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Abstract

Chain-of-Thought reasoning has emerged as a powerful approach for solving
complex mathematical and logical problems. However, it can often veer off track
through incorrect or unsubstantiated inferences. Formal mathematical reasoning,
which can be checked with a formal verifier, is one approach to addressing this
issue. However, currently LLMs are simply not good enough to solve complex
problems in a formal way, and even just formalizing an informal problem statement
can be challenging. Motivated by this fact, in this work we consider the problem
of learning reliable verifiers for sequential reasoning, including natural language
Chain-of-Thought reasoning. That is, given a problem statement and step-by-
step solution in natural language, the aim of the verifier is to output [Yes] if the
reasoning steps in the solution are all valid, and [No] otherwise. In this work we
give a formal PAC-learning framework for studying this problem. We propose
and analyze several natural verification goals, at different levels of strength, in this
framework. We provide sample complexity upper-bounds for learning verifiers
satisfying these goals, as well as lower-bound and impossibility results for learning
other natural verification objectives without additional assumptions.

1 Introduction

With increasing use of LLMs to solve complex mathematical and logical problems through chain-of-
thought reasoning, it has become crucial to develop verifiers that can check the correctness of these
generated solutions. In particular, even with recent advances, Chain-of-Thought (CoT) reasoning is
still widely believed to suffer from catastrophic failures resulting from accumulated errors except for
highly limited scenarios [LFL+23, SVK24]. It can be particularly challenging to detect subtle errors
in long sequences of reasoning, especially when presented via informal natural expressions. This
motivates the need for designing effective verifiers for CoT reasoning in natural language.

To study this problem, in this work we introduce a PAC-learning framework for learning verifiers for
sequential reasoners. Our learning algorithms are given a sample of some problem statements and
labeled reasoning sequences for the problems, and are required to check the correctness of unseen
reasoning sequences for unseen problems. We consider several related but different verification goals
and analyze the sample complexity for learning verifiers satisfying these criteria, giving both upper
bounds and impossibility results.

For example, the simplest (weakest) verification goal we consider is that given a random reasoning
trace from some underlying distribution D, the verifier should output whether the reasoning is correct
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or faulty (and if faulty, where the first error occurred), and it should have error rate at most some given
ϵ > 0. The aim is then, with probability ≥ 1− δ, to learn such a verifier from labeled data of correct
and faulty reasoning traces from the same distribution. One drawback of this simple verification goal
is that it is not secure against adaptive use. For example, if an LLM reasoner is told by the verifier
that a reasoning trace x0, x1, ..., xt is incorrect at the ith step, then a natural reaction is to back up
and replace xi with some other step x′

i and try again, and to keep trying until a new reasoning trace is
found that succeeds. But there is now no guarantee the final trace produced is correct, both due to the
multiple rounds of querying and because the new traces queried may now be out-of-distribution.

To address the above challenge, we also introduce a stronger, more trustworthy verification goal, in
which given some distribution D over problem instances x0, for most x0 ∼ D the verifier should
not accept any faulty reasoning trace from x0. Of course, such a verifier should also accept at least
some correct reasoning traces from x0, and we give upper and lower bounds depending on whether
we allow the verifier to just accept a designated gold standard reasoning trace g(x0) or whether
we require it accept a large fraction of all correct reasoning traces from x0 without any additional
assumptions. These verifiers are more robust to any distribution shift in the reasoning traces compared
to what was available in the training set.

Overall, our work introduces a principled framework for designing verifiers for CoT reasoning
using machine learning. Our learnability results highlight the usefulness of our framework for
designing verifiers with desirable properties with bounded sample complexity and some fundamental
requirements for learning CoT verifiers.

1.1 Contributions

• We introduce a formal framework for studying verifiers for Chain-of-Thought reasoning. Given
any problem statement and a sequence of reasoning steps for the problem, we propose the problem
of learning verifiers that examine the steps for correctness, and for an incorrect reasoning trace
return the first faulty step in the reasoning.

• We formally define simple verifiers that have access to random Chain-of-Thought reasoning
sequences labeled “correct” or “incorrect” along with the first faulty step. We establish sample
complexity bounds for learning good simple verifiers in a PAC (probably approximately correct)
sense for verifier classes that are finite or have a finite VC dimension.

• We next introduce the more powerful trustable verifiers, which only have access to random
problems, and a gold standard reasoner, which provides a small number of guaranteed correct
reasoning traces for each sampled problem. We establish PAC learnability of designing verifiers that
accept all the gold standard reasoning traces on most problems and never accept faulty reasoning
traces, provided that the space of reasoning steps is finite.

• We extend our trustable verification goal to the case where there may be a large number of gold
standard reasoning traces, but only a random correct trace is available to the learner. We establish
upper and lower bounds on the sample complexity of learning a verifier that is always sound (i.e.,
never accepts an incorrect trace) and accepts most of the gold standard traces on most problems.

1.2 Related work

Chain-of-Thought generation. Chain-of-Thought and its variants [WWS+22, ZZLS23, WWS+23,
YYZ+23] are gaining popularity as paradigms for studying LLM reasoning. CoT reasoning has
known connections with planning for complex tasks [HGM+23], and in fact, our theoretical ab-
straction applies to generating plans as well. [JVB+25] study the learnability of a time-invariant
autoregressive generator for CoT for a fixed generation length T , and obtain sample complexity
logarithmic in T , improving over the linear dependence for time-variant generation in [Mal24]. Their
work focuses only on in-distribution generalization. In contrast, our trustable verification model is
able to provide strong verification guarantees even for out-of-distribution reasoning, which is crucial
in the context of typical CoT generation where the generator may adapt to prompts or feedback. Fur-
thermore, we show concrete computational gaps between generation and verification, the functions in
the generator class may not be efficiently evaluatable for a class of problems for which the verification
functions are. We also note an equivalence between a special case of our verification model and their
generation model, in the sense that an algorithm for one can be used to achieve the other (Remark
4.6). Empirically, LLM-based verifiers have been used to solve specific tasks, even outperforming
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finetuning-based approaches [CKB+21], especially with step-by-step verification [LKB+24]. Our
trustable verifiers involve checking proofs with respect to some gold standard reasoners, which may
be reminiscent of imitation learning [NHB+21, YSAN22].

Learning with one-sided error. Our strongest verification model requires the verifier to not accept any
incorrect proof but possibly miss some legitimate proofs. The formulation bears resemblance to prior
work on learnability under one-sided error [Nat87, Kiv95, BB05]. In particular, our learning algorithm
is similar to the closure algorithm proposed in this literature. Other related lines of work that offer
similar reliability guarantees using closure-based algorithms include selective classification [RS88,
EYW10], robustly-reliable learning [BBHS22, BHPS23] and learning in the presence of strategic
improvements [ABN+25, SS25]. In addition, we consider learning from only positively labeled
traces (Section 4.2). A related direction studies learning from positive and unlabeled data for binary
classification [Den98, DGL05].

Multiclass classification. Our verifiers not only predict whether a proof is correct or faulty, but also
indicate the first incorrect step in the chain of reasoning. The output of the classifier thus takes one of
T +1 values (correct, or first fault at step i ∈ [T ]) and can be thought of as a special type of structured
multiclass classification. Multiclass classification has been extensively studied to understand how
learnability is affected by the number of different label classes [Nat04, TB07], with a recent focus
on infinite class size [BCD+22, HMR+23, HMZ24]. The latter raises an interesting open question
regarding the learnability of CoT reasoners and verifiers for arbitrarily long traces.

Formal methods and learning. Formal verification [CW96] is a sound approach used to verify the
correctness of software or mathematical proofs written according to precise formal specifications.
Although LLMs have helped improve some formal verification systems [CP24], it is not clear if
formal verification can be used to verify the natural language reasoning of modern LLMs [ZSL+24].
A related approach is to use proofs in a functional programming language (say Lean) to build datasets
for training machine learning models capable of writing proofs in that formal language (while they
also generate natural language descriptions of their proof steps, the evaluation is through correctness
of the lean proof). Note that the “verifier" in this interaction is the Lean proof system, which only
accepts formal language, while our work studies the learnability of verifiers that may evaluate natural
language reasoning directly.

Interactive provers. Our work is related to a recent line of work related to interactive provers. Here,
the goal is to generate a good prover that not only produces a good solution, but is also able to
convince a given verifier V about the correctness of its proof. This is complementary to our work in
the sense that we show how to actually learn good verifiers from data, which can, in turn, provide
good automated benchmarks with respect to which the prover establishes verifiability guarantees.
[GRSY21] define a PAC model where the prover is able to convince the verifier on most typical inputs,
analogous to our SVPAC model. [AGPR24] develop more powerful interactive provers that provide
per-instance guarantees, similar to our TVPAC models. In this context, our work opens up concrete
questions for interactive verification—whether it is possible to achieve a better sample complexity of
learning verifiers, either assuming provers with certain guarantees or with techniques from active
learning [BBL06]. [BLM+25] show theoretical as well as practical advantages of verifier-assisted
constrained language generation.

Exact learning. Recent work [GLLS25] argues for the need to study exact learning [Ang88] for sound
deductive reasoning. Our work represents advances towards exact learning for verifiers in several
ways. First, our “trustable” verifiers are robust to distribution shifts of reasoning traces (although not
of problem statements, so not exact learning)—in particular when we are “correct" for a problem
statement, we are sound on all the reasoning traces for it. Second, we give an example where we
achieve online verification with finite mistake bounds (see Example D.5) which can be viewed as an
example of exact learning. Here we bound the total number of mistakes over problem and reasoning
pairs on an arbitrary sequence. [GLLS25] argue that powerful verifiers may be useful in achieving
exact learning for the reasoners as well.

2 Setup and Definitions

Let X denote a domain of possible problem statements. For example, an x0 ∈ X could be a
mathematical conjecture, or a Satisfiability problem instance, or the description of an initial state in a
Sudoku game or Einstein puzzle. Let Σ denote a set of possible reasoning steps; we will think of a
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Verifier SVPAC (Sec. 3) TVPAC (Sec. 4.1) γ-TVPAC (Sec. 4.2)

Data format random tuples (random problem, random pairs
(problem, reasoning, ≤ k gold-standard (problem, correct reasoning)
first incorrect step) solutions)

Learning Algorithm ERM on training set ERM using Intersection of all consistent
trees Tg(x) verifiers (Algorithm 1)

Sample complexity Õ(log |H|) Õ(log |H|) Θ̃(|H|)
(finite H)

Sample complexity Õ(VCdim(H)) Õ(VCdim(H)) Õ(VCdim(H)) (if
(bounded VCdim(H)) intersection-closed)

Table 1: Different verification goals, training data, learning algorithms and sample complexities. The
soft-O and soft-Θ notation suppresses dependence on quantities apart from |H| and VCdim(H).

“step” as a few tokens, such as [Suppose, for contradiction, that
√
2 = a

b for integers a, b] or [Clauses
(A ∨ B) and (A ∨ ¬B) imply (A)]. A verifier is a function h : X × Σ∗ → {YES,NO}, where
given input (x0, τ = (x1, x2, ..., xt)) where x0 ∈ X and each xi ∈ Σ for i ≥ 1, the verifier should
output YES if xt is a legitimate inference from (x0, (x1, ..., xt−1)) and should output NO if xt is
not a legitimate inference from (x0, (x1, ..., xt−1)). Formally, we can allow h to output arbitrarily if
(x0, (x1, ..., xt−1)) itself contains a faulty step: that is, a “correct” h only needs to output correctly
on (x0, (x1, x2, ..., xt)) if (x0, (x1, ..., xt−1)) is itself correct.

Given a full reasoning trace or proof (x0, (x1, ..., xT )), a verifier h is “run” on the trace by running h
on each prefix, that is, h(x0, (x1)), h(x0, (x1, x2)), ..., h(x0, (x1, ..., xT )). If all of those runs output
YES then we define h as saying the reasoning is legitimate, and if any output NO then we define h as
saying the reasoning is faulty (and we output the first NO as the location of the first faulty step). We
will use H to denote a family of verifiers.
Remark 2.1. We will typically want to emulate the behavior of (or, in agnostic verification, at least be
competitive with) the best verifier h∗ ∈ H . In particular, note that our formulation does not involve
an explicit notion of verifying whether the reasoning trace “completes” the proof. A good verifier
may “accept” a reasoning trace if h∗ accepts it. This is analogous to the notion of CoT generation
studied by [JVB+25], where one hopes to emulate the “correct” generator, although they do not
consider the extension to agnostic learning (see Appendix E).
Remark 2.2. Our use of Chain-of-Thought is different from that in the original paper [WWS+22],
where it is used primarily as a prompting technique. We use CoT to refer to the standard generation
pattern of reasoning models such as o3, Deepseek R1, that is, the model generates the ordered list
of intermediate reasoning steps (s1, . . . , sT ) before its final answer. Our use of the terminology
Chain-of-Thought is consistent with prior theoretical work, e.g. [JVB+25, Mal24] which studies
Chain-of-Thought generation (in contrast, we study verification of the reasoning produced by such
models). Suppose that the language model is given an input question and it produces an output
consisting of intermediate steps before arriving at the final answer. This behavior may be due to
the nature of the training data with such Chain-of-Thought sequences as studied in the prior works
mentioned above, or because the language model was prompted to “think step by step”.

3 Simple Verification

Let D be a distribution over problems and reasoning traces (x0, (x1, ..., xt)) of length≤ T , including
both legitimate reasoning traces and faulty reasoning traces. Assume that we have an i.i.d. training
sample S of problems and reasoning traces drawn from D, and the traces are labeled according to
a perfect verifier h∗ ∈ H ⊆ {YES,NO}X×Σ∗

. That is, a trace is labeled YES if every step in it is
legitimate, and is labeled NO otherwise. Assume that for the faulty traces, we are also told which is
the first faulty step in it. We aim to learn a verifier h from such a sample that has a small error over
unseen samples from D. Note that we make no assumptions on the size of Σ (the set of all possible
reasoning steps) for this result.
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Goal: Given the training set S of reasoning traces drawn i.i.d. from D, our goal is to learn a simple
verifier h with error at most ϵ over D. Specifically, given a new trace (x0, (x1, . . . , xt)) ∼ D, we
will run h(x0, (x1)), h(x0, (x1, x2)), . . . , h(x0, (x1, . . . , xt)) and if all of them output YES then we
say the reasoning trace is “legitimate" and if any output NO then we say the reasoning is “faulty",
and we output the first NO as the location of the first faulty step. We say that the learned verifier h is
correct on trace (x0, (x1, . . . , xt)) if either

(a) the entire trace consists of correct reasoning steps (i.e., h∗(x0, (x1, . . . , xj)) = YES for all
1 ≤ j ≤ t) and all of h(x0, (x1)), h(x0, (x1, x2)), ..., h(x0, (x1, . . . , xt)) output YES, or

(b) the trace is faulty reasoning and h correctly outputs NO on the first faulty step (and outputs
YES up until the first faulty step).

Any other behavior is viewed as h making an error on the given reasoning trace.

We will use f(h, (x0, τ = (x1, x2, ..., xt))) to denote the smallest index j such that the verifier h
rejects the reasoning sub-trace (x1, . . . , xj), that is h(x0, (x1, . . . , xj)) = NO, and set to t otherwise
(if no such index exists). That is, f(h, (x0, τ)) is the index of the reasoning trace τ where h terminates
its evaluation of (x0, τ), either by finding a faulty step at some index j ∈ [t] or accepting the reasoning
as legitimate by evaluating to YES all the way through the last index t. We use this to define the
following loss function which gives the 0-1 loss of the verifier h on the input (x0, τ)

ℓh(x0, τ) = ℓh∗(h, (x0, τ)) := I[h(x0, τj) ̸= h∗(x0, τj) for some j ≤ f(h∗, (x0, τ))].

Here τj = (x1, . . . , xj) denotes a sub-trace of τ = (x1, . . . , xt). Formally, we have the following
definition for simply-verifiably-PAC learning a verifier from a class of verifiers H .

Definition 3.1 (SVPAC-learnable). Let X denote the problem space and let H ⊆ {YES,NO}X×Σ∗

denote the class of verifiers. Then a learner is said to simply-verifiably-PAC learn H with sample size
m = M(ϵ, δ) (sample complexity is the smallest such m) if for any h∗ ∈ H , for any ϵ, δ ∈ (0, 1),
for any distribution D over X × Σ∗ realizable by h∗ (i.e., legitimate inference is always given by
h∗), given a sample S ∼ Dm, the learner outputs a verifier h such that with probability at least 1− δ
over the draw of S,

Pr
(x0,τ=(x1,...,xt))∼D

[ℓh∗(h, (x0, τ)) = 1] ≤ ϵ.

The learner is said to be proper if h ∈ H . Note that our definition above requires the learned verifier
h to match the behavior of the correct verifier h∗ (with high probability) on any new reasoning trace
drawn from D up to the first faulty step (if one exists) pointed out by h∗. We will now show that it is
possible to learn such a verifier with a small sample complexity. First, for the case of finite class of
verifiers H , we observe that a simple union-bound based argument implies that we can learn a good
verifier with O(log |H|) trace samples. See Appendix A for a proof.
Theorem 3.2. Any finite class of verifiers H is SVPAC-learnable with sample complexity
1
ϵ (log(|H|) + log 1

δ ).

We further show that a finite VC dimension of the verifier class is a sufficient condition to SVPAC-
learn with respect to H . Our sample complexity bounds in this case are O(VCDim(H) log T ), scaling
only logarithmically with the maximum length T of a reasoning trace. We will select h ∈ H by
ERM (Empirical Risk Minimization) over the training sample. Note that we will run a verifier h up
to T times on any sample trace to determine whether it runs correctly on it. Our argument adapts the
analogous proof in [JVB+25]. A complete proof is in Appendix A.
Theorem 3.3. Any class of verifiers H with finite VC-dimension VCDim(H) is SVPAC-learnable
with sample complexity O

(
1
ϵ (VCDim(H) log T + log 1

δ )
)
.

Our model for the simple verifiers above allows for learning a verifier from an arbitrary unknown
fixed distribution D over the reasoning traces. However, a major limitation of this model is that
the guarantees only apply to traces drawn according to D. If a reasoning model is told that there
is a faulty step in its reasoning chain (x1, . . . , xn), then it might modify its reasoning slightly to
(x1, . . . , x

′
n). But the new trace is no longer from D and a verifier trained over samples from D is
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not guaranteed to work well on this modified reasoning trace. In other words, the feedback from
the verifier may be the very reason why there is a distribution shift. In the following sections, we
introduce a more powerful model for learning verifiers that are robust to distribution shifts that may
be induced as a natural consequence of receiving feedback from the verifier.

4 Trustable Verification

As discussed above, designing a verifier that only works well for in-distribution reasoning traces
may not be desirable in typical scenarios. Motivated by this, we introduce a model for learning more
powerful verifiers which provide strong guarantees for any reasoning trace, as long as the problem
statements come from a distribution. In particular, we require that for most problem statements, the
learned verifiers do not accept any false traces; that is, the learner should be sound. However, we
potentially relax the requirement that the learner must accept all correct traces. It turns out that we
observe two distinct regimes for learnability depending on whether the number of correct reasoning
traces is small (and are all available for training) or large (and only a random trace per problem is
given in the training set).

Assumptions. We will make two additional assumptions in order to achieve the above stronger
verification guarantee. First, we assume that correct proofs on any problem x are given to the learner
by a gold standard reasoner g : X → 2Σ

T

. That is, g(x) denotes a set of correct reasoning traces for
problem x, and we will have access to some reasoning traces (made more precise below) generated
by g in our training set. For example, |g(x)| = 1 corresponds to there being a single correct gold
standard reasoning trace for the problem x, which will be available if the problem x is sampled in the
training set. A caveat is that we would not be able to verify reasoning traces that are not generated by
the gold standard reasoner available to us, even if they may be legitimate. Second, we will assume
that the set of legal reasoning steps |Σ| is finite.

Goal: Our training set S will consist of m problems drawn i.i.d. from some distribution D. For
each problem x in the training set, we will run g to create the gold-standard traces, which will be
our positive examples. If the number of correct traces is small, we can create negative examples for
each way of deviating from the tree of gold-standard proofs (see Section 4.1). Given these examples,
our goal is to learn a trustable verifier h that, given a new problem x ∼ D and a proposed reasoning
trace τ for it, is able to verify (with high probability) if the reasoning trace is correct according to g.
That is, h is correct on x if it will reject all faulty traces on x, and will correctly accept most (or even
all) traces that match the gold standard g.

Using terminology familiar from formal logic, we define the goal for our learned verifiers in terms of
sound and complete verification as stated below.

Definition 4.1 (γ-completeness w.r.t. g and D̃|x; stepwise and overall soundness). Given a problem
x ∈ X , a set of correct reasoning traces g(x) ⊆ ΣT for the problem, and a distribution D̃|x over
traces in g(x), a verifier h : X × ΣT → {YES,NO} is said to γ-completely verify x w.r.t. g and
D̃|x if Ch(x) = {τ ∈ ΣT | h(x, τj) = YES ∀ prefixes τj of τ} satisfies ED̃|x

[Ch(x) ∩ g(x)] ≥ γ.
Furthermore, we say that h 1-completely verifies x w.r.t. g if g(x) ⊆ Ch(x).

h is said to stepwise soundly verify x if whenever h(x, τj) = YES for τj ∈ Σ≤T , then τj is a prefix
of some τ ∈ g(x) (in particular, this implies Ch(x) ⊆ g(x)), and is said to overall soundly verify x
if Ch(x) ⊆ g(x).

1-completeness corresponds to the learner essentially accepting all the traces that the gold reasoner g
deems as correct. In other words, 1-completeness w.r.t. g (omitting the conditional distribution D̃|x)
means that γ-completeness holds in the above definition for γ = 1 for all conditional distributions.
Later, we will relax 1-completeness to γ = 1− η completeness for small η in some more challenging
learning settings. We study two types of soundness guarantees—a stronger “stepwise” soundness
which guarantees that we reject a proof at the first incorrect step (deviation from a gold-standard
step) and “overall” soundness that only guarantees that incorrect proofs of length T are rejected.
Note that stepwise sound verification implies overall sound verification, but the converse may not
necessarily hold.
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Remark 4.2. We note that soundness and completeness of proof systems is a terminology also
used in formal verification and logic, and caution the reader against conflating them with our
notions. A soundness guarantee for a deductive system expresses that all provable sentences are
true. Completeness states that all true sentences are provable. While there is an analogy, we remind
the reader that our study applies to natural language reasoning while formal logic involves proofs
expressed in a very precise formal language and their verification.

4.1 Sample complexity when the number of correct proofs is small

In this section, we will assume that the number of gold standard reasoning traces for any problem of
interest in X is small. That is, |g(x)| is bounded by a small constant k for any x ∈ X1. In this case,
it is reasonable to expect that we have access to all the gold standard proofs for any problem x in the
training sample. We show how to create training samples for learning a verifier using g and establish
sample complexity bounds for learning verifier classes that are finite or have finite VC dimension.

Formally, for each problem x in the training sample S ∼ Dm, we will run g to generate all the gold
standard proofs. These will be our positive examples. To generate negative examples, we consider the
first step of deviation from any correct trace for x and add a negative example corresponding to it. Let
Tg(x) denote the tree of positive traces on the problem instance x. The root of the tree is the problem
statement x, and each node represents a valid reasoning step according to one of the positive traces in
g(x). By assumption on |g(x)|, Tg(x) has at most k leaf nodes. Now we create negative examples for
each internal node xi of Tg(x) as follows. Let (x̃0 = x, x̃1, . . . , x̃i = xi) denote the path from the
root to xi on Tg(x), and Xi ⊂ Σ denote its set of child nodes. Then for every x′ ∈ Σ \Xi, we create
a faulty trace (x̃0, x̃1, . . . , x̃i−1, x

′) and add it as a negatively labeled example for the problem x.

Finally, we formally state the definition of trustable verification. Notably, we require the learned
verifier to be both complete (w.r.t. the gold standard g) and sound on problems drawn from D. In
contrast to simple verifiers, the traces that we expect a trustable verifier to verify can be arbitrary.
Definition 4.3 (stepwise and overall TVPAC-learnable). Let X denote the problem space and let H ⊆
{YES,NO}X×Σ∗

denote the class of verifiers. Let g(x) ⊆ ΣT denote the set of correct reasoning
traces for any x ∈ X . Then a learner is said to stepwise (resp. overall) trustably-verifiably-PAC learn
H with sample size m = M(ϵ, δ) (sample complexity is the smallest such m) if for any h∗ ∈ H , for
any ϵ, δ ∈ (0, 1), for any distribution D over X realizable by h∗ (i.e. for all x, g(x) = Ch∗(x) =
{τ ∈ ΣT | h∗(x, τj) = YES ∀ prefixes τj of τ}), given a sample S ∼ Dm and for each x ∈ S given
access to the set g(x), the learner outputs a verifier h such that with probability at least 1− δ over the
draw of S, Prx∼D[h is 1-complete w.r.t. g and stepwise (resp. overall) sound for x] ≥ 1 − ϵ. The
learner is said to be proper if h ∈ H .

For the case of a finite verifier class H , we can still show a O(log |H|) upper bound on the sample
complexity of learning a good verifier. A proof is located in Appendix B.
Theorem 4.4. Any finite class of verifiers H is stepwise TVPAC-learnable with sample complexity
1
ϵ (log(|H|) + log 1

δ ).

We further show that it is possible to stepwise TVPAC-learn any verifier class with finite VC-
dimension (complete proof in Appendix B).
Theorem 4.5. Any class of verifiers H with finite VC-dimension VCDim(H) is stepwise TVPAC-
learnable with sample complexity O

(
1
ϵ (VCDim(H) log(kT |Σ|) + log 1

δ )
)
, where k is a bound on

the number of correct proofs generated by g.

Some remarks are in order. Our stepwise trustable verification model has an interesting property
that good verifiers in our models for any problem x not only guarantee correctness of the reasoning
steps so far, but also prompt the reasoner away from possibly legitimate reasoning steps which may
not however result in a solution for the problem x. This additional stronger property is not achieved
by overall TVPAC verifiers. In fact, for the special case |g(x)| = k = 1, our verification model is
equivalent to the Chain-of-Thought autoregressive generation model of [JVB+25]. This is surprising
as verifying a proof is usually believed to be easier than generating it (although formally an open
question, for instance determining whether P ̸= NP), but the strong “guiding” abilities of our verifiers
can be used for generation.

1A natural example for the case k = 1 could be a SAT-solver or an Mixed Integer Program solver where the
gold-standard solver g uses a deterministic branching rule that we know works pretty well.
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Remark 4.6. For k = 1, our stepwise trustable verification model is equivalent to the generation
model of [JVB+25] provided |Σ| is small, in the sense that an efficient algorithm for verification
implies an efficient algorithm for generation, and vice versa. To see this, given a stepwise sound
verifier h that is guaranteed to accept only the single gold standard trace g(x), we can generate the
correct proof using h as follows. Run h(x, τ0) for each τ0 ∈ Σ until one of them, say x1, yields YES.
Now run h(x, (x1, τ1)) for each τ1 until acceptance, and so on. Doing this T times generates a proof
for x that matches g(x). Conversely, to verify if a generator is correct on a problem x, we can simply
match its reasoning trace against g(x). An interesting consequence of this is that we can hope to use
a good verifier to train a good reasoner.

Thus, there is an equivalence between stepwise TVPAC verifiers and CoT generators (provided the
size of the reasoning space |Σ| is small). However, the equivalence breaks down for large |Σ|, and does
not hold for overall TVPAC verifiers. In the following remark, we show a computational gap between
proving and verification. Namely, for the same problem space, the proof generation functions may
not be efficiently evaluatable even though the verifier functions can be evaluated in polynomial time.
Remark 4.7. Computational gap between CoT provers and TVPAC verifiers. We first provide a
concrete example showing computational separation between CoT generators and overall TVPAC
verifiers. Let X be the set of all satisfiable USAT (Unique-SAT)2 problems in n variables and
consisting of m clauses. Suppose each reasoning step consists of a single variable assignment, i.e.,
Σ = [n]×{0, 1}. Then it is easy to construct a verifier function h that is efficiently computable and is
both complete and overall sound. Given a problem-proof pair (x, τ), the verifier simply checks that no
variable is given multiple inconsistent assignments, each variable appearing in x has an assignment,
and each clause in x is satisfied. On the other hand, by the Valiant-Vazirani theorem [VV85], USAT
has no polynomial-time randomized algorithm (assuming RP ̸= NP). Therefore, there is no efficiently
computable proof generator for all problems in X . The above argument can also be extended to
stepwise TVPAC verifiers by using an exponential-size Σ. In the USAT example above, we could
consider one-step proofs (Σ = {0, 1}[n]) which set all the variables in a single step. In this case, the
reduction in Remark 4.6 is no longer polynomial time since |Σ| = 2n.

4.2 Linear sample complexity for any number of correct proofs

We will now consider an extension to our trustable model where we no longer assume a small bound
on the number of gold standard traces for every problem x ∈ X . This would make it unreasonable to
expect the gold standard reasoner g to generate all proofs for a given problem instance x. Instead,
we would only require it to generate a random correct proof. For an example, one could think of
randomized solvers for constraint satisfaction problems. We will relax the goal of being perfectly
complete w.r.t. g (Definition 4.1) to being almost perfectly complete, while still requiring the verifier
to be (overall) sound. In this subsection, we assume soundness refers to overall soundness throughout.

Our training set S will consist of problem-trace pairs (x, τ) where τ is a random correct trace from
g(x). We learn from only positively labeled examples. Formally, we have the following definition.

Definition 4.8 (γ-TVPAC-learnable). Let X denote the problem space and let H ⊆ {YES,NO}X×Σ∗

denote the class of verifiers. Let g(x) ⊆ ΣT denote the set of correct reasoning traces for any
x ∈ X . Then a learner is said to γ-trustably-verifiably-PAC learn H with sample size m = M(ϵ, δ)
(sample complexity is the smallest such m) if for any h∗ ∈ H , for any ϵ, δ ∈ (0, 1), for any
distribution D over X realizable by h∗, given a sample S ∼ Dm and for each x(i) ∈ S given
access to one random trace τx(i) ∈ ΣT sampled according to D̃|x(i) over g(x(i)), the learner
outputs a verifier h such that with probability at least 1 − δ over the draw of S and the traces,
Prx∼D[h is γ-complete w.r.t. g and D̃x and a sound verifier for x] ≥ 1− ϵ.

An interesting special case is where D̃|x is the uniform distribution over g(x) for all x. Here, g
would uniformly select one of its correct proofs when queried for generating the training set, and
γ-completeness corresponds to accepting at least a γ fraction of the correct proofs of g. For this more
challenging setting, we first show the existence of an improper learner that achieves learnability in
the case where the verifier class H is finite. Our algorithm (Algorithm 1) outputs the intersection

2Unique-SAT is a promise problem, the decision version of which asks whether a given Boolean formula,
which is promised have either zero or exactly one satisfying assignment, has exactly one satisfying truth
assignment. The search version of the problem further asks to determine the unique assignment.
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Algorithm 1 Intersection of Consistent Verifiers

Require: Set of positive problem-trace examples S = {(x(1), τ (1)), . . . , (x(m), τ (m))} where
x(i) i.i.d.∼ D, τ (i)

i.i.d.∼ D̃|x(i) , verifier class H .
1: HS ← {h ∈ H | h(x, τ) = 1 for all (x, τ) ∈ S}. {Set of verifiers consistent with S}
2: return h′ : (x, τ) 7→ ∧h∈HS

h(x, τ). {predict YES only when every consistent h predicts YES}

(agreement region) of all consistent verifiers with the training set. We show a bound on the sample
complexity of Algorithm 1 which is linear in |H|.
Theorem 4.9. Let η ∈ (0, 1). For any finite class of verifiers H , Algorithm 1 (1− η)-TVPAC-learns
H with sample complexity O

(
1
ηϵ (|H|+ log 1

δ )
)

. Moreover, Algorithm 1 never accepts a faulty
trace for any problem x ∈ X .

Proof. Overview. Let D+ denote the joint distribution over problem-trace pairs (x, τ) induced by
the marginal distribution D and the conditional distribution D̃ used to sample positive traces from
g(x). We will show that the expected error of the verifier learned using Algorithm 1 on a test pair
(x, τ) ∼ D+ is at most O

(
|H|+log 1

δ

m

)
with probability at least 1− δ. We will further show that the

errors are one-sided, i.e. we never accept a faulty trace for any problem x. Finally, using the law of
total expectation, we show that this implies the stated bound on the sample complexity.

Bound on generalization error. We define the population error of h ∈ {YES,NO}X×Σ∗
(any verifier,

not necessarily in H) on positive examples as LD+(h) := Pr(x,τ)∼D+ [h(x, τ) = NO]. For each
verifier hi ∈ H , let phi

= Pr(x,τ)∼D+ [hi(x, τ) = NO and h∗(x, τ) = YES] be the probability that
hi incorrectly rejects a valid reasoning trace.

By the realizability assumption, h∗ ∈ HS for any sample S (recall that HS is the set of verifiers
consistent with S, Algorithm 1). Since h′(x, τ) = ∧h∈HS

h(x, τ), the error of h′ occurs only when
at least one h ∈ HS incorrectly rejects a valid trace. Thus,

LD+(h′) = Pr
(x,τ)∼D+

[h′(x, τ) = NO and h∗(x, τ) = YES]

= Pr
(x,τ)∼D+

[∃h ∈ HS s.t. h(x, τ) = NO and h∗(x, τ) = YES] ≤
∑

h∈HS

ph.

For any λ > 0, by Markov’s inequality, Pr[LD+(h′) ≥ ε] ≤ E[eλ·L
D+(h′)

]
eλε .

Using the independence of samples, E[eλ·LD+ (h′)] ≤ E[eλ·
∑

h∈HS
ph ] = E

[∏
h∈H(eλph)I[h∈HS ]

]
.

For each h ∈ H , h ∈ HS with probability (1− ph)
m. Setting λ = m,

E[(emph)I[h∈HS ]] = (1− ph)
m · emph + (1− (1− ph)

m) · 1
= 1 + (1− ph)

m(emph − 1) ≤ 1 + (emph − 1)e−mph = 2− e−mph ≤ 2.

Therefore, E[em·LD+ (h′)] ≤
∏

h∈H E[(emph)I[h∈HS ]] ≤ 2|H|. Plugging back into our Markov

inequality with λ = m and solving for ε when the bound equals δ, that is Pr[LD+(h′) ≥ ε] ≤ 2|H|

emε =

δ, gives ε = |H| ln 2+ln 1
δ

m . Therefore, with probability at least 1− δ, LD+(h′) ≤ |H| ln 2+ln 1
δ

m .

We never accept a faulty trace. By construction, h′(x, τ) = ∧h∈HS
h(x, τ). This means h′(x, τ) =

YES only if all h ∈ HS output YES for (x, τ). Since HS is set to be the set of all verifiers consistent
with the training data S, and we assume by the realizability assumption that h∗ ∈ H , we have
h∗ ∈ HS . Therefore, if h′(x, τ) = YES, then h∗(x, τ) = YES as well. This guarantees that h′ never
accepts an invalid reasoning trace, i.e., h′ has zero false positive rate.

Sample complexity bound. We say that x ∈ X is a bad problem if h′ is not (1− η)-complete w.r.t. g
on x (i.e., h accepts fewer than (1− η) fraction of correct traces in g(x) in expectation according
to D̃|x). We say that τ is a bad trace for a problem x, if τ is valid according to g but not according
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to h′. If h′ makes an error on (x, τ), then either x is a bad problem, or x is not bad but τ is bad for
x. Let ϵ = PrD[x is bad]. The total error of h′, LD+(h′) ≥ ϵPrD̃|x

[τ is bad | x is bad] ≥ ϵη. Using

the above bound on LD+(h′), we get with probability 1− δ, ϵη ≤ LD+(h′) ≤ |H| ln 2+ln 1
δ

m , which
implies the claimed sample complexity bound.

Note that our upper bound above makes no assumption on H , other than it is finite. If H is
intersection-closed (that is, intersection of verifiers in H is also in H), Algorithm 1 corresponds to the
closure algorithm and h′ ∈ H . In this case, we have much nicer bounds on the sample complexity—
Õ(log |H|) for finite H and Õ(VCDim(H)) for H with finite VC dimension (see Appendix C). As
a simple example, suppose the set of reasoning steps Σ consists of n axioms. The verifier class H
consists of 2n verifiers—corresponding to each subset σ ⊆ Σ, there is hσ ∈ H such that hσ only
accepts traces that consist of reasoning steps from σ. In this case, the sample complexity of Algorithm
1 is O(n) instead of O(2n). See Appendix D for additional examples.

Lower Bounds. We further show that the linear dependence on |H| in our upper bounds on the
sample complexity of trustable verification (given random access to positive proofs in the sense of
Definition 4.8) is unavoidable without further assumptions on H . Roughly, if we do not have a bound
on the number of correct reasoning traces from any given x0, and if we want to learn a verifier h ∈ H
such that for most x0, we have both (a) h accepts at least half of the correct reasoning traces from
x0 and (b) h rejects all faulty reasoning traces from x0, then without further assumptions on which
traces are correct, in the worst case we will need a training set with Ω(|H|) reasoning traces, for any
|H| ≤ |Σ|T . This is in contrast to the O(log |H|) bound in Section 4.1 when we had only a single
correct trace (or a few correct traces) per x0.

Our first result states that if we want to output a sound proper verifier, i.e. h ∈ H and we only require
condition (b) above, then we already need at least Ω(|H|) samples to achieve TVPAC learnability for
any learning algorithm. A proof is in Appendix B.
Theorem 4.10. Let |Σ| ≥ 2. For each size 3 ≤ H ≤ |Σ|T there exists a finite class H with |H| = H
such that any proper learner that ϵ̃-TVPAC learns H (for any ϵ̃ ≥ 0, i.e. the learned verifier is only
required to be sound) has sample complexity at least Ω(|H|).

We next show that if we further require the learner to even accept at least a constant fraction of the
correct traces (say 1

2 -completeness), in addition to soundness, then the linear lower bound on sample
complexity holds even for representation independent learning, i.e. even if we allow the learner to
output verifiers that are not in the verifier class H (proof in Appendix B).
Theorem 4.11. Let |Σ| ≥ 2. For each size H ≤ |Σ|T there exists a finite class H with |H| = H such
that any (proper or improper) learner that 1

2 -TVPAC learns H has sample complexity at least Ω(|H|).

5 Discussion

Verification that can be trusted is a strong candidate approach towards powerful automated benchmarks
for Chain-of-Thought reasoning. While verification using formal methods has been successfully
deployed for testing software and proofs in formal systems, the task of verifying natural language
reasoning seems more challenging. We propose a learning-based approach to designing such verifiers
and introduce various verification models with different strengths of guarantees.

Our simplest framework consists of verifiers that learn from random proofs from some fixed unknown
distribution D annotated with their first faulty step (or correct, if the entire proof is good). Such a
verifier would be able to correctly annotate new reasoning sequences from the same distribution, but
is not robust to distribution shifts (for example, due to adaptive editing of proofs by incorporating
the feedback from the verifier). We next address a stronger type of verifiers that guarantee to reject
any faulty reasoning (possibly very different from the incorrect proofs seen in the training set), by
accepting only proofs that adhere to a certain gold standard. We call these verifiers trustable and
show two distinct regimes for their learnability—small sample complexity when there is a small
number of gold standard proofs for any problem, and an unavoidable larger sample complexity linear
in the size of the verifier class without this assumption. This raises an interesting question—are there
alternative assumptions or models like interactive verification where our linear lower bound on the
sample complexity may be circumvented?
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A Omitted proofs from Section 3

We include here proof details for the results on SVPAC learning in Section 3.

A.1 Proof of Theorem 3.2

Proof. We will simply output any verifier h ∈ H that is consistent with the training sample (i.e.
makes no error) and show that it achieves the desired low error for any sample size that is larger
than the stated sample complexity. Fix some verifier h with error ≥ ϵ over D. This means that for a
random reasoning trace x = (x0, (x1, ..., xt)) ∼ D, with probability ≥ ϵ, h makes a mistake, that is,
ℓh(x) = 1. So, this means that the probability that h does not make a mistake on any example x ∈ S
is at most (1− ϵ)|S|. We now set this to δ/|H| and solve for |S| = 1

ϵ (log(|H|) + log 1
δ ).

A.2 Proof of Theorem 3.3

Proof. We will select h ∈ H by ERM (Empirical Risk Minimization) over the training sample (in
the realizable case this corresponds to selecting a consistent verifier). Note that we will run a verifier
h up to T times on any sample trace to determine whether it runs correctly on it. We adapt the
analogous proof for CoT generation due to [JVB+25]. Let τj be a shorthand for a reasoning sub-trace
(x1, ..., xj). Recall that the loss function on a given input (x0, τ = (x1, x2, ..., xt)) is given as

ℓh(x0, τ) = I[h(x0, τj) ̸= h∗(x0, τj) for some j ≤ f(h∗, (x0, τ))],

and we define the corresponding function class LH = {ℓh | h ∈ H}.

Now, given a sample S = ((x
(1)
0 , τ (1)), . . . , (x

(m)
0 , τ (m))) of size m, we are interested in the number

of different behaviors of functions h ∈ H over the sample. The shattering coefficient

ΓLH(S) = |{(ℓh(x(1)
0 , τ (1)), . . . , ℓh(x

(m)
0 , τ (m))) | h ∈ H}|

≤ |{(h(x(i)
0 , τ

(i)
j ))i∈[m],j∈[T ] | h ∈ H}|

≤ ΓH(mT ),

where we have used that if ℓh1(x0, τ) ̸= ℓh2(x0, τ) then h1(x0, τj) ̸= h2(x0, τj) for some j ∈ [T ].

Using Sauer’s lemma, for any m ≥ VCDim(H)
T , we have

ΓLH(m) ≤ ΓH(mT ) ≤
(

emT

VCDim(H)

)VCDim(H)

.

A standard lemma (e.g. [AB99], Appendix 1) now implies that VCDim(LH) ≤ VCDim(H) log T ,
where T is the maximum length of a reasoning trace.

B Proofs from Section 4

We include here proof details for our results on TVPAC learning in Section 4.

B.1 Proof of Theorem 4.4

Proof. We will simply output any verifier H that makes no error on the training sample. Assume
that h has error ≥ ϵ over D. This means that for each x0 ∈ S, with probability ≥ ϵ, h will make
a mistake on at least one of the examples created from x0. Recall that a mistake here may be one
of two kinds, either (a) h accepts any other reasoning trace f(x0) /∈ g(x0), in which case h must
say YES to at least one of the negative examples in S that was produced from x0; specifically, it
must have mistakenly accepted one of the traces (x0, ..., xi−1, x

′
i) where i is the index of the first

step where f(x0) deviates from Tg(x0), or (b) h fails to accept some reasoning trace in g(x0), which
is labeled YES in the sample. So, the probability that h does not make a mistake on any example
x0 ∈ S is at most (1− ϵ)|S|. We now set this to δ/|H| and solve for |S|.
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B.2 Proof of Theorem 4.5

Proof. We select h ∈ H by Empirical Risk Minimization over the augmented training sample (with
positive and negative examples created using g(x)) described above (by realizability this corresponds
to returning any consistent verifier). Note that we will run a verifier h up to kT |Σ| times on any
sample trace to determine whether it runs correctly on it. The proof is similar to that of Theorem 3.3.
Let τj be a shorthand for a reasoning sub-trace (x1, ..., xj). Define a loss function on a given input
(x0, τ = (x1, x2, ..., xt)) as

ℓ̃h(x0, τ) := I[h(x0, τj) ̸= h∗(x0, τj)] for some j ∈ [t],

where h∗ is the verifier in H that accepts exactly the correct traces according to g, and let the
corresponding function class be L = {ℓ̃h | h ∈ H}.

Now given a sample S = ((x
(1)
0 , g(x

(1)
0 )), . . . , (x

(m)
0 , g(x

(m)
0 ))) of size m, we are interested in the

number of different behaviors of functions h ∈ H over the sample. Given a collection of correct traces
g(x0), define τ1g (x0) as the collection of all the sub-traces of traces in g(x0) along with one-step
deviations of these sub-traces. Notice |τ1g (x0)| ≤ kT |Σ| for any x0. The shattering coefficient

ΓL(S) = |{(ℓ̃h(x(1)
0 , g(x

(1)
0 )), . . . , ℓ̃h(x

(m)
0 , g(x

(m)
0 ))) | h ∈ H}|

≤ |{(h(x(i)
0 , τ̃))

i∈[m],τ̃∈τ1
g (x

(i)
0 )
| h ∈ H}|

≤ ΓH(mkT |Σ|),

where we have used that if ℓ̃h1(x0, τ) ̸= ℓ̃h2(x0, τ) then h1(x0, τ̃) ̸= h2(x0, τ̃) for some τ̃ ∈ τ1g (x0).

Using Sauer’s lemma, for any m ≥ VCDim(H)
kT |Σ| , we have

ΓL(m) ≤ ΓH(mkT |Σ|) ≤
(

emkT |Σ|
VCDim(H)

)VCDim(H)

.

A standard lemma (e.g. [AB99], Appendix 1) now implies that VCDim(L) ≤ VCDim(H) log(kT |Σ|),
where T is the maximum length of a reasoning trace.

B.3 Proof of Theorem 4.10

Proof. Select an arbitrary problem x0 ∈ X and set D to be the constant distribution with support
{x0}. Also set the conditional trace generating distribution D̃|x0

to be the uniform distribution over
g(x0) (we will set g later). Let |Σ| = b ≥ 2, so there are bT possible reasoning traces of length T
from x0. Given H ≤ bT , arbitrarily partition the bT reasoning traces into H disjoint sets S1, ..., SH,
each of size at least ⌊ b

T

H
⌋. Now, define the verifier class H = {h1, ..., hH} where hi accepts all

reasoning traces except those in Si. That is, if Ch = {t ∈ ΣT | h(t) = YES} denotes the set of
traces accepted by h, then Chi

= ΣT \ Si. Since we have no assumptions on which or how many
traces are correct besides realizability, we stipulate that all bT traces are correct except for those in
Si∗ for some uniformly randomly chosen index i∗.

Now, a proper learner must output some hi ∈ H . Suppose that the size of the training set S
is at most H/2. The learning algorithm which is required to output some hi ∈ H can correctly
choose hi = hi∗ with probability at most 2/H since it is equally likely that any of the consistent
verifiers is the right one. Note that in our construction hi∗ is the only sound verifier in H . Thus,
Pr[h is not sound] ≥ 1 − 2

H
≥ 1 − 2

3 = 1
3 . Thus, it is impossible to achieve error ϵ < 1

3 using
m ≤ H/2 samples, establishing the desired lower bound of Ω(H).

B.4 Proof of Theorem 4.11

Proof. Our initial setup is similar to the proof of Theorem 4.10. That is, we have the same X =
{x0}, D, D̃|x0

, g and H . For simplicity, assume that H is a multiple of 4.

Suppose the training set S has size at most H/4 (i.e. there are at most H/4 labeled reasoning traces
available, selected uniformly at random from g(x0)). Any learned verifier h that is 1

2 -complete (i.e.
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accepts at least half of the reasoning traces accepted by hi∗) must accept traces from at least H/4
distinct sets Si that were not observed in training data. Notice that these H/4 sets constitute at least
1/3 of the 3H/4 sets Si not observed in the training traces. This means that for i∗ randomly selected
from these 3H/4 values, with probability at least 1/3, h accepts a trace in Si∗ . Thus any 1

2 -complete
verifier fails to be sound with probability at least 1

3 . Thus, it is impossible to achieve error ϵ < 1
3

using m ≤ H/4 samples, establishing the desired lower bound of Ω(H).

C Intersection-closed Verifier Classes and γ-TVPAC Learning

The learnability of intersection-closed concept classes in the standard PAC model is a well-studied
problem [HSW90, ACB98, AO07, Dar15]. Optimal sample complexity for these classes was known
before Hanneke established the celebrated optimal bounds for (improper) PAC learning of arbitrary
concept classes [Han16]. Here we will show that our lower bounds on sample complexity of arbitrary
γ-TVPAC learning in Section 4.2 can be circumvented for intersection-closed verifier classes H . We
will use X := X × Σ∗ to denote the domain of the verifiers. We start with some standard definitions
restated in the context of verifier classes.
Definition C.1 (Closure operator of a set). For any set S ⊆ X and any verifier class H ⊆ 2X , the
closure of S with respect to H , denoted by ClosH(S) : 2X → 2X , is defined as the intersection of all
verifiers in H that contain S, that is, ClosH(S) =

⋂
h∈H,S⊆h

h.

In other words, the closure of S is the smallest verifier in H which contains S. If {h ∈ H : S ⊆ h} =
∅, then ClosH(S) = X . This allows us to formally define intersection-closed verifier classes.
Definition C.2 (Intersection-closed classes). A verifier class H ⊂ 2X is intersection-closed if for all
finite S ⊆ X , ClosH(S) ∈ H . That is, the intersection of all verifiers in H containing an arbitrary
subset of the domain belongs to H . For finite verifier classes, this is equivalent to saying that for any
h1, h2 ∈ H , the intersection h1 ∩ h2 is also in H [Nat87].

Examples of intersection-closed classes include axis-parallel d-dimensional hyperrectangles, intersec-
tions of halfspaces, k-CNF boolean functions, and subspaces of a linear space.

The Closure algorithm is a learning algorithm that generates a verifier by taking the closure of the
positive examples in a given dataset, and negative examples do not influence the generated verifier
(in fact, negative examples are not available in our γ-TVPAC model). The verifier returned by this
algorithm is always the smallest verifier consistent with all of the positive examples seen so far in the
training set. Note that Algorithm 1 is exactly the closure algorithm for intersection-closed verifier
classes.
Definition C.3 (Closure algorithm [Nat87, HSW90]). Let S = {(x1, y1 = f∗(x1)), . . . , (xm, ym =
f∗(xm))} be a set of labeled examples, where f∗ ∈ H , xi ∈ X and yi ∈ {0, 1}. The verifier hc

S
produced by the closure algorithm is defined as:

hc
S(x) =

{
1, if x ∈ ClosH ({xi ∈ S : yi = 1}) ,
0, otherwise.

Here, ClosH ({xi ∈ S : yi = 1}) denotes the closure of the set of positive examples in S with
respect to H .

The closure algorithm learns intersection-closed classes with VC dimension d with an optimal sample
complexity of Θ

(
1
ϵ (d+ log 1

δ )
)

[AO07, Dar15]. We can use this to establish γ-TVPAC learning
for arbitrary intersection-closed verifier classes with a finite VC dimension. Note that our sample
complexity bounds in this case are independent of the length T of the reasoning trace.
Theorem C.4. Let η ∈ (0, 1). Let H be a class of verifiers that is intersection-closed and has a
finite VC dimension VCDim(H). Algorithm 1 (1− η)-TVPAC-learns H with sample complexity
O
(

1
ηϵ (VCDim(H) + log 1

δ )
)

. Moreover, Algorithm 1 never accepts a faulty trace for any problem
x ∈ X .

Proof. Let D+ denote the joint distribution over problem-trace pairs (x, τ) induced by the marginal
distribution D and the conditional distribution D̃ used to sample positive traces from g(x). Note that
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in Algorithm 1 the intersection of consistent verifiers h′ ∈ H since H is intersection-closed. We
define the population error of h ∈ H on positive examples as LD+(h) := Pr(x,τ)∼D+ [h(x, τ) = NO].
Let ph′ = Pr(x,τ)∼D+ [h′(x, τ) = NO and h∗(x, τ) = YES] be the probability that h′ incorrectly
rejects a valid reasoning trace.

By construction, h′(x, τ) = YES only if all consistent h ∈ HS output YES for (x, τ). Since we
assume by the realizability assumption that h∗ ∈ H , we have h∗ ∈ HS which is the set of all verifiers
consistent with the sample S. Therefore, if h′(x, τ) = YES, then h∗(x, τ) = YES as well. Or, h′

never accepts an invalid reasoning trace.

Thus, LD(h′) = LD+(h′) = ph′ . But, by known results for PAC learning of intersection-closed
classes [AO07, Dar15], m = O

(
1
ε (VCDim(H) + log 1

δ )
)

training examples are sufficient to ensure
LD+(h′) ≤ ε. As argued in the proof of Theorem 4.9, we have ηϵ ≤ LD+(h′), which establishes the
claimed sample complexity.

We have the following corollary for learning finite and intersection-closed verifier classes H .
Corollary C.5. For finite intersection-closed H , Algorithm 1 (1− η)-TVPAC-learns H with sample
complexity O

(
1
ηϵ (log(|H|) + log 1

δ )
)

.

D Examples

Here we will see several examples to illustrate our verification model. We start with a simple interval-
based toy example which shows that SVPAC and γ-TVPAC learning may be possible even when H
and Σ are infinite.
Example D.1 (A toy example with interval verifiers). Let X = Σ = R. The verifier class consists of
functions

H = {hr1,r2 : (x0, τ = (x1, . . . , xi)) 7→ I[r1 ≤ x0 −
i∑

j=1

xj ≤ r2] | r1, r2 ∈ R≥0, r1 ≤ r2}.

That is, all reasoning traces for which the sum of reasoning steps is at some distance from x0 that
is within an unknown interval [r1, r2] are valid. Notably, both Σ and H are infinite here. But
VCDim(H) ≤ 2. For example, the training set consisting of the following reasoning traces

S = {(0, (1)), (1, (3)), (2, (2, 3))}
cannot be labeled {YES,NO,YES} by any h ∈ H . This is because the distance of the trace sum
from the problem x0 −

∑i
j=1 xj for the training points are 1, 2, and 3 respectively. So, any hr1,r2

which labels (0, (1)) and (2, (2, 3)) as YES must also label (1, (3)) as YES. The finite VC dimension
bound implies H is SVPAC learnable with sample complexity O

(
1
ϵ log

1
δ

)
by Theorem 3.3. Our

results in Section 4.1 for 1-complete and sound verification do not apply as |Σ| is not finite, but
interestingly, the verifier class is still γ-TVPAC learnable (by Theorem C.4) with sample complexity
O
(
1
ϵ log

1
δ

)
since H is intersection-closed.

The following example is a simple extension of the autoregressive linear thresholds studied as a
family of Chain-of-Thought generators by [JVB+25]. Intuitively, for token space Σ = {0, 1}, a
linear threshold w ∈ Rd looks at the last l = min{|x|, d − 1} bits of the text x generated so far
and generates the next bit as I[w1 + w[−l :]x[−l :]] ≥ 0, where a[−l :] denotes the last l elements
(coordinates or tokens) of a. Instead, here we use linear thresholds for verification of reasoning traces
as described below. In this case, the binary classes induced by the linear thresholds more naturally
correspond to the outcomes {YES, NO} of verification (while generation beyond binary tokens needs
some extension).
Example D.2 (Linear threshold verifiers). Let X = R, Σ ⊂ R, |Σ| = s. The verifier class consists
of functions induced by d-dimensional linear thresholds

H = {hw,w0
: (x0, τ) 7→ I[w0+w1x0+w[−l :]τ [−l :] ≥ 0] | w ∈ Rd, w0 ∈ R, l = min{|τ |, d−1}}.

Thus on a given problem and reasoning trace (x0, τ), the verifier applies a linear threshold to the
problem x0 and the last d− 1 reasoning steps (or all reasoning steps if |τ | ≤ d− 1). Note that H is
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SVPAC learnable with sample complexity O
(
1
ϵ (d+ log 1

δ )
)

by Theorem 3.3. Similarly, we get a
sample complexity of O

(
1
ϵ (d log(ksT ) + log 1

δ )
)

for TVPAC learning using Theorem 4.5.

We can use the discreteness of Σ to give a bound on the number of distinct functions in H . Indeed,
there are |Σ|d distinct values of (x0, τ [−l :]) that would determine the number of distinct behaviors

of any hw,w0 ∈ H . By Sauer’s lemma, we have ΓH(sd) ≤
(

2esd

d+1

)d+1

= sO(d2). This allows us to

use Theorem 4.4 to give a bound of O
(
1
ϵ (d

2 log(s) + log 1
δ )
)

on the sample complexity for TVPAC
learning that is independent of the length T of the trace.

As an example of a naturally discrete and finite setting, where the problems, the reasoning steps and
the verifiers all come from finite sets, consider the following example.
Example D.3 (Valid reasonings on a graph). In this example, valid reasonings are paths in a graph,
part of which is given by x0 and part of which is implicit, defined by an unknown ground-truth
verifier h∗. Formally, let G = (V,E) denote the complete graph on n nodes. Let X = V × 2E and
Σ = E. The verifier class consists of functions

H = {hẼ : (x0 = (v0, E0), (x1 = (v0, v1), . . . , xi =(vi−1, vi)))

7→ I[∧j∈[i]{xj ∈ E0 ∪ Ẽ}] | Ẽ ⊆ E}
that verify whether each step (xj−1, xj) of the reasoning trace is valid, where a valid step is either
an edge from E0 specified in the problem x0, or in the (unknown) set of edges E∗ corresponding to
h∗ = hE∗ . Note that H is intersection-closed and |H| = 2|E| = 2n(n−1)/2. The natural approach
of building an estimate Ê of E∗ by collecting only the edges in the positively labeled traces in the
training examples that are not already included in the problem x0 corresponds to the closure algorithm.
Therefore, we have SVPAC, TVPAC and γ-TVPAC learning with Õ(n2/ϵ) sample complexity (using
Theorem 3.2, Theorem 4.4, and Corollary C.5).

The above example could be used to model a discrete puzzle like the farmer-fox-chicken-corn puzzle
or the sliding tile puzzle. The vertices would correspond to the different discrete states of the puzzle.
The final goal state is assumed to be fixed (for example, the sliding tiles make the desired picture),
and the problem statement x0 = (v0, ∅), where v0 is some initial state.

Since one of our main motivations is to learn good verifiers for Chain-of-Thought reasoning, for
which Large Language Models (LLMs) have been proposed as good candidate generators, it is natural
to try to understand our results for verification of natural language reasoning produced by these
generators. In the following example, we suppose that we have a finite collection of K verifiers
which are also LLMs.
Example D.4 (Finite set of LLM verifiers). Let A denote the (finite) set of tokens in a natural
language. Let X = Σ = AR, where R is the maximum number of tokens allowed in a single problem
statement or reasoning step. Let H be a collection of K LLM verifiers. Under realizability, our
results imply that the sample complexity of learning a verifier with small error is Õ

(
logK

ϵ

)
for

SVPAC and TVPAC learning, and Õ
(

K
(1−γ)ϵ

)
for γ-TVPAC learning (using Theorem 3.2, Theorem

4.4, and Theorem 4.9 respectively). We show sample complexity bounds without the realizability
assumption in Appendix E.

We conclude this section with an example where it is possible to learn a verifier online with a bounded
number of mistakes.
Example D.5. The problem space is X = Rd×n, that is, each problem x0 consists of a finite
number of vectors in Rd. Reasoning steps are also vectors in Σ = Rd. h∗ is also given by a set
of vectors in Rd (unknown to the learner). For a given problem x0, a reasoning step xi is said to
be valid if it lies in span(x0, h

∗), the subspace spanned by the problem x0 and the hidden vectors
h∗, and incorrect otherwise. The verifier is presented by a sequence of problem-reasoning pairs
(x

(1)
0 , x

(1)
1 ), (x

(2)
0 , x

(2)
1 ), . . . , and gives an assessment YES or NO for each pair. The verifier is said

to suffer a mistake if either it accepts a faulty reasoning x
(i)
1 /∈ span(x

(i)
0 , h∗), or says NO for a valid

reasoning x
(j)
1 ∈ span(x

(j)
0 , h∗).

First, we make a simplifying assumption that all problem vectors in any problem x0 lie in a space
orthogonal to span(h∗). For this case, we will show an online learner that is sound (i.e. never accepts
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a faulty reasoning) and makes at most dim(span(h∗)) ≤ d mistakes. We initialize h = {} and
will maintain the invariant that span(h) is a subspace of span(h∗). Given (x

(i)
0 , x

(i)
1 ), we accept

the reasoning if x(i)
1 lies in span(x

(i)
0 , h), and reject otherwise. Our invariant span(h) ⊆ span(h∗)

implies that we never accept an invalid reasoning. If we make a mistake on (x
(i)
0 , x

(i)
1 ), then we

add the component of x(i)
1 orthogonal to span(x

(i)
0 , h) (i.e., x(i)

1 − proj(x
(i)
1 , span(x

(i)
0 , h)), where

proj(v, S) denotes the projection of vector v onto the subspace S) to h. This increases dim(span(h))
by 1 and maintains our invariant span(h) ⊆ span(h∗). Therefore, this algorithm makes at most
dim(span(h∗)) ≤ d mistakes.

Next, we show a small mistake bound even when we remove the orthogonality assumption above.
Any problem x0 is given by a finite collection of vectors in Rd as above, and assume that h∗ is given
by a single vector in Rd. In this case, we will show a mistake bound of d+1, but will allow two-sided
error (in the previous case, our algorithm never resulted in false positives). Let S∗ denote a subspace
maintained by the algorithm that has the invariant that it always contains h∗. Initialize S∗ = Rd.
Given a problem (x0, x1), we first check if x1 ∈ span(x0), and return YES if so (which is always
correct). Else, we return NO until the first mistake. At this point we set S∗ = span(x0, x1). For any
new instance (x0, x1), we update S∗ upon mistakes. We consider the following cases.

1. S∗ ⊆ span(x0, x1).

a. S∗ ⊆ span(x0). In this case, h∗ ∈ span(x0) or span(x0, h
∗) = span(x0). Thus, it suffices to

output YES iff x1 ∈ span(x0). We do not make any mistakes in this case.

b. S∗ ⊈ span(x0). In this case, we say YES. Since h∗ ∈ S∗ ⊆ span(x0, x1), we can write
h∗ = a.x0 + bx1. If we made a mistake, then x1 /∈ span(x0, h

∗). This implies b = 0 and
h∗ ∈ span(x0). Thus, we can set S∗ to S∗ ∩ span(x0). The dimension is reduced by at least
one, since we assumed S∗ ⊈ span(x0).

2. S∗ ⊈ span(x0, x1). In this case, we say I[x1 ∈ span(x0)]. We don’t make a mistake when
we say YES. If we made a mistake, then x1 ∈ span(x0, h

∗) and x1 /∈ span(x0). This implies
x1 = a.x0 + bh∗ with b ̸= 0. Therefore, h∗ ∈ span(x0, x1). Thus, we can safely update S∗ to
S∗ ∩ span(x0, x1), and the dimension of S∗ goes down by at least 1.

Thus, dim(S∗) goes down by 1 every time we make a mistake except possibly for the first time, for a
total mistake bound of d+ 1.

E Beyond Realizability

The main focus of our work is the realizable case, where a perfect h∗ lies in our verifier class H
which makes no mistakes on any problem-trace pair (i.e., accepts exactly the right reasoning traces
for all problems in X). This property is particularly desirable for verification. However, it might
be the case that our search space for verifiers is limited and no verifier in H perfectly verifies all
the reasoning traces for all the problems of interest. This is known as the agnostic setting in PAC
learning terminology, and the goal is to learn a verifier h that has error almost as small as the verifier
with the smallest error in H . Here we will formally define agnostic SVPAC and TVPAC learning and
use arguments from standard PAC learning theory to show sample complexity bounds for agnostic
learning of verifiers. Note that the corresponding question for Chain-of-Thought generation was left
open by prior work [JVB+25].

E.1 Agnostic simple verifiers

The “label” for a problem-trace pair (x0, τ = (x1, x2, ..., xt)) is given by y = (y1, . . . , yt) ∈
{YES,NO}t. Given y ∈ {YES,NO}T let f(y) denote the smallest index i ∈ [T ] such that yi = NO
(and f(y) = T if yi = YES for all i). For a verifier h ∈ H define its loss w.r.t. label y as

ℓh(x, τ = (x1, ..., xT ); y = (y1, . . . , yT )) := I[h(x0, (x1, ..., xj)) ̸= yj ] for some j ≤ f(y).
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That is, we penalize the verifier for rejecting a trace while it is still correct according to the label y, or
failing to reject at the first index that the label indicates as faulty (the rest of the label does not matter
in this case). Formally, we have the following definition for agnostic learning.
Definition E.1 (agnostic SVPAC-learnability). Let X denote the problem space and H ⊆
{YES,NO}X×Σ∗

denote the class of verifiers. Then a learner is said to be an agnostic simply-
verifiably-PAC learner for H with sample size m = M(ϵ, δ) (sample complexity is the small-
est such m) if for any ϵ, δ ∈ (0, 1), for any distribution D over X × ΣT × {YES,NO}T , for
h∗ ∈ argminh∈HE(x0,τ,y)∼D[ℓh(x, τ ; y)], given a sample S ∼ Dm, the learner outputs a verifier h
such that with probability at least 1− δ over the draw of S,

E(x0,τ,y)∼D[ℓh(x0, τ, y)− ℓh∗(x0, τ, y)] ≤ ϵ.

The learner is said to be proper if h ∈ H .

We now show that it is possible to agnostically SVPAC learn a verifier with small sample complexity
for any finite class of verifiers H . A simple Hoeffding’s bound based argument familiar from
standard agnostic PAC learning implies that we can learn a good verifier with Õ

(
1
ϵ2 log |H|

)
labeled

problem-trace samples.
Theorem E.2. Any finite class of verifiers H is agnostically SVPAC-learnable with sample complex-
ity O

(
1
ϵ2 (log(|H|) + log 1

δ )
)
.

Proof. We use ERM, i.e. simply output any verifier ĥ ∈ H that achieves the smallest total loss ℓh on
the training sample and show that it achieves the stated sample complexity. Since the examples in the
training sample S are iid draws from D, the loss of a fixed h on the examples is an iid {0, 1}-valued
variable. By Hoeffding’s bound,

Pr

∣∣∣∣∣ED[ℓh(x, τ ; y)]−
1

|S|
∑

(x(i),τ(i),y(i))∈S

ℓh(x
(i), τ (i); y(i))

∣∣∣∣∣ ≥ ϵ

2

 ≤ 2e
−|S|ϵ2

2 .

By a union bound,

Pr

∃h ∈ H s.t.

∣∣∣∣∣ED[ℓh(x, τ ; y)]−
1

|S|
∑

(x(i),τ(i),y(i))∈S

ℓh(x
(i), τ (i); y(i))

∣∣∣∣∣ ≥ ϵ

2

 ≤ 2|H|e
−|S|ϵ2

2 .

Applying this to ERM ĥ and h∗, and noting that the error of ĥ on S is no larger than that of h∗,
implies that

E(x0,τ,y)∼D[ℓĥ(x0, τ, y)− ℓh∗(x0, τ, y)] ≤ ϵ,

with failure probability δ ≤ 2|H|e
−|S|ϵ2

2 . Solving for |S| gives the desired bound.

Since our proof for Theorem 3.3 involves bounding the relevant shattering coefficient, we
can also readily adapt the proof of the fundamental theorem of PAC learning to establish a
Õ( 1

ϵ2VCDim(H) log T ) bound on the sample complexity of agnostic SVPAC-learning for verifier
classes H with a finite VC dimension.

E.2 Agnostic trustable verifiers

We give a similar agnostic extension for TVPAC learning where the learner has access to a gold
standard reasoner that provides up to k correct reasoning traces for any problem x ∈ X , and when Σ
is finite. For a verifier h, we denote its population error as

errD(h) := 1− Pr
x∼D

[h is 1-complete w.r.t. g and sound for x].

Definition E.3 (agnostic TVPAC-learnability). Let X denote the problem space and H ⊆
{YES,NO}X×Σ∗

denote the class of verifiers. Let g(x) ⊆ ΣT denote the set of correct reasoning
traces for any x ∈ X . Then a learner is said to be an agnostic trustably-verifiably-PAC learner for H
with sample size m = M(ϵ, δ) (sample complexity is the smallest such m) if for any ϵ, δ ∈ (0, 1),
for any distribution D over X , for h∗ ∈ argminh∈HerrD(h) and OPT = errD(h∗), given a sample
S ∼ Dm and for each x ∈ S given access to the set g(x), the learner outputs a verifier h such that
with probability at least 1 − δ over the draw of S, errD(h) ≤ OPT + ϵ. The learner is said to be
proper if h ∈ H .
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We show that ERM on the samples constructed using the gold standard reasoner in Section 4.1 is
an agnostic SVPAC learner with small sample complexity for any finite class of verifiers H . The
argument is similar to that of Theorem E.2.
Theorem E.4. Any finite class of verifiers H is agnostically TVPAC-learnable with sample complex-
ity O

(
1
ϵ2 (log(|H|) + log 1

δ )
)
.

Proof. The key observation is that our training sample S = (x(i), g(x(i)))i∈[m] allows us to determine
I[h is 1-complete w.r.t. g and sound for x] for any problem x in the sample, by using the tree Tg(x)
and finiteness of Σ. This gives us the 0-1 loss of h on x which can be used to implement the ERM,
and we can apply the same argument as in the proof of Theorem E.2 for this loss to conclude the
proof.

As before, we can use the bound on the shattering coefficient in our proof of Theorem 4.5 and adapt
the proof of the fundamental theorem of PAC learning to establish a Õ( 1

ϵ2VCDim(H) log kT |Σ|)
bound on the sample complexity of agnostic TVPAC-learning for verifier classes H with a finite VC
dimension.
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• The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

21



• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification: Full proofs are included and assumptions are clearly stated.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The main contribution is theoretical.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
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this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA]

Justification: The main contribution is theoretical.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [NA]

Justification: The main contribution is theoretical.
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Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The main contribution is theoretical.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [NA]

Justification: The main contribution is theoretical.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

24



9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: Theoretical work with no direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for moni-
toring misuse, mechanisms to monitor how a system learns from feedback over time, improving
the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: The main contribution is theoretical.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The main contribution is theoretical.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
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Answer: [NA]

Justification: No crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: No study over human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness,
or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM does not impact the core methodology, scientific rigorousness, or originality of
the research.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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