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“Red fox with a bushy tail 
stalks silently at dawn”

“Viceroy resembles Monarch but 
has a line across hindwing”

Unpaired Multimodal Representation Learning

Figure 1: Text provides complementary information beyond images, even when not paired directly;
We introduce UNPAIRED MULTIMODAL LEARNER (UML) whereby sharing model weights
across modalities (e.g., image and text) extracts synergies and enhances unimodal representations,
outperforming methods that rely only on a single modality (such as images above).

ABSTRACT

Traditional multimodal learners find unified representations for tasks like visual
question answering, but rely heavily on large paired datasets. However, an over-
looked yet potentially powerful question is: can one leverage auxiliary unpaired
multimodal data to directly enhance representation learning in a target modality?
We introduce UML: UNPAIRED MULTIMODAL LEARNER, a modality-agnostic
training paradigm in which a single model alternately processes inputs from
different modalities while sharing parameters across them. This design exploits the
assumption that different modalities are projections of a shared underlying reality,
allowing the model to benefit from cross-modal structure without requiring explicit
pairs. Theoretically, under linear data-generating assumptions, we show that
unpaired auxiliary data can yield representations strictly more informative about
the world than unimodal training. Empirically, we show that using unpaired data
from auxiliary modalities—such as text, audio, or images—consistently improves
downstream performance across diverse unimodal targets such as image and audio.

1 INTRODUCTION

It is often taken for granted that to model a modality well, one must train on data from that modality.
For instance, if one wants an accurate image classifier, one trains on images; if one wants a language
model, one trains on text. Recent advances in multimodal learning, however, suggest that multiple
modalities can benefit one another: in particular, using text captions paired with images yields
richer representations, often surpassing their unimodal counterparts in zero-shot transfer, cross-modal
retrieval, and downstream classification (Radford et al., 2021; Singh et al., 2022; Mizrahi et al.,
2023; Girdhar et al., 2023a; Bachmann et al., 2022; Li et al., 2023; Bachmann et al., 2024; Jia et al.,
2021). However, these gains have been realized largely through paired data, where one has access to
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aligned examples (x, y) ∼ pX ,Y , such as an image x and its corresponding caption y. Such paired
supervision allows aligning modalities into a shared latent space, where cross-modal correlations can
be captured and transferred to downstream tasks.

This reliance on paired corpora also poses a bottleneck. Collecting and curating aligned datasets is
expensive and domain-limited, whereas unpaired data—independent samples from pX and pY—are
naturally abundant. For example, vast image collections and vast text corpora exist independently,
but without explicit alignment. This raises a more fundamental question:

Can unpaired data from a secondary modality Y enhance representations of the target modality X ,
even in the absence of (x, y) correspondences?

There is growing evidence that the answer may be yes. Recent work posits the existence of a shared
statistical model of reality, an empirical parallel to Plato’s concept of ideal Forms, suggesting that
as deep networks scale, their embeddings across modalities converge toward a unified representation
of the underlying world (Huh et al., 2024; Huang et al., 2021). This convergence implies that when
paired supervision is available, a model can leverage natural co-occurrences between modalities and
thus more accurately capture shared semantics. Critically, however, achieving convergence does not
necessarily require explicit pairs; as long as each modality samples from the same underlying ground-
truth latent space, it may be sufficient to align their marginal distributions to uncover the common
semantic structure (Timilsina et al., 2024; Sturma et al., 2023). Intuitively, even unpaired data from
another modality can provide complementary cues to better estimate the underlying reality (Figure 1).

In this work, we formalize this idea through Unpaired Multimodal Representation Learning, a
framework for improving unimodal representations by leveraging unpaired data across modalities.
Theoretically, under linear assumptions, we derive conditions under which incorporating unpaired
samples yields strictly more informative representations than unimodal training alone. Strikingly,
in some regimes, a single sample from Y provides greater per-sample value than a sample from
X itself when the goal is to model X . Building on these insights, we introduce UML: UNPAIRED
MULTIMODAL LEARNER, a shared-network framework that applies the same set of parameters
to inputs from different modalities. By nothing more than weight sharing i.e. without surrogate
objectives or inferred alignments, the model learns modality-agnostic features and naturally
transfers information across modalities (Sutskever, 2023). Empirically, we evaluate UML on diverse
image–text tasks in healthcare, and affective computing, as well as 10 standard visual benchmarks.
Unpaired data from auxiliary modalities consistently improves unimodal representations across
self-supervised and supervised regimes, in both few-shot and full-data regimes, and with diverse
encoders including CLIP, DINOv2, OpenLLaMA, and others. These benefits compound when
moving from two to three modalities, with audio, vision, and text each adding complementary signals.
We further demonstrate effective cross-modal transfer without paired data by initializing vision
models with pretrained language-model weights. Finally, we quantify the exchange rate between
modalities, mapping how many words equate to one image (and vice versa) for optimal performance.

To summarize, the key contributions of our work are:
• We introduce UML, a modality-agnostic framework that leverages unpaired data to improve

unimodal models. We test it across self-supervised and supervised encoders (CLIP, DINOv2,
OpenLLaMA, and others), in both few-shot and full-data regimes, showing consistent gains
over a range of image-text benchmarks and extensions to audio.

• We theoretically characterize, under linear assumptions, the conditions where unpaired data
yield strictly more informative representations than unimodal training. Remarkably, the
conversion ratio between modalities can fall below one: in certain regimes, a single sample
from Y contributes more to modeling X than an additional sample from X itself.

• We quantify conversion ratios between images and text; i.e., how many words is an
image worth for training vision models. We also show that unpaired multimodal data
systematically widens inter-class margins and aligns modalities in weights.

2 PAIRED MULTIMODAL REPRESENTATION LEARNING

A useful way to conceptualize learning across modalities is to posit a shared ground-truth reality,
denoted Z∗, which manifests through multiple projections such as images, text, or audio record-
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ings (Huh et al., 2024; Timilsina et al., 2024; Sturma et al., 2023). The goal of representation learning
is to learn an embedding space that captures the structure of Z∗, whether from a single modality or
from several jointly. Thus, unimodal representations are inherently limited by what one projection
alone can reveal: a single camera view may contain occlusions; an audio recording lacks visual
details; textual descriptions may lack layout information.

These limitations motivate multimodal representation learning, which extends the unimodal setting
to learn from multiple modalities together. For brevity, consider two modalities with observable data
denoted by X (e.g., images) and Y (e.g., text) and samples x ∈ X and y ∈ Y . Mathematically, Multi-
modal representation learning seeks encoders fθx : X → Z and fθy : Y → Z mapping each modality
into a shared embedding space Z . Different frameworks optimize for desirable properties of Z . Con-
trastive methods encourage instances of the same concept (such as an image and its text label) to be
close together (Radford et al., 2021; Zhai et al., 2023; Jia et al., 2021). Fusion approaches learn shared
layers for multimodal inputs with reconstruction (Singh et al., 2022; Li et al., 2019; Lu et al., 2019;
Bachmann et al., 2022) or contrastive objectives (Roy et al., 2025). Generative methods often struc-
ture Z to enable translation between modalities(Li et al., 2022; Rombach et al., 2022). Other methods
disentangle common factors from modality-specific factors (Wang et al., 2024; Liang et al., 2023).
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Figure 2: (a) Paired learning uses (xi, yi) with known correspondences. We instead study Unpaired
learning: (b) with labels, using (xi, ci) and (yj , ĉj), where ci and ĉj denote labels for xi and yj , but
no cross-modal correspondences; and (c) without any labels or correspondences, using {xi} and {yj}.

Common to all of these prior work, however, is a requirement for pre-existing knowledge of one-to-
one correspondences between the modalities, i.e., samples (x, y) ∼ PX,Y (as shown in Figure 2(a)),
which are assumed to be aligned views of the same underlying entity in Z∗. We ask whether it is
possible to recover this shared structure without such correspondences—namely, when only unpaired
samples from the marginals PX and PY are available, as shown in Figure 2(c)—and, if so, how this
affects downstream performance individually on the primary modality X .

3 UNPAIRED MULTIMODAL REPRESENTATION LEARNING

Let DX = {xi}Nx
i=1 and DY = {yj}

Ny

j=1 be datasets of Nx and Ny samples respectively, drawn from
marginal distributions PX and PY as shown in Figure 2(c). The joint distribution PX,Y is unknown.
Critically, in contrast to paired multimodal learning, for any given xi ∈ DX and yj ∈ DY , there is no
assumption that xi and yi are projections of the same underlying entity z ∈ Z .

Our objective is to learn mappings fX : X → Z and fY : Y → Z from each modality to a common
embedding space that captures the shared structures between the unpaired datasets. We refer to this
as Unpaired Multimodal Representation Learning. In contrast to previous works (Lin et al., 2023;
Lee & Yoon, 2025; Girdhar et al., 2022; Chada et al., 2023) (discussed in Appendix A), we leverage
unpaired data without inferring alignment, incorporating paired data, or assuming pre-aligned
embeddings. Intuitively, without known correspondences, even unpaired data can be useful if
modalities capture different axes of information pertaining to the underlying Z∗. We formalize this
intuition in Section 3.1, within the popularly studied framework of linear models, and introduce
a modality-agnostic algorithm UML in Section 3.2 for learning representations from unpaired data.
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3.1 THEORETICAL PERSPECTIVES

We adopt the widely used modeling choice that each modality can be expressed as a linear
combination of shared and modality-specific components (Sturma et al., 2023; Timilsina et al.,
2024; Huang et al., 2021). This formulation inherently accounts for informational differences across
modalities by incorporating modality-specific features (Wang et al., 2024). Prior works (Sturma et al.,
2023; Timilsina et al., 2024) have developed sufficient conditions for recovering joint distributions
and the shared causal structure under this linear model. Building on this framework, we ask how
joint training with unpaired modalities can still enhance representations within a single modality.

Data Generating Process. Assume that all factors of variation in reality live in a single d-dimensional
space, Z∗, i.e., θ ∈ Rd, modeled using a linear data-generating pipeline. This parameter can further be
decomposed as θ ≡ [θc, θx, θy]

⊤ where θc ∈ Rdc , θx ∈ Rdx , θy ∈ Rdy and dc + dx + dy = d. Here,
θc captures the common (shared) parameters that affect both modalities, θx denotes the parameters
that only affect modality X , and θy denotes the parameters that only affect modality Y . We observe
two datasets, one from each modality {Xi}Nx

i=1 ∈ Rm and {Yj}
Ny

j=1 ∈ Rn, each reflecting partial
measurements of the ground truth latent space Z∗:

Xi = Ac,i θc + Ax,i θx + ϵX,i, ϵX,i ∼ N
(
0, σ2

xIm
)

(1)

Yj = Bc,j θc + By,j θy + ϵY,j , ϵY,j ∼ N
(
0, σ2

yIn
)
. (2)

Here, Ac,i, Ax,i, Bc,j , By,j are known design blocks capturing how each sample probes the latent
factors and εX,i, εY,j represent the independent measurement noise.

In our linear setting, estimating the true latent state θ—and hence the underlying reality Z∗—is
governed by the Fisher information matrix I(θ) = −E

[
∇2

θ ℓ(θ)
]

(Fisher, 1922; 1925), which
measures how sharply the likelihood “curves” around the true θ. Because X and Y samples are
independent given Z∗, their curvature contributions add pointwise, resulting in the joint Fisher
information being simply the sum of the unimodal blocks. Thus, loosely speaking, any nonzero
contribution from the unpaired Y -samples strictly increases curvature and thus strictly tightens the
variance bound along those directions in θc. We formalize these insights in Theorem 1 and Theorem 2.
Our results also generalize naturally to more than two modalities since the total contribution of all
auxiliary modalities (excluding the primary modality X) can be obtained by summing their individual
Fisher information matrices. Complete proofs and additional background are provided in Appendix C.

Theorem 1 (Variance Reduction with Unpaired Multimodal Data). Let θ̂X , θ̂Y be the least-squares
estimators for θ using only {Xi} and only {Yj} and let θ̂X,Y be the joint estimator using both
unpaired datasets. Then, under the assumption that at least one Bc,j , where j ∈ {1, 2, ...Ny}, has
full rank, the common-factor covariance satisfies the strict Loewner ordering i.e. Var

(
θ̂X,Y

)
θc,θc

≺
Var

(
θ̂X

)
θc,θc

, or equivalently, the Fisher information on θc strictly increases when combining
both modalities, despite not having sample-wise pairing:(IX + IY )θc,θc ≻ (IX)θc,θc .

Theorem 1 says that although there is no sample-wise pairing, simply adding an unpaired modality
Y , that carries non-degenerate information about every direction in the shared subspace, can only
tighten our uncertainty about the shared parameters θc. Geometrically, the uncertainty ellipsoid for
θc shrinks in every direction where Y contributes any curvature, and never expands elsewhere. In
practice however, no single data sample covers every latent axis. In these settings, while global
shrinkage (Theorem 1) no longer applies, we still get directional gains. We capture this in Theorem 2.

Theorem 2 (Directional Variance Reduction with Unpaired Multimodal Data). Let all notation be
as in Theorem 1, and let v ∈ Rdc \ {0}. If there exists at least one index j ∈ {1, 2, ...Ny} such that
Bc,jv ̸= 0, then v⊤ (IX + IY )θc,θc v > v⊤ (IX)θc,θc v. Further, the variance of the estimator in
direction v is strictly reduced if v /∈ range((IX)θc,θc).

Building on Theorem 2, Corollary 1 and Corollary 2 quantify the precise variance contraction factor
and analyze special cases where a second modality resolves otherwise ill-posed directions.
Thus far, we have studied incorporating data from an auxiliary modality without considering sample
size constraints. A natural next question is how to allocate a fixed budget of N additional samples:
is it better to collect them from the same modality X , or from complementary modality Y ? We
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formally address this in Theorem 3 below.

Theorem 3 (Data from Auxiliary Modality Can Outperform More of the Same). Define for any m,
I
(m)
X =

∑m
i=1 A

⊤
c,iAc,i and I

(m)
Y =

∑m
j=1 B

⊤
c,jBc,j . If range

(
I
(m)
Y

)
̸⊆ range

(
I
(m)
X

)
, then there

exists a nonzero v ∈ Rdc such that v⊤I(m)
Y v > v⊤I

(m)
X v.
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Figure 3: Adding unpaired Y
samples boosts X reconstruction
more than adding extra X samples.

Theorem 3 shows that if the second modality covers a “blind
spot” of the first, adding additional samples from the first
modality does not increase the Fisher information in that
direction; however, unpaired samples from the second modality
provide strictly positive information along that axis.

To empirically validate the above result, we design an illus-
trative Gaussian experiment (Appendix E.14) in which both
modalities are generated as noisy linear projections of the same
underlying Gaussian latent variable θc. We allocate a fixed
budget of samples, splitting evenly between X and Y (details
in Appendix E.14). Joint training with UML significantly im-
proves reconstruction fidelity on X (Figure 3) compared to
training on X alone. Strikingly, this also reveals that the effec-
tive exchange rate between modalities is below one, meaning a single additional sample from Y is
worth more than an additional sample from X , even when the test task is on X . In Section 4.4, we
extend this idea by quantifying the exchange rate between images and text on real world benchmarks.

3.2 UML: UNPAIRED MULTIMODAL LEARNER

1
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Tokenization and Embed Unpaired Multimodal Learner (UML)
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Figure 4: (Left) Inputs from different modalities (e.g., images or text) are tokenized into patch or token
embeddings using pretrained encoders or processed features; (Right) UML can be trained under two
settings: (a) Self-supervised, where patch/token embeddings are passed through a shared network and
modality-specific decoders to perform next-token/patch prediction; (b) Supervised, where mean/CLS
embeddings are fed through the shared classifier to predict labels within each modality.

The theory developed above establishes that adding an unpaired auxiliary modality strictly increases
Fisher information along shared directions, thereby reducing estimator variance. We now translate
these insights into a practical framework: UML (UNPAIRED MULTIMODAL LEARNER). The central
idea is to share parameters across modalities: since both X and Y are projections of the same under-
lying reality Z∗, forcing them through shared weights can extract synergies by accumulating training
gradients on the same parameters. This accumulation could be viewed as the practical analogue of
Fisher information addition, ensuring that even without paired samples, auxiliary modalities tighten
estimates of shared structure. While prior work has explored shared weights in partially paired
settings (Sturma et al., 2023), for related visual streams such as video and depth (Girdhar et al., 2022),
or within already-aligned spaces like CLIP (Lin et al., 2023), we study and show their pronounced
impact in the most general case of unpaired modalities with unaligned encoders.
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Consider unpaired samples or preprocessed features x ∼ PX and y ∼ PY , each encoded into
embeddings zX = fX(x) and zY = fY (y) as shown in Figure 4. These embeddings are passed
through a shared network h, producing rX = h(zX) and rY = h(zY ). We consider two regimes
to train these networks: (a) self-supervised learning for fully unpaired data (Figure 2(c)) and (b)
supervised learning for unpaired data with labels as shown in Figure 2(b). In the self-supervised
setting, each modality has its own decoder (gX and gY ) trained to reconstruct the input or predict
the next token/patch depending on the form of embeddings zX and zY (refer to Figure 4(a)). The
training objective (Pseudocode in the appendix: Algorithm 1) is

LUML-SSL = Ex∼PX
ℓ
(
gX(rX), x

)
+ Ey∼PY

ℓ
(
gY (rY ), y

)
,

where ℓ is the mean squared error for continuous targets or cross-entropy for discrete tokens. In the
supervised setting, when labels are available, cX for x and cY for y, a shared classifier c(·) is trained on
top of rX and rY . Since both c(·) and h(·) are shared across modalities, they can be viewed as a single
shared head h (refer to Figure 4(b)). The supervised loss (Pseudocode in the appendix: Algorithm 2) is

LUML-Sup = E(x,cX) ℓCE
(
c(rX), cX

)
+ E(y,cY ) ℓCE

(
c(rY ), cY

)
.

In both scenarios, although supervision is modality-specific, the shared head h receives updates
from both modalities. Consequently, gradients from h also flow into fX , effectively transferring
information from fY and thus Y even without paired samples. At inference, we discard the auxiliary
pathway and use rX as the representation for the target modality, training a linear probe on top
for downstream tasks. UML also naturally extends to more than two modalities by incorporating
additional modality-specific encoder/decoder heads or classification layers.

4 EXPERIMENTAL RESULTS

In this section, we empirically evaluate UML across diverse benchmarks and configurations, leading
to three main takeaways: (i) auxiliary modalities consistently boost target image representations in
both self-supervised (Section 4.1) and supervised regimes (Section 4.2), with particularly strong
gains in fine-grained and low-shot tasks; (ii) the benefits compound as we move from two to three
modalities, with audio, vision, and text each contributing complementary signals (Section 4.2); and
(iii) weight sharing across modalities generalizes beyond co-training, as pretrained language model
weights transfer effectively to vision (Section 4.3). Finally, we quantify a marginal rate of substitution
between modalities, asking how many text samples equate to an image (Section 4.4).

4.1 UML IN SELF-SUPERVISED SETTING

Table 1: UML (Ours) achieves higher top-1 linear probe accuracy than unimodal baselines on learned
representations, averaged over three seeds, across both MultiBench and vision–text benchmarks.

Dataset

MultiBench Standard vision-text

Method M
U

S
TA

R
D

M
IM

IC

M
O

S
E

I

M
O

S
I

U
R

-F
U

N
N

Y

O
xf

or
d

Pe
ts

U
C

F1
01

D
T

D

Unimodal 59.66 55.16 70.62 56.17 56.99 85.04 79.86 78.13
Ours 63.28 ↑ 57.10 ↑ 71.98 ↑ 58.16 ↑ 57.34 ↑ 86.32 ↑ 80.98 ↑ 78.49 ↑

To study UML in the self-supervised setting, we use the real-world multimodal benchmark from
MultiBench (Liang et al., 2021), which includes curated datasets such as text and images, with
downstream labels covering a variety of domains, including healthcare, affective computing, and
multimedia research and three standard classification benchmarks (Parkhi et al., 2012; Cimpoi et al.,
2014; Soomro et al., 2012). We follow the same setting (dataset splitting, encoder architecture,
pre-extracted features) as (Liang et al., 2023; 2021). For training (refer to Figure 4(a)), we use linear
encoders (fX and fY ) and decoders (gX and gY ) and use an autoregressive transformer as the shared
network (h). At inference, we average the transformer output embeddings and use the resulting
embedding for linear probing on the downstream classification tasks. We report test accuracy using
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embeddings from the primary modality (image), and to ensure fair comparisons, we perform rigorous
hyperparameter tuning for all methods and repeat each experiment with three random seeds. For
more details, refer to Appendix B.3.1 and Appendix B.4.1. As shown in Table 1, UML significantly
outperforms its unimodal counterpart across all benchmarks, particularly on MUSTARD where unique
information from the text modality expresses sarcasm, such as ironic tone of voice.

4.2 UML IN SUPERVISED SETTING

We evaluate UML on 9 widely-used visual classification benchmarks (Fei-Fei et al., 2004; Parkhi
et al., 2012; Krause et al., 2013; Nilsback & Zisserman, 2008; Bossard et al., 2014; Xiao et al., 2010;
Cimpoi et al., 2014; Soomro et al., 2012) in three settings: (1) Full fine-tuning: initializing from a
pretrained vision backbone and updating all parameters on the target dataset. (2) Few-shot linear
probing: freezing the vision backbone and training a linear classifier on k labeled samples per class
(k = 1, 2, 4, 8, 16). (3) Full-dataset linear probing: freezing the vision backbone and training a linear
classifier on the entire training dataset, discussed in Appendix E.1.2. In all cases, we enrich image
representations with unpaired text embeddings, using ViT-S/14 DINOv2 as the vision encoder and
OpenLLaMA-3B as the frozen text encoder. To construct conceptually related yet unpaired text data,
we generate text templates with varying amounts of semantic information about the dataset. For
further details and specific prompts, refer to Appendix B.3. To train UML, we initialize the classifier
with the average text embedding of each class, giving a strong prior for image–class alignment (refer
to Appendix E.1 for ablation).
Table 2: UML (Ours) outperforms unimodal baseline on image classification with ViT-S/14 DINOv2
and OpenLLaMA-3B in both settings: (i) Full finetuning and (ii) Few-shot linear probing (k = 1, 2, 4).

Dataset

Shot Method St
an

fo
rd

C
ar

s

SU
N

39
7

FG
V

C
A

ir
cr

af
t

D
T

D

U
C

F1
01

Fo
od

10
1

O
xf

or
d

Pe
ts

O
xf

or
d

Fl
ow

er
s

C
al

te
ch

10
1

A
ve

ra
ge

Full-finetuning
Unimodal 79.45 66.20 66.99 72.16 83.18 80.65 90.67 99.18 95.45 81.54
Ours 86.39 ↑ 66.03 ↓ 73.44 ↑ 74.27 ↑ 84.69 ↑ 81.97 ↑ 91.72 ↑ 99.82 ↑ 97.60 ↑ 83.99 ↑

Few-shot Linear Probing

1 Unimodal 13.18 34.15 14.09 36.60 46.74 35.18 63.51 89.62 76.66 45.52
Ours 16.49 ↑ 41.79 ↑ 15.63 ↑ 42.04 ↑ 52.33 ↑ 42.27 ↑ 73.59 ↑ 93.64 ↑ 84.52 ↑ 51.36 ↑

2 Unimodal 24.68 47.88 23.09 47.75 56.81 48.54 75.32 96.02 86.90 56.33
Ours 28.65 ↑ 53.15 ↑ 24.78 ↑ 53.25 ↑ 63.86 ↑ 54.44 ↑ 81.41 ↑ 97.63 ↑ 90.55 ↑ 60.85 ↑

4 Unimodal 38.76 57.51 32.10 59.69 67.75 60.79 83.89 98.59 93.48 65.84
Ours 43.17 ↑ 60.89 ↑ 33.86 ↑ 62.43 ↑ 71.13 ↑ 63.88 ↑ 87.36 ↑ 99.17 ↑ 94.96 ↑ 68.53 ↑

Unpaired Textual Data Improves Visual Classification. As shown in Table 2, across both full
fine-tuning and few-shot linear probing, UML consistently improves over unimodal baselines
across all datasets, with the largest gains on fine-grained tasks (e.g., Stanford Cars, FGVC Aircraft)
where unpaired text sharpens class boundaries, and in low-shot regimes where textual cues help
disambiguate visually similar classes. Additional results on other shots, datasets, model scales, and
prompt variants are reported in Appendix E.

We also evaluate the robustness of UML-trained models under test-time distribution shifts. A 16-
shot linear probe with DINOv2 is trained on ImageNet and tested across four distribution-shifted
target datasets: ImageNet-V2, ImageNet-Sketch, ImageNet-A, and ImageNet-R. UML consistently
outperforms the unimodal baseline (Figure 5), showing that language priors yield more transferable
features. Additional robustness results are provided in Appendix E.3.

Finally, for all these settings, we also replace the independent vision (DINOv2) and text encoders
(OpenLLaMA) with those of CLIP; since CLIP embeddings are already aligned, the gains from UML
are even stronger (Appendix E.2.1, Appendix E.2.2, Appendix E.2.3,).

Additional Ablations. For all experiments, we keep the text encoder frozen; Unfreezing the text
encoder yields slightly weaker gains but still outperforms the unimodal baseline (Appendix E.12).
Swapping in different text encoders yields consistent gains (Appendix E.6), while richer, more diverse

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

captions provide especially strong boosts in few-shot settings (Appendix E.7). Further, training with
semantically unrelated modalities (Appendix E.9) does not improve over the unimodal counterpart,
confirming that gains stem from semantic correlations rather than spurious ones (Appendix E.9).
Finally, unpaired multimodal data systematically widens inter-class margins and aligns modalities
in weights (Appendix F).

Distribution Shift Results

Figure 5: Our approach UML is much more robust than its unimodal counterpart across four test time
distribution shifted target test sets. All results are averaged across three random seeds.

Unpaired Image and Textual Data Improve Audio classification. We extend UML to an
audio–vision–text setting using the ImageNet-ESC benchmark (Lin et al., 2023), which links
ImageNet objects and captions with ESC-50 environmental sounds. The benchmark has two
versions: ImageNet-ESC-27 and ImageNet-ESC-19. For audio encoding, we use AudioCLIP with
an ES-ResNeXT backbone (Guzhov et al., 2021), while images and text are encoded by DINOv2
and OpenLLaMA-3B encoders. For further details, refer to Appendix B.3.

Unpaired image and text data consistently improve audio classification (Figure 6), with larger gains
from CLIP’s aligned encoders (Appendix E.13.3). Conversely, both audio and text also enhance
image classification, showing that transfer works in both directions (Appendix E.13).

Finally, we study the full three-modality case, where we treat two modalities as auxiliaries and one as
the target—for example, using both image and text as auxiliaries for audio classification. As shown
in Appendix E.10, performance improves monotonically with each added auxiliary modality, with
the strongest gains achieved when all three modalities (audio, vision, and text) are used together.

Audio Benchmarks

(a) ImageNet-ESC-19 (b) ImageNet-ESC-27

Figure 6: UML (Ours) improves audio classification using unpaired image and text samples on
ImageNet-ESC-19 and ImageNet-ESC-27. All results are averaged across three random seeds.

4.3 TRANSFER LEARNING
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Figure 7: Image classifier trained from BERT
initialization outperforms training from scratch for
(left) full fine-tuning; (right) frozen backbone

Thus far, we have explored how sharing model
weights while co-training with multiple un-
paired modalities improves the learned repre-
sentation. But weight sharing need not be re-
stricted to co-training: if modalities capture the
same underlying latents, then pretrained weights
from one should also serve as a useful initial-
ization for another. We therefore study if trans-
ferring knowledge from one modality can en-
hance performance in another by initializing the
transformer layers of a ViT (Dosovitskiy et al.,
2020) with pretrained BERT (Devlin et al., 2019)
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weights and evaluating on ImageNet (details in Appendix B.4.4). Patch embeddings are learned from
scratch through a linear layer, augmented by a CLS token and positional embeddings. As shown
in Figure 7, initializing with BERT boosts performance for both frozen and unfrozen backbones. Our
results indicate that the semantic knowledge of language models provides a strong initialization for
vision compared to training from scratch.

4.4 MARGINAL RATE-OF-SUBSTITUTION BETWEEN MODALITIES

Having established that unpaired modalities boost representation learning, robustness, and transfer,
we now ask a more fundamental question: what is the relative value of each modality? If both
images and text provide views of the same semantic space, can we quantify their exchange rate—How
many words is an image worth? Figure 8 and Figure 9 visualize image-text conversion ratios using
test accuracy isolines on Oxford-Pets (Parkhi et al., 2012) dataset. These map the number of texts
equivalent to an image for the same performance. Aligned CLIP encoder (1 image ≈ 228 words)
is more efficient than non-aligned DINOv2 and OpenLLaMA encoders (1 image ≈ 1034 words).
Indeed, in some cases, an image may quite literally be worth a thousand words. We also observe
little or no additional benefit from adding more text beyond a few samples. This is likely because we
do not control for increasing complexity, so adding sentences does not guarantee extra information.
Further results on additional datasets and key details, refer to Appendix E.4.

Figure 8: 1 img ≈ 228 words (CLIP) Figure 9: 1 img ≈ 1034 words (DINOv2)

5 CONCLUSIONS AND LIMITATIONS

Conclusions. We propose and investigate Unpaired Multimodal Representation Learning for en-
hancing unimodal representations with unpaired multimodal data. Under linear assumptions, we
theoretically show that unpaired data from multiple modalities strictly increases Fisher information
along shared directions, resulting in a more accurate representation of the underlying world. Mecha-
nistically, UNPAIRED MULTIMODAL LEARNER (UML) achieves this by accumulating gradients from
different modalities on shared weights, which can be viewed as an operational analogue of the Fisher
information gain. Empirically, we show performance gains across vision, text and audio benchmarks,
and estimate conversion ratios between modalities. UML provides a new perspective on how to
harness the abundance of unpaired data to learn better representations. This maybe especially useful in
domains such as medical imaging, scientific data, and robotics, which contain rich auxiliary modalities
like text, audio, or metadata that are not often paired with every instance of the primary modality.

Limitations. While our experiments study learning from unpaired multimodal data under both
the self-supervised and supervised settings, downstream evaluations are conducted primarily for
classification. Investigating evaluation tasks, such as generation, offers a rich avenue for future work.
Furthermore, we evaluate how multimodal data enhances image and audio classification; it remains
to show if they can, in turn, offer useful information for textual tasks.

9
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6 REPRODUCIBILITY STATEMENT

We provide complete proofs and relevant background for all theoretical results in Appendix C.3. For
experiments, we detail the setup, training protocols, and algorithm implementations in Appendix B.4
and Appendix D. All datasets are publicly available, and we follow established preprocessing
procedures, with additional details in Appendix B.3. We will release all code and scripts in a public
GitHub repository upon acceptance.

REFERENCES

Amjad Almahairi, Sai Rajeshwar, Alessandro Sordoni, Philip Bachman, and Aaron Courville. Aug-
mented cyclegan: Learning many-to-many mappings from unpaired data. In International confer-
ence on machine learning, pp. 195–204. PMLR, 2018.

Roman Bachmann, David Mizrahi, Andrei Atanov, and Amir Zamir. Multimae: Multi-modal multi-
task masked autoencoders. In European Conference on Computer Vision, pp. 348–367. Springer,
2022.
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and Soujanya Poria. Towards multimodal sarcasm detection (an obviously perfect paper). arXiv
preprint arXiv:1906.01815, 2019.

Rakesh Chada, Zhaoheng Zheng, and Pradeep Natarajan. Momo: A shared encoder model for text,
image and multi-modal representations. arXiv preprint arXiv:2304.05523, 2023.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
ing textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3606–3613, 2014.

Pinar Demetci, Rebecca Santorella, Björn Sandstede, William Stafford Noble, and Ritambhara Singh.
Scot: Single-cell multi-omics alignment with optimal transport. Journal of Computational Biology,
29(1):3–18, 2022. doi: 10.1089/cmb.2021.0446. URL https://doi.org/10.1089/cmb.
2021.0446. PMID: 35050714.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In 2004 conference
on computer vision and pattern recognition workshop, pp. 178–178. IEEE, 2004.

Ronald A Fisher. On the mathematical foundations of theoretical statistics. Philosophical transactions
of the Royal Society of London. Series A, containing papers of a mathematical or physical character,
222(594-604):309–368, 1922.

10

https://doi.org/10.1089/cmb.2021.0446
https://doi.org/10.1089/cmb.2021.0446


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ronald Aylmer Fisher. Theory of statistical estimation. In Mathematical proceedings of the Cam-
bridge philosophical society, volume 22, pp. 700–725. Cambridge University Press, 1925.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li, and
Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. International Journal
of Computer Vision, 132(2):581–595, 2024.

Xinyang Geng, Hao Liu, Lisa Lee, Dale Schuurmans, Sergey Levine, and Pieter Abbeel. Multimodal
masked autoencoders learn transferable representations. arXiv preprint arXiv:2205.14204, 2022.

Rohit Girdhar, Mannat Singh, Nikhila Ravi, Laurens Van Der Maaten, Armand Joulin, and Ishan
Misra. Omnivore: A single model for many visual modalities. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 16102–16112, 2022.

Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 15180–15190, 2023a.

Rohit Girdhar, Alaaeldin El-Nouby, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin, and
Ishan Misra. Omnimae: Single model masked pretraining on images and videos. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10406–10417, 2023b.

Andrey Guzhov, Federico Raue, Jörn Hees, and Andreas Dengel. Esresne (x) t-fbsp: Learning
robust time-frequency transformation of audio. In 2021 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE, 2021.

Md Kamrul Hasan, Wasifur Rahman, Amir Zadeh, Jianyuan Zhong, Md Iftekhar Tanveer, Louis-
Philippe Morency, et al. Ur-funny: A multimodal language dataset for understanding humor. arXiv
preprint arXiv:1904.06618, 2019.

Yu Huang, Chenzhuang Du, Zihui Xue, Xuanyao Chen, Hang Zhao, and Longbo Huang. What makes
multi-modal learning better than single (provably). Advances in Neural Information Processing
Systems, 34:10944–10956, 2021.

Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation
hypothesis. arXiv preprint arXiv:2405.07987, 2024.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with
noisy text supervision. In International conference on machine learning, pp. 4904–4916. PMLR,
2021.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a
freely accessible critical care database. Scientific data, 3(1):1–9, 2016.
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A FURTHER RELATED WORKS

Unpaired Multimodal Learning. Unpaired data has long been used for image-to-image (Zhu et al.,
2017; Liu et al., 2017; Almahairi et al., 2018; Shi et al., 2023) and text-to-text translation (Lample
et al., 2018) . More recently, several works have also proposed learning from unpaired data by
inferring coarse- or fine-grained alignments through distribution matching or optimal transport
objectives (Xi et al., 2024; Demetci et al., 2022; Ryu et al., 2024). In contrast, we leverage unpaired
data for learning representations without the need for explicit or inferred alignment. (Timilsina et al.,
2024; Sturma et al., 2023) theoretically analyze the problem of identifying shared latent components
and causal structures in unaligned multimodal mixtures. Most closely related to our work is (Lin et al.,
2023), which leverages coarse-grained text data such as class names to improve image classification
on CLIP using a shared linear head. Another related line of works (Roth et al., 2023; Pratt et al., 2023;
Menon & Vondrick, 2022; Gao et al., 2024) leverage prompting templates and pretrained LLMs to
generate descriptive class captions, showing improved image classification performance with CLIP.
Nonetheless, these methods operate on CLIP with pre-aligned representation spaces, whereas our
approach also learns from unpaired data without assuming prior alignment. Several works have also
proposed learning large multitask multimodal models with joint encoders and unified embedding
spaces (Srivastava & Sharma, 2024; 2023; Zhang et al., 2023; Girdhar et al., 2022; Geng et al.,
2022), often using joint training over separate tasks and/or masked prediction objectives. In a similar
vein, (Chada et al., 2023) uses a stage-wise training strategy with both unpaired and paired data,
and (Girdhar et al., 2023b) trains a single model across visual modalities. However, most of these
methods rely on some amount of paired data for preliminary alignment and then leverage abundant
modality-specific unpaired data for further improvement. In contrast, our approach demonstrates that
a model can implicitly learn cross-modal correlations from purely unpaired data, without requiring
explicit alignment as a prerequisite.

Multimodal Representation Alignment. Our method relies on the notion of shared information
and structure between unaligned modalities. Closely related to this are works demonstrating that
unimodal representations trained without multimodal data are nevertheless converging. Huh et al.
(2024) presents evidence that better-performing language models exhibit increased alignment to
self-supervised vision models. Similarly, (Maniparambil et al., 2024) shows a latent space alignment
between vision and text encoders across backbones and training paradigms, and uses the CKA metric
to connect unaligned encoders zero-shot. Earlier works also note alignment between models trained
with different datasets and modalities (Moschella et al., 2022; Norelli et al., 2023). Several works
have also shown that a linear projection or MLP is sufficient to stitch together the latent spaces of
pretrained vision and language models (Merullo et al., 2022; Liu et al., 2023; Koh et al., 2023). Zhai
et al. (2022) extends this to training a text encoder to align to a frozen pretrained image model; this
method was in turn used to integrate DINOv2, a large self-supervised vision model, with a text
encoder (Jose et al., 2024).

B SUPPLEMENTARY EXPERIMENTAL DETAILS AND ASSETS DISCLOSURE

B.1 ASSETS

We do not introduce new data in the course of this work. Instead, we use publicly available, widely
used image datasets for the purposes of benchmarking and comparison.

B.2 HARDWARE AND SETUP

Each experiment was conducted on 1 NVIDIA Tesla V100 GPUs, each with 32GB of accelerator
RAM. The CPUs used were Intel Xeon E5-2698 v4 processors with 20 cores and 384GB of RAM.
All experiments were implemented using the PyTorch deep learning framework.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.3 DATASETS

B.3.1 MULTIBENCH

We evaluate our approach on a diverse set of multimodal fusion datasets from MultiBench (Liang
et al., 2021) spanning healthcare, sentiment, and humor detection:

• CMU-MOSEI (Moschella et al., 2022): The largest sentence-level multimodal sentiment
and emotion dataset, containing 23,000 annotated monologue videos (over 65 hours of
content from more than 1,000 speakers across 250 topics). Each video is labeled with
sentiment intensity in the range [−3, 3], which we cast into binary positive/negative sentiment
classification.

• CMU-MOSI (Zadeh et al., 2016): A related multimodal sentiment dataset with 2,199
YouTube video clips, reflecting real-world opinionated speech. Sentiment intensities are
annotated in the range [−3, 3], and we again formulate the task as binary sentiment classifi-
cation.

• UR-FUNNY (Hasan et al., 2019): A large-scale humor detection dataset derived from
over 16,000 TED talk videos. It includes 8,257 humorous punchlines identified by laughter
markers, paired with 8,257 negative examples drawn from non-humorous contexts, forming
a balanced binary humor classification task.

• MUSTARD (Castro et al., 2019): A multimodal sarcasm detection dataset with 690 video
clips from TV shows. Each sample is annotated for the presence or absence of sarcasm,
yielding a challenging binary classification task.

• MIMIC-III (Johnson et al., 2016): A large-scale clinical dataset with records of over 40,000
ICU patients. It combines time-series physiological measurements (recorded hourly over
a 24-hour window) with static demographic and tabular features. We use it for binary
classification of patients into a group of ICD-9 codes.

B.3.2 IMAGE CLASSIFICATION BENCHMARKS

Table 3: Detailed statistics of the 10 datasets for image classification.

Dataset Classes Train Val Test

Caltech101 (Fei-Fei et al., 2004) 100 4,128 1,649 2,465
OxfordPets (Parkhi et al., 2012) 37 2,944 736 3,669
StanfordCars (Krause et al., 2013) 196 6,509 1,635 8,041
Oxford Flowers (Nilsback & Zisserman, 2008) 102 4,093 1,633 2,463
Food101 (Bossard et al., 2014) 101 50,500 20,200 30,300
FGVCAircraft (Maji et al., 2013) 100 3,334 3,333 3,333
SUN397 (Xiao et al., 2010) 397 15,880 3,970 19,850
DTD (Cimpoi et al., 2014) 47 2,820 1,128 1,692
UCF101 (Soomro et al., 2012) 101 7,639 1,898 3,783
ImageNet (Deng et al., 2009) 1,000 1.28M N/A 50,000

We evaluate on the following widely-used classification benchmarks: ImageNet (Deng et al., 2009),
StanfordCars (Krause et al., 2013), UCF101 (Soomro et al., 2012), Caltech101 (Fei-Fei et al., 2004),
Oxford Flowers (Nilsback & Zisserman, 2008), SUN397 (Xiao et al., 2010), DTD (Cimpoi et al.,
2014), FGVCAircraft (Maji et al., 2013), OxfordPets (Parkhi et al., 2012), and Food101 (Bossard
et al., 2014). More details about the dataset and splits is provided in Table 3.

B.3.3 CONSTRUCTING TEXT TEMPLATES

To construct conceptually related yet unpaired text data, we generate text templates that capture
varying granularities of information about the dataset. Our first approach (Vanilla) uses the
straightforward template \a photo of a {}" with a natural language label for each category,
resulting in a basic text description for each class. However, this simple textual corpus lacks
fine-grained information necessary to distinguish between visually similar subcategories or to
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resolve contextually ambiguous terms. To address this, for the second template, we draw from
the extensive literature on improving text prompts for zero-shot classification in CLIP (Gao et al.,
2024; Menon & Vondrick, 2022; Pratt et al., 2023; Roth et al., 2023). Specifically, for the second
approach (GPT-3 Descriptions), we adopt the text prompt generation strategy developed by Pratt
et al. (2023), using large language models such as GPT-3 to generate diverse and contextually
rich prompts for each image category. We use three generic hand-written sentences across the datasets:

Describe what a/the {} looks like:
Describe a/the {} :

What are the identifying characteristics of a/the {}?

The blank portion of each template is populated with the category name, along with the category type
for specialized datasets (e.g., “pet” + {} for Oxford Pets or “aircraft” + {} for FGVC Aircraft). The
type specification is important for disambiguating categories with multiple interpretations. Some
examples of these descriptions are provided in Table 4 for the Oxford Pets dataset.

Table 4: Sample text descriptions per class for Oxford Pets dataset

Class Examples
Wheaten Terrier A wheaten terrier is a small, shaggy dog with a soft, silky coat.

A wheaten terrier has a soft, wheat-colored coat that is low-shedding and hypoallergenic.
The wheaten terrier is a medium-sized, hypoallergenic dog breed.
A pet Wheaten Terrier usually has an intelligent expression and a soft, wheat-colored coat.

Great Pyrenees A great pyrenees is a large, white, shaggy-coated dog.
A Great Pyrenees is a large, fluffy dog with a calm, gentle disposition.
The great pyrenees was originally bred to protect livestock from predators.
Great Pyrenees are known for being very large, white dogs with thick fur.

Sphynx A pet Sphynx typically has a small, wrinkled head and a hairless body.
A Sphynx is a hairless cat breed known for its soft, warm skin.
A Sphynx often displays large ears, pronounced cheekbones, and no fur.
Sphynx are unique cats characterized by their lack of coat and wrinkled skin.

Birman A Birman is a long-haired, color-pointed cat with a “mask” of darker fur on its face.
A Birman has silky, pale cream to ivory fur with deep seal- or lilac-colored points.
Birman cats possess striking blue eyes and contrasting white “gloves” on their paws.
They are known for being gentle, affectionate, and smooth-coated companions.

Pomeranian A Pomeranian is a small, fluffy dog with a thick double coat.
Pomeranians are toy-sized, alert dogs with fox-like faces and plumed tails.
A pet Pomeranian often comes in orange, black, white, or mixed coat colors.
They are lively, outgoing, and known for their bold, friendly personalities.

B.3.4 IMAGENET-ESC DATASET

Experimental Setup. We extend our results beyond vision and language to an audiovisual-language
dataset: the ImageNet-ESC benchmark (Lin et al., 2023). This benchmark combines ImageNet (1000
object categories) and ESC-50 (50 environmental sound classes) by matching classes that logically
correspond. For example, the dog (barking) class from ESC-50 aligns with various dog breeds from
ImageNet, while the clock-alarm sound maps to both analog clock and digital clock. This alignment
captures the relationship between visual objects, their sounds, and their textual descriptions. The
benchmark consists of two versions: 1) ImageNet-ESC-27: A broader set including loosely matched
visual-audio pairs (e.g., drinking-sipping to water bottle); 2) ImageNet-ESC-19: A more precise
subset containing only accurate visual-audio matches.
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B.4 TRAINING PROTOCOL

B.4.1 UNPAIRED MULTIMODAL REPRESENTATION LEARNING UNDER SELF-SUPERVISION

MultiBench. For the MIMIC dataset, which contains tabular and medical time-series inputs, we
train models directly on the raw modality inputs. For the four video datasets (MOSEI, MOSI, UR-
FUNNY, and MUSTARD), we train models on standard pre-extracted features from text, video, and
audio modalities (Liang et al., 2021). All models are trained for 100 epochs, with hyperparameter
search over learning rates {10−2, 10−3, 10−4}. We report the best performance across learning
rates, averaged over three random seeds. To train UML, each modality is first projected into a
shared embedding space of dimension d ∈ {10, 40, 150, 300} via a learned linear transformation.
The projected inputs are processed by a shared 5-layer, 5-head autoregressive Transformer encoder,
followed by a linear projection back to the original modality dimension. Training uses a next-
token/patch embedding prediction objective, with both modalities sharing the Transformer backbone
to encourage cross-modal synergies in the latent space. At inference time, we average the Transformer
outputs across sequence length and use the resulting embeddings for linear probing on downstream
classification tasks. All models (Unimodal baseline and UML) are trained for 100 epochs, with
hyperparameter search over learning rates {10−2, 10−3, 10−4}. For UML, in addition, we perform
hyperparameter search over a curriculum parameter step ∈ {0, 30, 50, 70}. This parameter controls
whether training begins on X alone for the first step epochs before switching to joint training,
with step = 0 corresponding to joint training from the start. For each dataset, we select the
best-performing model on the validation set and report test accuracy averaged over three random
seeds.

Standard Vision-Text Benchmarks. We extract image and text embeddings using ViT-B/14 DINOv2
and OpenLLaMA-3B, respectively. As in MultiBench, patch and token embeddings are projected to
a shared 256-dimensional space via modality-specific linear layers. A 4-layer, 4-head transformer
serves as the shared encoder, with outputs projected back to the original embedding dimensions
using modality-specific linear projections. We perform rigorous hyperparameter tuning for both the
unimodal baseline and UML, and report average test accuracy of the best model across three seeds.
Full hyperparameter ranges are listed in Table 5.

B.4.2 IMAGE CLASSIFICATION USING IMAGE AND UNPAIRED TEXTS

For text, we use OpenLLaMA-3B as our default encoder and ablate against BERT-Large, RoBERTa-
Large, GPT-2 Large, and the pre-aligned CLIP text encoder, keeping the text encoder frozen. For
images, our main backbone is ViT-S/14 DINOv2, with ablations across other DINOv2 variants and
the CLIP vision encoder. In the linear-probe setting, all encoder weights stay fixed and we train only
a single linear classification head; in full fine-tuning, we jointly update the image backbone and that
head, while still freezing the text encoder.

We optimize cross-entropy loss via AdamW (Loshchilov & Hutter, 2017) and perform an extensive
grid search over learning rate, weight decay, cosine learning rate scheduling with linear warmup,
dropout, and a learnable, modality-specific scaling on the logits. The results are reported for the
best-performing model on the validation dataset. We report results for the model achieving highest
validation accuracy; the full hyperparameter ranges are in Table 5.

For full fine-tuning, we jointly update the image backbone and classification head with a fixed
learning rate of 5× 10−5, batch size 64, and omit learnable modality-specific scaling, since it showed
no benefit in this setting.

B.4.3 EVALUATION ON IMAGENET-ESC

Similar to our vision-language experiments, we perform few-shot evaluation using the 5-fold splits
defined in the benchmark. Each fold contains 8 samples per class, with one fold used for training
and validation and the remaining four for testing. We repeat the process over 5 random splits and
report the average performance. For audio encoding, we use AudioCLIP with an ES-ResNeXT
backbone (Guzhov et al., 2021). AudioCLIP is pretrained on AudioSet and generates audio em-
beddings in the same representation space as CLIP. Following the instructions in (Guzhov et al.,
2021; Lin et al., 2023), we use train() mode in Pytorch to extract the features since eval()
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Table 5: Hyperparameter grid for linear probing.

Hyperparameter Values
Optimizer adamw
Learning rate {0.001, 1e-4}
Weight decay {0.0, 0.01, 0.001}
LR scheduler cosine
Batch size {8, 32}
Max iterations 12,800
Warmup iterations 50
Warmup type linear
Warmup min LR 1e-5
Dropout {0.0}
Modality-specific learnable scaling {False, True}
Early-stop patience 10

mode yields suboptimal embeddings. We evaluate our models on two tasks—audio classification and
image classification—comparing the unimodal baseline against two multimodal variants in which the
primary modality is each time augmented by one of the other modalities.

B.4.4 TRANSFER LEARNING FROM LANGUAGE TO VISION

To adapt a language model to image classification, we embed image patches using a linear projection
and add positional encodings to capture spatial structure. We then use transformer layers initialized
from pretrained BERT, and finally, a 2-layer MLP classification head. Specifically, we split each
image of size 224 × 224 into patches of size 16 × 16 with 196 patch tokens. Each patch is then
projected into the model’s embedding space of dimension d(e.g. d=768 for GPT-2, d = 1024
for BERT) via a learned linear layer. We then prepend a learnable “[CLS]” token, add learned
positional embeddings of shape (N + 1) × d, and apply dropout with probability p = 0.1. This
(N +1)× d sequence is passed into the pretrained transformer stack (either GPT-2 or BERT), using a
full bidirectional attention mask over all patch tokens and the CLS token. We extract the final hidden
state corresponding to the CLS token and feed it through a two-layer MLP classification head.

During training, we evaluate two scenarios: 1) one where the pretrained backbone is frozen and only
the patch embedding and linear head are trained, and 2) another where the backbone is initially frozen
to align the trainable layers (patch embedding and head) with the pretrained language backbone, and
then unfrozen after 2000 steps for end-to-end training. This approach allows us to test whether the
semantic richness captured by language models provides a strong initialization, leading to better
convergence and performance compared to training ViT from scratch.

C PROOFS OF THEORETICAL RESULTS

In this section, we present complete derivations and proofs of the main theoretical claims. Ap-
pendix C.1 gathers all definitions and background required for our arguments. Appendix C.2
formalizes the linear data-generating model, derives closed-form maximum-likelihood estimators for
each modality and their joint estimator, and computes the corresponding block-wise Fisher informa-
tion. Finally, Appendix C.3 provides the detailed proofs of our variance-reduction claims, showing
rigorously how unpaired multimodal estimation strictly lowers estimator variance.

C.1 BACKGROUND AND DEFINITIONS

In this section we revisit the mathematical definitions used in our theoretical analysis, including
matrix-orderings, characterization of symmetric matrices and Fisher information.

Definition 1 (Positive Semidefinite Matrix). A real symmetric matrix A ∈ Rd×d is positive semidefi-
nite if for all vectors v ∈ Rd, v⊤Av ≥ 0. Equivalently, all eigenvalues of A are nonnegative. We
denote the set of all d× d symmetric, positive-semidefinite matrices as Sd

⪰0.
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Definition 2 (Positive Definite Matrix). A real symmetric matrix A ∈ Rd×d is positive definite if
for every nonzero v ∈ Rd, v⊤Av > 0. Equivalently, all eigenvalues of A are strictly positive. We
denote the set of all d× d symmetric, positive definite matrices as Sd

≻0.

Definition 3 (Loewner Order). For two real symmetric matrices A,B ∈ Rd×d, we write A ⪯
B ⇐⇒ B − A is positive semidefinite and A ≺ B ⇐⇒ B − A is positive definite. This defines
a partial order on the cone of symmetric matrices.

Definition 4 (Fisher Information Matrix). Given a parametric family of densities p(x; θ) on data x,
the Fisher information matrix at parameter θ is

I(θ) = Ex∼p(·;θ)
[
∇θ log p(x; θ)∇θ log p(x; θ)

⊤].
Equivalently, for regular models, I(θ) = −E

[
∇2

θ log p(x; θ)
]
.

C.2 MAXIMUM LIKELIHOOD ESTIMATORS AND FISHER CONTRIBUTIONS

In this section we revisit our linear data–generating model, introduce notations for the X–only,
Y –only and joint likelihoods, derive the closed-form MLEs θ̂X , θ̂Y and θ̂X,Y , and formalize their
information contributions towards estimating the ground truth parameters θ ≡ [θc, θx, θy]

⊤.

Data Generating Process. Recall our linear data-generating process: Assume that all factors of
variation in reality live in a single d-dimensional space Z∗ ≡ θ ∈ Rd modeled using a linear
data-generating pipeline. This parameter can further be decomposed as θ ≡ [θc, θx, θy]

⊤ where
θc ∈ Rdc , θx ∈ Rdx , θy ∈ Rdy and dc + dx + dy = d. Here, θc captures the common (shared)
parameters that affect both modalities, θx denotes the parameters that only affect modality X , and
θy denotes the parameters that only affect modality Y . We observe two independent datasets, one
from each modality {Xi}Nx

i=1 ∈ Rm and {Yj}
Ny

j=1 ∈ Rn, each reflecting partial measurements of the
ground truth latent space Z∗:

Xi = Ac,i θc + Ax,i θx + ϵX,i, ϵX,i ∼ N
(
0, σ2

xImi

)
(3)

Yj = Bc,j θc + By,j θy + ϵY,j , ϵY,j ∼ N
(
0, σ2

yInj

)
. (4)

Here, Ac,i, Ax,i, Bc,j , By,j are known design blocks capturing how each sample probes the latent
factors and εX,i,εY,j represent the independent measurement noise.

In our linear setting, estimating the true latent state θ—and hence the underlying reality Z∗—is
governed by the Fisher information matrix I(θ) = −E

[
∇2

θ ℓ(θ)
]
, which measures how sharply the

likelihood “curves” around the true θ. High curvature along a particular axis means the data tightly
constrain that component, driving down estimator variance there.

Unimodal Estimators. We first estimate θ using only the X–dataset. Stacking {Xi}Nx
i=1 yields a

design matrix A with block rows [Ac,i, Ax,i, 0]. The least-squares solution

θ̂X = argmin
θ

Nx∑
i=1

∥∥Xi −Ac,i θc −Ax,i θx
∥∥2

omits θy entirely. Consequently, the Fisher information on θy vanishes, making it unidentifiable.

Analogously, stacking {Yj}
Ny

j=1 defines B with block rows [Bc,j , 0, By,j ] and yields

θ̂Y = argmin
θ

Ny∑
j=1

∥∥Yj −Bc,j θc −By,j θy
∥∥2.

This estimator doesn’t depend on θx, providing zero coverage for that component. Thus, each
unimodal estimator entirely fails to recover the parameters exclusive to the omitted modality.

Multimodal Estimators. Despite the lack of one-to-one pairing, both {Xi} and {Yj} share the
common parameters θc. Since the two distributions are conditionally independent, the joint likelihood
factorizes as

Nx∏
i=1

p(Xi | θc, θx) ×
Ny∏
j=1

p(Yj | θc, θy).
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Maximizing this yields the combined estimator

θ̂X,Y = arg min
θc,θx,θy

{Nx∑
i=1

∥Xi −Ac,i θc −Ax,i θx∥2 +

Ny∑
j=1

∥Yj −Bc,j θc −By,j θy∥2
}
.

Intuitively, there is no requirement to match up individual (Xi, Yj) pairs. Instead, the estimate for θc
is improved by both modalities while remaining unpaired.

Fisher Information. In our linear model, each dataset contributes block-structured Fisher information.
For the X–dataset:

IX =

Nx∑
i=1

A⊤
c,iAc,i A⊤

c,iAx,i 0
A⊤

x,iAc,i A⊤
x,iAx,i 0

0 0 0

 ,

and for the Y –dataset:

IY =

Ny∑
j=1

B⊤
c,jBc,j 0 B⊤

c,jBy,j

0 0 0
B⊤

y,jBc,j 0 B⊤
y,jBy,j

 .

Because X and Y samples are independent, their curvature contributions add pointwise, resulting in
the joint Fisher information being simply the sum of the unimodal blocks.

IX,Y = IX + IY =


∑

i A
⊤
c,iAc,i +

∑
j B

⊤
c,jBc,j ∗ ∗

∗
∑

i A
⊤
x,iAx,i 0

∗ 0
∑

j B
⊤
y,jBy,j

 ,

where “∗” denotes the cross-modal blocks. In particular, we have the shared-parameter block as

(IX,Y )θc,θc =

Nx∑
i=1

A⊤
c,iAc,i +

Ny∑
j=1

B⊤
c,jBc,j ,

C.3 THEOREMS AND PROOFS

The aim of this section is to detail the proofs of the theoretical results presented in the main manuscript
The key theoretical tools driving our analysis are already prepared in Appendix C.1 and Appendix C.2.
Core to our theoretical analysis are a few lemmas around the Loewner-order monotonicity result for
inverses that we prove below.
Lemma 1 (Loewner Order reversal for inverses). Let M,N ∈ Sd≻0 with M ≺ N (or M ⪯ N ). Then
N−1 ≺ M−1 (or N−1 ⪯ M−1) .

Proof. Since N ≻ 0, N−1/2 exists and is nonsingular. Define C := N−1/2MN−1/2 ≺ I . Because
a congruence with an invertible matrix preserves positive-definiteness, C ≻ 0; hence C−1 is well
defined and C−1 ≻ I (the scalar map x 7→ x−1 is strictly decreasing on (0,∞)). Undoing the
congruence gives

M−1 = N−1/2C−1N−1/2 ≻ N−1/2IN−1/2 = N−1.

Lemma 2 (Inverse–monotonicity of the Moore–Penrose pseudoinverse). Let M,N ∈ Sd⪰0 satisfy
M ≺ N and kerM = kerN =: K. Then their pseudoinverses obey N† ≺ M†.

Proof. Set S := K⊥ and let P := PS be the orthogonal projector onto S. Because M and N vanish
on K, we have the decompositions M = PMP and N = PNP . Restricted to S both matrices are
positive–definite:

M̃ := PMP, Ñ := PNP ∈ SdimS
≻0 , M̃ ≺ Ñ .

Apply Lemma 1 to M̃, Ñ to obtain Ñ−1 ≺ M̃−1 on S. The Moore–Penrose pseudoinverse equals
the ordinary inverse on S and is zero on K:

M† = PM̃−1P, N† = PÑ−1P.

Therefore N† = PÑ−1P ≺ PM̃−1P = M†.
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Lemma 3 (Directional Loewner Order reversal). Let M,N ∈ Sd≻0 with M ⪯ N . If a non-zero
vector v satisfies v⊤Mv < v⊤Nv, then

1. For the vector v, it holds that v⊤M−1v ≥ v⊤N−1v, with strict inequality v⊤M−1v >
v⊤N−1v if and only if (N −M)M−1v ̸= 0.

2. There exists a non-zero vector u ∈ Rd such that u⊤M−1u > u⊤N−1u.

Proof. Denote the Loewner gap ∆ := N − M ⪰ 0. Then, the assumption v⊤Nv > v⊤Mv is
equivalent to v⊤∆v > 0. Introduce the congruence–invariant normalisation C := M−1/2∆M−1/2 ⪰
0. Now, using ∆ = M1/2CM1/2 and properties of inverse,

N = M1/2(I + C)M1/2, N−1 = M−1/2(I + C)−1M−1/2,

since I + C ≻ 0 (because C ⪰ 0 and I ≻ 0). Thus,

M−1 −N−1 = M−1/2
[
I − (I + C)−1

]
M−1/2

= M−1/2C(I + C)−1M−1/2,

because (I − (I + C)−1)(I + C) = C. Finally, evaluating in the direction v, we have

v⊤(M−1 −N−1)v = v⊤M−1/2(I + C)−1CM−1/2v

= u⊤(I + C)−1Cu (where u = M−1/2v)

Now, since (I+C)−1 ∈ S≻0 and C ∈ S⪰0 commute, the matrix (I+C)−1C is positive semidefinite
and it has exactly the same kernel as C. Thus, if C = Qdiag(λi)Q

⊤ (λi ≥ 0), we have

u⊤C(I + C)−1u =
∑
i

λi

1 + λi
(Q⊤u)2i ≥ 0.

This expression is strictly positive exactly when u has a component in any eigen-subspace with
λi > 0 i.e when u ̸∈ ker(C). Since M−1/2 ∈ S≻0, Cu = 0 =⇒ M−1/2∆M−1/2u = 0 =⇒
∆M−1v = 0. Thus, this expression is strictly positive if ∆M−1v ̸= 0.

Now, from the premise v⊤∆v > 0, it follows that ∆ ̸= 0. Since M ≻ 0, M−1/2 is invertible, C
is also not the zero matrix. Since C ⪰ 0, this means that C must have at least one strictly positive
eigenvalue. Let λ > 0 be such an eigenvalue, and let z ̸= 0 be a corresponding eigenvector. Define,
x := M1/2z ̸= 0. Thus, we have x⊤(M−1 −N−1)x = z⊤C(I +C)−1z = λ

1+λ∥z∥
2 > 0, showing

the existence of a non-zero vector x such that x⊤M−1x > x⊤N−1x.

Theorem 1 (Restatement of Theorem 1). Let θ̂X , θ̂Y be the least-squares estimators for θ using
only {Xi} and only {Yj} and let θ̂X,Y be the joint estimator using both unpaired datasets. Then,
under the assumption that at least one Bc,j where j ∈ {1, 2, ...Ny} has full rank, the common-
factor covariance satisfies the strict Loewner ordering i.e. Var

(
θ̂X,Y

)
θc,θc

≺ Var
(
θ̂X

)
θc,θc

, or
equivalently, the Fisher information on θc strictly increases when combining both modalities, despite
not having sample-wise pairing:(IX + IY )θc,θc ≻ (IX)θc,θc .

Proof. For any statistic S(θ) = ∇θ log p(x; θ) and vector v,

v⊤I(θ) v = v⊤E[S(θ)S(θ)⊤] v = E
[
(v⊤S(θ))2

]
≥ 0.

Thus, a Fisher Information Matrix is a positive semidefinite matrix.

In our linear–Gaussian model, the X–dataset contributes (IX)θc,θc =
∑Nx

i=1 A
⊤
c,iAc,i and the

Y –dataset gives (IY )θc,θc =
∑Ny

j=1 B
⊤
c,jBc,j . Since at least one Bc,j has full column rank, (IY )θc,θc

is positive-definite on the θc subspace. Now, if at least one Bc,j ∈ Rm×dc has full column rank dc,
then for any v ∈ Rdc \ {0},

v⊤B⊤
c,jBc,j v = ∥Bc,jv∥2 > 0.
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Hence, each summand in (IY )θc,θc is positive semidefinite and at least one is positive definite, so
their sum

∑
j B

⊤
c,jBc,j is positive definite on the θc subspace. Thus,

(IX)θc,θc ≺ (IX)θc,θc + (IY )θc,θc = (IX + IY )θc,θc

Now, for regular exponential families (including Gaussian linear models), the covariance matrix of
the maximum likelihood estimator θ̂ near the true θ0 is (asymptotically) the inverse of the Fisher
information matrix i.e. Var(θ̂) ≈ I(θ0)

−1. Precisely, as the sample size n → ∞, we have:
√
n(θ̂ − θ0)

d→ N (0, I(θ0)
−1),

where θ0 is the true parameter value, I(θ0) is the Fisher Information Matrix evaluated at θ0 and
N (0, I(θ0)

−1) denotes a multivariate normal distribution with mean 0 and covariance matrix I(θ0)
−1.

Thus, we compare variances via the Moore–Penrose pseudoinverse of the information matrices.

Let MX = (IX)θc,θc , MY = (IY )θc,θc and MX,Y = (IX + IY )θc,θc . Since MY ≻ 0, MX,Y =

MX +MY is also positive definite (as MX,Y ⪰ MY ≻ 0). Thus, Var(θ̂X,Y ) = M−1
X,Y . We have

established MX ≺ MX,Y . Assuming MX is positive definite (to define the matrix Var
(
θ̂X,Y

)
θc,θc

),

we apply Lemma 1 to get M−1
X,Y ≺ M−1

X . Thus,

Var
(
θ̂X,Y

)
θc,θc

= M−1
X,Y ≺ M−1

X = Var
(
θ̂X

)
θc,θc

,

This proves the statement under the condition that MX is positive definite. Note here that, on spaces
unidentifiable by X-alone i.e. v ∈ ker(MX), we have Var

(
θ̂X

)
θc,θc

= ∞. Since MX,Y is positive

definite, it has finite variance along such v i.e. Var
(
θ̂X,Y

)
θc,θc

< ∞, thus strictly reducing the
variance of the estimator. Thus, adding the unpaired Y -modality strictly reduces the variance (or,
dually, increases the Fisher information) on the common factors θc.

Theorem 2 (Restatement of Theorem 2). Let all notation be as in Theorem 1, and define MX :=
(IX)θc,θc , MY := (IY )θc,θc , and MXY := MX +MY . Let v ∈ Rdc \ {0}. If there exists at least
one index j ∈ {1, 2, ...Ny} such that Bc,jv ̸= 0, then the following hold:

1. The Fisher information strictly increases in direction v i.e. v⊤MXY v > v⊤MXv.

2. The variance of the estimator in direction v is strictly reduced i.e v⊤ Var
(
θ̂X,Y

)
θc,θc

v <

v⊤ Var
(
θ̂X

)
θc,θc

v, if v ̸∈ range(MX). For v ∈ range(MX), this strict inequality holds
for v under an additional invertibility condition and is always guaranteed for some u ∈
range(MX) i.e. ∃u s.t. u⊤ Var

(
θ̂X,Y

)
θc,θc

u < u⊤ Var
(
θ̂X

)
θc,θc

u.

Proof. Define MX := (IX)θc,θc , MY := (IY )θc,θc , andMXY := MX +MY . By assumption, ∃j
such that Bc,jv ̸= 0. Thus:

v⊤MY v =

Ny∑
j=1

∥Bc,jv∥2 ≥ ∥Bc,jv∥2 > 0.

Hence MY is positive-definite in direction v, implying MX,Y ≻ MX in this direction:

v⊤MXY v = v⊤MXv + v⊤MY v > v⊤MXv,

thus proving the first part of the theorem.

Case 1: v /∈ Range(MX). If v /∈ Range(MX), then v has a non-zero component in ker(MX). Let
v = vS + vK , where vS ∈ Range(MX) and vK ∈ ker(MX) with vK ̸= 0. The linear combination
of parameters v⊤θc = v⊤S θc + v⊤Kθc. Since vK ∈ ker(MX), the component v⊤Kθc is not identifiable
by the X-only model. Consequently, the asymptotic variance of an unbiased estimator for v⊤θc using
only the X-dataset is infinite. We denote this as v⊤Var(θ̂X)θc,θcv = ∞.
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The strict inequality v⊤MXY v > 0, ensures that v /∈ ker(MXY ), and thus v ∈ Range(MXY ).
Since v ∈ Range(MXY ) and v ̸= 0, M†

XY v is well-defined. Furthermore, because MXY is positive
semidefinite, M†

XY is also positive semidefinite and shares the same kernel as MXY (since MXY is
symmetric). As v ̸= 0 and v /∈ ker(MXY ), thus v /∈ ker(M†

XY ), which ensures v⊤M†
XY v is a finite

positive value. Thus,
v⊤Var(θ̂X,Y )θc,θcv < ∞.

Comparing this to the variance from the X-only model in this case:

v⊤Var(θ̂X,Y )θc,θcv < ∞ = v⊤Var(θ̂X)θc,θcv,

and the strict inequality holds.

Case 2: v ∈ Range(MX). Let S := Range(MX) and let PS be the orthogonal projector onto S.
Because MX = MXPS and MXY = MX +MY , the restrictions

M̃X := PSMXPS , M̃XY := PSMXY PS = M̃X + PSMY PS

are positive-definite on S; To see this, take any non-zero w ∈ S. Since w ∈ range(MX), PSw = w;
hence

w⊤M̃Xw = w⊤MXw > 0 (PS is identity when restricted to S)

Thus M̃X ≻ 0 on S. Because PSMY PS ⪰ 0, adding it preserves positive-definiteness, so

M̃XY = M̃X + PSMY PS ⪰ M̃X ≻ 0 on S.

Applying Lemma 3(1) to M̃X and M̃XY on S gives us v⊤M̃−1
XY v ≤ v⊤M̃−1

X v. Strict inequality
v⊤M̃−1

XY v < v⊤M̃−1
X v holds if and only if the condition Cv := ((M̃XY − M̃X)M̃−1

X v ̸= 0) is met.
Therefore, if condition Cv holds, the directional variance along this constrained space S is strictly
reduced:

v⊤Var(θ̂X,Y )θc,θcv = v⊤M̃−1
XY v < v⊤M̃−1

X v = v⊤Var(θ̂X)θc,θcv
1.

Further, from Lemma 3(2), there exists some non-zero vector u ∈ S such that u⊤M̃−1
XY u < u⊤M̃−1

X u.
Thus we have,

u⊤Var(θ̂X,Y )θc,θcu < u⊤Var(θ̂X)θc,θcu.

Thus, completing the proof.

Corollary 1. Assume a direction v ∈ Rdc \ {0} with a = v⊤(IX)θc,θc v > 0 and b =
v⊤(IY )θc,θc v > 0 where v is the common eigenvector of (IX)θc,θc and (IY )θc,θc . Then the variance
in direction v contracts by the factor

v⊤Var(θ̂X,Y ) v

v⊤Var(θ̂X) v
=

1/(a+ b)

1/a
=

a

a+ b
< 1,

So the joint estimator achieves strictly lower error along v.

Proof. Let MX = (IX)θc,θc and MY = (IY )θc,θc . By assumption, v is a common eigenvector of
MX and MY . Thus, MXv = λXv and MY v = λY v for some eigenvalues λX and λY . From the
assumptions, we have λX = a/∥v∥2 > 0 and λY = b/∥v∥2 > 0. Since MX is symmetric and
MXv = λXv with λX > 0, the pseudoinverse acts as M†

Xv = λ−1
X v. Therefore, the variance in

direction v for the X-only estimator is

v⊤Var(θ̂X)θc,θc v = v⊤M†
Xv = v⊤(λ−1

X v) = λ−1
X ∥v∥2 = a−1∥v∥4.

Since v is a common eigenvector, it is also an eigenvector of MXY = MX +MY :

(MX +MY )v = MXv +MY v = λXv + λY v = (λX + λY )v.

1We note that true asymptotic variance defined as v⊤Var(θ̂X,Y )θc,θcv = v⊤M†
XY v, v⊤M†

XY v =

v⊤M̃−1
XY v if S is an invariant subspace of MXY and MXY is block-diagonal with respect to S and S⊥

(i.e., PSMXY PS⊥ = 0, which implies PSMY PS⊥ = 0).
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The corresponding eigenvalue is λXY = λX + λY . Since λX > 0 and λY > 0, λXY > 0. Thus,
(MX +MY )

†v = (λX + λY )
−1v. The variance in direction v for the joint estimator is

v⊤Var(θ̂X,Y )θc,θc v = v⊤(MX +MY )
†v = (λX + λY )

−1∥v∥2 = (a+ b)−1∥v∥4.

Now, we form the ratio of these variances:

v⊤Var(θ̂X,Y )θc,θc v

v⊤Var(θ̂X)θc,θc v
=

λX

λX + λY
=

a

a+ b
< 1.

Corollary 2. Assume a direction v ∈ Rdc \ {0} with v⊤(IX)θc,θc v = 0 and v⊤(IY )θc,θc v > 0.
Then v⊤Var(θ̂X) v = ∞ and v⊤Var(θ̂X,Y ) v < ∞ i.e. a direction unidentifiable from X alone
becomes well-posed with even unpaired data from Y .

Proof. This corollary follows directly from Case 1 of Theorem 2. The condition v⊤(IX)θc,θc v = 0
for v ̸= 0 implies v ∈ ker((IX)θc,θc), and thus v ̸∈ range((IX)θc,θc). Given the additional condition
v⊤(IY )θc,θc v > 0, the conclusions of Case 1 of the theorem apply directly.

Corollary 3 (Variance Reduction for Eigenvectors of MX ). Let v ∈ Rdc \ {0} be an eigenvector of
MX = (IX)θc,θc with a corresponding eigenvalue λX > 0. If the Y -dataset provides information
in this direction v (i.e., v⊤MY v > 0, where MY = (IY )θc,θc), then the variance in direction v is
strictly reduced by incorporating the Y -dataset:

v⊤Var(θ̂X,Y )θc,θc v < v⊤Var(θ̂X)θc,θc v.

Specifically, v⊤Var(θ̂X)θc,θcv = λ−1
X ∥v∥2.

Proof. Let MX = (IX)θc,θc and MY = (IY )θc,θc . Since v is an eigenvector of MX with a positive
eigenvalue λX > 0, it follows that v ∈ Range(MX). Let S = Range(MX). The variance using
only the X-dataset in direction v is given by

v⊤Var(θ̂X)θc,θcv = v⊤M†
Xv.

Because v is an eigenvector of MX with λX > 0, M†
Xv = λ−1

X v. Thus,

v⊤Var(θ̂X)θc,θcv = v⊤(λ−1
X v) = λ−1

X ∥v∥2.

This scenario falls under Case 2 of Theorem 2, specifically its conclusion regarding v ∈ S. According
to that theorem, strict variance reduction v⊤Var(θ̂X,Y )θc,θcv < v⊤Var(θ̂X)θc,θcv occurs if the
condition Cv = ((PSMY PS)(MX |S)−1v ̸= 0) holds. Here, PS is the orthogonal projector onto S,
and MX |S is the restriction of MX to S, so (MX |S)−1v = λ−1

X v.

The condition Cv thus becomes (PSMY PS)(λ
−1
X v) ̸= 0. Since λX > 0, this is equivalent to

PSMY PSv ̸= 0. We are given that v⊤MY v > 0. As v ∈ S, PSv = v. Therefore, v⊤MY v =
v⊤PSMY PSv > 0. Let AS = PSMY PS restricted to S. AS is a positive semidefinite operator on
S. The condition v⊤ASv > 0 for v ∈ S, v ̸= 0 implies that ASv ̸= 0 (because if ASv = 0, then
v⊤ASv = 0, which contradicts v⊤ASv > 0). Thus, PSMY PSv ̸= 0, which means the condition Cv

is satisfied.

Since v ∈ S and the condition Cv for strict inequality is met, by Theorem 2, it follows that
v⊤Var(θ̂X,Y )θc,θc v < v⊤Var(θ̂X)θc,θc v.

Theorem 3 (Restatement of Theorem 3). Define for any m, I(m)
X =

∑m
i=1 A

⊤
c,iAc,i and I

(m)
Y =∑m

j=1 B
⊤
c,jBc,j . If range

(
I
(m)
Y

)
̸⊆ range

(
I
(m)
X

)
, then there exists a nonzero v ∈ Rdc such that

v⊤I
(m)
Y v > v⊤I

(m)
X v.
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Proof. Let RX := range
(
I
(m)
X

)
, RY := range

(
I
(m)
Y

)
. By the assumption RY ̸⊆ RX , choose a

vector w ∈ RY \ RX . Since Rdc is a finite dimensional inner product space and RX is its finite
dimensional subspace, we can decompose w = w|| + v with w|| ∈ RX and v ∈ R⊥

X . Because
w /∈ RX , the orthogonal component v is non-zero.

(i) Term from I
(m)
X . From the Fundamental Theorem of Linear Algebra, for any symmetric matrix S,

kerS = range(S)⊥; hence R⊥
X = ker I

(m)
X . Thus

v⊤I
(m)
X v = 0.

(ii) Term from I
(m)
Y . Because w ∈ RY = range(I

(m)
Y ), there exists u with w = I

(m)
Y u. Suppose, for

contradiction, that I(m)
Y v = 0. Then v ∈ ker I

(m)
Y = R⊥

Y , so v ⊥ w. But w · v = (w∥ + v) · v =

w∥·v+∥v∥2 = ∥v∥2 > 0 because v ⊥ w∥ while v ̸= 0. This contradicts v ⊥ w; therefore I(m)
Y v ̸= 0

and, by positive semidefiniteness,
v⊤I

(m)
Y v > 0.

Combining the above inequalities yields v⊤I
(m)
Y v > v⊤I

(m)
X v, with v ̸= 0, which is the desired

inequality.

D UML: ALGORITHM PSEUDOCODE

In this section we present the full pseudocode for UML for both the self-supervised and supervised
settings as shown in Algorithm 1 and Algorithm 2 respectively.

Algorithm 1 Pytorch Pseudocode for UML in the self-supervised setting

# f_img, f_text: image encoder, text encoder
# g_img, g_text: image decoder, text decoder
# h: shared backbone

while not converged: # training loop
x_img = fetch_next(image_loader) # image minibatch
x_text = fetch_next(text_loader) # text minibatch (random/unaligned)

x_img = patchify_and_embed(x_img) # input image patch embeddings
x_text = tokenize_and_embed(x_text) # input text token embeddings

z_img = f_img(x_img) # image patch embeddings
z_text = f_text(x_text) # text token embeddings

y_img = g_img(h(z_img)) # predict image patch embeddings
y_text = g_text(h(z_text)) # predict text patch embeddings

# Next Token/Patch Embedding Prediction Loss
loss_img = MSE(y_img[:,:-1,:], x_img[:,1:,:])
loss_text = MSE(y_text[:,:-1,:], x_text[:,1:,:])
loss = loss_img + lambda * loss_text # total loss

loss.backward() # back-propagate
update(h, f_img, f_text, g_img, g_text) # SGD update

# Define Mean Squared Error loss
def MSE(pred, target):

return ((pred - target) ** 2).mean()
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Algorithm 2 Pytorch Pseudocode for UML in the supervised setting

# f_img: image encoder (frozen or trainable)
# f_text: text encoder (frozen)
# is_trainable: True if f_img is trainable else False
# h: classification head

while not converged: # training loop
x_img = fetch_next(image_loader) # image minibatch
x_text = fetch_next(text_loader) # text minibatch (random/unaligned)

z_img = f_img(x_img) # image embeddings
z_text = f_text(x_text) # text embeddings

logits_img = h(z_img) # predict image labels
logits_text = h(z_text) # predict text labels

loss_img = CE(logits_img, labels_img) # image classification loss
loss_text = CE(logits_text, labels_text) # text classification loss
loss = loss_img + lambda * loss_text # total loss

loss.backward() # back-propagate
update(h, f_img) if is_trainable else update(h) # SGD update

# Define Cross-Entropy loss
def CE(logits, labels):

return -sum(labels * log_softmax(logits, dim=1)) / len(labels)

E ADDITIONAL EXPERIMENTS

E.1 IMPROVING IMAGE CLASSIFICATION USING UNPAIRED TEXTS (UNALIGNED ENCODERS)

In this section we report image-classification results on ten benchmarks (see Appendix B.3), covering
three settings:

1. Full-dataset fine-tuning: train both the vision backbone and classification head (Ap-
pendix E.1.1).

2. Full-dataset linear probe: train only the classification head (Appendix E.1.2).

3. Few-shot linear probe: train only the classification head under few-shot conditions (Ap-
pendix E.1.3).

In each setting, we compare UML with baselines across all datasets and multiple DINO-initialized
vision backbones. Our method has two variants: Ours (UML), where we alternately train with both
image and unpaired text data (see Algorithm 2), and Ours (init) where we initialize the classifier with
the average text embedding of each class, providing a strong prior to align image and class level
information.

E.1.1 SUPERVISED FINETUNING (ACROSS ARCHITECTURES)

In this section, we fine-tune both the vision backbone and the linear classifier on ten downstream
tasks, comparing UML against strong image-only baselines. We evaluate four DINO-initialized
backbones:

• ViT-B/16 in Table 6

• ViT-B/8 in Table 7

• DINOv2 ViT-S/14 in Table 8

• DINOv2 ViT-B/14 in Table 9
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Results for DINOv2 ViT-L/14 are omitted due to computational constraints. Across all backbones,
UML consistently improves over the image-only baseline by leveraging unpaired text embeddings. For
some backbones such as DINOv2 VIT-B/16, our head-initialization variant (Ours (init)) outperforms
training using unpaired multimodal data from scratch (Ours), while in others it does not.

Table 6: Full finetuning on classification with ViT-B/16 DINO and OpenLLaMA-3B. We compare
our proposed approach with the image-only baseline when fine-tuning on the target dataset. All
vision encoders are initialized from DINO weights, and our approach leverages unpaired text data
using OpenLLaMA-3B embeddings.
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Unimodal 78.41 63.99 62.12 74.17 81.43 82.38 92.00 98.24 96.31 81.01
Ours 82.56 67.04 67.38 76.42 84.06 81.79 93.20 98.98 97.04 83.16
Ours (init) 81.95 67.12 68.29 73.84 84.31 81.12 92.60 98.73 96.84 82.76

Table 7: Full finetuning on classification with ViT-B/8 DINO and OpenLLaMA-3B. We compare
our proposed approach with the image-only baseline when fine-tuning on the target dataset. All
vision encoders are initialized from DINO weights, and our approach leverages unpaired text data
using OpenLLaMA-3B embeddings.
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Unimodal 85.67 68.04 72.60 76.65 83.94 85.32 93.06 99.22 96.82 84.59
Ours 87.95 70.28 75.31 77.19 85.59 84.83 93.05 99.43 97.12 85.64
Ours (init) 87.44 70.03 76.09 76.24 86.49 84.71 93.81 99.27 97.16 85.69

Table 8: Full finetuning on classification with ViT-S/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when fine-tuning on the target dataset.
All vision encoders are initialized from DINOv2 weights, and our approach leverages unpaired text
data using OpenLLaMA-3B embeddings.
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Unimodal 79.45 66.20 66.99 72.16 83.18 80.65 90.67 99.18 95.45 81.54
Ours 84.87 66.72 71.54 74.14 84.77 81.16 91.87 99.55 97.03 83.52
Ours (init) 86.39 66.03 73.44 74.27 84.69 81.97 91.72 99.82 97.60 83.99
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Table 9: Full finetuning on classification with ViT-B/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when fine-tuning on the target dataset.
All vision encoders are initialized from DINOv2 weights, and our approach leverages unpaired text
data using OpenLLaMA-3B embeddings.

Dataset

Method St
an

fo
rd

C
ar

s

SU
N

39
7

FG
V

C
A

ir
cr

af
t

D
T

D

U
C

F1
01

Fo
od

10
1

O
xf

or
d

Pe
ts

O
xf

or
d

Fl
ow

er
s

C
al

te
ch

10
1

A
ve

ra
ge

Unimodal 89.62 71.45 77.29 73.88 88.00 82.94 94.55 99.88 97.69 86.14
Ours 90.93 70.97 80.02 75.83 87.52 86.25 94.74 99.88 97.57 87.08
Ours (init) 90.73 70.92 80.23 75.87 87.60 83.43 94.47 99.80 97.93 86.77

E.1.2 LINEAR PROBING (ACROSS ARCHITECTURES)

In this section, we train only the linear classifier, on top of the frozen vision and language backbone,
on ten downstream tasks, comparing UML against strong image-only baselines. We evaluate five
DINO-initialized backbones:

• ViT-B/16 in Table 10
• ViT-B/8 in Table 11
• DINOv2 ViT-S/14 in Table 12
• DINOv2 ViT-B/14 in Table 13
• DINOv2 ViT-L/14 in Table 14

Across all backbones, UML consistently improves over the image-only baseline by leveraging
unpaired text embeddings. For all backbones, our head-initialization variant (Ours (init)) outperforms
training using unpaired multimodal data from scratch (Ours).

Table 10: Full linear probing on classification with ViT-B/16 DINO and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINO weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.
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Unimodal 67.10 64.63 56.02 72.42 81.27 74.96 93.07 98.32 95.01 78.08
Ours 68.71 65.14 57.42 72.95 82.06 75.30 93.18 98.46 96.19 78.82
Ours (init) 68.60 65.59 57.98 73.11 82.40 75.73 93.62 98.42 96.35 79.09
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Table 11: Full linear probing on classification with ViT-B/8 DINO and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINO weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.
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Unimodal 72.01 67.19 62.02 76.18 82.95 78.57 91.99 98.78 96.23 80.66
Ours 72.93 68.17 63.49 77.13 83.16 79.87 92.59 98.50 96.47 81.37
Ours (init) 72.81 68.36 64.09 76.48 83.72 80.01 92.50 98.74 96.43 81.46

Table 12: Full linear probing on classification with ViT-S/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINOv2 weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.
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Unimodal 77.48 70.72 66.28 78.25 82.64 84.39 94.29 99.62 97.00 83.40
Ours 78.45 71.53 67.33 78.70 83.51 84.67 94.70 99.82 97.11 83.98
Ours (init) 78.58 72.24 67.50 79.51 83.57 84.74 94.78 99.89 97.15 84.22

Table 13: Full linear probing on classification with ViT-B/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINOv2 weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.
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Unimodal 85.46 75.42 72.34 79.73 87.26 88.70 95.56 99.76 97.81 86.89
Ours 85.40 75.22 75.22 80.73 87.21 89.02 95.83 99.88 97.85 87.37
Ours (init) 85.74 75.70 74.17 81.32 87.26 88.78 95.78 99.88 97.93 87.40
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Table 14: Full linear probing on classification with ViT-L/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINOv2 weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.
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Unimodal 88.16 77.26 74.32 81.56 89.82 90.95 96.27 99.84 97.97 88.46
Ours 88.45 77.20 76.93 82.39 90.19 91.09 96.51 99.92 98.01 88.97
Ours (init) 87.99 77.75 77.20 82.51 90.17 91.29 96.32 99.92 97.93 89.01
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E.1.3 FEW-SHOT LINEAR PROBING (ACROSS ARCHITECTURES)

In this section, we train only the linear classifier, on top of the frozen vision and language backbone,
for few-shot classification on ten downstream tasks, comparing UML against strong image-only
baselines. We evaluate five DINO-initialized backbones: ViT-B/16 in Table 16, ViT-B/8 in Table 15,
DINOv2 ViT-S/14 in Table 17, DINOv2 ViT-B/14 in Table 19, DINOv2 ViT-L/14 in Table 19. Across
all backbones, UML consistently improves over the image-only baseline by leveraging unpaired text
embeddings. For all backbones, our head-initialization variant (Ours (init)) outperforms training
using unpaired multimodal data from scratch (Ours).

Table 15: Linear evaluation of frozen features on 11 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen VIT-B/8 DINO features. Our method leverages unpaired text data using
OpenLLaMA-3B

Dataset
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1 Unimodal 7.40 26.37 12.16 28.62 39.75 19.23 42.81 54.97 58.22 74.13 36.37
Ours 7.71 28.01 13.56 33.22 42.08 21.13 43.27 55.85 58.61 77.51 38.10
Ours (init) 9.24 34.23 14.49 36.27 47.55 24.81 46.75 60.09 61.59 80.23 41.52

2 Unimodal 14.43 37.96 20.28 39.80 53.03 30.62 54.75 68.12 77.59 81.91 47.85
Ours 15.71 40.74 21.04 43.74 55.86 33.52 54.49 69.86 77.18 84.52 49.67
Ours (init) 16.94 45.16 22.17 45.43 59.02 35.89 56.78 71.57 77.94 86.06 51.70

4 Unimodal 25.67 49.23 29.39 52.52 64.27 43.82 61.64 75.85 87.41 90.36 58.02
Ours 27.30 51.23 31.43 54.31 66.72 45.58 61.51 77.51 87.96 91.36 59.49
Ours (init) 28.54 53.68 31.31 56.13 67.47 47.40 62.84 79.10 88.29 91.98 60.67

8 Unimodal 41.04 56.86 40.03 61.15 72.39 54.47 66.10 82.30 93.95 92.28 66.06
Ours 43.76 58.14 42.56 63.12 73.13 56.30 66.36 84.27 94.25 92.71 67.46
Ours (init) 44.16 59.80 42.30 64.46 74.30 57.07 67.18 84.85 94.00 93.24 68.14

16 Unimodal 57.72 61.74 52.63 67.69 76.18 62.63 68.87 87.31 96.41 94.27 72.54
Ours 60.11 63.21 54.53 69.33 78.13 63.74 69.44 87.73 96.89 94.54 73.76
Ours (init) 60.36 64.26 54.81 70.27 78.76 64.13 70.05 88.23 96.63 94.73 74.22

Table 16: Linear evaluation of frozen features on 11 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen VIT-B/16 DINO features. Our method leverages unpaired text data using
OpenLLaMA-3B
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1 Unimodal 6.28 22.43 9.72 29.22 37.85 15.40 38.67 60.12 54.62 73.25 34.76
Ours 7.89 26.08 10.41 32.45 40.27 18.14 39.28 60.88 58.32 75.66 36.94
Ours (init) 8.96 31.34 12.12 34.22 44.32 21.46 42.68 66.39 60.37 79.74 40.16

2 Unimodal 12.64 35.64 14.98 38.93 51.14 26.05 50.34 70.84 75.61 83.16 45.93
Ours 14.38 38.62 17.00 40.37 54.28 29.24 50.83 72.88 77.14 85.95 48.07
Ours (init) 15.99 42.31 17.65 42.89 56.46 32.15 52.90 74.82 77.32 87.34 49.98

4 Unimodal 22.60 45.95 24.27 50.30 63.00 38.51 57.99 80.14 85.60 89.67 55.80
Ours 24.83 48.62 25.76 52.64 64.39 40.74 57.96 80.92 87.20 91.17 57.42
Ours (init) 25.83 51.01 26.35 55.06 65.86 42.69 59.32 82.23 87.83 91.99 58.82

8 Unimodal 37.68 52.94 33.67 59.18 70.62 49.48 62.97 85.26 92.83 93.17 63.78
Ours 39.31 55.31 35.56 60.48 71.88 50.46 63.08 86.25 93.23 93.47 64.90
Ours (init) 40.50 57.03 35.64 62.27 73.18 51.50 64.09 86.93 93.59 93.71 65.84

16 Unimodal 52.48 58.27 45.34 64.81 75.72 56.24 66.36 88.57 95.90 94.27 69.80
Ours 55.84 60.57 47.70 66.21 76.81 58.26 66.47 89.60 96.55 95.12 71.31
Ours (init) 55.82 61.73 48.14 67.02 77.39 58.76 67.08 90.53 96.62 94.98 71.81
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Table 17: Linear evaluation of frozen features on 11 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen VIT-S/14 DINOv2 features. Our method leverages unpaired text data using
OpenLLaMA-3B
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1
Unimodal 13.18 34.15 14.09 36.60 46.74 35.18 36.48 63.51 89.62 76.66 44.62
Ours 14.95 37.25 14.88 38.93 49.18 37.91 38.35 68.92 91.42 84.04 47.58
Ours (init) 16.49 41.79 15.63 42.04 52.33 42.27 42.69 73.59 93.64 84.52 50.50

2
Unimodal 24.68 47.88 23.09 47.75 56.81 48.54 50.41 75.32 96.02 86.90 55.73
Ours 26.93 49.65 24.29 50.99 61.67 51.77 51.31 79.44 96.90 89.80 58.28
Ours (init) 28.65 53.15 24.78 53.25 63.86 54.44 54.21 81.41 97.63 90.55 60.19

4
Unimodal 38.76 57.51 32.10 59.69 67.75 60.79 58.73 83.89 98.59 93.48 65.12
Ours 41.69 58.87 33.38 61.58 69.60 62.69 59.69 86.27 98.84 94.56 66.71
Ours (init) 43.17 60.89 33.86 62.43 71.13 63.88 61.38 87.36 99.17 94.96 67.82

8
Unimodal 54.56 63.00 45.05 64.78 74.19 68.06 64.53 88.68 99.27 94.35 71.65
Ours 56.27 64.57 45.98 66.31 75.19 69.22 65.14 89.78 99.27 95.42 72.71
Ours (init) 57.91 65.82 47.40 67.81 75.99 69.71 66.40 90.29 99.54 95.84 73.67

16
Unimodal 67.96 67.35 55.89 71.36 77.92 73.24 68.14 90.73 99.63 96.43 76.22
Ours 69.42 68.50 58.54 72.24 78.69 73.80 68.70 91.87 99.72 96.63 77.80
Ours (init) 70.32 69.19 58.74 73.17 79.58 74.51 69.44 92.47 99.82 96.80 78.81

Table 18: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning with DINOv2 ViT-B/14. We compare our proposed approach with the image-only baseline
by training a linear classifier on top of frozen VIT-B/14 DINOv2 features. Our method leverages
unpaired text data using OpenLLaMA-3B
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1 Unimodal 22.42 43.03 15.79 38.85 58.57 48.71 52.26 76.47 97.12 83.64 53.69
Ours 23.10 45.12 16.22 42.69 61.05 51.30 52.45 78.14 98.08 87.68 55.58
Ours (init) 25.47 48.56 16.83 45.31 63.53 54.16 55.56 81.08 97.94 88.13 57.66

2 Unimodal 35.17 55.41 25.54 51.16 69.49 62.13 62.35 84.31 99.58 89.55 63.47
Ours 37.38 56.98 25.88 54.65 70.61 63.89 63.21 85.50 99.70 92.02 64.98
Ours (init) 38.78 59.81 26.00 55.61 71.38 66.54 65.06 86.49 99.62 92.79 66.21

4 Unimodal 51.40 63.68 34.25 61.25 76.32 71.60 68.86 89.05 99.76 94.51 71.07
Ours 54.26 64.65 35.52 62.63 76.87 72.33 69.14 90.00 99.70 95.51 72.06
Ours (init) 55.01 66.55 35.14 63.97 77.57 73.25 70.30 90.31 99.57 95.65 72.73

8 Unimodal 66.01 68.88 48.17 66.67 79.92 76.26 72.48 90.97 99.80 95.54 76.47
Ours 68.53 69.75 50.88 68.46 81.44 77.34 73.12 92.39 99.70 96.20 77.78
Ours (init) 67.91 70.66 51.26 69.56 81.85 77.95 73.75 92.50 99.68 96.51 78.16

16 Unimodal 77.31 72.17 62.38 73.76 83.80 80.74 75.15 93.34 99.81 97.40 81.59
Ours 78.92 72.80 64.51 75.16 84.62 81.00 75.46 92.92 99.59 97.38 82.24
Ours (init) 78.52 73.18 65.81 75.65 84.77 81.18 75.82 93.28 99.78 97.57 82.56
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Table 19: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning with DINOv2 ViT-L/14. We compare our proposed approach with the image-only baseline
by training a linear classifier on top of frozen VIT-L/14 DINOv2 features. Our method leverages
unpaired text data using OpenLLaMA-3B
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1 Unimodal 24.89 48.36 17.69 38.77 66.46 59.27 57.50 79.83 98.13 82.96 57.39
Ours 25.88 49.63 18.08 42.93 69.18 60.12 58.37 83.51 98.42 86.23 59.24
Ours (init) 27.90 52.86 18.95 43.18 70.98 63.17 60.80 83.86 98.59 88.17 60.85

2 Unimodal 39.95 58.95 26.87 50.18 75.79 70.74 67.14 84.71 99.74 89.82 66.39
Ours 41.22 60.82 27.15 53.01 76.61 72.07 67.90 86.07 99.72 91.95 67.65
Ours (init) 42.93 63.36 28.14 54.96 77.72 73.87 69.20 87.13 99.81 91.71 68.88

4 Unimodal 56.49 66.37 38.59 59.08 80.84 77.39 72.41 89.90 99.73 94.44 73.52
Ours 58.19 67.36 39.57 61.78 81.36 78.19 72.82 90.99 99.76 95.27 74.53
Ours (init) 58.60 68.84 39.19 62.77 81.50 78.99 73.63 90.74 99.88 96.02 75.02

8 Unimodal 70.00 70.71 51.57 66.47 83.84 81.69 76.02 93.53 99.89 95.55 78.93
Ours 71.63 71.59 55.13 67.91 84.47 82.12 76.43 93.62 99.88 96.36 79.91
Ours (init) 72.02 72.51 55.49 69.03 84.57 82.52 76.78 93.80 99.89 96.73 80.33

16 Unimodal 80.84 73.83 64.13 73.96 87.43 84.58 77.78 94.69 99.91 97.36 83.45
Ours 81.85 74.39 69.45 74.70 87.35 84.58 78.35 94.59 99.89 97.61 84.28
Ours (init) 82.76 74.80 69.42 74.88 87.65 84.96 78.58 94.42 99.81 97.62 84.49

E.2 IMPROVING IMAGE CLASSIFICATION USING UNPAIRED TEXTS (ALIGNED ENCODERS)

E.2.1 SUPERVISED FINETUNING

In this section, we fine-tune both the vision backbone and the linear classifier on nine downstream
tasks, comparing UML against strong image-only baselines. We evaluate two different backbones:
ResNet-50 and VIT-B/16.

As shown in Table 20, across all backbones, UML consistently improves over the image-only
baseline by leveraging unpaired text embeddings. Further, our head-initialization variant (Ours (init))
outperforms training using unpaired multimodal data from scratch (Ours).

Table 20: Supervised finetuning on 9 fine-grained classification benchmarks with CLIP. We
compare our proposed approach with the image-only baseline when fine-tuning on the target dataset.
All vision encoders are initialized from CLIP ResNet50 weights, and our approach leverages unpaired
text data using the corresponding CLIP text encoder.
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Unimodal 36.12 25.93 37.70 51.06 52.49 69.24 63.17 88.42 83.61 56.42
Ours 37.00 24.05 41.34 55.67 60.48 69.77 74.49 92.57 84.79 60.02
Ours (init) 72.75 62.33 66.58 56.50 67.54 76.95 86.97 94.80 87.95 74.71
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Table 21: Full linear probing on classification with CLIP ResNet-50 Image Encoder and Text
encoder. We compare our proposed approach with the image-only baseline when training a linear
probe on the target dataset. All vision encoders are initialized from ResNet-50 weights, and our
approach leverages unpaired text data using the corresponding CLIP text embeddings.
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Unimodal 76.36 70.97 41.88 72.81 81.23 81.60 88.39 97.89 92.78 78.21
Ours 77.23 71.18 42.66 71.81 81.81 81.51 87.84 97.65 93.01 78.30
Ours (init) 79.14 73.83 42.81 73.76 82.13 82.44 90.90 97.69 94.19 79.65

E.2.2 LINEAR PROBING

In this section, we train only the linear classifier, on top of the frozen vision and language backbone
from CLIP, on ten downstream tasks, comparing UML against strong image-only baselines.

As shown in Table 21, UML consistently improves over the image-only baseline by leveraging
unpaired text embeddings. Further, our head-initialization variant (Ours (init)) outperforms training
using unpaired multimodal data from scratch (Ours).

E.2.3 FEW-SHOT LINEAR PROBING (ACROSS ARCHITECTURES)

In this section, we train only the linear classifier, on top of the frozen vision and language backbone
from CLIP, for few-shot classification on ten downstream tasks, comparing UML against strong
image-only baselines. We evaluate two different backbones: ResNet-50 and VIT-B/16.

As shown in Table 22 and Table 23, across both backbones, UML consistently improves over the
image-only baseline by leveraging unpaired text embeddings. Further, our head-initialization variant
(Ours (init)) outperforms training using unpaired multimodal data from scratch (Ours).

E.3 IMPROVING VISUAL ROBUSTNESS USING UNPAIRED TEXTS

In this section, we evaluate the robustness of models trained with UML to test-time distribution shifts.
We train a k-shot linear probe (where k ∈ {1, 2, 4, 8}) with DINOv2 on ImageNet and evaluate
across four distribution-shifted target datasets: ImageNet-V2, ImageNet-Sketch, ImageNet-A, and
ImageNet-R. Our method consistently improves robustness over the unimodal baseline (Figure 10,
Figure 11, Figure 12 and Figure 13) across different training shots, indicating that language priors
help capture more transferable features.

Distribution Shift Results

Shot-1

Shot-2

Figure 10: Robustness under test-time distribution shifts. Our approach (trained on 1-shot) is
much more robust than its unimodal counterpart across four distribution-shuffled target test sets.
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Table 22: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen CLIP ResNet50 features. Our method leverages unpaired text data using
the corresponding CLIP text encoder
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1 Unimodal 23.24 29.14 12.38 30.24 37.55 27.26 34.61 21.36 59.07 66.52 34.14
Ours 36.32 45.40 16.84 40.92 53.19 49.76 53.03 36.48 68.56 76.80 47.73
Ours (init) 57.88 64.59 22.23 50.85 65.99 76.73 86.59 60.92 81.08 83.79 65.06

2 Unimodal 38.37 43.83 18.63 40.33 53.25 44.60 47.75 32.62 75.03 78.90 47.33
Ours 46.64 53.53 20.81 48.35 62.01 56.67 60.64 42.21 77.97 84.58 55.34
Ours (init) 61.86 65.90 24.19 55.30 70.39 77.07 87.40 61.40 86.20 85.94 67.57

4 Unimodal 51.34 54.38 23.08 52.07 64.06 57.29 61.32 41.72 86.16 85.41 57.68
Ours 55.21 59.48 24.77 56.78 67.65 62.68 67.31 47.04 86.46 87.23 61.46
Ours (init) 65.80 68.11 27.49 60.13 73.62 77.79 86.54 62.37 91.60 87.57 70.10

8 Unimodal 61.74 61.47 30.22 60.15 70.16 64.63 68.94 49.48 92.20 89.14 64.81
Ours 62.75 63.70 30.69 61.84 70.74 67.73 73.62 52.14 92.31 89.89 66.54
Ours (init) 69.78 69.61 31.62 64.13 77.24 78.58 89.07 63.34 94.21 91.58 72.92

16 Unimodal 70.94 65.53 35.91 64.30 75.13 70.67 78.49 55.07 95.21 91.26 70.25
Ours 71.58 67.08 36.23 65.62 76.09 71.63 79.52 56.92 95.44 91.94 71.20
Ours (init) 74.56 71.33 37.13 68.09 78.66 79.06 89.71 64.31 96.17 93.31 75.23

Table 23: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen CLIP VIT-B/16 features. Our method leverages unpaired text data using
the corresponding CLIP text encoder
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1 Unimodal 31.53 33.51 17.76 31.72 43.64 39.40 37.43 27.65 67.95 71.68 40.23
Ours 48.28 53.44 22.06 47.04 63.40 63.92 60.95 47.35 77.82 83.14 56.74
Ours (init) 67.76 70.13 32.26 55.16 75.02 84.25 90.91 69.50 87.58 88.87 72.14

2 Unimodal 48.45 48.70 23.38 42.04 60.08 58.30 53.56 41.68 82.01 83.20 54.14
Ours 57.89 59.95 27.19 52.27 69.60 71.18 66.78 54.24 87.43 90.20 63.67
Ours (init) 70.75 71.52 33.99 60.17 78.37 85.39 90.67 70.19 92.18 90.09 74.33

4 Unimodal 61.64 60.66 31.01 54.37 70.49 71.91 69.35 52.15 90.99 91.08 65.36
Ours 66.24 65.56 32.98 59.95 74.16 76.19 75.92 58.50 91.32 93.23 69.40
Ours (init) 74.58 73.54 37.38 64.30 81.10 86.05 91.64 70.89 94.80 93.70 76.80

8 Unimodal 71.76 66.67 38.47 61.96 77.11 78.16 78.25 59.90 95.20 92.98 72.05
Ours 72.77 69.50 39.09 64.89 79.01 80.07 80.85 62.63 94.98 94.36 73.82
Ours (init) 78.43 75.07 41.77 68.50 83.41 86.87 92.55 71.97 96.94 95.27 79.08

16 Unimodal 78.76 71.49 44.74 68.79 80.43 82.08 85.16 63.87 96.97 94.54 76.68
Ours 79.40 72.19 45.06 69.41 81.97 82.12 85.92 64.93 96.49 95.28 77.28
Ours (init) 82.38 76.51 47.14 72.13 84.66 86.60 92.68 72.79 97.70 96.08 80.87
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Distribution Shift Results

Shot-1

Shot-2

Figure 11: Robustness under test-time distribution shifts. Our approach (trained on 2-shots) is
much more robust than its unimodal counterpart across four distribution-shuffled target test sets.

Distribution Shift Results

Shot-4

Shot-8

Figure 12: Robustness under test-time distribution shifts. Our approach (trained on 4-shots) is
much more robust than its unimodal counterpart across four distribution-shuffled target test sets.

Distribution Shift Results

Shot-4

Shot-8

Figure 13: Robustness under test-time distribution shifts. Our approach (trained on 8-shots) is
much more robust than its unimodal counterpart across four distribution-shuffled target test sets.

E.4 MARGINAL RATE-OF-SUBSTITUTION BETWEEN MODALITIES

How many words is an image worth? In this section, we extend our results to evaluate image-text
conversion ratios using test accuracy isolines on the remaining eight datasets. We measure these
global equivalence ratios by fitting a plane to the accuracy values given the number of image and
text shots. Figures 14 to 21 demonstrate the conversion ratios for DINOv2 VIT-S/14 as the vision
backbone and OpenLLaMa-3B as the text backbone (unaligned encoders). Analogously, Figures 22
to 29 show the same ratios for CLIP ResNet-50 as the vision and text encoders (aligned encoders).
As expected, with the fully aligned CLIP backbone, each image equates to far fewer text prompts
than under the unaligned DINO setting, showing the higher efficiency of aligned embeddings.

E.4.1 UNALIGNED ENCODERS
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Figure 14: SUN397. 1 img ≈ 1568 words Figure 15: Caltech101. 1 img ≈ 1248 words

Figure 16: Stanford Cars. 1 img ≈ 1799 words Figure 17: DTD. 1 img ≈ 2309 words

Figure 18: FGVC Aircraft. 1 img ≈ 3220 words Figure 19: Oxford Flowers. 1 img ≈ 1895 words
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Figure 20: Food101. 1 img ≈ 2608 words Figure 21: UCF101. 1 img ≈ 2617 words
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E.4.2 ALIGNED ENCODERS (CLIP)

Figure 22: SUN397. 1 img ≈ 221 words Figure 23: Caltech101. 1 img ≈ 256 words

Figure 24: Stanford Cars. 1 img ≈ 649 words Figure 25: DTD. 1 img ≈ 228 words

Figure 26: FGVC Aircraft. 1 img ≈ 691 words Figure 27: Oxford Flowers. 1 img ≈ 851 words
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Figure 28: Food101. 1 img ≈ 202 words Figure 29: UCF101. 1 img ≈ 393 words

E.5 IMPACT OF SCALING VISION BACKBONE

In this section, we study how our method’s performance scales with the size and architecture of the
vision backbone. In addition to ViT-S/14 DINOv2, we extend our analysis to a range of ViT-based
architectures, including ViT-B/14 and ViT-L/14 DINOv2 and ViT-B/16 and ViT-B/8 DINO models.
To ensure a fair comparison, we follow the same training protocol as in previous experiments. Our
method consistently outperforms the unimodal baselines in every setting. In few-shot linear probing
across ViT-B/8, ViT-B/16, DINOv2-ViTs and ViT-L/14 backbones (Tables 15 to 19), we see clear
gains. The same holds for full-dataset end-to-end fine-tuning of both encoder and head (Tables 6
to 9), and even when only the linear classifier is trained on the full splits (Tables 10 to 14).

E.6 IMPACT OF VARYING TEXT ENCODERS

In this section, we study how our method’s performance varies with different language models used
for generating text embeddings. Through this experiment, we aim to understand how differences in
embedding quality and model capacity affect the integration of textual information in our multimodal
setup. Specifically, we cover LLMs with diverse architectures and scales, including BERT-Large,
RoBERTa-Large and GPT-2 Large. As shown in Figure 30, adding unpaired text embeddings shows
a significant boost in 1-shot accuracy and still decent gains at 16 shots on SUN397 dataset. Overall,
OpenLLaMA-3B outperforms all other language models.
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Figure 30: Few-shot classification accuracy on SUN397 using UML with unpaired, frozen embeddings
from various pretrained language models.
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E.7 LEARNING WITH COARSE-GRAINED VS. FINE-GRAINED TEXTUAL CUES

Understanding the type of information extracted from textual cues is crucial to assessing the effec-
tiveness of our multimodal approach. A key question is whether the model merely utilizes class
names or goes beyond to capture richer, more descriptive features. To investigate this, we compare
the performance of our method using two types of text templates: a vanilla template that consists
solely of the class name (e.g., ”a photo of a [class]”) and descriptive templates generated from
GPT-3, as detailed in Section Appendix B. As shown in Figure 31 and Figure 32, both multimodal
approaches consistently outperform the unimodal baseline, with descriptions from GPT-3 offering a
more substantial performance gain. This shows that leveraging richer, contextually diverse text cues
can significantly enhance model performance, even in low-shot learning scenarios.
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Figure 31: Few-shot SUN397 accuracy with UML
using two levels of textual granularity: (a) vanilla
class descriptions and (b) GPT-3–generated fine-
grained descriptions.
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Figure 32: Few-shot SUN397 accuracy with
UML (init) using two levels of textual granular-
ity: (a) vanilla class descriptions and (b) GPT-
3–generated fine-grained descriptions.

E.8 IMPACT ON PERFORMANCE WITH INCREASING UNPAIRED TEXT PROMPTS

Here, we investigate how classification accuracy evolves as we augment each image with an increasing
number of unpaired text prompts . Figure 33 shows these accuracy curves as we vary the number of
unpaired text prompts per image shot across five image-shot budgets. In every regime, our multimodal
initialization (“Ours (init)”) outperforms training the head from scratch, with most of the gain coming
from the first few prompts and gains tapering off thereafter. Note that we do not enforce diversity or
novelty in the unpaired text prompts—simply adding more sentences does not guarantee additional
information.
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Figure 33: Classification accuracy as a function of the number of text prompts per image shot for the
SUN397 Dataset.

E.9 EFFECT OF UNRELATED AUXILIARY MODALITIES

While our main experiments investigate the benefits of incorporating semantically related auxiliary
modalities, an important question is what happens when the auxiliary data is unrelated or even
adversarial. In our unpaired setting, this requires reasoning not about individual mismatched pairs,
but about the relationship between entire data distributions. To meaningfully study the adversarial
case, one would need a principled definition of “negative correlation” between modality distributions,
as well as metrics for quantifying it. We leave such a rigorous framework to future work.

Instead, here, we evaluate a simpler but informative scenario: the independent case, where the
auxiliary modality is semantically unrelated to the target modality. We use our few-shot learning
setup to train UML with image data from SUN397 and text data from Stanford-Cars, two semantically
unrelated datasets. Table 24 reports results for few-shot image classification on the SUN397 dataset.
When the auxiliary text is unrelated to the image domain, performance does not improve over the
unimodal baseline. In contrast, semantically related text provides consistent gains across all shot
counts.

Table 24: Training UML with unrelated auxiliary text from the Stanford Cars dataset does not yield
performance gains on image classification on the SUN397 dataset. However, semantically correlated
text (from SUN397) consistently improves accuracy across few-shot settings.

Method 1-shot 2-shot 4-shot 8-shot 16-shot

Unimodal (Image) 34.15 47.88 57.51 63.00 67.35
UML (Image + Unrelated Text) 35.27 47.12 57.50 62.45 67.25
UML (Image + Related Text) 41.79 53.15 60.89 65.82 69.19

E.10 EXTENSION TO MORE THAN TWO MODALITIES

Our framework naturally extends beyond two modalities. We validate this by extending our image
and audio classification experiments on ImageNet-ESC to use all three modalities: image, audio, and
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text. Training alternates batches from each modality while applying modality-specific classification
losses, consistent with our two-modality setup.

Tables 25 and 26 summarize results on audio and image classification. In both cases, incorporating
additional unpaired modalities consistently improves performance over unimodal or pairwise settings.
These findings demonstrate that the performance benefits of UML extend robustly to more than two
modalities.

From a theoretical perspective, our results also generalize directly. Since modality-specific observa-
tions are conditionally independent given the ground-truth latent Z∗, their joint contribution to the
Fisher information reduces to the sum of the unimodal blocks. Consequently, the total contribution
of all auxiliary modalities (excluding the primary modality X) can be obtained by summing their
individual Fisher information matrices.

Table 25: Training UML with all three modalities from ImageNet-ESC outperforms unimodal or
pairwise training on audio classification. Numbers in parentheses denote relative improvements over
the unimodal baseline.

Dataset Method 1-shot 2-shot 4-shot

ESC-19 Audio-Only 28.78 39.85 52.22
Audio + Image 34.59 44.13 50.00
Audio + Text 35.47 52.19 52.90
Audio + Image + Text 44.46 (+54.4%) 51.48 (+29.2%) 56.57 (+8.3%)

ESC-27 Audio-Only 25.65 35.99 44.79
Audio + Image 37.15 42.86 51.15
Audio + Text 41.97 47.02 53.85
Audio + Image + Text 44.68 (+74.2%) 48.03 (+33.4%) 54.16 (+20.9%)

Table 26: Training UML with all three modalities from ImageNet-ESC outperforms unimodal or
pairwise training on image classification. Numbers in parentheses denote relative improvements
over the unimodal baseline.

Dataset Method 1-shot 2-shot 4-shot

ESC-19 Image-Only 60.28 74.10 78.70
Image + Audio 64.63 76.17 85.02
Image + Text 88.84 89.71 92.07
Image + Audio + Text 90.55 (+50.2%) 91.08 (+22.9%) 91.72 (+16.5%)

ESC-27 Image-Only 55.33 65.60 77.85
Image + Audio 59.75 70.93 78.14
Image + Text 86.39 88.91 90.14
Image + Audio + Text 88.22 (+59.5%) 88.96 (+35.6%) 91.78 (+17.9%)

E.11 EFFECT OF RATIO OF MODALITY BATCHES

In our main experiments, UML was trained with a simple 1:1 alternation of batches across modalities.
To study the effect of this schedule, we ablate the ratio of text to image batches, denoted by r, on
SUN397 using ViT-S/14 DINOv2 (vision) and OpenLLaMA-3B (text). We evaluate both in the (a)
linear probe setting and the (b) full finetuning setting.

Across both settings and for both UML and UML (init), we observe that the choice of r has little
impact on performance. The gains primarily arise from the presence of auxiliary information rather
than the exact frequency of its appearance during training.
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Table 27: Few-shot linear probing with different ratios of text-to-image batches on SUN397 using
ViT-S/14 DINOv2 and OpenLLaMA-3B. Performance remains stable across ratios r, indicating
robustness of UML to batch scheduling.

Method Shot r = 0.25 r = 0.5 r = 1.0 r = 2.0 r = 4.0

UML 2-shot 49.03 49.23 49.65 49.56 49.97
4-shot 59.05 59.06 58.87 58.92 58.70
8-shot 64.63 65.24 64.57 64.98 65.29
16-shot 68.55 68.79 68.50 68.86 68.36

UML (init) 1-shot 42.60 42.13 41.79 41.95 42.04
2-shot 52.83 53.01 53.15 53.04 52.81
4-shot 61.10 61.09 60.89 60.63 60.99
8-shot 65.29 65.32 65.82 65.15 65.21
16-shot 69.19 68.91 69.19 68.51 68.71

Table 28: Full finetuning of the vision encoder and linear head with different text-to-image batch
ratios r on SUN397. Results show that performance is largely insensitive to r.

Method r = 0.25 r = 0.5 r = 1.0 r = 2.0 r = 4.0

UML 66.44 66.80 66.72 67.60 66.44
UML (init) 66.58 65.41 66.03 65.86 64.25

E.12 EFFECT OF FREEZING VS. UNFREEZING THE TEXT ENCODER

In all our main experiments, we freeze the text encoder. This design choice allows us to isolate the
role of the auxiliary modality, ensuring that improvements in the primary modality (e.g., vision) arise
from cross-modal transfer rather than joint training of both encoders.

In principle, however, one can also unfreeze the text encoder and update it during training. To study
this, we ablate freezing versus unfreezing on Stanford Cars and SUN397 using ViT-S/14 DINOv2
(vision) and OpenLLaMA-3B (text). As shown in Table 29, unfreezing the text encoder improves
performance on Stanford Cars, but slightly reduces performance on SUN397—likely due to the larger
number of trainable parameters and increased optimization complexity.

Table 29: Effect of freezing versus unfreezing the text encoder when training with UML. Freezing
stabilizes training and often yields slightly stronger gains.

Method Stanford Cars SUN397

Unimodal (Image Only) 79.45 66.20
UML (Unfrozen Text Encoder) 84.23 65.80
UML (Frozen Text Encoder) 84.87 66.72

E.13 ADDITIONAL EXPERIMENTS FOR AUDIO-VISUAL SETTING

In this section, we extend our unpaired multimodal framework to the tri-modal ImageNet–ESC
benchmark, examining how unpaired audio and text signals can enhance image classification under
both aligned (Appendix E.13.2) and unaligned encoders(Appendix E.13.1). We then reverse the
setting, showing that unpaired visual and textual context likewise improves audio classification
(Appendix E.13.3).

E.13.1 IMPROVING IMAGE CLASSIFICATION WITH UNPAIRED AUDIO AND TEXT
(UNALIGNED ENCODERS)

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026Image Benchmarks (Appendix)

(a) ImageNet-ESC-19 (b) ImageNet-ESC-27

Image (DINO)

Figure 34: UML improves image classification using unpaired audio and text samples on both
ImageNet-ESC-19 and ImageNet-ESC-27 benchmarks when trained on top of DINOv2 VIT-S/14
and OpenLLaMa-3B.

E.13.2 IMPROVING IMAGE CLASSIFICATION WITH UNPAIRED AUDIO AND TEXT (ALIGNED
ENCODERS)

Image Benchmarks (Appendix)

(a) ImageNet-ESC-19 (b) ImageNet-ESC-27

Image (RN50 CLIP)

Figure 35: UML improves image classification using unpaired audio and text samples on both
ImageNet-ESC-19 and ImageNet-ESC-27 benchmarks when trained on top of CLIP ResNet-50
image and text encoders

E.13.3 IMPROVING AUDIO CLASSIFICATION WITH UNPAIRED IMAGE AND TEXT (ALIGNED
ENCODERS)

Audio Benchmarks (Appendix)

(a) ImageNet-ESC-19 (b) ImageNet-ESC-27

Audio (RN50 CLIP)

Figure 36: UML improves audio classification using unpaired image and text samples on both
ImageNet-ESC-19 and ImageNet-ESC-27 benchmarks when trained on top of CLIP ResNet-50
image and text encoders

E.14 GAUSSIAN EXPERIMENTS

Here, we shift our attention to a more nuanced and intriguing question: can incorporating unpaired
multimodal data actually improve the reconstruction quality of a single modality? At first glance, this
seems unlikely—why would adding data from a different modality make X reconstruction better than
training with X? Moreover, we push this question further: can incorporating data from a different
modality, while keeping the total dataset size fixed, still improve the reconstruction of X compared to
using the same number of samples X dataset alone? This setup isolates the importance of multimodal
information from mere data scaling, and surprisingly, our experiments show that this improvement is
indeed possible.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

To investigate this, we design a synthetic experiment inspired by our theoretical framework in Sec-
tion 3.1. We generate data from two partially overlapping modalities, X and Y , derived from a shared
latent space θc, while also containing unique components (θx and θy). The observations follow the
same linear structure as in our theory:

Xi = Ac,iθc +Ax,iθx + ϵX,i

Yj = Bc,jθc +By,jθy + ϵY,j

The training data are generated from Gaussian latents with dimensions dim(θc) = 10, dim(θx) = 5,
and dim(θy) = 5. For X , only the first 10% of the shared components in θc are retained at full
strength, while the rest are downscaled by 0.05; Y observes all shared components at full strength.
This asymmetry makes Y informative about structure that is only weakly present in X . The validation
set is constructed from the same projections but without attenuation, so both modalities fully observe
θc. Observations are 50-dimensional with Gaussian noise ϵX , ϵY ∼ N (0, 0.09I). In the unimodal
setting, training on X alone uses 10,000 samples from X . When training UML on unpaired X and
Y , we instead use 5,000 samples from each modality to keep the total sample budget fixed, ensuring
a fair comparison.

Our architecture is a shared autoencoder. Each modality X ∈ R50, Y ∈ R50 is projected into a
common space of dimension 128 through modality-specific linear layers. A shared encoder (two
linear layers with ReLU) maps into a latent space of dimension 10, followed by a shared decoder
(two linear layers) that expands back to dimension 128. Finally, modality-specific heads reconstruct
the original inputs. The shared pathway enforces cross-modal alignment, while the separate adapters
preserve modality fidelity.

As shown in Figure 37, the surprising outcome is that training on both modalities, even when they are
unpaired, consistently improves the reconstruction of X compared to training solely on X . More
strikingly, this improvement holds even when the total number of training samples is fixed, with
half the data coming from X and half from Y ; showing that the model is not just benefiting from
increased data quantity but from the diversity and complementary information provided by the second
modality.
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Figure 37: Training on N/2 samples from X and N/2 unpaired samples from Y improves test
reconstruction on X , more than training on N samples from X .

F ANALYSIS OF THE LEARNED CLASSIFIER

F.1 CHANGE IN DECISION BOUNDARIES WITH UNPAIRED DATA FROM ANOTHER MODALITY

Our decision boundary visualizations are constructed by projecting the high-dimensional embedding
space of a given classifier to a 2D plane. Axis 1 is computed as the normalized difference between
the classifier weights of the two selected classes, representing the primary decision direction. Axis
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2 is chosen to be orthogonal to Axis 1, constructed from the difference between the class mean
embeddings after removing the component parallel to Axis 1. This orthogonalization ensures that the
two axes capture complementary aspects: Axis 1 reflects the primary model decision boundary, while
Axis 2 captures the variation orthogonal to that decision. The final 2D projection matrix combines
these two vectors as columns, and embedding vectors are then mapped to this plane using a simple
dot product. Figure 38 , Figure 39 and Figure 40 show the change in decision boundary when adding
unpaired textual information for 2-shot classification on top of frozen CLIP ResNet-50 features for
Oxford Pets, DTD and Oxford Flowers datasets.

(a) Unimodal (b) Ours

Train Image Test Image Russian Blue Abyssinian Decision Boundary

A pet Russian Blue 
typically has a 
blue-gray coat, 
green or blue 
eyes, and a 
muscular body.

A pet Abyssinian 
looks like a 
small, brown and 
black spotted cat 
with large ears.

Figure 38: Impact of unpaired text on decision boundaries (CLIP ResNet50.) (Left) Visual
features alone learn ambiguous class boundaries between Russian Blue and Abyssinian cats. (Right)
Adding unpaired text sharpens the boundary, leveraging semantic cues to better distinguish similar
categories.

(a) Unimodal (b) Ours

Train Image Test Image Knitted Cobwebbed Decision Boundary

Additional Plots: DTD

Cobwebbed texture looks 
like a spiderweb.

The knitted texture 
looks like a series of 
interconnected loops.

Figure 39: Impact of unpaired text on decision boundaries (CLIP ResNet50). (Left) Visual
features alone learn ambiguous class boundaries between knitted and cobwebbed. (Right) Adding
unpaired text sharpens the boundary, leveraging semantic cues to better distinguish similar categories

F.2 WHAT DO MODELS LEARN FROM UNPAIRED DATA?

To understand what the model is truly learning and how its weights evolve, we develop and analyze
three key metrics: functional margin, silhouette score, and class-prototype vectors. These metrics
inform on how well the model distinguishes between classes and how text information influences the
structure of feature-space

Functional margin. This quantifies how confidently a model separates a given sample from the
decision boundary. For a sample i belonging to class y, we calculate the margin relative to the
next highest competing class. Specifically, we identify the second-highest logit among the incorrect
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(a) Unimodal (b) Ours

Train Image Test Image Ball Moss Passion Flower Decision Boundary

The flower 
passion flower 
looks like a 
purple and 
white flower.

Ball moss is a 
small greenish-
brown plant

Additional Plots: Flowers

Figure 40: Impact of unpaired text on decision boundaries (CLIP ResNet50). (Left) Visual
features alone learn ambiguous class boundaries between ball moss and passion flower. (Right)
Adding unpaired text sharpens the boundary, leveraging semantic cues to better distinguish similar
categories

classes, denoted as class j∗, and compute the functional margin as

γi =
wT

y xi − wT
j∗xi

∥wy − wj∗∥2
(5)

where wT
y xi represents the logit for the true class, while wT

j∗xi represents the highest logit among the
competing classes. Larger margins indicate more confident and robust classification, while smaller
margins imply that the sample lies closer to a misclassification boundary. As shown in Figure 41, both
Ours and Ours (init) exhibit substantially larger classification margins than the unimodal baseline,
demonstrating that augmenting primary-modality training with unpaired multimodal data improves
confidence in predictions over the primary modality.

Figure 41: Functional margin of the linear head trained on SUN397 dataset for few-shot classification
significantly increases when training with both UML and UML with linear head initialization.

Silhouette Score and DB-Index. The Silhouette Score indicates how well-separated the clusters
are, while the DB-Index measures intra-class compactness versus inter-class separation. Higher
silhouette and lower DB-Index values mean better-defined clusters, indicating that text helps tighten
intra-class spread and widen inter-class gaps. As shown in Figure 42 and Figure 43, both Ours
and Ours (init) exhibit reduced intra-class distances and increased inter-class separations, further
confirming improved class separability.

Class-Prototype Vectors. These vectors are the rows of the final linear layer’s weight matrix,
representing the class centroids in the shared embedding space. We compute a heatmap of inner
products between class prototypes and average text embeddings of the corresponding class to assess
how well text features align with class centers. This helps reveal how the model organizes multimodal
information. Figure 44 shows a pronounced diagonal structure, indicating that each class’s text
embedding aligns closely with the learned weights of the model.
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Figure 42: Silhouette Score of the linear head trained on SUN397 dataset for few-shot classification
significantly increases when training with both UML and UML with linear head initialization.

Figure 43: DB-Index of the linear head trained on SUN397 dataset for few-shot classification
significantly improves when training with both UML and UML with linear head initialization.

Figure 44: Inner products between each linear-head weight vector and its class’s mean text embedding,
demonstrating that text features align well with class prototypes.
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