, where our objective is to predict the probability
that m-th model will answer the question X correctly, i.e. Pp(X) = P(Yacem = 1| X))

Yace,m- We train several multi-label classification models P x— [0,1]™ on a training data
split consisting of 80% of the full dataset, where the m-th coordinate of P(X) is the predicted

probability that m-th model accurately answers the question X. In the RouterBench and
SPROUT task the cost must also be estimated. We train multi-label regression models

C:x = RM . where C'm(X) = E[Ycost,m|X] is the estimated cost of calling model m for
query X. To train the cost or performance predictors we consider two procedures:

1. CARROT (KNN): We embed the model inputs using the text-embedding-3-small
model from OpenAl (OpenAl, 2023). On these text embeddings, we train a multi-label
K-nearest-neighbors (KNN) classifier /regressor.

*https://huggingface.co/spaces/open-11lm-leaderboard/open_l1lm_leaderboard
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Figure 2: Performance of several routers and individual LLMs on test data-split in Router-
bench.

2. CARROT (Roberta): We fine-tune the pre-trained weights of the roberta-base

architecture. In order to enhance efficiency, across m we allow P to share the same
network parameters, except for the final classification/regression layer.

4.3 BASELINE METHODS

Zero Router: The zero router is a simple check to see if predictive routing is of any value
on a given data set. This benchmark randomly assigns prompts to the best performing (in
terms of cost/accuracy trade-off) in the dataset.

Binary Routers: Ong et al. (2024) (RouteLLM) proposes a collection of methods for learning
binary routers from preference data (data consisting of queries ¢ and labels [; ; indicating a
winner between model ¢ and j). While the usage of preference data is slightly different from
ours, we implement their methods on our data by creating pseudo-preference data between
two models. In particular, we select a costly and high-performing model and a cheaper model
and say the costly model wins if and only if it is correct while the cheaper model is incorrect.
On this pseudo preference data, we fit two methods from Ong et al. (2024) for learning win
probabilities between expensive and cheap models: the first is a matrix factorization method,
called RouteLLM (MF'), while the second uses fine-tuned roberta-base, called RouteLLM
(Roberta). A follow-up method to these is Routing on Random Forests (RoRF) from
Not-Diamond (Jain et al., 2023), referred to as Not-Diamond RoRF. This method uses
a text-embedder and random forest model to predict the win probability; we provide a
comparison to this method with the text-embedding-3-small embedder from OpenAl.

Cost-Unaware Routers: Another class of routers routes to multiple models but does not
attempt to predict inference cost for each question (Chen et al., 2022; Nguyen et al., 2025;
Hu et al., 2024). The most comparable router to ours is the Routerbench router proposed
in (Hu et al., 2024). Their router is essentially CARROT with a constant cost predictor:
For each test question, the predicted model use cost is the average cost over the training set
for that model, while the performance predictor matches what we describe in Subsection 4.2

4.4 RESULTS

Performance against baselines: In Figures 2a and 3b, we see that CARROT handily
beats routers that only consider two models. This is due to the fact that we route to
all possible models, which increases the accuracy coverage and decreases the cost of the
cheapest accurate model for a given query. In Figures 2b and 3a, we see that CARROT
offers marginal improvements over the Routerbench router (Hu et al., 2024) that does not

Thttps://huggingface.co/FacebookAI/roberta-base
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attempt to predict cost. Together, these findings suggest that while good cost prediction
is important for achieving the most efficient price/accuracy trade-off, the large majority of
routing performance is made up of correctly assessing the accuracy of each model in the
family.

CARROT can (sometimes) out-perform the best model: In RouterBench we were
unable to achieve significantly better accuracy than GPT-4; however, we were able to greatly
reduce the prediction cost. Likewise on SPROUT we are able to process the test set at a
fraction of the cost of 03-mini, but at its best CARROT cannot exceed the 03-mini’s accuracy.
On the other hand, we showed that CARROT can outperform the best model (Qwen2-72B)
by a large margin in Open LLM leaderboard v2 (see Figure 3b). The difference is likely due
to the existence of a singular top-performing model, or multiple models with comparable
best accuracies.
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Figure 3: CARROT routing analysis on the SPROUT and Open-LLM-Leaderboard-v2
dataset.

Predictive routing is highly valuable for SPROUT: Hu et al. (2024) conclude that
"none of the routing algorithms significantly outperform the baseline zero router" on the
Routerbench data set, where the zero router linearly interpolates between models on the
frontier of cost and accuracy. This suggests that on Routerbench, predictive routing does not
provide any significant benefit. In our view, this is not a shortcoming of predictive routing;
rather, it is a shortcoming of the Routerbench dataset itself. Indeed, in Figure 3a we show
that for a carefully collected dataset, predictive routing can provide substantial gains. On
SPROUT both CARROT and the cost-unaware router provide substantial improvement over
the zero-router. This suggests that SPROUT is an important introduction to the landscape
of routing data sets.

5 DISCUSSION

We introduced CARROT, a plug-in based router that is both computationally and statistically
efficient. The computational efficiency stems from the requirement of merely calculating the
plug-in estimators (see Algorithm 2.3) to perform routing Since collecting adequate data
for router training might be challenging, we investigate CARROT’s statistical efficiency in
routing through a minimax rate study. To establish the statistical efficiency of CARROT,
we have provided an information-theoretic lower bound on the excess risk of any router in
Theorem 3.6 and corresponding upper bound for CARROT in Theorem 3.9. To ensure a
broad scope for CARROT to a diverse set of queries and the latest state-of-the-art LLMs,
we also introduced the SPROUT dataset.



6 REPRODUCIBILITY STATEMENT

Appendix C includes proofs of all theoretical statements. Appendices A and D include details
of the construction of SPROUT. Appendix B includes details for experiments that take
place on Routerbench and Open-LLM-Leaderboard-V2. Code has been uploaded into the
supplementary material, and a link to the SPROUTdataset will be included in the camera
ready version.
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A SPROUT CONSTRUCTION DETAILS AND PLOTS

In this section, we discuss data details for SPROUT. SPROUT will be released on Hugging-
Face hub as a HuggingFace datasets object. For convenience, the data is pre-divided into
train, validation, and test splits. Consider the training set as an example; the features of
this split are

features = [’key’, ’dataset’, ’dataset level’, ’dataset idx’, ’prompt’
y P P
k]
’golden answer’, ’03-mini’, ’aws-claude-3-5-sonnet-vl’,
’titan-text-premier-v1’, ’openai-gpt-40’,

’openai-gpt-4o-mini’, ’granite-3-2b-instruct’,
’granite-3-8b’, ’llama-3-1-70b-instruct’,

’llama-3-1-8b-instruct’, ’llama-3-2-1b-instruct’,
’llama-3-2-3b-instruct’, ’llama-3-3-70b-instruct?’,
’llama-3-405b-instruct’, ’mixtral -8x7b-instruct-v01°’]

Each key corresponds to another list. "prompt" contains the model queries, the "dataset"
list indicates which sub-task a given query falls in (¢f. Table 1 for info), and golden answer
contains a desirable response for each query. Finally, the model keys each correspond
to a list of dictionaries that contains further information on the responses of that model.
The important keys in each dictionary of the list are ["num input tokens", "num output
tokens", "response", "score"]. They contain the number of input tokens for a query,
the number of output tokens a model gives in response to a query, the actual response
of the model, and finally the score that the judge provides for the response (using the
corresponding golden answer entry). The conversion of token count to cost is given in
Table 2 and additional details on the judging process are described in Section A.2.

A.1 SPROUT INGREDIENTS

Table 1 gives the benchmark ingredients for SPROUT. Namely, we use the MATH Lvl 1-5
(Hendrycks et al., 2021b), MMLU-PRO (Wang et al., 2024), GPQA (Rein et al., 2023), MUSR
(Sprague et al., 2023), RAGBench (Friel et al., 2025), and openhermes (Teknium, 2023)
datasets. These six benchmarks are varied and designed to simulate real-world scenarios
where LLMs encounter a wide range of prompts. MATH focuses solely on mathematical word
problems, whereas MMLU-PRO and GPQA include both mathematical and advanced science
questions. MuSR serves as a benchmark for assessing multistep soft reasoning tasks framed
within natural language narratives. RAGBench is a retrieval augmented generation (RAG)
benchmark dataset collected from Question-Answer (QA) datasets (CovidQA (Moller et al.,
2020), PubmedQA (Jin et al., 2019), HotpotQA (Yang et al., 2018), MS Marco (Nguyen
et al., 2017), CUAD (Hendrycks et al., 2021a), EManual (Nandy et al., 2021), TechQA
(Castelli et al., 2020), FinQA (Chen et al., 2021), TAT-QA (Zhu et al., 2021), ExpertQA
(Malaviya et al., 2024), HAGRID (Kamalloo et al., 2023)), as well as one that was specifically
adapted for RAG (DelucionQA (Sadat et al., 2023)). This measures the ability of a LLM to
incorporate retrieved documents along with user queries to generate accurate answers for
problems that require in-depth domain knowledge. As such, RAGbench is grouped by the
needed domain knowledge: bio-medical research (PubmedQA, CovidQA), general knowledge
(HotpotQA, MS Marco, HAGRID, ExperQA), legal contracts (CuAD), customer support
(DelucionQA, EManual, TechQA), and finance (FinBench, TAT-QA). Finally, openhermes is
a collection of GPT4 generated questions designed to emulate real user queries to an LLM.

A.2 SPROUT MODELS AND RESPONSE COLLECTION

Table 2 provides the models and their associated costs that a router trained on SPROUT
can select between. The input and output token counts are collected by simply gathering
the count of the tokenized queries and outputs of a model from its tokenizer. In order to
emulate real-world use cases, responses from each LLM are collected using a corresponding
chat template with a generic prompt and zero shot prompting.
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Table 1: Dataset Splits for SPROUT.

Benchmark Train Validation Test
ragbench/expertqa 98 17 16
MATH (test) 1725 363 384
ragbench (emanual) 82 27 23
ragbench (cuad) 151 35 29
MuSR 178 35 35
MATH 5217 1061 1134
MuSR (team allocation) 157 52 41
ragbench (hagrid) 92 23 17
gpqa (extended) 368 89 84
MuSR (object placements) 169 47 34
ragbench (pubmedqa) 92 14 26
ragbench (hotpotqa) 89 22 21
ragbench (msmarco) 85 24 23
ragbench (techqa) 85 24 23
MMLU-Pro 8204 1784 1798
openhermes 13703 2917 2835
ragbench (tatqa) 90 17 25
ragbench (finqa) 97 15 20
ragbench (covidga) 162 38 41
ragbench (delucionga) 124 32 28
TOTAL 30968 6636 6637

Table 2: Models in SPROUT dataset and their API prices according to token counts.

Input Token Cost Output Token Cost

Model (in $ per 1M tokens) (in $ per 1M tokens)
openai-o3-mini 1.1 4.4
claude-3-5-sonnet-v1 3 15
titan-text-premier-vl 0.5 1.5
openai-gpt-40 2.5 10
openai-gpt-4o-mini 0.15 0.6
openai-o3-mini 1.1 4.4
granite-3-2b-instruct 0.1 0.1
granite-3-8b-instruct 0.2 0.2
llama-3-1-70b-instruct 0.9 0.9
llama-3-1-8b-instruct 0.2 0.2
llama-3-2-1b-instruct 0.06 0.06
llama-3-2-3b-instruct 0.06 0.06
llama-3-3-70b-instruct 0.9 0.9
mixtral-8x7b-instruct 0.6 0.6
llama-3-405b-instruct 3.5 3.5

Given the use of chat templates and zero-shot prompting, evaluation is challenging because
model responses will not necessarily follow a specific format. To alleviate this, we adopt
the evaluation protocol from MixEval (Ni et al., 2024) and use LLama-3.1-70B as a grader
to score model queries against a given gold standard answer. The prompt format that we
use is provided in D. Note that this prompt format needs to be converted to openai-api
compatible messages while prompting the LLMs, which can be inferred from the special
delimiters contained within the prompt format.
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B ADDITIONAL PLOTS AND EXPERIMENTAL DETAILS

B.1 ROUTERBENCH

Figure 4 lays out the models and benchmarks present in the Routerbench dataset. To
implement the transformer-based plug-in estimate of cost and accuracy, we utilize the
roberta-base architecture with a learning rate of 3e-5 and a weight decay of 0.01. A
training, validation, test split of 0.72, 0.8, 0.2 is used. Learning proceeds for 5 epochs, and
the model with the best validation performance is saved at the end. To fit the KNN-based
router, the OpenAl text-embedding-small-3 model is used, while the KNN regressor utilizes
the 40-nearest neighbors measured by the 'cosine’ similarity metric.

The same roberta-base parameters are used to fit the Roberta technique from RouteLLM
(Ong et al., 2024). The matrix factorization method assumes that

P(GPT-4 Winlq) = o(w3 (vapr.a © (Wi vy +b) — Vmixtral © (Wi vg +b)))

where vGpT.4,Umixtral are learnable embeddings of the model of interest. We use the
text-embeddder-small-3 from OpenAl to embed the queries, and a projection dimen-
sion of d = 128. The model is fit using Adam, with a learning rate of 3e — 4 and a weight
decay of 1le — 5. To fit RoRF from not-diamond, we again use text-embeddder-small-3
while the default parameters from Not-Diamond are used (max-depth = 20, 100 estimators).

Method MMLU MT-Bench MBPP HellaSwag ‘ Winogrande ‘ GSM8k ARC
Perft Costl | Perft Costl | Perft Costl | Perft Cost] | Perft Cost] | Perft Cost] | Perft Cost)
WizardLM 13B 0568 0.122 | 0796 0.006 | 0364 0.011 | 0.636 0727 | 0.512 0.040 | 0510 0.354 | 0.660 0.068
Mistral 7B 0.562 0.081 | 0.779 0.003 | 0349 0.006 | 0.541 0485 | 0.562 0.027 | 0409 0.210 | 0.642 0.046
Mixtral 8x7B 0733 0.245 | 0921 0.012 | 0573 0.023 | 0.707 1455 | 0.677 0.081 | 0515 0594 | 0.844 0.137
Code Llama34B | 0.569 0.317 | 0796 0.015 | 0465 0.021 | 0525 1.882 | 0.617 0.104 | 0462 0.752 | 0.644 0.177
Yi34B 0743 0326 | 0938 0.018 | 0333 0031 | 0931 1938 | 0748 0.107 | 0552 0.867 | 0.882 0.182
GPT-3.5 0720 0408 | 0908 0.026 | 0.651 0.044 | 0.816 2426 | 0.630 0.134 | 0601 1.170 | 0.855 0228
Claude Instant V1 | 0384 0.327 | 0.863 0.030 | 0.550 0.064 | 0.801 1.943 | 0.512 0.108 | 0.626 1.300 | 0.821 0.183
Llama 70B 0.647 0367 | 0.854 0.022 | 0302 0.039 | 0.736 2.183 | 0.504 0.121 | 0.529 0.870 | 0.794 0.205
Claude V1 0475 3.269 | 0938 0361 | 0527 0.607 | 0.841 1943 | 0570 1.077 | 0.653 11.09 | 0.889 1.829
Claude V2 0.619 3270 | 0.854 0277 | 0.605 0.770 | 0421 19.50 | 0446 1.081 | 0.664 1349 | 0546 1.833
GPT-4 0.828 4.08 | 0971 0721 | 0.682 1235 | 0.923 2429 | 0.858 1346 | 0654 19.08 | 0921 2286
Oracle | 0957 0297 | 0.996 0052 | 0.899 0.041 | 0.994 03860 | 1.0 0.042 | 0.748 1282 | 0.977 0.091

Figure 4: Routerbench models and benchmarks (Hu et al. (2024) Table 1).
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Figure 5: Router Bench Supplementary.

B.2 OpPEN LLM LEADERBOARD V2

LLMs and costs: Table 3 gives all models used for the Open LLM Leaderboard experiment
and their respective costs.
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Table 3: Models used and their respective costs for the Open LLM Leaderboard experiment.

Model Name Price (USD per 1M tokens)
NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO 0.6
01-ai/Yi-34B-Chat 0.8
Qwen/QwQ-32B-Preview 1.2
Qwen/Qwen2-72B-Instruct 0.9
Qwen/Qwen2.5-7B-Instruct 0.3
Qwen/Qwen2.5-72B-Instruct 1.2
alpindale/WizardLM-2-8x22B 1.2
deepseek-ai/deepseek-1lm-67b-chat 0.9
google /gemma-2-27b-it 0.8
google /gemma-2-9b-it 0.3
google/gemma-2b-it 0.1
meta-llama/Llama-2-13b-chat-hf 0.3
meta-llama/Meta-Llama-3.1-70B-Instruct 0.9
mistralai/Mistral-7B-Instruct-v0.1 0.2
mistralai/Mistral-7B-Instruct-v0.2 0.2
mistralai/Mistral-7B-Instruct-v0.3 0.2
mistralai/Mixtral-8x7B-Instruct-v0.1 0.6
nvidia/Llama-3.1-Nemotron-70B-Instruct-HF 0.9

Model fitting: The model fitting details for baseline methods are all the same as in
the RouterBench experiment (following the original implementations). To fit our methods,
we employ some hyperparameter tuning for both KNN and roberta-base. For KNN, we
employ 5-fold cross-validation using ROC-AUC and the possible number of neighbors as 2, 4,
8, 16, 32, 64, 128, 256, or 512. For roberta-base hyperparameter tuning, we train for 3k
steps, using 20% of the training data for validation, a batch size of 8, and search for the best
combination of learning rate, weight decay, and gradient accumulation steps in {5e-5, le-5},
{le-2, 1le-4}, and {1, 2, 4, 8}. The final model is trained for 10k steps.
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Figure 6: Open LLM leaderboard v2.

C SUPPLEMENTARY DEFINITIONS, RESULTS AND PROOFS

C.1 MINIMAX APPROACHES TO LEARNING THE RISK FUNCTIONS

In remark 3.10 we discussed the required condition for d so that the plug-in router has
minimax rate optimal excess risk. In this section we show that estimating ® using local
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polynomial regression (LPR) meets the requirement. To describe the LPR estimates consider

a kernel ¢ : R? — [0, 00) that satisfies the regularity conditions described in the Definition

C.2 in Appendix C with parameter maxy v and define ©(p) as the class of all p-degree

polynomials from R to R. For bandwidths hy > 0;k € [K1] we define the LPR estimate as
[@(@0)]mk = 05 (0);

Zo

Atm . . 2
6(mk) ¢ argmin ZiT/)(X’h O [Yilme — 0(Xi — z0)} . (C.1)
0€0(p)
In Theorem 3.2 of Audibert and Tsybakov (2007), a similar rate of convergence for LPR
estimates is established. In their case, the losses were binary. For our instance, we assume
that the Y; are sub-Gaussian, but the conclusions are identical. We restate their result below.

Lemma C.1. Assume that Y; are sub-Gaussian random variables, i.e. there exist constants
c1 and co such that

P([Yilloo > t| X) < cremc2t’.
If ¢ is regular (cf. Definition C.2) with parameter maxy v, and p > |maxy yg| then for
hi = n=/CwtD the Assumption 3.8 is satisfied with n = n~ et e for some
constants p1,p2 > 0 and any n > 1 and t > 0 and almost all X with respect to Px we have
the following concentration bound for d:

max P{max a [[$(X) ] = [2(0)]mx| > £}

< prexp( — pat?) . (C.2)
This result is related to our Remark 3.10 about the rate-efficient estimation of routers.

Estimating ®(X) with an LPR and a suitable bandwidth and polynomial degree leads to
our desired rate of convergence ay , = n~ /vt in Assumption 3.8.

C.2 EXAMPLES, ADDITIONAL ASSUMPTIONS AND LEMMAS

Next, we describe the regularity conditions needed for local polynomial regression in eq.
(C.1) and (C.1). These conditions are taken directly from Audibert and Tsybakov (2007,
Section 3).

Definition C.2 (Kernel regularity). For some B > 0 we say that a kernel K : R? — [0, 00)
satisfies the reqularity condition with parameter B, or simply B-reqular if the following are

true:
for some ¢ > 0,K(z) > ¢, for|z|2<c,

JK(z)dx =1
S+ [2ll) K2 (2)do < oo,
sup(1 + ||z[|3”) K (z) < oo.
x
An example of a kernel that satisfies these conditions is the Gaussian kernel: K(z) =
H?Zl &(z;), where ¢ is the density of a standard normal distribution.

Next, we establish sufficient conditions for a class of distributions {pg,f € R} to satisfy the
condition that KL(pg, per) < K(6 — 6")? for some K > 0 and any 6,0’ € R.

Lemma C.3. Assume that a parametric family of distributions {pg,0 € R} satisfies the
following conditions:

1. The distributions have a density pg with respect to a base measure p such that pg is twice
continuously differentiable with respect to 6.

2. [ Oopo(x)dp(x) = 9y [ po(w)dp(x) =0
3. For some K >0 and all § € R the —83 [ log pg(z)pe(z)du(z) < K.

K(0—0")?
Then KL(pg,per) < ——5——.
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Some prominent examples of such family are location families of normal, binomial, Poisson
distributions, etc.

Proof of the Lemma C.3. Notice that
KL (19, 16
= [ po(x) log { 222 du(w)
= [po(x){ log pe(x) — log pe: (z) ()
= [ po(x){logpy(x) —logpy(x) — (6" — 6)p log ps(x) — (9';9)2 03 1og py(x) bdpu(x)

Here, | po(2)0% log po(x)di(x) = [ Ogpo(z)dys(z)dz = 0 and — [ po()03 log py(x)du(z) < K.
Thus, we have the upper bound KL(ug, o) < %(9 —6")2. O

C.3 Proor or LEMMA 2.1
Proof of Lemma 2.1. The p-th risk
Rp(g: 1) = B[E[Y plim | X]H{g(X) = m}]
= B[{ Ty me[®(X)]m i F{g(X) = m}]

is minimized at g(X) = argmin,, { Zszl 16 (@ (X) ] e }- O

C.4 THE UPPER BOUND

Lemma C.4. Suppose that we have a function f : X — RM for which we define the
coordinate minimizer g : X — [M] as g(z) = argmin,, f, (z) and the margin function

Ale) = {minmﬂm fon(@) = Fyy (@) if glw) # [M]

0 otherwise.
Assume that the margin condition is satisfied, i.e. there exist o, K, such that
Px{0 < A(X) <t} < Kqt*. (C.3)

Additionally, assume that there exists an estimator f of the function f such that it satisfies
a concentration bound: for some p1,p2 >0 and anyn > 1 and t > 0 and almost all x with

respect to Px we have the following concentration bound for d:
Pp {[If () = f(2)llsc = t} < prexp( — p2a;*t?) , (C.4)

where {an;n > 1} C R is a sequence that decreases to zero. Then for §(x) = argmin,, fn (z)
there exists a K > 0 such that for any n > 1 we have the upper bound

Ep, [Ep[f0x)(X) = foox) (X)]] < Kap™. (C.5)

Proof. For an x € X define 0,,(x) = fm(x) — fg(z)(x). Since g(x) = argmin,, f,(z) we
have §,,(z) > 0 for all m, min,, d,,(x) = 0. Furthermore, define h(z) = argmin{m #
g(x) : fm ()}, i.e. the coordinate of f(z) where the second minimum is achieved. Clearly,
On(z)(x) = A(z). With these definitions, lets break down the excess risk as:

Ep, [Ep [f300)(X) = foo0 (X)]]
= Ep, [Ep[ 0 {Fn(X) = fooo) OM{GX) = m}]]
=Ep, [Ep[ N {Fn(X) = forx)(X)M{G(X) = m}{A(X) < 71]]

+ 221 B, [Bp[ X0y {fn (X) = foo0 (XM{G(X) = my{721~! < A(X) < TT%H |
C.6
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where 7 = 2p;1/2an. We deal with the summands one by one. First, if A(X) = 0 then all
the coordinates of f(X) are identical, which further implies that f,,(X) — fy(x)(X) = 0 for
any m. Thus,

Ep, [Ep[ XM {fn(X) = fo00(X)M{G(X) = m}I{A(X) < 7}]]
=Ep, [Er[ZM_ {fin(X) — fy00 (X)I{G(X) = m}I{0 < AX) < 7}]]

~

If m = ¢g(X) then the summand is zero. For the other cases, g(X) = m if f(X) has the
minimum value at the m-th coordinate. This further implies fy,,(X) < fg( X)(X ). The only
way this could happen if |fon (X) — frn(X)] 2 5n(X)/2 0r |Fy0)(X) = fyx) (X)] = m(X)a.

Otherwise, if both are | f,, (X) — fr(X)| < 9n(X)/2 and | fx)(X) = farx)(X)] < 9n(X)/2 this

necessarily implies

Fo0)(X) < fy)(X) + 2miX)

= fn(X) = 0n(X) + P2
= fm(X) = 22§ ><fm< X),

which means for ]?(X ) the minimum is not achleved at the m-th coordinate. Now, |fm (X) -

Fm(X)] > 8m(X)f2 01 | Fyx)(X) = fyi0)(X)| > 6m(X)/2 implies | F(X) = (X))o > 5 (X)/2.

With these observations we split the expectation as
Ep, [Ep[{fn(X) — fyo0)(X)M{G(X) = m}H{O <A(X) < 7}]]
=Ep, [Ep[{fn(X) = foox)(X)IH{G(X) = m = g(X)}[{0 < A(X) < 7}]]
+Ep, [Bp[{£n(X) = fy00 COHGX) = m # g(X)}I{0 < A( ) <7}]

The first part is zero, whereas the second part further simplifies as:

Ep, [Ep [{fn(X) = fo00) (X)H{GX) = m # g(X)}{0 < A(X) < 7}]]
< Ep, [Ep [{fn(X) = foo (X{IF(X) = F(X)]loe > 2P0 < A(X) < 7}]]
= Ep[{fm(X) = fo0x,(X)}Ep, [I{[/(X) = F(X)lloe > =F2 {0 < A(X) < 7}]
= Ep [0, (X) Pp, {|IF(X) = F(X)]loo > 22F2}1{0 < A(X) < 7}]

—252
pan “85,(X)
4

S0 (X)
< Ep[0m(X)pre” {0 < A(X) <7} =Ep[0mn(X)pre” 7 {0 < A(X) < 7}]
Notice that d,,(X) > A(X) whenever A(X) > 0. Thus, we perform a maximization on
3 (X)
Om(X)e™ 7~ on the feasible set m(X) > A(X). Here, we use the result:

2 T 1f >y
maxze 7z < { V¢ 42 (Cc.n
r2y ye -7 otherw1se ,

52

m (X

where & = 0,,(X) and y = A(X). Since A(X) < 7 we have 6,,(X)e” " -2 < 7 and thus

Ep [5m(X)p167@H{0 <AX) <7 <pitP{O<AX) <7} =pi7!F
This finally results in
Ep, [Ep[ X o {fm(X) = fo0 (X)D{GX) = m}{A(X) < 7}]] < Mpr7'

which takes care of the first summand in eq. (C.6). Now, for an ¢ > 1, let us consider the
summand

Ep, [Ep[ Sy {fm(X) = fo00 ()IH{G(X) = m}{r2~! < A(X) < r27}]]
Again, on the event m = ¢g(X) the the summand is zero and on the other cases we have
1F(X) = F(X)|loe > 6m(X)/2. Thus, we write
Ep, [Ep[ Yy {fm(X ) - fg(X)( NH{GX) = m}{r2"~" < A(X) < 72'}]]
< Y1 Ep, [Bp [0 (OI{IF(X) = F(0)]le 2 255} H{r2 ! < A(X) < 727}]]

62

<M Ep [5m(X)p16_mri?]I{7'2i_1 < A(X) <7127
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Because A(X) > 72071 > 7/\/2 we again use the inequality in eq. (C.7) to obtain
52 (X) i .
S Ep[6n(X)pre” 7 I{r2i7! < A(X) < 72°}]
M _A%x) 1 .
<1 Ep[AX)pre” 77 {1271 < A(X) < 72'}]
25202 ) )
< Z 1 7'2’,016 =5 P{r2i71 < A(X) < 12%}

7202 . . i—
< Mt2ipre” = P{O < A(X) < 721} = Mpyritogilita) =27
Combining all the upper bounds in (C.6) we finally obtain
Ep, [Er [f500 (X) = fy00(X)]] £ Mprr #o {14 i 200907 (C3)

As >, 2 21(1+) ¢ =2""* i5 finite we have the result. O

Proof of Theorem 3.9. The proof of the upper bound follows directly from the lemma C.4

once we establish that for a,, = ZkK:ll prak,» the following concentration holds: for constants
p1,p2 > 0and any n > 1 and ¢ > 0 and almost all X with respect to Px we have

max P{ max |7,,m (X) — (X)| =t} < prexp(— p2a,*t?). (C.9)

PeP
To this end, notice that
max,, |ﬁmm(X) — 77“7m(X)|
< Sy e 0@y [[B(X)] e — [P(X)] k|
= Sty gk max, |[(X)] g — [B(X)]m ]

where the last equality holds because [®(X Nm ke = [@(X)]m,x for k> Kq + 1. Following this
inequality, we have that for any P € P

P{ max,, ‘ﬁu7m(X) - nu,m(X)‘ 2 Klt}
< oty P{masy, |[®(X)]m g — [®(X)|m k| > £}

K _ _
<D ks Pk,leXp( — Pk2Hyg 2ak,it2)
< prexp( — p2 KH{ Ay 1y tag, }21%)

maxg< Ky Pk,1

where p; = —3 = and p» = KfQ X {Ak<K, Pr2}- Note that

*
Nu,m

Kl{/\f:ll:u’lzla];i}_l =K maxi(zl1 HEkQpn > ZkSKl HEkQk,n = Qn -
Thus,
P{maxy, [Mu,m(X) — num(X)| > Kit}

< prexp( = p2 KE{N2 g tay  Y212) < prexp( — paalt?) .

C.5 THE LOWER BOUND

To begin, we discuss the high-level proof strategy that will achieve our lower bound. Ulti-

mately, for every k < K; we shall establish that for any €, € [0,1] and n > 1
—_ Yk J14a
Amelﬂ max Ep(p, An) = cp{ppn™ s 770 (C.10)
for some constant ¢, > 0. Then, deﬁning ¢ = min{cy, : k < K} we have the lower bound
— Yk 14«
A > 2~ +d
it max Ep(n Au) > i o {pen )

—_ Yk y14a
> max c{ukn 2%*"’}
k<K,

_ Yk
. 2y +d y 14«
> c{ ZkgKl B : }

N
> CKfl*a{ Zk<K1 #kn_ﬁ}ura ,

21



which would complete the proof.

It remains to establish (C.10) for each k € [K;]. To obtain this, we construct a finite family
of probability measures M,. C P (indexed by [r]) and study Jnax . The technical tool which
EM,

allows this to be fruitful is a generalized version of Fano’s lemma.

Lemma C.5 (Generalized Fano’s lemma). Let r > 2 be an integer and let M, C P contains
r probability measures indexed by {1,...,r} such that for a pseudo-metric d (i.e. d(6,6") =0

if and only if 0 =6") any j # j'
d(0(P;),0(P;)) > o, and KL(Pj, Pji) < ;.
Then

~

maxBp, [d(0(F;),0)] > % (1 - 275282)

In our construction §(P?) = g , and d(0(P°°),0(P")) = Epeo(g); 5\, 14)-

Next, we lay out the template for constructing the family M,.. Fix a ko € [K1] and define
the following.
_1

S
Definition C.6. 1. For an h =L x ,u,zso n 2o (L >0 is a constant to be decided later)
define m = |h™1].

2. Define G = [{thr% :i=0,... ,mfl}d] as a uniform grid in [0, 1] of size m? and G, as an
e-net in Lo metric, i.e. Ge = UpegB(x, €,0s), where B(x,€,05) = {y € X : [[r—yllco < €}.

3. Define Px = Unif(G.). For such a distribution, note that vol(G.) = (me)? < (h=1e)?,

which implies that for all x € G. we have px(z) = (he 1), Setting e = pal/dh A % we
have px (x) > po that salisfies the strong density assumption for Px.

4. Fiz an mg < m? and consider Gy C G such that |Go| = mg and define G, = G\Go.

5. For a function o : Gy — [M] define

5 when k = ko, x© € B(x,€,lo) for some y € Gy,

m,k
’ elsewhere.

1=K o by € F0I{o(y)=m}
o
x =
() =17
2

(C.11)

6. Consider a class of probability distributions {ue : 0 € R} defined on the same support
range(€) that have mean 0 and satisfy KL(pa, peor) < c(0—86")? for some ¢ > 0. A sufficient
condition for constricting such a family of distributions can be found in Lemma C.3. Some
prominent examples of such family are location families of normal, binomial, Poisson
distributions, etc. Define the probability P ([Y]m . | X = x) ~ @) (2"

The following two lemmas (along with the observation on the strong density condition) will
establish that for a given o, the distribution over X', Y given by P?([Y )% | X = ) x Unif[G,]
is indeed a member of the class P.

Lemma C.7. Fiz a choice for o and let n;, ,, = Yok uk@gm(x), then ny, ,, satisfies a-margin
condition.

Proof. To see that 7y, ,, satisfies a-margin condition, notice that

1 elsewhere.

Y —
i = ’“;J HoW=m}  yhen o € B(z, ¢, £oo) for some y € Go,
nu,m(x) -
2

Thus, for every € B(y, €,{x0),y € Go the @7, (x) = § for all but one m and at m = o ()
K%koe‘yk

_ k. 3
the &7 (z) = 1K”’+°€0, leading to AJ(z) = % at those z, and at all other z we
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evko

have Af(z) = 0. This further implies Px (0 < Af(X) <t) = 0 whenever ¢ < Kokge 0

S and
K e'ko
for t > =2%—— we have

Px(0 < A7(X) <t) = Px(®,(X) # 3 for some m € [M])

K%koew"o

< moe! < Ko (Z24—)"

whenever

mg < KQQ_O‘Kﬁ,kOeO‘%o—d
We set mo = LKOZQ*aKﬁ’kon‘WD’dJ to meet the requirement. Since d > miny oy, for
sufficiently small ¢ we have mg > 8. O

Lemma C.8. On the support of Px the ®7, , are (v, Ky ) Hélder smooth.

Proof. Note that the only way @7 ,(z) and &7 ,(2') can be different if ||z — 2'[|c > U

Since € < % for such a choice, we have
|7, 1 (x) = @7, 1, (2')] < 5K e’
< Ky k(2)P
< Kopllz — 2|15 < Ko plle =25
O

In order transfer the inequality in Fano’s lemma to a statement on rate of convergence, we
need an upper bound on KL(P?t, P??) and a lower bound on the semi-metric Epoo (1, 9}, 5, )-
These are established in the next two lemmas.

Lemma C.9. Consider the probability distribution P° for the random pair (X,Y) where
X ~ Px and given X the {[Y]mr;m € [M],k < K1} are all independent and distributed as
Ylmge | X =2~ par (). Let C be a positive constant and 6(o1,02) = 3, g Ho1(y) #

o2(y)} the Hamming distance between o1 and oo. Then following upper bound holds on
KL(P°, Po2).
KL(P%', P7) < Cp 2h* "0t 45(0y, 02)
Proof.
KL(P°', P?)
M K
= f dPx ($) Zm:l Zk}:l KL (:U’(pgy‘:lk)(m)y ﬂ(b:;zk) (w))

< f dPx () Z%:l f:l C(‘b;?k) () — @55,2,3 (;z:))2 (KL (g, ptgr) < c(6 — 0/)2)
=Yg, @ TN, Ehe T (145 () = m) — o (y) = m})”

2
CK’Y,ko

< Y ey i €70 x o (y) # o2 (y)}
< C“thhkﬁd(;(au@) (because € < %)

for some C' > 0, where 6(01,02) = 3 g Hoi(y) # o2(y)} is the Hamming distances
between o1 and 0. O

Now, we establish a closed form for the excess risk
Epao (1 9}1.0,) = Epoo (195 5,) — Epoo (1, 9}, 5,)

where g7, . is the Bayes classifier for P?° defined as g}, , () = argmin,, ®7°,, (z).

Lemma C.10. Let §(0g,01) denote the Hamming distance between og and o1 as before.
Then

Yot
Ky kge ™0

Epoo (1, s 0y) = 5

4(00,01)
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Proof. For the purpose, notice that
9p.0(r) = o(y) whenever x € B(x,¢€,{) for some y € Gy .
This further implies
Epoo(11,95.5,)
= [ dPx(2) Yy g o, (2) = m}@20,, (x)
=2 yedo el 2%21 Ho1(y) = mbpr,3{1 — K5, Ko Py Yo I{og(y) = m}}
+ Zyego e Z% 1 Ho1(y) = m} Zk;ﬁko 5+ Zyegl el Zm:l [{o1(y) = m}%
%00 Sy S o0(y) = o1(y) = m)
+ Zyegougl € Zm 1 ]I{Ul( )= m}%

M K kot d
Zyego D=t koe ]I{UO( ) =o01(y) =m} + Zyegougl T
By replacing o1 with o¢ in the above calculations we obtain

d

M K.y g€ ko €
Epoo (1, 9)1.00) = = 2 yego 2om= %7]1{00( )=m}+3 cooue T

and hence
Epoo (91000 1)
= Epoo (g;, o1 I‘L) — Epoo (g;, oo’ lj')

Tkg

zyegon Koo (110 (y) = m} — Hoo(y) = o1 (y) = m}}
= Kura™ T SM og(y) = m} x Hou (y) # m}

K € "0

_ vkofw > yeg, Hooly) # o1(y)}

d
— K’v-,k‘of’kaJr 9(00,01)

O

The final technical ingredient we require is the Gilbert—Varshamov bound for linear codes.

Lemma C.11 (Gilbert—Varshamov bound). Consider the mazimal Ap(mo,d) C [M]™0
such that each element in C is at least d Hamming distance from each other, i.e. for any
01,09 € C we have §(01,02) > d. Then

M™0
[Aelmo, d)] > T
Furthermore, when M > 2 and 0 < p < 1 — & we have |Ap(mo, pmg)| > Mo —ha(p)
plog(M—1)—plogp—(1—p)log(l—p)

where hpr(p) = Tog 17

Proof of the Theorem 3.6. For the choice p = % we have —plogp — (1 — p)log(1l —p) <
and thus

=

log(M—1) 1 1 1 3
hM(p) < 4log M + 4log M < Z+ 4log 2 < -

Consequently, the lemma implies that we can find an Ay (mo, 52) C [M]™ such that

| Anr(mo, 52)| > M3 whose each element is at least ”10 Hamming distance apart For such
a choice, define the collection of probabilities as M, = {P? : o € Apr(mo, 52)} leading to

r>M mTO. In the generalized Fano’s lemma C.5 we require r > 2. To achieve that we simply
set mg > 8, as it implies r > M2 > 4.

Now we find lower bound «,. for the semi-metric and upper bound 3, for the Kulback-Leibler
divergence. Let’s start with the upper bound. Since KL(P!, P°2) < O,u,:OQhZ’Y’Co +d§5(aq,09)
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for the joint distributions of the dataset D,, the Kulback-Leibler divergence between { P71 }%"
and {P72}®" is upper bounded as:

KL ({Po}®n, {Po2}®n)
nKL(P°, Po2)

< TLC/L;UQhQ’YkO +d(5(01, 02)
ko te 29yt 1 1
— il - . B [ —
= nCuk02L27k0+dukO Koo ko T (because h is defined as L x "0 n *0™?)
_d_
27k, +d,, ko logr mg
< CLPwo* %y, a7 (because 7> M)

295 +d logr
< CL*%o TogM — Br

In the Lemma C.5 we would like [%;—7;52 < % so that we have 1 — W > %. Note that,

gr
Br+log2 _ 3 — Br + log 2 _ 3
logr 4 logr logr 4
274 +d
_ CL*0 log2 3 — 27k +d logT
= “Togir tloed — 1 (because r >4, 3. = CL*7o logM)
27 +d
—CL % 1
—  logM 4 <0

for small L > 0. We set the L accordingly. Returning to the semi-metric, it is lower bounded

*® d(8(P7),6(P"))

Epoo (gz,al ) H)

Ky, d
Z 'Yz OG’YkO“r 5(0-0’01)
> K5*05w0+dﬁm
= 4
Ky ko Yo +d —a o avyg, —d
Z TG 0 Ka2 K,Y7k06 0
(because mg = LKQ2*O‘K,‘;‘7,€06“7’“0*‘{J)
— 016(1+Q)7k0
Tk
— 5514 1+
Z CQ{/’(‘kon 27k0+d} = Qp

for some constants ¢y, ca > 0. We plug in the lower and upper bound in Fano’s lemma C.5
to obtain the lower bound:

Tk

- 0
%(1 . 'Brl—géorgg) > cz{ukon 22'Yk0+d}l+a y i . Cs{ukon*%}lJra

for some c¢3 > 0 that is independent of both n and u.

D JubpGE PROMPT

Prompt format for the Llama 3.1 70b evaluator instruct LLM

1 <dmf >user

2 I want you to act as a judge for how well a model did answering a user
-defined task. You will be provided with a user-defined task that
was given to the model, its golden answer(s), and the model’s
answer. The context of the task may not be given here. Your task
is to judge how correct is the model’s answer. Your task is to
judge how correct the model’s answer is based on the golden answer
(s), without seeing the context of the task, and then give a
correctness score. The correctness score should be one of the
below numbers: 0.0 (totally wrong), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, or 1.0 (totally right). You should also add a brief
justification regarding how the model’s answer conforms to or
contradicts the golden answer(s).
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Your response must follow the format
{{
"correctness_score": your_score,
"justification": your_justification

3

Note that each one of the golden answers is considered correct. Thus
if the Model’s Answer matches anyone of the golden answers, it
should be considered correct.

<dmf >assistant

Certainly! I will act as a judge and adhere to the format you
requested. Under oath, I will judge without consulting my internal

knowledge of facts under any circumstances.

<dmf >user

User -defined task --- Sandy bought 1 million Safe Moon tokens. She has

4 siblings. She wants to keep half of them to herself and divide
the remaining tokens among her siblings. After splitting it up,
how many more tokens will she have than any of her siblings?

Golden Answer(s) --- \<answer 1\> 375000

Model’s Answer --- Sandy will have more tokens than any sibling by 3/8
million.

<dmf >assistant

{{
"correctness_score": 1.0,
"justification": "The golden answer states that Sandy will have

375,000 more tokens than any of her siblings, which is a precise
numerical value. The model’s answer translates this scenario into
a fraction of the total, saying Sandy will have more tokens than
any sibling by 3/8 million. 1 million tokens * 3/8 =375,000 tokens

So the model provided an answer in fractional form that, when
converted to a numerical value, exactly matches the golden answer’
s quantity."

}}

<dmf >user

User-defined task --- Extract the names and emails mentioned in the
following text. Richard Matthew Stallman, also known by his
initials, rms,[1] is an American free software movement activist
and programmer. He can be reached at rms@gnu.org based on the
information on his webpage.

Golden Answer(s) --- {{"names": ["Richard Matthew Stallman"], "emails
": ["rms@gnu.org"]l}}

Model’s Answer --- names: Richard Matthew Stallman

<dmf >assistant

{{
"correctness_score": 0.5,
"justification": "The model correctly identified the names but
failed to extract the emails."

}}

<dmf >user

User defined task --- Question: In 2015 Edgar Lungu became prime

minister of?

Golden Answer:

<answer 1> Zambia; <answer 2> Zamibia; <answer 3> People of Zambia; <
answer4> Zambian cuisine; <answer 5> Zambians; <answer 6> Culture
of Zambia; <answer 7> Etymology of Zambia; <answer 8> Zambia; <
answer 9> Health care in Zambia; <answer 10> IS0 3166-1:ZM; <
answerl1l> Republic 0f Zambia; <answer 12> Cuisine of Zambia; <
answer 13> Sport in Zambia; <answer 14> Republic of Zambia; <
answer 15> Zambian people; <answer 16> Name of Zambia
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Model’s Answer: Prime Minister
<dmf >assistant

{{
"correctness_score": 0.0,
"justification": "The golden answers provide a detailed list of
entities all relating to Zambia, indicating that Edgar Lungu
became the leader (specifically, they mentioned \"prime minister
\") of Zambia in 2015. The model’s answer, \"Prime Minister,\"
merely repeats part of the question without answering it."

1

<dmf >user

User defined task --- Give a one-line concise summary of the following
news

PARIS (Reuters) - French President Emmanuel Macron will set out plans

for reforming the European Union on Tuesday, including proposals
for a separate eurozone budget, despite a German election result
that is likely to complicate his far-reaching ambitions. German
Chancellor Angela Merkel s conservatives saw their support slide
in Sunday s election, though they remain the biggest parliamentary
bloc. She is expected to seek a coalition with the liberal Free
Democrats (FDP) - who have criticized Macron s ideas for Europe -
and the Greens. Elysee officials said Macron, who has promised
sweeping reforms to Europe s monetary union in coordination with
Merkel, hoped the issues to be raised in his speech would be taken
into account in Germany s coalition negotiations. One Elysee
official said a eurozone budget, one of Macron s most contentious
ideas, would be necessary in due course and that the president
would therefore raise the issue in his speech, to be delivered at
the Sorbonne University in Paris. Since his election in May,
Macron has made the overhaul of the EU and its institutions one of
his major themes. As well as his eurozone budget idea, he wants
to see the appointment of a eurozone finance minister and the
creation of a rescue fund that would preemptively help countries
facing economic trouble. Ahead of Sunday s election, Merkel had
indicated her willingness to work with Macron on a reform agenda,
even if her own ideas may not reach as far as his. But the
election results have left Merkel facing a difficult coalition-
building task which is in turn likely to limit her flexibility on
Europe. A coalition of Merkel s CDU/CSU bloc, the FDP and the
Greens is unprecedented at the national level - and any attempt by
the chancellor and Macron to press for greater EU integration
will face opposition from the new German lower house Bundestag.
The FDP has called for a phasing out of Europe s ESM bailout fund
and changes to EU treaties that would allow countries to leave the
euro zone. And the far-right, eurosceptic Alternative for Germany
is now the third biggest party in the Bundestag, further curbing
Merkel s room for maneuver. But Elysee officials noted that the
FDP had reaffirmed its attachment to the EU and to strong Franco-
German relations, a point Macron was likely to emphasize in his
speech while at the same time not seeking to impose anything on
his partners. Macron, the sources said, would propose that the
whole EU move forward together, and that those who did not want to
should not stand in the way of those that did. Coming just two
days after the German election, Macron s speech is likely to be
interpreted in Germany as an attempt to shape the debate before
the coalition talks begin in earnest. German coalition agreements
are strict, with the contours set out in them limiting the
government s room for maneuver.

50 In that respect, Merkel s ability to work with Macron on EU reform

will be pre-determined by whatever coalition deal is struck. FDP
leader Christian Lindner said on Monday he would not agree to any
coalition that did not promise a change in the German government s

direction. While that appeared to set the stage for tough talks,
he also offered hope for Macron, saying when asked about the
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French president s eurozone budget ideas that the FDP had a strong
interest in the strength of France.

Golden Answer(s) --- After German election, Macron to set out his
vision for Europe

Model’s Answer --- French President Emmanuel Macron to introduce plans
for reforming the European Union amid the uncertain aftermath of
German elections

<dmf >assistant

{{
"correctness_score": 0.6,
"justification": "While the golden answer is more concise, the
model ’s answer is largely similar to the golden answer in its
meaning."

1>

<dmf >user

User defined task --- {MODELTASK}

Golden Answer(s) --- {GOLDENRESPONSE}

Model ’s Answer --- {MODELRESPONSE}
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