Learning Predictions for Algorithms with Predictions

Mikhail Khodak Maria-Florina Balcan
Carnegie Mellon University Carnegie Mellon University
khodak@cmu.edu ninamf@cs.cmu.edu
Ameet Talwalkar Sergei Vassilvitskii
Carnegie Mellon University Google Research - New York
talwalkar@cmu.edu sergeiv@google.com
Abstract

A burgeoning paradigm in algorithm design is the field of algorithms with predic-
tions, in which algorithms can take advantage of a possibly-imperfect prediction
of some aspect of the problem. While much work has focused on using predictions
to improve competitive ratios, running times, or other performance measures, less
effort has been devoted to the question of how to obtain the predictions themselves,
especially in the critical online setting. We introduce a general design approach
for algorithms that learn predictors: (1) identify a functional dependence of the per-
formance measure on the prediction quality and (2) apply techniques from online
learning to learn predictors, tune robustness-consistency trade-offs, and bound the
sample complexity. We demonstrate the effectiveness of our approach by applying
it to bipartite matching, ski-rental, page migration, and job scheduling. In several
settings we improve upon multiple existing results while utilizing a much simpler
analysis, while in the others we provide the first learning-theoretic guarantees.

1 Introduction

Algorithms with predictions, a subfield of beyond-worst-case analysis of algorithms [36], aims to de-
sign methods that make use of machine-learned predictions in order to reduce runtime, error, or some
other performance cost. Mathematically, for some prediction x, algorithms in this field are designed
such that their cost C;(x) on an instance ¢ is upper-bounded by some measure U;(x) of the quality of
the prediction on that instance. The canonical example here is that the cost of binary search on a sorted
array of size n can be improved from O(logn) to < U(x) = 2logn:(x), where 7;(x) is the distance
between the true location of a query ¢ in the array and the location predicted by the predictor x [36].
In recent years, algorithms whose cost depends on the quality of possibly imperfect predictions have
been developed for numerous important problems, including caching [41, 24, 34], scheduling [30, 43],
ski-rental [29, 1, 15], bipartite matching [16], page migration [22], and many more [10, 17, 36].

While there has been a significant effort to develop algorithms that use earned predictions, until very
recently [13, 33] there has been less focus on actually learning to predict. For example, of the works
listed only two on ski-rental [1, 15] and one other [16] show sample complexity guarantees, and none
consider the important online learning setting, in which problem instances may not come from a fixed
distribution. This is in contrast to the related area of data-driven algorithm design [19, 3], which has
established techniques such as dispersion [6] and others [8, 11] for deriving learning-theoretic guaran-
tees, leading to end-to-end results encompassing both learning and computation. It is also despite the
fact that, as we see in this work, learning even simple predictors is in many cases a non-trivial problem.

We bridge this gap and provide a framework for obtaining learning-theoretic guarantees for algorithms
with predictions. In addition to improving sample complexity bounds, we show how to learn
the parameters of interest in an setting with low overall regret. We accomplish this using a two-

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Table 1: Settings we apply our framework to, new learning algorithms we derive, and their regret.

Problem Algorithm with prediction Feedback Upper bound (losses) Learning algo. Regret

Min. vt.'eighl liiplermite .H%lr'lng\ri:m method’~ . OEL dual o (ch —x* () 1) ij.. online o (nﬁ)

matching (3)** initialized by dual X € R x*(c) gradient

Online page Lazy offline optimal for Requests ~ .l Exponentiated (

migration (4)* predictions {3(;;~p;)} =1 {s[51}]=1 et Ep 12::, Ls#ep) gradient X n © nﬁ)

Online job Corrected offline optimal Opt. weights o Euclidean (‘/7)

scheduling (5)* for predicted logits & € R™ weA™ O (1% —logwlloo) KT-OCO O (ymT log(mT)

Non—clalrvo'yam ; Pr.eferemlal r(jvund—robm Pred.lctmn min { 1+1271)\/ n %} l?xponenual o ( TTog T)

job scheduling (6) with trade-off parameter A quality n - forecaster

Ski-rental w. integer Bgy 1t price b < x, A trade- Ngmber of min{A(bl,~ b+ﬂ1j§1‘ ),b,n} Equnenlialed o (N i log(NT))

daysn € [N](6) off with worst-case approx. ski-days n 1—(14+1/b)—0X gradient

Ski-rental with Buy after « days, X trade- Number of min {%, Exponential O(JTlog(NT)
1,cet(bta)lysy

B-dispersed n (6) off with worst-case approx. ski-days n W } forecaster +N271 7ﬁ)

* For these problems we also provide new guarantees in the statistical (i.i.d.) setting and for learning linear predictors that take instance features as their inputs.
T We also obtain results for its extensions to minimum-weight b-matching and other graph algorithms with predictions in Appendices B and D.
 We also provide new guarantees for the problem of learning job permutations in the non-clairvoyant setting in Appendix E.

step approach inspired by recent work on theoretical meta-learning [25], which has been used to
derive numerous multi-task learning results by optimizing regret-upper-bounds that encode the task-
similarity [31, 32, 9, 26]. As evidenced by our results in Table 1, we believe the following two-step
framework below holds similar potential for obtaining guarantees for algorithms with predictions:

1. For a given algorithm, derive a convenient-to-optimize upper bound U;(x) on the cost Cy(x)
that depends on both the prediction x and information specific to instance ¢ returned once the
algorithm terminates, e.g. the optimum in combinatorial optimization. We find that in many cases
such bounds already exist, and the quality of the prediction can be measured by a distance from
some ground truth obtained from the output, a quantity that is usually convex and thus learnable.

2. Apply online learning to obtain both regret guarantees against adversarial sequences and sample
complexity bounds for i.i.d. instances. We provide pseudo-code for a generic setup in Algorithm 1.

Table 1 summarizes instantiations of our framework on multiple problems. Our approach is designed
to be simple-to-execute, leaving much of the difficulty to what the field is already good at: designing
algorithms and proving prediction-quality-dependent upper bounds on their costs. Once the latter is
accomplished, our framework leverages problem-specific structure to design a customized learning
algorithm for each problem, leading to strong regret and sample complexity guarantees. In particular,
in multiple settings we improve upon existing results in either sample complexity or generality, and
in all cases we are the first to show regret guarantees in the online setting. This demonstrates the
usefulness of and need for such a theoretical framework for studying these problems.

We summarize the diverse set of contributions enabled by our theoretical framework below:

1. Bipartite matching: Our starting example builds upon the work on minimum-weight bipartite
matching using the Hungarian algorithm by Dinitz et al. [16]. We show how our framework
leads directly to both the first regret guarantees in the online setting and new sample complexity
bounds that improve over the previous approach by a factor linear in the number of nodes. In the
Appendix we show similar strong improvements for b-matching and other graph algorithms.

2. Page migration: We next study a more challenging application, online page migration, and
show how we can adapt the algorithmic guarantee of Indyk et al. [22] into a learnable upper bound
for which we can again provide both adversarial and statistical guarantees.

3. Learning linear maps with instance-feature inputs: Rather than assume the existence of a
strong fixed prediction, it is often more natural to assume each instance comes with features that
can be input into a predictor such as a linear map. Our approach yields the first guarantees for
learning linear predictors for algorithms with predictions, which we obtain for the two problem
settings above and also for online job scheduling using makespan minimization [30].

4. Tuning robustness-consistency trade-offs: Many bounds for online algorithms with predictions
incorporate parameterized trade-offs between trusting the prediction or falling back on a worst-case
approximation. This suggests the usefulness of tuning the trade-off parameter, which we instantiate
on a simple job scheduling problem with a fixed predictor. Then we turn to the more challenging
problem of simultaneously tuning the trade-off and learning predictions, which we achieve on two
variants of the ski-rental problem. For the discrete case we give the only learning-theoretic guaran-
tee, while for the continuous case our bound uses a dispersion assumption [6] that, in the i.i.d. set-
ting, is a strictly weaker assumption than the log-concave requirement of Diakonikolas et al. [15].

2



2 Related work

Algorithms with predictions is a type of beyond-worst-case analysis of algorithms [42]; along with
areas like smooth analysis [45] and data-driven algorithm design [3], it takes advantage of the fact
that real-world instances are not worst-case. Inspired by success in applications such as learned
indices [27], there has been a great deal of theoretical study focusing on algorithms whose guarantees
depend on the quality of a given predictor (c.f. the Mitzenmacher and Vassilvitskii [36] survey). The
actual learning of this predictor has been studied less [1, 15, 16] and rarely in the online setting; we aim
to change this with our study. Some papers improve online learning itself using predictions [39, 23,
14], but they also assume known predictors or only learn over a small set of policies, and their goal is
minimizing regret not computation. In-general, we focus on showing how algorithms with predictions
can make use of online learning rather than on new methods for the latter. Several works [4, 40, 2] use
learning while advising an algorithm, in-effect taking a learning-inspired approach to better make use
of a prediction within an algorithm, whereas we focus on learning the prediction outside of the target
algorithm. Our paper presents the first general framework for efficiently learning useful predictors.

Data-driven algorithm design is a related area that has seen more learning-theoretic effort [19, 6, 3].
At a high-level, it often studies tuning parameters such as the gradient descent step-size [19] or
settings of branch and bound [5], whereas the predictors in algorithms with predictions guess the
sequence in an online algorithm [22] or the actual outcome of the computation [16]. The distinction
can be viewed as terminological, since a prediction can be viewed as a parameter, but it can mean that
in our settings we have full information about the loss function since it is typically some discrepancy
between the full sequence or computational outcome and the prediction. In contrast, in data-driven
algorithm design getting the cost of each parameter often requires additional computation, leading to
(semi-)bandit settings [7]. A more salient difference is that data-driven algorithm design guarantees
compete with the parameter that minimizes average cost but do not always quantify the improvement
attainable via learning; in algorithms with predictions we do generally quantify this improvement
with an upper bound on the cost that depends on the prediction quality, but we usually only compete
with the parameter that is optimal for prediction quality, which is not always cost-optimal. We do
adapt data-driven algorithm design tools like dispersion [6] for algorithms with predictions.

Our two-step approach to providing guarantees for algorithms with predictions is inspired by the
Average Regret-Upper-Bound Analysis (ARUBA) framework [25] for studying meta-learning [18].
Instead of instances they have tasks with different data-points, and the upper bounds are on learning-
theoretic quantities such as regret rather than computational costs such as runtime. Mathematically,
ARUBA takes advantage of similar structure in the regret-upper-bounds that we find in algorithms
with predictions, namely that the upper bounds encode some measure of the quality of the prediction
(in their case an initialization for gradient descent) via a comparison to the ground-truth (in their
case the optimal parameter). However, whereas in ARUBA the need to know this optimal parameter
after seeing a task is a weakness that does not hold in practice, in algorithms with predictions the
corresponding quantity—the feedback listed in Table 1—is generally known after seeing the instance.

3 Framework overview and application to bipartite matching

In this section we outline the theoretical framework for designing algorithms and proving guarantees
for learned predictors. As an illustrative example we will use the Hungarian algorithm for bipartite
matching, for which Dinitz et al. [16] demonstrated an instance-dependent upper bound on the
running time using a learned dual vector. Along the way, we will show an improvement to their
sample complexity bound together with the first online results for this setting.

Bipartite matching: For a bipartite graph on n nodes and m edges, min-weight perfect matching
(MWPM) asks for the perfect matching with the least weight according to edge-costs ¢ € ZZ,. A
common approach here is the Hungarian algorithm, a convex optimization-based approach for which
Dinitz et al. [16] showed a runtime bound of O (m+/nmin {|x — x*(c)||1,v/n}), where x € Z"
initializes the duals in a primal-dual algorithm and x*(c) € Z" is dual of the optimal solution; note
that the latter is obtained for free after running the Hungarian method.

Step 1 - Upper bound: The first step of our approach is to find a suitable function U;(x) of the
prediction x that (a) upper bounds the target algorithm’s cost C(x), (b) can be constructed completely
once the algorithm terminates, and (c) can be efficiently optimized. These qualities allow learning the
predictor in the second step. The requirements are similar to those of ARUBA for showing results for
meta-learning [25], although there the quantity being upper-bounded was regret, not algorithmic cost.



Algorithm 1: Generic application of an online learn- 20

. . . f, n=5000, yD=200
ing algorithm over X to learn a predictor for a linear bound
method AlgorithmWithPrediction that takes ad- T 01000 ¥D=100
vice from X and returns upper bounds U; on its 20 T. =50, ¥D=20
cost. The goal of OnlineAlgorithm is low regret

over the sequence Uy, so that on-average C' is upper

bounded by the smallest possible average of Uy, up
to some error decreasing in 7. For specific instanti-
ations of algorithms and feedback see Table 1.

bound on expectation of yDq
G

initialize x; € X for OnlineAlgorithm S ; 7 : 3 10

f()]‘ instance t — 17 e T do max expected number of mistakes in any interval of length yD
obtain instance [; Figure 1: Bounds f (c.f. Lemma 4.1) for
run AlgorithmWithPrediction (I, x;) three different n and D on the expected
suffer cost Cy(xt) < Up(xy) largest number of mistakes in any vD-
get feedback to construct upper bound U, interval as a function of the maximum

x¢+1 < OnlineAlgorithm({U; }L_,x1) expected number U (p) in any interval.

Many guarantees for algorithms with predictions are already amenable to being optimized, although
we will see that they can require some massaging in order to be useful. In many cases the guarantee is
a distance metric between the prediction x and some instance-dependent perfect prediction x*, which
is convex and thus straightforward to learn. This is roughly true of our bipartite matching example,
although taking the minimum of a constant and the distance ||x — x*(c)||; between the predicted and
actual duals makes the problem non-convex. However, we can further upper bound their result by
O (m+/n]|x — x*(c)||1); note that Dinitz et al. [16] also optimize this quantity, not the tighter upper
bound with the minimum. While this might seem to be enough for step one, Dinitz et al. [16] also
require the prediction x to be integral, which is difficult to combine with standard online procedures.
In order to get around this issue, we show that rounding any nonnegative real vector to the closest
integer vector incurs only a constant multiplicative loss in terms of the ¢;-distance.

Claim 3.1. Given any vectors x € Z™ andy € R™, lety € Z" be the vector whose elements are
those of y rounded to the nearest integer. Then ||x — y||1 < 2|x —y|1-

Proof. Let S C [n] be the set of indices i € [n] for which x;; > y;;; <= ¥ = [y}y]. For
i € [n]\S we have [x};) — yi;1| > 1/2 > |y — y[q| so it follows by the triangle inequality that

[x -yl = Z X[ — ¥ +Z X[ — ¥l < Z X1 — ¥l +Z|X[i] =yl + 1y — ¥l
ies i€m\S ies ic[n\S

< x = vl + 2D xp — vl < 2lx - ylh
€S 1€[n]\S

O

Combining this projection with the convex relaxation above and the result of Dinitz et al. [16] shows
that for any predictor x € R™ we have (up to affine transformation) a convex upper bound U;(x) =
lx — x*(c¢)||1 on the runtime of the Hungarian method, as desired. We now move to step two.

Step 2 - Online learning: Once one has an upper bound U; on the cost, the second component of our
approach is to apply standard online learning algorithms and results to these upper bounds to obtain
guarantees for learning predictions. In online learning, on each of a sequence of rounds ¢t = 1,...,T
we predict x; € X and suffer U;(x;) for some adversarially chosen loss function Uy : X — R that we

then observe; the goal is to use this information to minimize regret Zil Ui(x¢) — minge x U (%),
with the usual requirement being that it is sublinear in 7" and thus decreasing on average over time.
For bipartite matching, we can just apply regular projected online (sub)gradient descent (OGD) to
losses Uy (x) = [[x —x*(c¢) |1, i.e. the update rule x;41 < arg min, ¢ y (VU (x),x) + 1 [|x]|3 for
appropriate step-size o > 0; as shown in Theorem 3.1, this yields sublinear regret via a textbook result.
The simplicity here is the point: by relegating as much of the difficulty as we can to obtaining an easy-
to-optimize upper bound in step one, we make the actual learning-theoretic component easy. However,
as we show in the following sections, it is not always easy to obtain a suitable upper bound, nor is
it always obvious what online learning algorithm to apply, e.g. if the upper bounds are non-convex.



Our use of online learning is motivated by three factors: (1) doing well on non-i.i.d. instances is impor-
tant in practical applications, e.g. in job scheduling where resource demand changes over time; (2) its
extensive suite of algorithms lets us use different methods to tailor the approach to specific settings and
obtain better bounds, as we exemplify via our use of exponentiated gradient over the simplex geometry
in Section 4 and KT-OCO over unbounded Euclidean space in Section 5; (3) the existence of classic
online-to-batch procedures for converting regret into sample complexity guarantees [12], i.e. bounds
on the number of samples needed to obtain an e-suboptimal predictor w.p. > 1 — §. While online-to-
batch conversion can be suboptimal [20], as we show in Theorems 3.1, B.2, and D.1 its application
to various graph algorithms with predictions problems improves upon existing sample complexity
results. For completeness, we formalize online-to-batch conversion as Lemma A.1 in the Appendix.

We now show how to apply the second online learning step to bipartite matching by improving upon
the result of Dinitz et al. [16] in Theorem 3.1; the improvement is the entirely new regret bound against
adversarial cost vectors and a O(n) lower sample complexity. Note how the proof needs only their
existing algorithmic contribution, Claim 3.1, and some standard tools in online convex optimization.

Theorem 3.1. Suppose we have a fixed bipartite graph with n > 3 vertices and m > 1 edges.

1. For any cost vector ¢ € ZZ, and any dual vector x € R" there exists an algorithm for MWPM

that runs in time ~ ~
O (my/nmin {U(x),v/n}) < O (my/nU(x))
forU(x) = ||x — x*(c)||1, where x*(c) the optimal dual vector associated with c.
2. There exists a poly-time algorithm s.t. for any §,¢ > 0 and distribution D over integer m-vectors

with {o-norm < C' it takes O ((C”)2 log %) samples from D and returns X s.t. wp. > 1 —6:

e
Ecop|% —x"(c)||1 < | r”nin Ecupllx —x*(c)|1 + &
Xlloo S

3. Letcy,...,cr € ZZ, be an adversarial sequence of m-vectors with Lo-norm < C. Then OGD
with appropriate step-size has regret

T
Hxlﬁlj}éc; e = x*(co)ll — I = x*(ee) [+ < Cni2T

Proof. The first result follows by combining Dinitz et al. [16, Theorem 13] with Claim 3.1. For the
third result, let x; be the sequence generated by running OGD [46] with step size C'/ V2T on the losses
Ui(x) = ||x — x*(c)|]1 over domain [—C, C]™. Since these losses are \/n-Lipschitz and the duals
are C'y/n-bounded in Euclidean norm the regret guarantee follows from Shalev-Shwartz [44, Corol-
lary 2.7]. For the second result, we apply standard online-to-batch conversion to the third result, i.e.

we draw T' = () ((%) *log %) samples c;, run OGD as above on the resulting losses Uy, and set X =

% ZtT:l X; to be the average of the resulting predictions x;. The result follows by Lemma A.1. [J

This concludes an overview of our two-step approach for obtaining learning guarantees for algorithms
with predictions. To summarize, we propose to (1) obtain simple-to-optimize upper bounds Uy (x)
on the cost of the target algorithm on instance ¢ as a function of prediction x and (2) optimize
Ut (x) using online learning. While conceptually simple, even in this illustrative example it already
improves upon past work; in the sequel we demonstrate further results that this approach makes
possible. Note that, like Dinitz et al. [16], we are also able to generalize Theorem 3.1 to b-matchings,
which we do in Appendix B; another advantage of our approach is that it lets us prove online
and statistical learning in the case where the demand vector b varies across instances rather than
staying fixed as in Dinitz et al. [16]. Finally, in Appendix D we also improve upon the more recent
learning-theoretic results of Chen et al. [13] for related graph algorithms with predictions problems.

4 Predicting requests for page migration

Equipped with our two-step approach for deriving guarantees for learning predictors, we investigate
several more important problems in combinatorial optimization, starting with the page migration
problem. Our results demonstrate that even for learning such simple predictors there are interesting
technical challenges in deriving a learnable upper bound. Nevertheless, once this is accomplished
the second step of our approach is again straightforward.



Page migration: Consider a server that sees a sequence of requests [y, . . . , 85, from metric space
(K, d) and at each timestep decides whether to change its state a;) € K at cost Dd(af;—1, a[i]) for
some D > 1; it then suffers a further cost d(ay;, s};)). The online page migration (OPM) problem is
then to minimize the cost to the server. Recently, Indyk et al. [22] studied a setting where we are given

a sequence of predicted points 5y, . .., 8}, € K to aid the page migration algorithm. They show that
if there exists v,¢ € (0,1) s.t. ¥D € [n] and for any i € [n] we have Z;:ZD_l Ls 8, < ayD

then there exists an algorithm with competitive ratio (1 + +)(1 + O(q)) w.r.t. to the offline optimal.
This algorithm depends on v but not g, so we study the setting where 7 is fixed.

Deriving an upper bound: As in the previous section, the predictions are discrete, so to use our
approach we must convert it into a continuous problem. As we have fixed ~, the competitive ratio is
an affine function of the following upper bound on ¢:

1 i+yD—1
§,8) = — max 15,45
Q) vD ien—yD+1] JZ; S 75
We assume that the set of points K is finite with indexing & = 1,. .., |K| and use this to introduce our

continuous relaxation, a natural randomized approach converting the problem of learning a prediction
into n experts problems on |KC| experts. For each j € [n] we define a probability vector pj; € A
governing the categorical r.v. 5;}, i.e. Pr{8};) = k} = p[;») V k¥ € K. Under these distributions the
expected competitive ratio will be (1 + v)(1 + O(E;pQ(S8, s))), for p the product distribution of
the vectors p;. Note that forcing each p; to be a one-hot vector recovers the original approach with
no loss, so optimizing E;,Q(3, s) over p € A‘”,q would find a predictor that fits the original result.

However, E;pQ(3, s) is not convex in p. The simplest relaxation is to replace the maximum by
summation, but this leads to a worst-case bound of O <7%) We instead bound E;,,Q($, s)—and
thus also the expected competitive ratio—by a function of the following maximum over expectations:

i+yD—1 i+yD—1
U, = ma; E; 1z = ma; 1— {s; ;
s(p) ie[n_wgﬂ] $~p ; 8151750 ie[n—v%—&-l] ; (s PLy))

where s; ) = 15[;‘]:’€ Vkek,ie. s[j] encodes the location in IC of the jth request. As a maximum
over n — D + 1 convex functions this objective is also convex. Note also that if U,(p) is zero—i.e.
the probability vectors are one-hot and perfect—then E;..pQ(8, s) > ¢ will also be zero. In fact, ¢ is
upper-bounded by a monotonically increasing function of U, (p) that is zero at the origin, but as this

M) loss to
~D

function is concave and non-Lipschitz (c.f. Figure 1) we incur an additive O (
obtain an online-learnable upper bound. This is formalized in the following result (proof in A.1).

Lemma 4.1. There exist constants a < e,b < 2/e and a monotonically increasing function f :
[0,00) — [0,00) s.. £(0) =0and

EsopQ(3,s) < [(Us(p)) _ aUs(p) +blog(n —yD + 1)

vD ~vD

We now have an convex bound on the competitive ratio for the OPM algorithm of Indyk et al. [22].
For both this and bipartite matching we resorted to a relaxation of a discrete problem. However,
whereas before we only incurred a multiplicative loss (c.f. Claim 3.1), here we have an additive
loss that makes the bound meaningful only for vD > logn. However, as the method we propose
optimizes Uy (p), which bounds ¢ with no additive error via the function f in Lemma 4.1, in-practice
we may expect it to help minimize g in all regimes. Note that the non-Lipschitzness near zero that
prevents using f for formal regret guarantees comes from the poor tail behavior of Poisson-like
random variables with small means, which we do not expect can be significantly improved.

Learning guarantees: Having established an upper bound, in Theorem 4.2 we again show how
a learning-theoretic result follows from standard online learning. This time, instead of OGD
we run exponentiated (sub)gradient (EG) [44], a classic method for learning from experts, on
each of n simplices to learn the probabilities pj;) V j € [n]. The multiplicative update x;y; o
x: Oexp(—aVU;(x;)) of EG is notable for yielding regret logarithmic in the size || of the simplices,
which is important for large metric spaces. Note that as the relaxation is randomized, our algorithms
output a dense probability vector; to obtain a prediction for OPM we sample 5; ;1 ~ py;] Vj€[n].



Theorem 4.2. Let (K, d) be a finite metric space.

1. For any request sequence s and any set of probability vectors p € Aﬁc\ there exists an algorithm
for OPM with expected competitive ratio

(147) <1+O<U5(p)+10i(g—”yD+l))>

2. There exits a poly-time algorithm s.t. for any §,& > 0 and distribution D over request sequences

2
s € K™ it takes O ((?) (n2 log |K| + log é)) samples from D and returns p s.t. wp. > 1—9:

ESNDUS(f)) < min ESNDUS(p) +e

pEA‘*’)’C‘
3. Let s1,...,8T be an adversarial sequence of request sequences. Then updating the distribution
Pi[;) over A| K| at each timestep j € [n] using EG with appropriate step-size has regret
T
Jnax Us,(pt) — Us,(p) < vDnv/2T log K|
Il =1

Proof. The first result follows by combining Indyk et al. [22, Theorem 1] with Lemma 4.1. For the

third let p; be generated by running n exponentiated gradient algorithms with step-size 4/ 2{;)2%'[')12} on

losses Us, (p) over A|n/q . Since these are v D-Lipschitz and the maximum entropy is log | K|, the regret
follows by [44, Theorem 2.15]. For the second result, apply standard online-to-batch conversion to the

2
third, i.e. draw 7' = Q <(“’5D) (n?log K| + log (15)> samples s, run EG on Us, (p) as above, and

setp = % Zthl P: to be the average of the resulting actions. The result follows by Lemma A.1. [J]

As before, this result first shows how the quantity of interest—here the competitive ratio—is upper-
bounded by an affine function of some quality measure Uy (p), for which we then provide regret and
statistical guarantees using online learning. The difficulty deriving a suitable bound exemplifies the
technical challenges that arise in learning predictors, and may also be encountered in other sequence
prediction problems such as TCP [10]. Nevertheless, our approach does yield an online procedure that

incurs only O( k;gD”) additive error over Indyk et al. [22] in the case of a perfect predictor and, unlike
their work, we provide an algorithm for learning the predictor itself. In Appendix C.2 we also show

an auto-regressive extension which does not require learning a distribution for each timestep j € [n].

5 Learning linear predictors with instance-feature inputs

So far we have considered only fixed predictors, either optima-in-hindsight in the online setting or
a population risk minimizers for i.i.d. data. Actual instances can vary significantly and so a fixed pre-
dictor may not be very good, e.g. in the example of querying a sorted array it means always returning
the same index. In the online setting one can consider methods that adapt to dynamic comparators [46,
23, 37], which are also applicable to our upper bounds; however, these still need measures such as
the comparator path-length to be small, which may be more reasonable in some cases but not all.

We instead study the setting where all instances come with instance-specific features, a natural and
practical assumption [27, 30] that encompasses numerical representations of the instance itself—e.g.
bits representing a query or a graph—or other information such as weather or day of the week. These
are passed to functions—e.g. linear predictors, neural nets, or trees—whose parameters can be learned
from data. We study linear predictors, which are often amenable to similar analyses as above since the
composition of a convex and affine function is convex. For example, it is straightforward to extend the
matching results to learning linear predictors of duals. OPM is more challenging because the outputs
must lie in the simplex, which can be solved by learning rectangular stochastic matrices. Both sets of
results are shown in Appendix C. Notably, for page migration our guarantees cover the auto-regressive
setting where the server probabilities are determined by a fixed linear transform of past states.

Our main example will be online job scheduling via minimizing the fractional makespan [30], where
we must assign each in a sequence of variable-sized jobs to one of /m machines. Lattanzi et al. [30] pro-
vide an algorithm that uses predictions W € RZ; of “good” machine weights w € RZ); to assign jobs



based on how well W corresponds to machine demand; the method has a performance guarantee of
m}). They also discuss learning linear and other predictors, but without guar-

O(log min{max; — wr
antees. We study hnear prediction of the logarithm of the machine weights, which makes the problem
convex, and assume features lie in the f-dimensional simplex. For simplicity we only consider learn-
ing the linear transform from features to predictors and not the intercept, as the former subsumes the
latter. For the online result, we use KT-OCO [38, Algorithm 1], a parameter-free subgradient method

. 14370 (gs,Xs)
with update x¢ 4,  —==7""—"

bound on the machine weights and thus to compete with the optimal linear predictor in all of R™*/.

ZZ=1 g for g = VU,(x;); it allows us to not assume any

Theorem 5.1. Consider online restricted assignment with m > 1 machines [30, Section 2.1].
1. For predicted logits x € R™ there is an algorithm whose fractional makespan has competitive ratio
O(min{ |x — log W[, logm}) < O(U(x))

for U(x) = ||x — log W||oo, where w € RT,) are good machine weights [30, Section 3].

2. There exists a poly-time algorithm s.t. for any d,¢ > 0 and distribution D over machine
(weight, feature) pairs (w,f) € RZTy x Aj s.t. |[logw|leec < B the algorithm takes

o ((?)2 (mf + log %)) samples from D and returns A € R™*f st wp. >1—6

E(w ryop||Af — 1 w.r)p||Af —1
(w.5)~Dll 0g Wloo < |\Aﬂdx<3 (w.£)~D| 0g Wlloo + €
3. Let (wq,f1),...,(wrp,fr) € RZ) x A be an adversarial sequence of (weights, feature) pairs.

Then for any A € R™*/ KT-OCO has regret

T
S IAf —logwilluw — AL, — log Wil < [Allry/Tlog(1 + 24T2|[A[3) + 1
t=1
If we restrict to matrices with entries bounded by B then OGD with appropriate step-size has regret

T
Afy —log Wi oo — [|Af; —log Wi[|eo < Bv/2m /T
A DDA~ g o — A~ Togwil < By2nT

Proof. The first result follows by substituting max; % for n in Lattanzi et al. [30, Theorem 3.1]

and upper bounding the maximum by the ¢,-norm. For the third, since U is 1-Lipschitz w.r.t. the Eu-
clidean norm we apply the guarantee for KT-OCO [38, Algorithm 1] using € = 1 and the subgradients
of ||A¢f; — log Wi || oo as rewards [38, Corollary 5]. The result for B-bounded A follows by applying

OGD with step-size B/ 5 s over |A]|max < B [44, Corollary 2.7]. Finally, the second result follows
by applying online-to-batch conversion to the latter result, i.e. draw T = ) ((;) (m f+1log 3)>

samples (wy, ), run OGD on the resulting losses ||Af, — log wy||o as above, and set A =
% ZtT:l A, to be the average of the resulting actions A;. The result follows by Lemma A.1. O

This guarantee is the first we are aware of for learning non-static predictors in the algorithms with
predictions literature. It demonstrates both how to extend fixed predictor results to learning linear
predictors—note that the former is recovered by having f; = 1; V t—and how to handle unbounded
predictor domains. The ability to provide such guarantees is another advantage of our approach.

6 Tuning robustness-consistency trade-offs for scheduling and ski-rental

We turn to tuning robustness-consistency trade-offs, introduced in Lykouris and Vassilvitskii [34].
This trade-off captures the tension between following the predictions when they are good (consistency)
and doing not much worse than the worst-case guarantee in either case (robustness). In many cases,
this trade-off can be made explicit, by a parameter A € [0, 1]. The setting of A is crucial, yet previous
work left the decision to the end-user. Here we show that it is often eminently learnable in an online
setting. We then demonstrate how to accomplish a much harder task—tuning A at the same time as
learning to predict—on two related but technically very different variants of the ski-rental problem.
This meta-application highlights the applicability of our approach to non-convex upper bounds.



Robustness-consistency trade-offs: Most problems studied in online algorithms with predictions
usually have existing worst-case guarantees on the competitive ratio, i.e. a constant v > 1 on how
much worse (multiplicatively) a learning-free algorithm does relative to the offline optimal cost OPT;
on instance t. While the goal of algorithms with predictions is to use data to do better than this
worst-case bound, an imperfect prediction may lead to much worse performance. As a result, most
guarantees strive to upper bound the cost of an algorithm with prediction x on an instance ¢ as follows:

Ct(xa )‘) < min {f(A)ut(X)a gt()\)}
Here u; is some measure of the quality of x on instance ¢, A € [0, 1] is a parameter, f is a mono-
tonically increasing function that ideally satisfies f(0) = 1, and g; is a monotonically decreasing
function that ideally satisfies g;(1) = YOPT;. A very common structure is f(\) = 1/(1 — \) and
gi(A\) = FOPT;. For example, consider job scheduling with predictions, a setting where we are
given n jobs and their predicted runtimes with total absolute error 77 and must minimize the sum
of their completion times when running on a single server with pre-emption. Here Kumar et al.
[29, Theorem 3.3] showed that a preferential round-robin algorithm has competitive ratio at most

14+2n/n 2
1-A A

optimal cost (consistency); on the other hand, if we know the prediction is poor we can set A = 1
and get the (tight) worst-case guarantee of two (robustness).

min { } Thus if we know the prediction is perfect we can set A = 0 and obtain the

Of course in-practice we often do not know how good a prediction is on a specific instance ¢; we thus
would like to learn to set ), i.e. to learn how trustworthy our prediction is. As a first step, we can
consider doing so when we are given a prediction for each instance and thus only need to optimize over
. For example, the just-discussed problem of job scheduling has competitive ratio upper-bounded by

U;(A\) = min {%, %} for n; and 7, the number of jobs and the prediction quality, respectively,
on instance ¢. Assuming a bound B on the average error makes U; Lipschitz, so we can apply the
exponentially weighted average forecaster [28, Algorithm 1], also known as the exponential
forecaster. This algorithm, whose action at each time ¢ + 1 is to sample from the distribution with
density pry1(+) x p1(-) exp(—a 22:1 Us(+)), has the following regret guarantee (proof in A.2):

Corollary 6.1. For the competitive ratio upper bounds U, of the job scheduling problem with average
prediction error 11/n; at most B the exponential forecaster with appropriate step-size has expected

regret
max ]EZUt (M) — U(\) < 9B ,/ZlogT
A€0,1] 2

Thus a standard learning method produces a sequence \; that performs as well as the best A asymp-
totically. We next consider the more difficult problem of simultaneously tuning A learning to predict.

Ski-rental: We instantiate this challenge on ski-rental, in which each task ¢ is a ski season with an
unknown number of days n; € Zx>»; to ski each day, we must either buy skis at price b; or rent each
day for the price of one. The optimal offline behavior is to buy iff b, < n;, and the best algorithm has
worst-case competitive ratio e/(e — 1). Kumar et al. [29] and Bamas et al. [10, Theorem 2] further
derive an algorithm with the following robustness-consistency trade-off between blindly following a
prediction x and incurring cost w(x) = b;1y>p, + nily<p, Or going with the worst-case guarantee:

mln{)\ut( ) bt,nt}
1-— et( )\)

Assuming a bound of N > 2 on the number of days and B > 0 on the buy price implies that U, is

bounded and Lipschitz w.r.t. A. We can thus run exponentiated gradient on the functions U, to learn

a categorical distribution over the product set [N] x {¢/2,...,1 —¢/2} for some ¢ s.t. 1/ € Z>o.
This yields the following bound on the expected regret (proof in A.3).

Ur(z,A) = cen(z) = (14 1/by)"*

Corollary 6.2. For the competitive ratio upper bounds U, of the discrete ski-rental problem the
randomized exponentiated gmdient algorithm with an appropriate step-size has expected regret

max EZ Up(xs, \) — Up(2, ) < 6NT log(BNT)
t=1

z€[N],A€(0,1]

Thus via an appropriate discretization the sequence of predictions (x¢, A¢) does as well as the joint
optimum on this problem. However, we can also look at a case where we are not able to just discretize



to get low regret. In particular, we consider the continuous ski-rental problem, where each day
ng > 1 is a real number, and study how to pick thresholds x after which to buy skis, which has cost
w(x) = nglp,<e + (b + )1, >, Note that z = 0 and z = N recovers the previous setting where
our decision was to buy or not at the beginning. For this setting, Diakonikolas et al. [15] adapt an
algorithm of Mahdian et al. [35] to bound the cost as follows:

ug(z) emin{ng, b}
1-X" (e—=1)A
While the bound is simpler as a function of ), it is discontinuous in x because u; is piecewise-

Lipschitz. Since one cannot even attain sublinear regret on adversarially chosen threshold functions,
we must make an assumption on the data. In particular, we will assume the days are dispersed:

Definition 6.3. A set of (possibly random) points n1,...,ny € R are S-dispersed if V & > T8
the expected number in any e-ball is O(eT'), i.e. Emax,cpo n|[z £ €] N {n1,...,nr}| = O(T).

Ci(z, A) < Up(z,\) = min{

Dispersion encodes the stipulation that the days, and thus the discontinuities of wu;(x, \), are not
too concentrated. In the i.i.d. setting, a simple condition that leads to dispersion with 8 = 1/2
is the assumption that the points are drawn from a x-bounded distribution [6, Lemma 1]. Notably
this is a strictly weaker assumption than the log-concave requirement of Diakonikolas et al. [15]
that they used to show statistical learning results for ski-rental. Having stipulated that the ski-days
are J-dispersed, we can show that it implies dispersion of the loss functions [6] and thus obtain the
following guarantee for the exponential forecaster applied to U;(x, A) (proof in A.4):

Corollary 6.4. For cost upper bounds U, of the continuous ski-rental problem the exponential
forecaster with an appropriate step-size has expected regret

T
ES Uiz, \) —U(z,\) < O (/Tlog(NT) + (N + B)?>T' 8
o B 0 2 Uil ) = Uil ) < O (VT Tog(NT) + (N + BT )

Thus in two mathematically quite different settings of ski-rental we can directly apply online learning
to existing bounds to not only learn online the best action for ski-rental, but to at the same time learn
how trustworthy the best action is via tuning the robustness-consistency trade-off.

7 Conclusion and future work

The field of algorithms with predictions has been successful in circumventing worst case lower
bounds and showing how simple predictions can improve algorithm performance. However, except
for a few problem-specific approaches, the question of how to predict has largely been missing
from the discussion. In this work we presented the first general framework for efficiently learning
useful predictions and applied it to a diverse set of previously studied problems, giving the first low
regret learning algorithms, reducing sample complexity bounds, and showing how to learn the best
consistency-robustness trade-off. One current limitation is the lack of more general-case guarantees
for simultaneously tuning robustness-consistency and learning the predictor, which we only show for
ski-rental. There are also several other avenues for future work. The first is to build on our results
and provide learning guarantees for other problems where the algorithmic question of zow to use
predictions is already addressed. Another is to try to improve known bounds by solving the problems
holistically: developing easy-to-learn parameters in concert with developing algorithms that can use
them. Finally, there is the direction of identifying hard problems: what are the instances where no
reasonable prediction can help improve an algorithm’s performance?

Acknowledgments

We thank Yilin Yan, Alexander Smola, Shinsaku Sakaue, and Taihei Oki for helpful discussion.
This material is based on work supported in part by the National Science Foundation under grants
CCF-1535967, CCF-1910321, 11S-1618714, 11S-1705121, 11S-1838017, 11S-1901403, 11S-2046613,
and SES-1919453; the Defense Advanced Research Projects Agency under cooperative agreements
HRO00112020003 and FA875017C0141; a Simons Investigator Award; an AWS Machine Learning
Research Award; an Amazon Research Award; a Bloomberg Research Grant; a Microsoft Research
Faculty Fellowship; an Amazon Web Services Award; a Facebook Faculty Research Award; funding
from Booz Allen Hamilton Inc.; a Block Center Grant; and a Facebook PhD Fellowship. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of any of these funding agencies.

10



References

[1] Keerti Anand, Rong Ge, and Debmalya Panigrahi. Customizing ML predictions for online
algorithms. In Proceedings of the 37th International Conference on Machine Learning, 2020.

[2] Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Panigrahi. A regression approach to
learning-augmented online algorithms. In Advances in Neural Information Processing Systems,
2021.

[3] Maria-Florina Balcan. Data-driven algorithm design. In Tim Roughgarden, editor, Beyond the
Worst-Case Analysis of Algorithms. Cambridge University Press, Cambridge, UK, 2021.

[4] Maria-Florina Balcan and Avrim Blum. Approximation algorithms and online mechanisms for
item pricing. Theory of Computing, 3:179-195, 2007.

[5] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch.
In Proceedings of the 35th International Conference on Machine Learning, 2018.

[6] Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. Dispersion for data-driven algorithm
design, online learning, and private optimization. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pages 603614, 2018.

[7] Maria-Florina Balcan, Travis Dick, and Wesley Pegden. Semi-bandit optimization in the
dispersed setting. In Proceedings of the Conference on Uncertainty in Artificial Intelligence,
2020.

[8] Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and
Ellen Vitercik. How much data is sufficient to learn high-performing algorithms? Generalization
guarantees for data-driven algorithm design. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computingg, 2021.

[9] Maria-Florina Balcan, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. Learning-to-
learn non-convex piecewise-Lipschitz functions. In Advances in Neural Information Processing
Systems, 2021.

[10] Etienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning
augmented algorithms. In Advances in Neural Information Processing Systems, 2020.

[11] Peter Bartlett, Piotr Indyk, and Tal Wagner. Generalization bounds for data-driven numerical
linear algebra. In Proceedings of the 35th Annual Conference on Learning Theory, 2022.

[12] Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of
on-line learning algorithms. IEEE Transactions on Information Theory, 50(9):2050-2057, 2004.

[13] Justin Y. Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster fundamental graph
algorithms via learned predictions. In Proceedings of the 40th International Conference on
Machine Learning, 2022.

[14] Ofer Dekel, Arthur Flajolet, Nika Haghtalab, and Patrick Jaillet. Online learning with a hint. In
Advances in Neural Information Processing Systems, 2017.

[15] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Ali Vakilian, and Nikos Zarifis. Learning
online algorithms with distributional advice. In Proceedings of the 38th International Conference
on Machine Learning, 2021.

[16] Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii.

Faster matchings via learned duals. In Advances in Neural Information Processing Systems,
2021.

[17] Elbert Du, Franklyn Wang, and Michael Mitzenmacher. Putting the “learning” into learning-

augmented algorithms for frequency estimation. In Proceedings of the 38th International
Conference on Machine Learning, 2021.

11



[18] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Proceedings of the 34th International Conference on Machine
Learning, 2017.

[19] Rishi Gupta and Timothy Roughgarden. A PAC approach to application-specific algorithm
selection. SIAM Journal on Computing, 46(3):992—-1017, 2017.

[20] Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: Optimal algorithms for
stochastic strongly-convex optimization. Journal of Machine Learning Research, 15:2489-2512,
2014.

[21] David P. Helmbold and Manfred K. Warmuth. Learning permutations with exponential weights.
Journal of Machine Learning Research, 10:1705-1736, 2009.

[22] Piotr Indyk, Frederik Mallmann-Trenn, Slobodan Mitrovié¢, and Ronitt Rubinfeld. Online page
migration with ML advice. In Proceedings of the 25th International Conference on Artificial
Intelligence and Statistics, 2022.

[23] Ali Jadbabaie, Alexander Rakhlin, and Shahin Shahrampour. Online optimization: Competing
with dynamic comparators. In Proceedings of the 18th International Conference on Artificial
Intelligence and Statistics, 2015.

[24] Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun. Online algorithms for weighted paging with
predictions. In Proceedings of the 47th International Colloquium on Automata, Languages, and
Programming, 2020.

[25] Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Adaptive gradient-based meta-
learning methods. In Advances in Neural Information Processing Systems, 2019.

[26] Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina Balcan, Virginia Smith, and
Ameet Talwalkar. Federated hyperparameter tuning: Challenges, baselines, and connections to
weight-sharing. In Advances in Neural Information Processing Systems, 2021.

[27] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proceedings of the 2018 International Conference on Management of Data,
2018.

[28] Walid Krichene, Maximilian Balandat, Claire Tomlin, and Alexandre Bayen. The hedge
algorithm on a continuum. In Proceedings of the 32nd International Conference on Machine
Learning, 2015.

[29] Ravi Kumar, Manish Purohit, and Zoya Svitkina. Improving online algorithms via ML predic-
tions. In Advances in Neural Information Processing Systems, 2018.

[30] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online schedul-
ing via learned weights. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, 2020.

[31] Jeffrey Li, Mikhail Khodak, Sebastian Caldas, and Ameet Talwalkar. Differentially private
meta-learning. In Proceedings of the 8th International Conference on Learning Representations,
2020.

[32] Sen Lin, Mehmet Dedeoglu, and Junshan Zhang. Accelerating distributed online meta-learning
via multi-agent collaboration under limited communication. In Proceedings of the Twenty-
second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for
Mobile Networks and Mobile Computing, 2021.

[33] Alexander Lindermayr and Nicole Megow. Permutation predictions for non-clairvoyant schedul-
ing. In Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures,
2022.

[34] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
Journal of the ACM, 68(4), 2021.

12



[35] Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. Online optimization with uncertain
information. ACM Transactions on Algorithms, 8:1-29, 2012.

[36] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. In Tim Rough-
garden, editor, Beyond the Worst-Case Analysis of Algorithms. Cambridge University Press,
Cambridge, UK, 2021.

[37] Aryan Mokhtari, Shahin Shahrampour, Ali Jadbabaie, and Alejandro Ribeiro. Online opti-
mization in dynamic environments: Improved regret rates for strongly convex problems. In
Proceedings of the 55th IEEE Conference on Decision and Control, 2016.

[38] Francesco Orabona and David Pal. Coin betting and parameter-free online learning. In Advances
in Neural Information Processing Systems, 2016.

[39] Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In
Proceedings of the 26th Annual Conference on Learning Theory, 2013.

[40] Alexander Rakhlin and Karthik Sridharan. Efficient online multiclass prediction on graphs via
surrogate losses. In Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, 2017.

[41] Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, 2020.

[42] Timothy Roughgarden. Beyond Worst-Case Analysis of Algorithms. Cambridge University
Press, 2020.

[43] Ziv Scully, Isaac Grosof, and Michael Mitzenmacher. Uniform bounds for scheduling with
job size estimates. In Proceedings of the 13th Innovations in Theoretical Computer Science
Conference, 2022.

[44] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends
in Machine Learning, 4(2):107-194, 2011.

[45] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51(3):385-463, 2004.

[46] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the 20th International Conference on Machine Learning, 2003.

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumptions
stated in Sections 3, 4, 6, and the Appendix.
(b) Did you include complete proofs of all theoretical results? [Yes] Proofs given in
Sections 3, 4, and the Appendix.
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [IN/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A|

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [IN/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [IN/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A ]

14



	Introduction
	Related work
	Framework overview and application to bipartite matching
	Predicting requests for page migration
	Learning linear predictors with instance-feature inputs
	Tuning robustness-consistency trade-offs for scheduling and ski-rental
	Conclusion and future work
	Proofs of main results
	Proof of Lemma 4.1
	Proof of Corollary 6.1
	Proof of Corollary 6.2
	Proof of Corollary 6.4
	Online-to-batch conversion

	b-matching
	Learning linear predictors with instance-feature inputs
	b-matching
	Online page migration

	Faster graph algorithms with predictions
	Permutation predictions for non-clairvoyant scheduling

