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A B S T R A C T   

Construction sites are incorporating cameras to gather imagery data for project management. While transformer- 
based deep models show promise in recognizing construction objects and understanding the environment, their 
use in construction images is largely unexplored. This paper presents a systematic evaluation of three state-of- 
the-art transformer-based models for automatic segmentation and recognition of construction images. Further, 
a two-stage model ensembling strategy based on model averaging and probability weighting is introduced and 
implemented for performance improvement. A dataset containing five classes of recycling materials on con-
struction sites is created as a benchmark to compare their performance. The comparison results indicate the 
ensemble model could achieve encouraging results with a mIoU of 82.36% and mPA of 90.30%, which 
demonstrate superior segmentation performance on construction images.   

1. Introduction 

It has been common to establish a video camera network on a con-
struction site to acquire imagery data due to the rapid development of 
digital camera technology [1]. Availability of these data provides op-
portunities for promoting automation [2], improving productivity [1], 
solving safety issues [3], etc. in construction. They create essential visual 
documentation that will serve the project team during construction, 
such as onsite monitoring [1,4], progress tracking [5]. Moreover, the 
learnings from processing site images (e.g., the cues for identifying po-
tential hazards [6], the features for recognizing equipment activities 
[7]) can be transferred easily to benefit future projects. 

Techniques for automatic segmentation and recognition of con-
struction objects have provided a powerful tool to analyze these image 
data. They are capable of segmenting and recognizing regions of various 
objects from an input construction image, and thus offering novel means 
for the visual understanding of construction environment. For example, 
these segmentation techniques can enable onsite robots to conduct 
comprehensive analyses of the surrounding environmental conditions 
for performing safe navigation [8]. Also, they offer a convenient way for 

aiding human workers to rapidly inspect infrastructure health, such as 
assessing surface defects [9], and identifying damaged components 
[10]. 

So far, there are many research studies proposed for image semantic 
segmentation tasks. They either relied on classical machine learning 
classifiers (e.g., Support Vector Machine (SVM) [11], Random Forest 
[12]), or deep neural networks (e.g., convolutional neural networks 
(CNNs) [13] using encoder-decoders [14]). The performance of these 
methods was evaluated on several public datasets, such as COCO [15] 
and ADE20K [16]. The results demonstrated superior performance using 
deep neural networks and have thus validated the effectiveness of these 
deep networks. Among deep learning methods, recently proposed 
transformer-based architectures that leverage self-attention mechanism 
can model long-range dependencies in an image [17], which refer to the 
relationships between pixels or image regions that are separated by a 
significant distance from each other. Transformers have demonstrated 
impressive segmentation performance in various applications, such as 
tasks in medical image analysis [18] and autonomous driving [19]. 

Although the performance of transformer-based segmentation is 
promising, its applications to construction images remain largely 
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unexplored. This motivates us to study the feasibility of using 
transformer-based models for construction image segmentation tasks. 
This paper presents a systematic evaluation of transformer-based ar-
chitectures and their ensemble model on construction image segmen-
tation tasks. It starts with the literature review of existing image 
semantic segmentation methods and their applications in construction. 
Then, three state-of-the-art transformer-based architectures (Swin 
Transformer, Twins Transformer, and K-Net) are selected and their 
ensemble model is implemented based on a two-stage model ensembling 
strategy. A novel dataset containing 5 classes of recycling materials on 
construction sites is utilized and employed as a benchmark. The models 
are evaluated in terms of mean Intersection over Union (mIoU) and 
mean pixel accuracy (mPA), widely considered for semantic segmenta-
tion tasks. The evaluation results demonstrate superior semantic seg-
mentation performance of transformer-based architectures on 
construction images. 

The contributions of the paper are summarized as follows. First, we 
evaluated systemically existing transformer-based segmentation models 
on construction image samples. Second, we proposed a novel two-stage 
model ensembling framework built upon the performance analysis of 
existing transformer-based segmentation models. The framework takes 
advantage of the strength of existing transformer-based segmentation 
models and demonstrates significantly improved overall segmentation 
performance. To our knowledge, none of the existing research studies 
conducted such systematic evaluations and explored the adaptation and 
performance of transformer-based segmentation models in the context 
of construction image segmentation. Also, none of the existing research 
studies proposed the model ensembling framework as ours to overcome 
the weakness of individual transformer-based segmentation models 
when segmenting construction images with different types of materials. 

2. Related work 

2.1. Applications of semantic segmentation techniques in construction 

Image semantic segmentation techniques have been applied to 
improve the construction industry in many aspects, such as safety, 
automation, and inspection. Considerable research focused on 
improving construction and building safety by vision-based techniques. 
For example, Yu et al. [20] located construction workers by Fast R-CNN 
and detected openings by DeepLabv3+ for the real-time monitoring of 
the construction site, aiming to prevent workers from falling. Wang et al. 
[21] proposed a novel method based on YOLOv3, SENet and thresh-
olding segmentation algorithm to detect tower crane rust defects for 
improving construction safety. Bang et al. [22] developed a proactive 
proximity-monitoring method applied on Unmanned Aerial Vehicle 
(UAV) collected videos to prevent struck-by accidents on construction 
sites. The method segmented construction objects by Mask R-CNN and 
predicted their future trajectories by convolutional long short-term 
memory (LSTM) for avoiding dangerous situations. Zhou et al. [23] 
implemented a Mask R-CNN based segmentation framework to auto-
matically detect and estimate the fire loads of buildings. 

There has been a recent surge of interest in developing construction 
robots for improving the automation of construction projects. To 
introduce robots into construction sites, scene understanding plays a 
crucial role since it allows the on-site robots to recognize the sur-
rounding environment and maneuver by themselves. Asadi et al. [24] 
proposed a deep neural network architecture for real-time pixel-wise 
semantic segmentation to make camera-equipped UAVs understand 
their surrounding environments. Atkinson et al. [25] presented a two- 
stage transfer learning method based on Mask R-CNN to allow robots 
autonomously inspect the underfloor voids. Wang et al. [26] developed 
a synthetic robotic system integrated with a semantic segmentation 
model (DeepLabv3+) for visual understanding on sites. 

Besides, the segmentation techniques offer a convenient way to 
rapidly inspect infrastructure quality and health. For example, Pi et al. 

[10] evaluated the performance of Mask R-CNN and Pyramid Scene 
Parsing Network (PSPNet) on a fully annotated dataset named 
Volan2019 for detecting and segmenting critical objects in the aerial 
footage of disaster sites. Wang and Su [27] presented a deep learning 
architecture for real-time crack segmentation on pavement images. 
Wang et al. [28] developed a deep learning-based image segmentation 
model to evaluate the conditions of unreinforced masonry buildings 
from street view images. With this evaluation, the model could under-
stand whether the buildings were vulnerable to strong ground motions. 
Xie et al. [9] proposed a model which combined sparse-sensing-based 
encoder and superpixel-based decoder for concrete crack segmentation. 

2.2. Semantic segmentation 

Semantic segmentation aims to predict the labels of each pixel of the 
input image from a given label set. Classical machine learning tech-
niques, such as SVM [11], K-means Clustering [29], and Random Forest 
[12], were used to solve the problem of image segmentation. For 
example, Dhanachandra et al. [29] segmented images by a modified k- 
clustering algorithm, which used subtractive clusters to generate the 
initial centroids. Kang and Nguyen [12] presented a Random Forest 
framework that learned the flexible filters using an iterative optimiza-
tion algorithm and segmented input images using the learned 
representations. 

The advent of deep learning models such as CNNs [13], LSTM [30], 
encoder-decoders [14] and generative adversarial networks (GANs) 
[31] has boosted the performance of semantic segmentation. For 
instance, Long et al. [13] defined a novel fully convolutional network 
architecture that combined semantic information from a deep, coarse 
layer with appearance information from a shallow, fine layer to produce 
accurate and detailed segmentations. Badrinarayanan et al. [14] 
designed a deep neural network architecture for semantic pixel-wise 
segmentation termed SegNet. This core trainable segmentation engine 
consisted of an encoder network, and a corresponding decoder network 
followed by a pixel-wise classification layer. Moreover, several recent 
works [32–34] combined semantic segmentation with weak supervision, 
and showed the ability of learning from weaker forms of labels such as 
classes, tags, bounding boxes, scribbles, and point annotations. 

Currently, CNNs are the basic building blocks of most methods 
proposed for image segmentation. However, they lack the ability to 
model long-range dependencies present in an image, which can arise 
when there are complex spatial structures or patterns that require 
modeling interactions between distant regions. In many Natural Lan-
guage Processing (NLP) applications, transformers have shown the 
ability to encode long-range dependencies due to the self-attention 
mechanism, which finds the dependency between given sequential 
input [17]. Following their popularity in NLP settings, transformers 
have been adopted to computer vision applications very recently 
[35,36]. With regard to image segmentation problems, various 
transformer-based architectures such as Swin Transformer [37], CSWin 
Transformer [38], Twins Transformer [39], K-Net [40], Masked- 
attention Mask Transformer (Mask2Former) [41], etc. have been pro-
posed to achieve a higher accuracy and/or save more training efforts. 
They have exhibited excellent segmentation performance in various 
fields, such as segmentation tasks in medical image analysis [18], 
remotely sensed urban images [42], autonomous driving [19], etc. 

2.3. Comparison study 

Along with large amount of transformer architectures emerges, many 
comparison studies have also been conducted to examine the perfor-
mance of those methods with previous state-of-the-art architectures 
under the scope of semantic segmentation. Liu et al. [37] who proposed 
the architecture of Swin Transformer, also compared its performance 
with other state-of-the-art deep learning architectures. They found that 
the UperNet with Swin backbone increased the mIoU by 5.3% on the 
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ADE20K dataset compared to the previous transformer-based method: 
UperNet with DeiT backbone. It was also 4.4% mIoU higher than all 
methods with ResNet-101 backbone, a cutting edge convolutional-based 
backbone. In the work of Chu et al. [39], the comparison results showed 
that their proposed transformer-based architecture: Twins Transformer 
clearly outperformed PVT and ResNet on ADE20K and obtained slightly 
better performance compared to Swin Transformer. Dong et al. [38] 
presented CSWin Transformer which achieved an impressive 55.7% 
mIoU on the ADE20K segmentation task, surpassing the Swin Trans-
former by 2.2% mIoU with the same complexity. When compared to 
convolutional-based backbone: Res-101, the increase came to 6.6% 
mIoU with even less parameters. Cheng et al. [41] compared their 
proposed architecture: Mask2Former to both ResNet and Swin back-
bones. The results indicated that Mask2Former outperformed Mask R- 
CNN with 8× less training epochs on COCO segmentation task and 
achieved 3.5% mIoU higher than Swin architecture. 

Several findings have been noted from existing comparison studies. 
First, transformer-based architectures have gradually become main-
stream in segmentation tasks, replacing the dominance place of other 
deep neural networks due to the following reasons. Transformers enable 
long-term dependencies across image regions compared to CNNs. Also, 
they require minimal inductive biases, which means that transformers 
do not have any built-in assumptions or preconceptions about the data 
they process compared to CNNs and RNNs. This practice is beneficial 
especially when the data amount is large. In addition, transformers have 
an edge over RNNs in computational requirement since the transformer 
blocks support parallel processing of sequence elements compared to 
recurrent structures [43]. Second, large-scale general-purpose labeled 
image datasets such as COCO and ADE20K play a crucial role in existing 
studies. However, less attention has been paid to creating subject- 
specific datasets, except for the medical domain, where MSD [44] has 
been built. 

3. Research gap, objective and scope 

As illustrated in the literature review, the performance of 
transformer-based architectures is promising and impressive in various 
semantic segmentation tasks. However, their applications to construc-
tion images remain largely unexplored in the following aspects. First, 
there lacks an evaluation and comparison of state-of-the-art trans-
former-based architectures on construction image segmentation tasks. 
Second, most of the previous studies focused on solving the segmenta-
tion problems by a single transformer-based model [18,19,36]. Since 
ensemble learning has been proven effective to improve the predictive 
performance of a single model [45], it is necessary to implement a 
transformer-based ensemble model for better segmentation results. 

The main objective of this study is to explore the above aspects. To 
this end, this paper presents a systematic evaluation of state-of-the-art 
transformer-based architectures on construction semantic segmenta-
tion tasks. Three architectures including Swin Transformer, Twins 
Transformer, K-Net are chosen here since they exhibited superior seg-
mentation performance among various transformer-based techniques. 
Further, their ensemble model based on model averaging and proba-
bility weighting is implemented to achieve better segmentation results. 
A novel benchmark dataset containing 5 classes of recycling materials on 
construction sites is created. The recycling materials include rebar, 
bricks (full or broken), PVC pipes, plastic wires, and debris. They are 
selected as the study objects since the segmentation results of con-
struction recycling materials can provide important information for 
waste management. The segmentation models could be expanded to 
work for other construction objects without the loss of generality. 
Finally, the performance of all the models is measured in terms of mIoU 
and mPA to provide an in-depth analysis of their benefits and 
limitations. 

4. Systematic evaluation 

4.1. Selection of state-of-the-art transformer-based architectures 

Based on the findings from existing image segmentation studies 
[36–38], transformer-based architectures illustrated an excellent seg-
mentation performance due to their ability to enable long-term de-
pendencies and model highly representative features. Thus, in this 
study, the selection of semantic segmentation methods for testing is 
focused on state-of-the-art transformer-based architectures. Specifically, 
three architectures, namely, Swin Transformer [37], Twins Transformer 
[39], and K-Net [40] are considered, since they illustrated better seg-
mentation performance in terms of accuracy and training efforts than 
other transformer-based architectures, such as SEgmentation TRans-
former (SETR), Pyramid Vision Transformer, Mask Transformer, 
Panoptic SegFormer, etc. 

In this study, Swin Transformer refers to an UperNet [46] based 
segmentation framework which utilizes Swin as the backbone. The Swin 
is a hierarchical transformer architecture, which computes representa-
tions with shifted windows. The shifted windowing scheme brings 
greater efficiency by limiting self-attention computation to non- 
overlapping local windows while also allowing for cross-window 
connection. Twins Transformer is an UperNet based framework with 
Twins serving as the backbone. The Twins is a type of vision transformer 
that utilizes a spatially separable attention mechanism (SSAM). The 
SSAM is composed of two types of attention operations to capture the 
short-distance information and global information, separately. K-Net 
refers to a unified segmentation framework which introduces a group of 
learnable kernels to generate the masks for either potential instances or 
stuff classes. The Swin is served as the backbone in K-Net. Table 1 
summarizes the complexity of the above architectures. More details of 
these architectures could be found in the following references [37, 39, 
40]. 

4.2. Evaluation metrics 

The segmentation performance is evaluated in terms of mIoU and 
mPA on a test set. The IoU is the most commonly accepted metric for 
image semantic segmentation. It measures the number of pixels common 
between the ground truth mask and prediction mask divided by the total 
number of pixels present across both masks, which is defined as Eq. (1). 

IoU =
Ground truth mask ∩ Prediction mask
Ground truth mask ∪ Prediction mask

(1) 

The IoU score is calculated for each class separately and then aver-
aged over all classes to provide a global mIoU score of our semantic 
segmentation prediction. Besides, PA provides an alternative metric to 
evaluate semantic segmentation results. It reports the percentage of 
pixels in the image which are correctly classified, defined as Eq. (2). 

PAi =
#TPi +#TNi

#TPi +#TNi +#FPi +#FNi
(2)  

where TPi represents pixels that are correctly predicted to belong to the 
given class i, TNi means pixels that are correctly identified as not 
belonging to class i, FPi refers to pixels classified incorrectly as class i and 
FNi represents pixels classified incorrectly as not class i. The mPA takes 
the average value of PA across all the classes to provide a global 
evaluation. 

Table 1 
Complexity summary of the selected architectures.  

Architectures Crop Size # Params (M) FLOPs (G) Memory (GB) 

Swin Transformer 512 × 512 121 1188 8.52 
Twins Transformer 512 × 512 133 297 8.41 
K-Net 512 × 512 208 – 13.50  
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5. Two-stage model ensembling 

Typically, a comparison study ends with selecting a single model that 
achieves the best performance and discarding the remaining models. 
This may reduce out-of-distribution performance [47], which measures 
the model’s ability to make accurate predictions on examples that are 
outside of its training distribution. Further, performance improvement 
can be typically achieved by combining multiple models. Ensemble 
learning is a machine learning technique that combines the predictions 
from two or more models. It has been proven effective to make more 
accurate predictions than any single contributing model [45,48]. 
Moreover, the ensemble model helps reduce the spread or dispersion of 
the predictions. These benefits of ensemble learning motivate us to 
implement a transformer-based ensemble model to improve segmenta-
tion results in this study. 

A two-stage model ensembling framework is designed as shown in 
Fig. 1. The two stages are model averaging and probability weighting, 
separately. Specifically, the raw image is first input into the model soups 
to get their initial predictions. Here, the model soup of each transformer- 
based architecture is formed by averaging the weights of different 
trained models of the same architecture after training. Then, the prob-
ability weighting is applied to process the outputs from the model soups 
to obtain the final prediction result. 

The idea of model averaging is to average different trained models’ 
weights for each transformer-based architecture along a single training 
trajectory. The averaged model is termed as model soup. It has previ-
ously been shown to improve the performance of models in both non- 
transfer [49] and transfer [48] learning settings. The procedure of 
model averaging is conducted as follows: f(x, θ) is considered as a neural 
network with input data x and parameters θ ∈ Rd, where d is the 
parameter dimension. Along one single training trajectory, there are 
multiple checkpoints produced, which are periodic snapshots of the 
model parameters. Assume that n checkpoints f(x, θk), k = 1,2,…, n are 
extracted from the training process and sorted in descending order of 
validation subset accuracy. A model list is used to store the checkpoints 
needed for the model soup. The flowchart of generating the model list is 
shown in Fig. 2. The model list is initialized with the checkpoint f(x, θ1)

which has the highest validation accuracy. Then, from k = 2 to k = n, 
the performance between the model that averages the weights of f(x, θk)

and the checkpoints in the model list and the one which averages all the 
checkpoint weights in the model list is compared. If the performance of 
the previous model is better, f(x, θk) will be added into the model list; 
otherwise, f(x, θk) will be disregarded. The final model list is generated 
when all the n checkpoints have repeated the above process. Therefore, 
the model soup will be obtained by averaging the weights of all the 
checkpoints in the model list. 

Fig. 1. Two-stage model ensembling framework.  

Fig. 2. Flowchart of generating the model list.  
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The purpose of probability weighting is to post process the outputs 
from multiple model soups to obtain the final prediction probabilities. It 
is achieved by assigning weights to each model soup. The probability 
weighting approach is most suitable for cases where the performance of 
the base models is comparable [45]. In this study, the weighting of the 
model soups is performed on their outputs via the following equation: 

Pi =

∑

j
wjOj

i

∑
i

(
∑

j
wjOj

i

) (3)  

where Pi is the final probability outcome of the i-th class, wj is the 
assigned weight for the j-th model soup, Oi

j is the output of the i-th class 
for the j-th model soup. The assigned weights are proportional to the 
strengths of the model soups and determined by grid search [50], which 
is an exhaustive searching through a manually specified subset of the 
weight space. In this study, the weight space for each transformer-based 
architecture starts from 0 to 10 with the step value of 1. After probability 
weighting, the class with the highest probability in Pi will be chosen as 
the final predication. 

6. Implementation and results 

6.1. Datasets 

To evaluate the segmentation performance, a novel dataset con-
taining images of recycling materials on construction sites is created and 
employed as the benchmark. The dataset includes five classes of recy-
cling materials in total, which are rebar, bricks, PVC pipes, plastic wires, 
and debris. The recycling materials are selected as the segmentation 
objects since timely and accurate identification of construction recycling 
materials can provide yardstick information for their subsequent man-
agement. It is of significant value for managing the recycling material 
schemes on construction sites (e.g., determining admissibility and 
chargeable levy) [51]. Further, the ability to recognize specific material 
types and positions makes it possible to replace human workers with 
intelligent robots for sorting recycling materials automatically [52]. 

The images coming from different data sources are collected to 
establish the dataset. These data sources include VIMS-IAARC compe-
tition committee [53], the self-collected database, and Google Image, 
which provided 1109, 444 and 366 images, separately. To augment the 
diversity of the dataset, the self-collected database also contains syn-
thetic images. These synthetic images were generated manually by 
matting the foreground objects (e.g., plastic wires) and then putting 
them onto the relevant background images. Examples of the synthetic 
images could be found in Fig. 3. In total, 37 synthetic images are 
included in the dataset, which contain about 1.20 × 105 pixels. These 
synthetic images could save the efforts to collect real-word images 
which are difficult to get and minimize the bias in the dataset. 

In total, the dataset contains 1919 images which are distributed in 5 

classes. The details of the dataset are listed in Table 2. The numbers of 
images for rebar, bricks, PVC pipes, plastic wires, and debris are 541, 
324, 490, 456 and 400, respectively. Among these 5 classes, the mini-
mum and maximum number of pixels are 9.52 × 107 (bricks) and 1.68 ×
108 (debris), respectively. The average resolution of an image is about 
620 (height) × 770 (width). Examples of the collected data could be 
found in Fig. 4. Further, the pixel-level labeling is conducted manually 
for all the collected images via VGG Image Annotator (VIA) [54] as 
shown in Fig. 5. 

While public datasets like COCO provide a wide range of labeled 
images for object segmentation and recognition tasks, they may not be 
suitable for specific domains such as construction due to the absence of 
any construction-related objects. Construction sites exhibit unique 
challenges for automated image segmentation, including complex and 
dynamic environments, varying lighting conditions, and diverse object 
types. Compared to other public datasets, the dataset we considered 
contains not only voluminous objects (e.g., bricks), but also long and 
narrow objects (e.g., rebar, wires) as well as fragmental objects (e.g., 
debris). Models trained on construction domain dataset can achieve 
higher accuracy in the segmentation and recognition of construction 
objects. Moreover, they are likely to perform better on new construction 
sites because they are trained on data that is more representative of the 
domain. 

6.2. Performance evaluation 

6.2.1. Implementation 
The transformer-based networks and their ensemble model are 

implemented on an Ubuntu Linux 64-bit operating system. The Python 
3.8 environment with the support of the Pytorch [55] platform provides 
the critical algorithms, functions, and tools required for the networks. 
The hardware configuration includes an AMD Ryzen 5800X CPU (Cen-
tral Processing Unit) @ 3.80 GHz, a 64 GB memory, and an NVIDIA 
GeForce RTX 3090 @ 24.0 GB GPU (Graphic Processing Unit). 

6.2.2. Training 
In order to train and test image semantic segmentation performance, 

the dataset is randomly split into the training subset (88%), validation 
subset (1%) and testing subset (11%). Specifically, the training, vali-
dation, and testing subset includes 1696, 23 and 200 images, respec-
tively. The training subset is used for the training of the network 
parameters for the transformer-based architectures. 23 images are uti-
lized as a small validation subset to provide evaluations for creating the 
model soups while the remaining 200 images are employed to test the 
final segmentation performance of the architectures. 

The number of parameters for transformer-based architectures is 
huge, which typically requires more training data to prevent under-
fitting. Here, the transfer learning strategy is adopted. All the three 
transformer-based architectures are pretrained firstly using the Image-
Net [56] and ADE20K [16], which are large image datasets publicly 
available. However, they do not include any recycling materials related 

Fig. 3. Examples of synthetic images.  
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to construction. The dataset collected in this study is used to fine-tune all 
the architectures to increase the segmentation performance in con-
struction and meanwhile shorten the training durations required. 

Table 3 summarizes the parameters set for the training. The specific 
training process is conducted following the suggestions from the refer-
ences [37, 39, 40]. The learning rate and the batch size are firstly 
initialized. When the training loss is steady, the learning rate is reduced 

with different decay strategies. AdamW [47] is employed as the opti-
mizer where the value of weight decay is shown in Table 3. The cross- 
entropy loss is employed as the loss function. To better train the net-
works, several engineering efforts are employed to increase the diversity 
of the data and improve the model generality. First, all training images 
are going through several data augmentation procedures (e.g., hori-
zontal flipping, photometric distortion) and randomly cropped with a 
spatial size of 512×512 as the inputs. Second, the labeling smoothing 
technique [57] with the factor of 0.8 is employed to penalize over-
confident predictions and improve the model generalization. 

Fig. 6 shows the loss reduction along with the training progress. The 
training process is terminated when there is no significant improvement 
for the validation performance. During the training process, the 

Table 2 
Dataset configurations.  

Classes Rebar Bricks PVC pipes Plastic wires Debris Total 

# Images 541 324 490 456 400 1919 
# Pixels 1.25 × 108 9.52 × 107 1.15 × 108 1.62 × 108 1.68 × 108 6.65 × 108  

Fig. 4. Example images in the dataset.  

Fig. 5. Example of manual labeling.  

Table 3 
Specific parameter settings of transformer-based architectures.  

Architecture Initial 
Learning rate 

Weight 
decay 

Batch 
size 

Learning rate 
decay strategy 

Swin 
Transformer 

2.4 × 10− 5 1 × 10− 2 8 Poly 

Twins 
Transformer 2.4 × 10− 5 1 × 10− 2 6 Poly 

K-Net 3.0 × 10− 5 5 × 10− 3 4 Step  
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checkpoints are saved every 1000 iterations, which will be used for 
model averaging. Taking Swin Transformer as an example, the training 
loss tends to be stable when the iteration reaches about 6000. The 
training is completed after 42,900 iterations and a total of 42 check-
points are saved along the process. The trained models are publicly 
available on https://drive.google.com/drive/folders/1IrEPBp0oaB 
jKq5taZ3vZcFrPVMBCyrDc?usp=share_link. 

6.2.3. Experimental results 
Fig. 7 shows the systemic evaluation results of the transformer-based 

architectures in terms of IoU and PA. The mIoU of Swin Transformer, 
Twins Transformer and K-Net are 82.33%, 79.76% and 80.80%, sepa-
rately, while the mPA of these three architectures are 90.17%, 88.09% 
and 89.31%, respectively. The results indicate that Swin Transformer 
achieves better overall segmentation performance compared to Twins 
Transformer and K-Net. These three architectures obtain comparable 
performance on the segmentation of rebar, bricks, PVC pipes and wires. 
However, Swin Transformer outperforms the other two architectures by 
at least 8.69% for IoU and 13.36% for PA when segmenting the debris. 
This relatively large superiority in segmenting debris makes Swin 
Transformer achieve the best overall performance. 

Further, the ensemble model with Twins Transformer and K-Net as 
base models is implemented as an example to demonstrate the effec-
tiveness of the two-stage model ensembling framework. The numbers of 
checkpoints which are preserved for generating the model soups of 

Twins Transformer and K-Net are 2 and 4, respectively. The grid search 
results for ensembling Twins Transformer and K-Net are shown in Fig. 8. 
It indicates that the best ensemble result could be achieved with the ratio 
of Twins Transformer to K-Net close to 1:2 (e.g., 4 for Twins Transformer 
and 9 for K-Net). Fig. 9 shows the segmentation performance of the 
ensemble model. It is found the ensemble model achieves the mIoU and 
mPA of 82.36% and 90.30%, respectively. Compared to the best results 
achieved by the individual models, the mIoU for segmenting rebar, 
bricks, PVC pipes, wires and debris increases by 0.17%, 0.32%, 2.67%, 
0.34% and 3.06%, separately. The mPA of these five materials is 
improved by 0.46%, 0.79%, 1.15%, 1.50% and 0.31%, respectively. As 
reported in the literature, the mIoU of semantic segmentation tech-
niques on different construction tasks ranged from 64.67% to 86.29% 
[9,22,26,27]. The mIoU of this study is 82.36%, which suggests that our 
segmentation model achieves a satisfactory level of accuracy in seg-
menting the target objects. 

Fig. 10 shows the segmentation results of the example images using 
the ensemble model. It can be seen that different kinds of recycling 
materials could be successfully and precisely identified and segmented 
by the ensemble model. Taking the top right image as an example, there 
are two kinds of materials including plastic wires and debris. The 
ensemble model could segment not only the long and narrow wires but 
also the voluminous debris which occupied most of the pixels in the 
image. This result validates the model’s capability of handling multi-
scale objects in the same image. Also, for the bottom right image, the 
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Fig. 6. Training loss for different transformer-based architectures.  
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Fig. 7. Systemic evaluation and comparison results.  
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rebar could be distinguished from the grass below although they look 
similar to each other. 

Fig. 11 presents the comparison among the best single models for 
Twins Transformer and K-Net, their model soups and the ensemble 
model. The model soup of Twins Transformer outperforms its best single 
model by 0.73% for mIoU and 0.45% for mPA. For K-Net, the mIoU and 
mPA of its model soup increases by 1.42% and 0.97%, respectively. The 
final ensemble model obtains an increase of 1.56% for mIoU and 0.99% 
for mPA, separately, compared to the best single model among these two 
architectures. This performance is generally considered as a major 
advance in the field of computer vision. A paired t-test is conducted for 
the mIoU between the ensemble model and the best single model. The 

results yield with a P-value of 0.002, which indicate that there is sig-
nificant performance gain for the ensemble model. Further, the litera-
ture reported that the mIoU improvement by the ensemble learning 
could be in the range of [0.14%, 1.66%] [58], [0.50%, 1.20%] [59] or 
[0.25%, 2.07%] [60], depending on the complexity of the dataset and 
base models. In this study, the performance gain of the ensemble model 
validates the effectiveness of the two-stage model ensembling strategy 
for improving the segmentation performance. 

7. Discussion 

The segmentation results show that the segmentation performance of 
the transformer-based architectures varies across different classes of 
recycling materials. As shown in Figs. 7 and 9, the classes of bricks and 
debris have relatively low IoU and PA. This is partly because that the 
appearance and characteristics of these two classes are similar to each 
other, especially for broken bricks and debris. During the manual la-
beling process, the relatively large and bulky broken bricks are anno-
tated as bricks while the terribly fragmented bricks are annotated as 
debris. For example, in Fig. 12 (a), the left part of broken bricks belongs 
to bricks while the right part should be debris. However, this rule is 
difficult for the networks to learn precisely. Taking Fig. 12 (b) as an 
example, the terribly fragmented bricks in this image should belong to 
the class of debris based on our labeling rule while the networks falsely 
segment them as bricks. To solve this problem, one possible way could 
be considering a cost sensitive loss function to make the networks pay 
more attention to the segmentation performance of bricks and debris. 

The ensemble model could enhance the segmentation performance 
and reduce the variance of individual models. The individual models 
may make some mistakes. Taking Fig. 13 as an example, K-Net does not 
segment the bricks well in the circled areas. Compared to K-Net, the 
ensemble model performs better in those areas, which means it could 
overcome the weaknesses of individual models in a way. Further, the 
ensemble model can leverage the strengths of different models to 
improve the overall performance. As shown in Fig. 7, when comparing 
Twins Transformer and K-Net, Twins Transformer achieves better results 
on bricks, while K-Net performs better for segmenting the other four 
types of materials. By combining these two models that perform well on 
different types of materials, the IoU and PA of the ensemble model are 

Fig. 8. Grid search results for the probability weighting process in terms of 
mIoU (%). 

Fig. 9. Quantitative results of the ensemble model.  
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Fig. 10. Test results of the example images.  

Fig. 11. Comparison among best single models, model soups and final ensemble model.  
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higher than both Twins Transformer and K-Net for all these five mate-
rials (Fig. 9), suggesting that the ensemble model can achieve higher 
accuracy and better generalize to new, unseen data. 

Besides, the performance gain obtained by the two-stage model 
ensembling strategy may be related to the best segmentation perfor-
mance of base models. Table 4 summarizes the performance of the 
ensemble models with different base models. The performance gain is 
1.56% when the mIoU of the best single model is 80.80%. When the 
mIoU of the best single model achieves 82.33%, the performance gain 
for the ensemble model would drop to 0.41%. It could be seen that the 
performance gain of the ensemble model would be lowered with the 
increase of the best single model performance. This phenomenon was 
also found in other research work [61]. It might indicate that there is 
generally less improvement room for the single model with a higher 
performance. 

Further, the performance trend of different transformer-based ar-
chitectures on general image segmentation dataset (e.g., ADE20K) and 
construction image dataset (ours) is compared. On ADE20K dataset, K- 
Net outperforms Swin Transformer and Twins Transformer. In contrast, 
Swin Transformer achieves the best overall segmentation performance 
on our created construction dataset. The next two are K-Net and Twins 
Transformer, separately. The result indicates that the transformer-based 
architectures may have different performance rankings in the con-
struction domain. This practice suggests the necessity of our created 
dataset, which provides a new benchmark to evaluate the state-of-art 
transformer-based architectures in the construction field. 

Our segmentation models have the potential for developing an 
automatic visual surveillance mobile robotic platform on construction 
sites. For example, the models could be integrated with the mobile ro-
botic systems (e.g., drones, unmanned vehicles) to automatically iden-
tify and segment the recycling materials on sites. The mobile robotic 
systems could reach out to onsite locations safely and quickly, especially 
for those hard-to-reach or unsafe ones. In this case, our segmentation 
models could identify whether there exists construction waste that need 
to be recycled and roughly the amount of recycling materials at these 
locations. These results would provide valuable information for the 
subsequent management of the construction waste, such as determining 
the recycling schedule and cost. 

Fig. 12. Difference between broken bricks and debris.  

Fig. 13. Comparison example between K-Net (left) and the ensemble model (right).  

Table 4 
Comparison of different ensemble models in terms of mIoU (%).  

Base models Twins Transformer +
K-Net 

Swin Transformer + Twins 
Transformer + K-Net 

Best single 
model 

80.80 82.33 

Ensemble model 82.36 82.74 
Performance 

gain 
1.56 0.41  
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8. Conclusions and future work 

Construction sites are increasingly equipped with cameras to acquire 
imagery data for promoting automation, solving safety issues, etc. 
Automated segmentation techniques are critical for processing the ac-
quired images to provide the visual understanding of the construction 
environment. Compared with other semantic segmentation techniques, 
transformer-based architectures have gradually become mainstream in 
segmentation tasks due to their ability to understand long-range de-
pendencies. This paper presents a systematic evaluation of three state- 
of-the-art transformer-based architectures on construction image seg-
mentation tasks. Further, their ensemble model based on model aver-
aging and probability weighting is implemented for performance 
improvement. A dataset containing construction recycling materials is 
created and employed as a benchmark to compare their performance. 
The results indicate that the ensemble model could achieve a mIoU of 
82.36% and mPA of 90.30%, which demonstrate superior segmentation 
performance on construction images. 

Although the learned models showed promising results on our 
dataset, there are still several aspects that need to be further considered. 
First, the transformer-based models have only been evaluated on con-
struction images containing the recycling materials in this study. 
Considering that construction sites are complex and cluttered with tools, 
materials, workers, etc., more classes of construction objects could be 
included into our dataset to make our models more robust to accom-
modate such complicated characteristics of the environment. Second, 
there is a tradeoff between the segmentation accuracy and efficiency for 
the probability weighting process. Although the probability weighting 
technique increases the segmentation accuracy by combing the pre-
dictions of different models, it would inevitably decrease the segmen-
tation efficiency since all models need to be executed to output the final 
results. This tradeoff should be carefully considered by the user 
requirement, especially for the real-time applications. 

Future work will focus on two aspects. First, more construction ob-
jects will be included into our dataset to make the training and testing of 
transformer-based networks more robust. Second, a cost sensitive loss 
function will be considered to improve the segmentation performance of 
the specific classes. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgement 

This paper is based in part upon the work supported by the Wisconsin 
Alumni Research Foundation (WARF) under Project No. AAJ4872 and 
the M.A. Mortenson Company. Any opinions, findings, and conclusions 
or recommendations expressed in this paper are those of the author(s) 
and do not necessarily reflect the views of WARF or Mortenson. The 
authors would like to express our thanks to Visualization, Information 
Modeling, and Simulation (VIMS) of American Society of Civil Engineers 
(ASCE) and International Association for Automation and Robotics in 
Construction (IAARC) for organizing the VIMS-IAARC Joint Datathon 
2022 Competition and providing a part of the dataset. 

References 

[1] B. Zhang, Z. Zhu, A. Hammad, W. Aly, Automatic matching of construction onsite 
resources under camera views, Autom. Constr. 91 (2018) 206–215, https://doi. 
org/10.1016/J.AUTCON.2018.03.011. 

[2] X. Wang, Z. Zhu, Vision-based hand signal recognition in construction: a feasibility 
study, Autom. Constr. 125 (2021), 103625, https://doi.org/10.1016/j. 
autcon.2021.103625. 

[3] X. Yan, H. Zhang, H. Li, Estimating worker-centric 3D spatial crowdedness for 
construction safety management using a single 2D camera, J. Comput. Civ. Eng. 33 
(2019) 04019030, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000844. 

[4] A. Kazemian, X. Yuan, O. Davtalab, B. Khoshnevis, Computer vision for real-time 
extrusion quality monitoring and control in robotic construction, Autom. Constr. 
101 (2019) 92–98, https://doi.org/10.1016/J.AUTCON.2019.01.022. 

[5] B. Ekanayake, J.K.W. Wong, A.A.F. Fini, P. Smith, Computer vision-based interior 
construction progress monitoring: a literature review and future research 
directions, Autom. Constr. 127 (2021), 103705, https://doi.org/10.1016/J. 
AUTCON.2021.103705. 

[6] B. Zhong, H. Li, H. Luo, J. Zhou, W. Fang, X. Xing, Ontology-based semantic 
modeling of knowledge in construction: classification and identification of hazards 
implied in images, J. Constr. Eng. Manag. 146 (2020) 04020013, https://doi.org/ 
10.1061/(ASCE)CO.1943-7862.0001767. 

[7] C. Chen, Z. Zhu, A. Hammad, Automated excavators activity recognition and 
productivity analysis from construction site surveillance videos, Autom. Constr. 
110 (2020), 103045, https://doi.org/10.1016/j.autcon.2019.103045. 

[8] K. Asadi, H. Ramshankar, H. Pullagurla, A. Bhandare, S. Shanbhag, P. Mehta, 
S. Kundu, K. Han, E. Lobaton, T. Wu, Vision-based integrated mobile robotic 
system for real-time applications in construction, Autom. Constr. 96 (2018) 
470–482, https://doi.org/10.1016/J.AUTCON.2018.10.009. 

[9] X. Xie, J. Cai, H. Wang, Q. Wang, J. Xu, Y. Zhou, B. Zhou, Sparse-sensing and 
superpixel-based segmentation model for concrete cracks, Comput. Civ. Infrastruct. 
Eng. 37 (2022) 1769–1784, https://doi.org/10.1111/MICE.12903. 

[10] Y. Pi, N.D. Nath, A.H. Behzadan, Detection and semantic segmentation of disaster 
damage in UAV footage, J. Comput. Civ. Eng. 35 (2020) 04020063, https://doi. 
org/10.1061/(ASCE)CP.1943-5487.0000947. 

[11] X. Wang, S. Wang, Y. Zhu, X. Meng, Image segmentation based on support vector 
machine, in: Proc. 2nd Int. Conf. Comput. Sci. Netw. Technol, IEEE, 2012, 
pp. 202–206, https://doi.org/10.1109/ICCSNT.2012.6525921. 

[12] B. Kang, T.Q. Nguyen, Random Forest with learned representations for semantic 
segmentation, IEEE Trans. Image Process. 28 (2019) 3542–3555, https://doi.org/ 
10.1109/TIP.2019.2905081. 

[13] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic 
segmentation, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit, 2015, 
pp. 3431–3440, https://doi.org/10.1109/CVPR.2015.7298965. 

[14] V. Badrinarayanan, A. Kendall, R. Cipolla, SegNet: a deep convolutional encoder- 
decoder architecture for image segmentation, IEEE Trans. Pattern Anal. Mach. 
Intell. 39 (2017) 2481–2495, https://doi.org/10.1109/TPAMI.2016.2644615. 

[15] T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C. 
L. Zitnick, C.O.C.O. Microsoft, Common objects in context, in: Eur. Conf. Comput. 
Vis, Springer, 2014, pp. 740–755, https://doi.org/10.1007/978-3-319-10602-1_ 
48. 

[16] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, Scene parsing through 
ADE20K dataset, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit, 2017, 
pp. 633–641, https://doi.org/10.1109/CVPR.2017.544. 

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, 
I. Polosukhin, Attention is all you need, in: Adv. Neural Inf. Process. Syst, 2017, 
pp. 5998–6008, https://doi.org/10.48550/arXiv.1706.03762. 

[18] J.M.J. Valanarasu, P. Oza, I. Hacihaliloglu, V.M. Patel, Medical transformer: gated 
axial-attention for medical image segmentation, in: Med. Image Comput. Comput. 
Assist. Interv, Springer, 2021, pp. 36–46, https://doi.org/10.1007/978-3-030- 
87193-2_4. 
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