
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENTER THE VOID: EXPLORING WITH HIGH ENTROPY
PLANS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-based reinforcement learning (MBRL) offers an intuitive way to increase
the sample efficiency of model-free RL methods by simultaneously training a
world model that learns to predict the future. These models constitute the large
majority of training compute and time and they are subsequently used to train
actors entirely in simulation, but once this is done they are quickly discarded. We
show in this work that utilising these models at inference time can significantly
boost sample efficiency. We propose a novel approach that anticipates and actively
seeks out informative states using the world model’s short-horizon latent predic-
tions, offering a principled alternative to traditional curiosity-driven methods that
chase outdated estimates of high uncertainty states. While many model predictive
control (MPC) based methods offer similar alternatives, they typically lack com-
mitment, synthesising multiple multi-step plans at every step. To mitigate this, we
present a hierarchical planner that dynamically decides when to replan, planning
horizon length, and the commitment to searching entropy. While our method can
theoretically be applied to any model that trains its own actors with solely model
generated data, we have applied it to Dreamer to illustrate the concept. Our method
finishes MiniWorld’s procedurally generated mazes 50% faster than base Dreamer
at convergence and in only 60% of the environment steps that base Dreamer’s
policy needs; it displays reasoned exploratory behaviour in Crafter, achieves the
same reward as base Dreamer in a third of the steps; planning tends to improve
sample efficieny on DeepMind Control tasks.

1 INTRODUCTION

In recent years, reinforcement learning (RL) has achieved remarkable success across a variety
of domains, from mastering Go (Silver et al., 2017b) to racing drones at high speed (Kaufmann
et al., 2023). However, these successes often rely on dense reward signals and highly structured
environments. In real-world applications such as autonomous navigation, exploration, and disaster
response, rewards are sparse and environments are stochastic and partially observable. In these
conditions, achieving efficient exploration and good sample efficiency remain an active research
problem.

Curiosity-based methods typically treat novelty as an intrinsic reward bonus that is added to the
environment reward and propagated through the same value- and policy-learning mechanisms as
extrinsic reward (Pathak et al., 2017; Burda et al., 2018; Bellemare et al., 2016; Ostrovski et al., 2017;
Badia et al., 2020; Raileanu & Rocktäschel, 2020). These mechanisms are derived under a stationary
MDP assumption in which the reward function r(s, a) is fixed over time (Sutton & Barto, 2018), so
once a bonus has been associated with a state(-action) distribution it is effectively treated as part of a
persistent “true” value. In practice, however, novelty-based bonuses are deliberately non-stationary:
prediction errors, pseudo-counts, and related signals decay as states are revisited (Ostrovski et al.,
2017; Bellemare et al., 2016; Mahankali et al., 2022), and it is common to normalise intrinsic rewards
online to stabilise learning under this drift (Burda et al., 2019; 2018). This yields a robust low-
frequency signal for long-term novelty seeking, but it remains retrospective: the bonus only reflects
novelty after it has propagated through the value function. By contrast, anticipatory exploration
methods based on short-horizon predictions of epistemic uncertainty explicitly plan toward states that
are predicted to be novel before they are experienced (Shyam et al., 2019; Sekar et al., 2020; Jarrett
et al., 2023); our approach falls into this anticipatory category.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Instead of having to learn novelty, we instead propose to use model uncertainty. To do this we use
model-based reinforcement learning (MBRL), where models of the environment (world models (Ha &
Schmidhuber, 2018)) are concurrently trained alongside the actor to predict environment transitions.
Usually, the model is used to train the actor and is not used at inference time. We use the model as a
planner at inference time to quantify the distribution entropy of the model’s predicted next state.

Seeking the next most uncertain state can lead to greedily optimising for noise, while falling into
local aleatoric optima, so we use a planner to choose from a series of reward motivated trajectories
holistically. To do this, we leverage the world model by combining it with the greedy actor to generate
a selection of high scoring rollouts, from which we choose the rollout whose predicted states have
the highest entropy and predicted reward. To keep the method reactive, we introduce a meta planner
that can terminate planned trajectories when plans become stale and generate a new plan.

Thus, we propose to augment Dreamer (Hafner et al., 2020), a prominent and efficient world model,
with a planning mechanism to anticipate and seek informative states as they are about to occur to
drive reasoned exploration. This can be applied to any model based reinforcement learning method
that trains the actor exclusively with the model (instead of the environment). This method can also
be applied in conjunction with curiosity based methods to obtain both long and short term novelty,
though we do not focus on that in this work. In this work, we also introduce a lightweight Proximal
Policy Optimisation (PPO) Schulman et al. (2017) based hierarchical planner that dynamically decides
when to commit to a pre-selected rollout and when to discard it to replan. Importantly, we do not
modify Dreamer’s world-model or actor training objectives; all losses and KL coefficients remain
identical to DreamerV3. Our contribution is an inference-time entropy-seeking planner that changes
action selection and thus the replay distribution.

Our contributions are:

• Use an MBRL model as a planner at inference time to proactively target high-entropy states
multiple steps (as far as the maximum world model horizon - up to 15 in this work) in the
future, supporting seeking delayed gratification via reasoned anticipatory exploration.

• Reinterpret the KL objective in world-model training as a min–max interaction that couples
model learning with entropy-seeking exploration, improving information gain and sample
efficiency.

• Introducing a reactive hierarchical planner that dynamically selects between committing to
a plan and replanning based on new information received, reducing dithering and improving
efficiency through learned plan commitment.

The rest of the paper is structured as follows. In Section 2, we review related work in intrinsic
motivation, planning, and hierarchical RL. In Section 3, we provide background on Dreamer and
its training formulation. Section 4 introduces our entropy-seeking planner and reactive hierarchical
policy. Section 5 details our experimental setup, evaluates performance on MiniWorld’s procedurally
generated 3D maze environment, Crafter, and DMC’s vision based control environment. Section 6
concludes this work and outlines limitations.

2 RELATED WORK

2.1 INTRINSIC REWARD

Intrinsic motivation methods can be grouped into retrospective and anticipatory approaches. Retro-
spective methods assign reward after experience has occurred, using prediction error (?), state novelty
(Burda et al., 2018), episodic novelty (Badia et al., 2020), or representation surprise (?). While
simple and broadly compatible with model-free RL, they are vulnerable to the white-noise problem
(attraction to aleatoric uncertainty) and detachment (Burda et al., 2018; Ecoffet et al., 2019). Antici-
patory methods instead steer agents toward potentially novel states using short-horizon predictions of
epistemic uncertainty (Shyam et al., 2019; Sekar et al., 2020; Chua et al., 2018). It can be argued that
retrospective methods look for long term novelty as they attempt to influence the underlying agent
behaviour gradually while anticipatory methods often react quickly to emerging novelty, making
them a good method to seek short term novelty. We view our method as an anticipatory component
that is orthogonal to and composable with retrospective / intrinsic reward methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 PLANNING

Planning in RL ranges from tree search to trajectory optimization. Monte Carlo Tree Search (MCTS)
has proved effective in games (Coulom, 2006; Silver et al., 2016; 2017a) but good performance in
these methods assumes (near) full observability and discrete action spaces. Although recent work
(Hubert et al. (2021); Antonoglou et al. (2021)) has extended MCTS to stochastic dynamics and
continuous actions, these works rely on models being highly accurate and tractable and are not
able to be applied to stochastic, partially observed environments. Path-integral / MPPI-style control
samples and reweights trajectories under learned dynamics (Gómez et al., 2014; Williams et al., 2015);
TD-MPC and TD-MPC2 pair this with TD learning for vision-based control (Hansen et al., 2022;
2023), but the planner’s actions can drift from the policy network, risking distribution shift and value
overestimation. Closer to our setting, Look Before You Leap prefers low-entropy, high-reward states,
which can suppress exploration early in training (Wang et al., 2018); MaxEnt-Dreamer maximizes
a discounted entropy of the latent state-visitation distribution via an auxiliary density model and
uses this only as a training-time regulariser on the actor, whereas our planner uses the world model’s
own predictive entropy online to re-rank candidate trajectories, allowing it to react immediately
to newly emerging high-uncertainty futures while still preferring rewarding ones (Svidchenko &
Shpilman, 2021); RAIF optimizes posterior over prior uncertainty but this necessitates evaluating
gains retrospectively, blind to emerging novelty (Nguyen et al., 2024).

2.3 HIERARCHICAL POLICIES

Hierarchical RL introduces temporal abstraction via high- and low-level controllers. Option-Critic
learns options and termination conditions end-to-end (Bacon et al., 2017), while HiPPO runs PPO
at two temporal scales (Li et al., 2019). These methods improve long-horizon credit assignment,
but fixed intervals or frequent replanning can limit adaptability; excessive termination also reduces
effective commitment. Our planner differs by explicitly learning when to replan versus commit,
driven by signals computed from imagined rollouts.

3 PRELIMINARIES

We consider a partially observable Markov decision process (POMDP) P = ⟨S,A, p, r,X , Z, γ, ρ0⟩,
where S is the state space, A the action space, p the transition kernel, r the reward function, X the
observation space, Z the observation kernel, γ ∈ (0, 1) the discount factor, and ρ0 the initial-state
distribution. The agent observes pixels xt ∼ Z(· | st) and acts via a policy π(at | x1:t, a1:t−1). A full
MDP/POMDP formalism and its connection to Dreamer-style world models is given in Appendix B.

Dreamer (Hafner et al., 2019; 2020; 2023) learns a compact latent dynamics model and performs
policy optimization entirely in latent space. In this work, we use DreamerV3 as it is the most recent
and advanced formulation of the Dreamer series of models. At its core, Dreamer relies on an RSSM
that factorizes the environment into deterministic recurrent states and stochastic latent representations.
The RSSM is described by the following formulations:

Recurrent model: ht = fϕ(ht−1, zt−1, at−1)

Transition predictor (prior): ẑt ∼ pϕ(· | ht)

Representation model (posterior): zt ∼ qϕ(· | ht, xt)
Predictors (Image, Reward, Discount): x̂t, r̂t, γ̂t ∼ pϕ(· | ht, zt)

Here, xt is the observation at time t, and ht is the deterministic recurrent state. At each step, Dreamer
generates a prior latent state ẑt from the deterministic recurrent state ht via pϕ(· | ht), and updates
it into a posterior qϕ(· | ht, xt) once the new observation xt has been received. The KL divergence
between the prior and posterior is minimized to train the model:

LKL = DKL

(
qϕ(zt | ht, xt) ∥ pϕ(· | ht)

)
. (1)

Dreamer’s policy network is trained using imagined trajectories generated by the world model. This
ensures that policy training remains effectively on-policy. The buffer that the world model trains
from is populated by a naive ϵ-greedy actor.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 METHOD

4.1 ENTROPY

We now connect Dreamer’s KL term to an information-gain objective and motivate entropy as a
practical, model-aligned uncertainty signal for planning. DreamerV3 models latent states as factorised
discrete variables. The latent state zt is modelled by DreamerV3’s discrete RSSM, but the option
to use a continuous latent space is also available. Training the model involves minimizing a KL
divergence loss between the prior and posterior distributions of the latents (equation 1); classically,
the same KL divergence can be viewed as an information gain (IG) term: for a target variable Y
and an input X , Quinlan’s information gain can be written as the reduction in entropy of Y after
observing X ,

IG(Y ;X) = H(Y)−H(Y | X) =
∑
x

p(x)DKL

(
p(Y | X = x) ∥ p(Y)

)
(2)

highlighting that information gain is a form of mutual information, expressible as an expected KL
divergence (Quinlan, 1986). In our setting, Y corresponds to the latent state zt and X to the new
observation xt. The training objective DKL

(
qϕ(zt | ht, xt) ∥ pϕ(zt | ht)

)
is therefore the information

gained about zt from incorporating xt, up to averaging over time. At planning time, however, future
observations xt are not yet available, so the posterior qϕ(zt | ht, xt) cannot be evaluated for candidate
action sequences. Any anticipatory uncertainty signal must therefore be computable from the prior
alone.

A simple proxy for future information gain is to prefer states whose prior pϕ(zt | ht) has high entropy.
Intuitively, if the prior over zt is already low entropy, then, on average over possible observations,
little uncertainty can be removed; conversely, a high entropy prior admits the possibility of large
reductions in uncertainty. This motivates using the prior entropy as an intrinsic objective for the
meta-planner. Thus, our objective becomes maximising prior entropy:

Jt = max H
(
pϕ(zt | ht)

)
(3)

The standard entropy functional H[p] = EX∼p[− log p(X)] admits parallel definitions for discrete
(Shannon) and continuous random variables, obtained by replacing the sum with an integral (Cover
& Thomas, 2006; Shannon, 1948; Marsh, 2013). An advantage therefore of using entropy as an
uncertainty measure is that it applies in a unified way across both categorical and Gaussian latent
spaces without requiring changes to the model parameterisation.

Thus, by selecting states with high prior entropy, the planner preferentially visits regions where the
model’s beliefs are uncertain and observations are expected to concentrate the posterior distribution,
increasing the KL divergence between the two. The planning objective therefore heuristically
maximises the expected KL, while world-model training simultaneously minimises the same KL
term, yielding a natural (albeit loose) minmax interaction between exploration and model fitting.

There are two primary failure modes for this uncertainty-based exploration. The first arises in
environments with high aleatoric uncertainty, where a state has multiple plausible successors due to
inherent stochasticity. In such cases, even a well-understood state st may give rise to a high-entropy
predictive latent distribution simply because there are multiple legitimate outcomes. This occurs
because the RSSM uses a unimodal prior family. During training, the prior pϕ(zt+1 | ht) must match
the posterior via the KL term, but the posterior only captures the realised outcome, not the full set of
possibilities. When the true next-latent distribution is effectively multi-modal,

p∗(zt+1 | ht) =

M∑
i=1

wi pi(zt+1 | ht), wi ≥ 0,

M∑
i=1

wi = 1 (4)

the RSSM is forced to approximate all modes with a single member of its unimodal family,

p̂ϕ(zt+1 | ht) ∈ Funi, H
(
p̂ϕ(zt+1 | ht)

)
≫ H

(
pi(zt+1 | ht)

)
for many i (5)

so that the learned prior entropy is artificially inflated. Here i indexes the distinct plausible successor
states and the weights wi describe their relative frequencies. These states are not inherently bad
to be in: they are often bottleneck states that lead to many other states (Ecoffet et al., 2019), some

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

rewarding and some not. Our agent is naturally encouraged to visit such bottlenecks, but because
imagined trajectories are scored by both environment reward and entropy, the greedy actor will favour
branches that reach reward-relevant regions, which mitigates pathological fixation on such states.

The second failure mode arises in environments with latent transitions that require specific, rarely
executed actions. In such cases, the ideal transition distribution may again be written as a mixture,

p∗(zt+1 | ht) =

M∑
i=1

wi pi(zt+1 | ht), wi ≥ 0,

M∑
i=1

wi = 1 (6)

but now the weight associated with the common transitions, denoted wC , satisfies wC ≫ w¬C , where
w¬C is the total weight of all rare transitions. If the agent has only encountered the high-probability
modes, the learned model will be ignorant of the rare outcomes and will instead estimate a prior
dominated by the common component,

p̂ϕ(zt+1 | ht) ≈ pC(zt+1 | ht) (7)

so that
H
(
p̂ϕ(zt+1 | ht)

)
≈ H

(
pC(zt+1 | ht)

)
< H

(
p∗(zt+1 | ht)

)
(8)

In these cases, a state’s uncertainty may be chronically underestimated and subsequently underex-
plored. Addressing this likely requires mode-seeking mechanisms (option discovery, social learning,
teacher-student learning). While this is outside the scope of the present method, it is possible to
amplify this method with future work.

4.2 REACTIVE HIERARCHICAL PLANNER

At each environment step we generate N short-horizon imagined rollouts (we use N=256) starting
from the current latent state using the greedy actor and the world model. We then select the rollout
trajectory τ⋆ whose latent prior has the highest cumulative entropy and highest cumulative reward (r̂t
as predicted by dreamer’s internal reward model):

τ⋆ = arg max
τ∈{τ(n)}N

n=1

t+H∑
t′=t

(
λr r̂t′ + λHH

(
pϕ(zt′ | ht′)

))
. (9)

where both λr and λH set the relative weighting of entropy and reward and H is the planning horizon:
we use 15 for H as it is the length to which dreamer’s world model is trained by default. We then
execute the selected trajectory’s set of actions (a plan) unless the meta-policy decides to cancel the
current plan and generate a new one. We find in practice that our method is not overly sensitive to λr

and λH , we do however test this by ablating just the reward and then just the entropy.

We use a meta planner (a light PPO head) to control when to replan. The meta planner outputs a
categorical over pt ∈ {0, 0.25, 0.5, 0.75, 1} which we squashed as p2t to decide replanning: draw
ut∼U(0, 1) and replan if ut < p2t . We find in practice that excessive replanning is a problem that
frequently plagues such planners, a finding echoed across the hierarchical RL literature (Klissarov
et al., 2017; Chunduru & Precup, 2022; Johnson & Weitzenfeld, 2025) which is why we change the
enaction condition from ut < pt to ut < p2t , discouraging excessive replanning without explicitly
punishing replanning or rewarding commitment. Empirically, the learned meta-policy settles into
short but non-myopic commitments, with plan lengths of 2–3 steps on average and occasional longer
bursts (see Appendix H, Planner Metrics).

Importantly, planning decisions are re-evaluated at every environment step, allowing for flexible
replanning without commitment if needed. Pseudocode for our planning algorithm is given in
Appendix C. As input to the PPO policy, we provide the encoder embedding; the RSSM feature
vector; the current step number normalized by the episode time limit; the greedy action proposed
by the actor; the position within the current plan (normalized); a binary in-plan flag; and the “final”
RSSM feature that is predicted to be observed if the current plan is followed to the end.

We maintain replay buffers of meta-transitions with fields: PPO observation, PPO action, PPO sample
log prob, implemented flag (whether a replan signal was sent), per-step entropy, next base reward,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and done. The PPO meta-planner is trained on sequence-level returns, aggregating the reward and
entropy terms over a planning horizon of length L:

rmeta
t = L

2

t+L∑
t′=t

(
rbase
t′ + H

(
pϕ(zt′ | ht′)

))
. (10)

We then compute advantages with GAE(γ, λ) and optimize a clipped PPO objective (separate
actor/critic) with a naive entropy bonus, using Adam for both policy and value heads. The PPO head
trains on all collected transitions. To encourage early behavioral diversity we use He initialization
and bias the PPO head’s initial logits toward intermediate pt values (0.25, 0.5, 0.75).

In general, the choice of L controls the temporal scope of the meta-planner’s objective: long, sparse-
reward or highly delayed-reward tasks benefit from larger L, which allows the planner to align its
decisions with far-reaching consequences, whereas short-horizon, locally reactive tasks favour smaller
L to enable fast adaptation. In our experiments, we set L=32 for complex, long-horizon environments
such as Crafter, L=8 for navigation tasks (MiniWorld Maze), and L=2 for short-horizon continuous
control tasks (DMC-Vision). This choice lets the reward calculation match the intended commitment
level required by each environment.

5 EXPERIMENTS

We evaluate across three regimes that stress different aspects of decision making: procedurally
generated 3D mazes in MiniWorld Chevalier-Boisvert et al. (2023) for long-horizon navigation
under partial observability and sparse reward, Crafter (Hafner (2021)) for survival-style open-world
play with diverse subgoals, and vision-based control tasks from the DeepMind Control suite (Tassa
et al. (2018)) for closed-loop continuous control. We report means with variability over 5 seeds
for MiniWorld [0, 409, 412, 643, 996] and DMC [0, 413, 604, 765, 891], and 5 seeds for Crafter
[0, 11, 413, 891, 920]. Because MiniWorld and Crafter are procedurally generated, training and
test distributions coincide; MuJoCo-based DMC tasks have no train/test split under our setup; we
therefore report training curves only.

We compare with Plan2Explore (Sekar et al. (2020)) as a baseline; it supplies an anticipatory
exploration baseline that scores novelty via ensemble disagreement, giving a contrast between
disagreement-based uncertainty and our inference-time entropy signal from a single world model.
We also add PPO on MiniWorld as a model-free reference (Schulman et al., 2017). For Crafter and
DMC, competitive pixel-based model-free methods (augmented SAC/DrQ-style agents) are known
to be sensitive to implementation and tuning (Engstrom et al., 2020; Henderson et al., 2018); to
avoid confounding factors and keep compute comparable, we omit them here (Kostrikov et al., 2020;
Yarats et al., 2021; Laskin et al., 2020; Srinivas et al., 2020). Dreamer is a widely adopted and strong
pixel-based MBRL agent that already surpasses earlier model-based and many model-free methods
in visual control (Hafner et al., 2019; 2020; 2023).

We train MiniWorld mazes for 350,000 environment steps (approximate convergence for Dreamer
under our setup). On DMC and Crafter we use a fixed 24-hour wall-clock budget per method to
ensure compute parity. Metrics are task-appropriate: episode time to completion for MiniWorld
(shorter is better) and undiscounted training return for DMC and Crafter. All curves use a rolling
mean (window 10%) with shaded ±1 standard error of the mean (SEM) across seeds.

5.1 MAZE EXPLORER

We use a 3D maze environment adapted from MiniWorld (Chevalier-Boisvert et al., 2023), where each
episode presents a new random layout. The agent receives RGB image observations and performs
continuous actions to locate three goal boxes. We introduce a porosity parameter that controls wall
density to vary exploration difficulty. Observations are augmented with a binary spatial map that
encodes visited regions and current orientation, providing a simple episodic memory. The reward
function combines exploration, proximity, and goal rewards to encourage both coverage and task
success. Full environment details are in Appendix D.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 1: Episode lengths across different porosity levels. Lower porosity increases maze difficulty.

5.1.1 TASK DIFFICULTY

Varying the porosity parameter controls maze difficulty (low porosity leads to difficult mazes). Visual
examples of mazes at different porosity levels are provided in Appendix E. Figure 1 shows that our
method maintains low episode lengths even in denser mazes, outperforming both Dreamer and PPO.
PPO underperforms across all settings, likely due to its lack of memory and long-horizon reasoning.
Base Dreamer’s performance degrades under low porosity, where rewards are harder to reach, while
our method maintains faster episode finishes across porosities in our runs.

Under the most difficult condition (porosity = 0), where only a single path exists between the agent
and three goals, both our method and Dreamer perform worse, as shown in Fig. 1. However, our
approach still outperforms Dreamer, achieving 20% shorter episode lengths on average, albeit with
higher variance due to the increased exploration burden. Plan2Explore underperforms here, which we
hypothesize stems from frequent replanning without commitment; ensemble disagreement identifies
novelty but does not enforce trajectory-level persistence.

5.2 VISION-BASED CONTROL (DMC-VISION)

We evaluate six pixel-control tasks from the DeepMind Control Suite: cartpole_swingup,
walker_walk, cheetah_run, reacher_hard, acrobot_swingup, and hopper_hop.
Rather than sweeping the entire benchmark, we select a compact set that spans complementary
regimes. Agents observe 64×64 RGB frames and act in continuous spaces. For each task we
train (i) a base Dreamer agent without planning, (ii) our commit-aware planning variant, and (iii)
Plan2Explore, all under identical step budgets (in practice they also take up similar amounts of time,
more detail is given in the timing analysis section); curves report a rolling mean (window 10%) with
shaded ±2 standard error of the mean (SEM) across seeds. Unless otherwise stated, we use a plan
horizon of H=16, a PPO reward length L=2, sample N=256 actor-guided candidate rollouts per
decision. To isolate reasoned exploration, we use a single environment instance (no vectorization),
since heavy parallelism can introduce “free” random exploration. For the same reason, we omit
sparse-reward variants (e.g., cartpole_swingup_sparse), where neither base Dreamer nor
our planner is expected to reliably discover narrow reward regions within the given budget.

A small sensitivity sweep over candidate count and meta horizon on four of the six tasks (cart-
pole_swingup, walker_walk, hopper_hop, reacher_hard) indicates that gains are stable across a
reasonable range of values (Appendix G). We restrict these sweeps to a representative subset to
control compute: acrobot_swingup is another underactuated swing-up control task whose planner
behaviour closely mirrors cartpole_swingup, and cheetah_run is a high-speed locomotion task already
well covered by the hopper_hop and walker_walk sensitivity profiles, so additional sweeps on these
two tasks would be computationally costly without providing qualitatively new insights.

Across three of six tasks, the planning variant achieves higher sample efficiency and final return on
average. Gains are largest in contact-rich or higher-variance control (Figures 2a, 2f), where short
commitments reduce dithering and stabilize control under pixel noise while collecting informative
trajectories. On smoother, lower-variance dynamics (Figures 2e, 2d), improvements are smaller
but positive on average. Despite hopper_hop often benefiting from increased parallelism or

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) walker_walk: planning main-
tains a widening lead over baseline.

(b) reacher_hard: clear gains from
purposeful multi-step corrections.

(c) cheetah_run: planning variant
shows no improvement.

(d) cartpole_swingup: Not much
change between planning and no
planning variants.

(e) acrobot_swingup: planning vari-
ant is on par or slightly better, but
plan2explore greatly improves upon
both here.

(f) hopper_hop: Our method starts
finding the control sequences that
will make the hopper hop much ear-
lier than the no planning variant.

Figure 2: DMC-Vision learning curves (return vs. environment steps) for no-plan, the planning variant, and
Plan2Explore. Shaded bands: ±2 standard error of the mean (SEM) across seeds.

longer training, our method discovers effective hopping sequences earlier than no-plan (Figure 2f).
Plan2Explore underperforms on most tasks here but is strong on acrobot_swingup, suggesting
that disagreement-based novelty aligns with that underactuated swing-up; by contrast, our approach
does not detract performance from any task but can make significant improvements on some of the
more complex tasks that necessitate sequences of actions.

5.3 OPEN-ENDED SURVIVAL (CRAFTER)

Crafter stresses long-horizon exploration and routine formation. Final episode rewards are given for
the number of unique achievements collected, limited to 22. Small penalties and bonuses are given
for health changes (Hafner, 2021). We train for 300k environment steps (approximately 24 hours on
a GeForce RTX 5090 GPU) and report mean returns with variability over 5 seeds. We run a single
environment here as well (no parallel rollouts), which is the default for Crafter. Unless otherwise
stated, the planning variant in Crafter is trained with the entropy-only meta objective (and without
base reward).

Overall, the planning variant is about 20% higher in average return and reaches comparable thresholds
in roughly 50% of the steps that base Dreamer takes (Fig. 3). Because Crafter’s reward is dominated
by exploratory achievements like crafting tools, placing structures, or engaging enemies, Dreamer’s
value and policy networks already internalise a form of long-horizon, reward-driven curiosity. Our
planner augments this implicit curiosity with an anticipatory entropy-based meta objective, so this
comparison can also be read as an ablation between a curiosity-driven agent with and without
anticipatory planning. The achievement breakdown in Appendix I shows that the planner-equipped
variant acquires repeatable, reward-dense survival routines earlier and more consistently, while
Plan2Explore underperforms on Crafter, consistent with the task rewarding sustained multi-step
routines rather than one-step novelty chasing.

5.4 ABLATION STUDY

To isolate the contributions of individual components, we compare:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Episode returns during Crafter training.

Base Dreamer: The standard agent without planning.

MPC Style: To evaluate the value of our underlying planner, we modify the meta planner to replan
at every step, mimicking MPC behaviour.

Meta-reward components: We ablate the signal used to train the meta-policy by using (i) entropy-
only, (ii) reward-only, and (iii) a 50/50 mixture of reward and entropy in rmeta.

We run all MPC ablation variants for 90% of the normal experiments’ step count to account for the
fact that MPC style experiments are slower to run than the full experiments.

Figures 4a and 4b demonstrates the value of committing to plans over extended horizons. Myopic
planning causes dithering in both the maze and Crafter environments, with the full planner outper-
forming MPC-style replanning by leverating plan commitment. The mixed objective performs slightly
worse than either pure objective in the Crafter env, as shown in Fig. 5a, which we attribute to the two
terms being only partially aligned in the environment: combining them can reduce selection contrast
and dilute the meta-policy’s advantage signal, which is why we use pure entropy as our training
signal (for Crafter). Importantly, the comparable performance of entropy-only and reward-only
suggests that, under actor-guided proposals, reward and predictive uncertainty often point to similar
futures. Entropy therefore offers a stable default planning signal when rewards are not available,
while remaining competitive when dense rewards are available. The lower variance we observe with
entropy is consistent with uncertainty being a more directly model-aligned quantity than predicted
reward. In Fig. 8 we see all three planning objectives performing largely the same, except in hopper
where entropy-less objectives fail. Hopper has one of the highest reward scarcities in our experimental
testbench, without an effective exploration signal it can be hard to perform well in it. Additional
sensitivity sweeps over candidate count and PPO horizon are shown in Appendix G.

5.5 TIMING ANALYSIS

Our method adds inference-time overhead from generating imagined rollouts and training the meta-
policy. With default settings (H=16, N=256 candidates), a single planning call costs ≈ 0.05s across
all regimes. The cost scales linearly with rollout horizon, while varying the number of candidates
has only a small effect due to batched evaluation on GPU. Meta-policy training adds a further ∼8-
10ms per PPO update at update frequency 32. Because replanning is commit-aware, these costs are
amortized over multiple environment steps. Full timing tables and scaling sweeps are reported in
Appendix F. We show in Appendix H that the replan rate drops as the agent trains, increasing planner
efficiency and possibly reflecting the world model’s error rate decreasing with training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a) ObjectNav: Episode lengths during training for
different ablations. The full planner outperforms both
the base Dreamer and MPC-style variants, highlight-
ing the benefit of plan commitment.

(b) Crafter: Episode returns during training for dif-
ferent ablations. The full planner has greater perfor-
mance and takes less time than the MPC variant, sig-
nalling efficiency benefits of plan commitment.

Figure 4: Comparison of episode lengths during training for ObjectNav (left) and Crafter (right)
across different ablations.

(a) Crafter entropy/reward ablation. All three planner
traces outperform the base dreamer variant

(b) DMC entropy/reward ablation. Hopper notably
fails without entropy. A larger version of this plot is
provided in Figure 8 for clarity.

.

Figure 5: Entropy/reward ablations for Crafter (left) and DMC (right). We compare training the meta-
policy with entropy-only, reward-only, and a 50/50 mixture of both. In both domains, entropy-only
and reward-only training of the meta-policy are comparable and outperform no-planner, suggesting
robustness to the precise meta-reward weighting.

6 LIMITATIONS & CONCLUSION

We note that an inherent limitation of our method is that the actor must be trained purely with
world model generated states rather than through experience replay; this method biases collection
of experiences towards high model entropy, leading to a distributional shift between the actor’s
policy and the actual behaviour policy. More broadly, we see inference-time entropy planning as a
lightweight anticipatory layer for world-model agents. It requires no auxiliary reward learning and
fits onto existing objectives. Retrospective intrinsic rewards remain valuable for shaping long-term
state distributions, and integrating both signals is a natural direction for future work.

Reproducibility Statement. We document datasets, preprocessing, and step-by-step training and
evaluation procedures in the Experiments section. Random seeds used for all runs are listed in the
experiments section. We will release the complete codebase on GitHub upon acceptance; in the
meantime, the paper and appendix provide all details needed to reimplement our results. Configuration
settings are located in Appendix J.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K Hubert, and David Silver. Planning
in stochastic environments with a learned model. In International Conference on Learning
Representations, 2021.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never give
up: Learning directed exploration strategies. arXiv preprint arXiv:2002.06038, 2020.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros. Large-
scale study of curiosity-driven learning. In International Conference on Learning Representations,
2019.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. CoRR, abs/2306.13831,
2023.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Raviteja Chunduru and Doina Precup. Attention option-critic. arXiv preprint arXiv:2201.02628,
2022.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, 2006.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
and Aleksander Madry. Implementation matters in deep policy gradients: A case study on PPO and
TRPO. In International Conference on Learning Representations (ICLR), 2020. arXiv:2005.12729.

Vicenç Gómez, Hilbert J Kappen, Jan Peters, and Gerhard Neumann. Policy search for path integral
control. In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part I 14, pp. 482–497.
Springer, 2014.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021. URL https://arxiv.org/abs/2109.06780.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. arXiv preprint arXiv:2010.02193, 2020.

11

https://arxiv.org/abs/2109.06780

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. arXiv preprint arXiv:2203.04955, 2022.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control. arXiv preprint arXiv:2310.16828, 2023.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In AAAI Conference on Artificial Intelligence (AAAI),
2018. doi: 10.1609/aaai.v32i1.11694.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In International
Conference on Machine Learning, pp. 4476–4486. PMLR, 2021.

Daniel Jarrett, Corentin Tallec, Florent Altché, Thomas Mesnard, Remi Munos, and Michal Valko.
Curiosity in hindsight: Intrinsic exploration in stochastic environments. In Proceedings of the 40th
International Conference on Machine Learning, pp. 14780–14816. PMLR, 2023.

Brendon Johnson and Alfredo Weitzenfeld. Hierarchical reinforcement learning in multi-goal spatial
navigation with autonomous mobile robots. arXiv preprint arXiv:2504.18794, 2025.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1–2):99–134, 1998. doi:
10.1016/S0004-3702(98)00023-X.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature, 620
(7976):982–987, 2023.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforcement
learning: A review and perspectives. Journal of Artificial Intelligence Research, 75:1401–1476,
2022.

Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-to-end for
continuous action tasks. arXiv preprint arXiv:1712.00004, 2017.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020. NeurIPS
2020 camera-ready.

Alexander C Li, Carlos Florensa, Ignasi Clavera, and Pieter Abbeel. Sub-policy adaptation for
hierarchical reinforcement learning. arXiv preprint arXiv:1906.05862, 2019.

Srinath Mahankali, Zhang-Wei Hong, and Pulkit Agrawal. Does novelty-based exploration maximize
novelty? arXiv preprint arXiv:2211.07627, 2022.

Charles R. Marsh. An introduction to continuous entropy. https://charlesmarsh.com/
continuous-entropy/, 2013. Accessed: 2025-12-02.

Viet Dung Nguyen, Zhizhuo Yang, Christopher L Buckley, and Alexander Ororbia. R-aif: Solving
sparse-reward robotic tasks from pixels with active inference and world models. arXiv preprint
arXiv:2409.14216, 2024.

Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and Rémi Munos. Count-based exploration
with neural density models. In Proceedings of the 34th International Conference on Machine
Learning, pp. 2721–2730. PMLR, 2017.

12

https://charlesmarsh.com/continuous-entropy/
https://charlesmarsh.com/continuous-entropy/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. arXiv preprint arXiv:2002.12292, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International conference on machine
learning, pp. 8583–8592. PMLR, 2020.

Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):
379–423, 1948.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In
International conference on machine learning, pp. 5779–5788. PMLR, 2019.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017a.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017b.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. CURL: Contrastive unsupervised represen-
tations for reinforcement learning. In Proceedings of the 37th International Conference on Ma-
chine Learning (ICML). PMLR, 2020. URL https://proceedings.mlr.press/v119/
laskin20a.html.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd
edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.html.

Oleg Svidchenko and Aleksei Shpilman. Maximum entropy model-based reinforcement learning.
arXiv preprint arXiv:2112.01195, 2021.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A.
Riedmiller. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018. URL https:
//arxiv.org/abs/1801.00690.

Xin Wang, Wenhan Xiong, Hongmin Wang, and William Yang Wang. Look before you leap: Bridg-
ing model-free and model-based reinforcement learning for planned-ahead vision-and-language
navigation. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 37–53,
2018.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral control
using covariance variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

13

https://proceedings.mlr.press/v119/laskin20a.html
https://proceedings.mlr.press/v119/laskin20a.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/1801.00690
https://arxiv.org/abs/1801.00690

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM / AI TOOLING DISCLOSURE

We used AI-assisted tools during this project as follows.

Tools.

• Cursor (AI coding assistant): Used to generate boilerplate code, suggest refactorings,
produce docstrings and unit-test skeletons, and surface API idioms. All produced code was
reviewed, modified as needed, and verified by the authors.

• ChatGPT (writing assistant): Used for copy-editing, grammar and style suggestions,
tightening wording, expanding or condensing paragraphs on request, and clarifying phrasing.
We did not use it for ideation, technical contributions, or to generate substantive claims.

The authors reviewed and verified all AI-assisted outputs for correctness and originality, and accept
full responsibility for the code and text included in the paper. Any code suggested by tools was tested
and adapted to our setting before inclusion.

B MDP FORMALISM

We briefly summarise the Markov decision process (MDP) and partially observable MDP (POMDP)
formalisms to make the assumptions behind Dreamer and our planner explicit.

Markov decision process (MDP). An MDP is a tuple M = ⟨S,A, p, r, γ, ρ0⟩, where S is the
set of environment states, A the set of actions, p(st+1 | st, at) the transition dynamics, r(st, at)
the expected immediate reward, γ ∈ (0, 1) the discount factor, and ρ0 the initial-state distribution
(Kaelbling et al., 1998). The Markov property, or the memoryless assumption, states that (st+1, rt)
depend only on (st, at). A stationary policy π(a | s) induces trajectories by s0 ∼ ρ0, at ∼ π(· | st),
st+1 ∼ p(· | st, at). Following these trajectories, the standard RL objective is to maximise expected
discounted return using the Bellman equation:

J(π) = Eπ,p

[∞∑
t=0

γtr(st, at)

]
. (11)

In many environments the agent does not observe st directly. A POMDP extends the MDP to
P = ⟨S,A, p, r,X , Z, γ, ρ0⟩, where X is an observation space and Z(xt | st) is the observation
(emission) model (Kaelbling et al., 1998). The process evolves as

s0 ∼ ρ0, (12)
at ∼ π(· | x1:t, a1:t−1), (13)

st+1 ∼ p(· | st, at), (14)
xt+1 ∼ Z(· | st+1), (15)

so the policy must condition on the history because st is hidden. A sufficient statistic for the history
is the belief state bt(s) = p(st = s | x1:t, a1:t−1), yielding an equivalent fully observed belief-MDP.
We use the POMDP view throughout, since Dreamer operates from pixels and must infer latent state.

Dreamer’s RSSM can be interpreted as learning a compact belief representation for a POMDP:
the deterministic recurrent state ht summarises history, the prior pϕ(zt | ht) predicts latent futures,
and the posterior qϕ(zt | ht, xt) refines this belief after observing xt, trained via the KL loss in
Eq. equation 1. In continual RL, Khetarpal et al. (2022) emphasise that both partial observability
and nonstationarity can be modelled by augmenting the hidden state with task/phase variables, i.e.,
treating continual learning as a (possibly changing) POMDP. This perspective motivates using model
uncertainty over latent state as a principled exploration signal: high-entropy priors correspond to
broad beliefs about unobserved environment factors, which our planner seeks out in imagined futures.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C PLANNING ALGORITHM

Algorithm 1 Entropy Seeking Anticipatory Planning

1: Input: Observation ot
2: Meta-policy computes discrete planning probability pt ∈ {0, 0.06, 0.25, 0.56, 1} (via squaring

sampled values from {0, 0.25, 0.5, 0.75, 1.0})
3: Sample ut ∼ U(0, 1)
4: if ut < pt then
5: Greedy actor samples C (256) candidate actions a1, . . . , aC from ot
6: for i = 1 to C do
7: Roll out trajectory τi of length H (maximum rollout length, 16 here) using world model

and greedy actor
8: Compute EH = 1

H

∑H
t=1 E

(i)
t

9: Select trajectory τbest = argmaxEH

10: Set plan to τbest
11: Continue interacting with environment; repeat planning check at next step

D MINIWORLD ENVIRONMENT AND REWARD SCHEME

We extend the MiniWorld Maze environment(Chevalier-Boisvert et al., 2023) with several task
relevant augmentations. The maze environment is a 3 dimensional procedurally generated maze
of size 8x8 (using recursive backtracking) where the agent can take continuous actions along three
dimensions - forward/back (step size attenuated if moving backwards to encourage progress), strafe
left/right, turn left/right. Each observation consists of a forward-facing RGB image of size (64x64x3).
Each episode ends when the time limit (4096) is reached, or the three goal boxes have been found.
Each training run samples a new maze structure every episode to prevent memorization. No regions
of the maze are sectioned off from the rest of the maze and all the goal states are reachable.

To promote structured exploration, we introduce a porosity parameter that controls wall density:
with probability p, wall segments are randomly removed during generation. This provides a tunable
complexity gradient for navigation tasks by creating variable maze connectivity.

An auxiliary binary 2D map of size (64x64x3) that records agent visitation over the course of an
episode has been concatenated to the observation. This map records visited coordinates as 1s whereas
unvisited coordinates are kept at 0. The position of the agent and the direction it is looking in is
also visible on the map. This serves as episodic spatial memory that enables agents to reason about
coverage and connect their actions to the current observation. This mirrors plausible real-world
capabilities that can be enacted through GPS tracking or odometry.

The reward function consists of three components:

Exploration Reward: A positive reward is granted when the agent visits a previously unvisited
cell in its binary exploration map. The reward magnitude is proportional to the number of
newly visited cells within a square region around the agent, the size of which is controlled
by the blur parameter, given by b. While this reward introduces non-Markovian dynamics
by incorporating visitation history, the inclusion of a binary map in the observation allows
memory-less model-free agents such as PPO to perform effectively in this environment.

exploration reward =


∆t

b2
if b > 1

∆t otherwise

where ∆t = number of newly explored cells at time t

Proximity Reward: A smoothly decaying signal is emitted by each goal object, with exponentially
scaled rewards given when the agent is within an x-unit radius. This mimics real-world
analogs such as bluetooth signals or radio signals for search and rescue, animal noises
for ecological monitoring, or semantic hints for more advanced exploration. This reward

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Porosity 0.0 (b) Porosity 0.1 (c) Porosity 0.2

(d) Porosity 0.4 (e) Porosity 0.6 (f) Porosity 0.8

Figure 6: Top-down maze layouts at selected porosity levels. Higher porosity values remove more
internal walls, increasing openness and reducing planning difficulty.

takes the form of two bars in the center of the image - if the agent is near a goal box of a
particular colour (red, green, or blue), the bars will turn that colour with intensity varying
with distance.

Proximity reward =

{
0 if ∆ < 0 or ∆ > 10

(10−∆)2 · pmul otherwise

where ∆ = dist − (ragent + rbox + s) and pmul = 0.03

Goal Reward: The agent gets a reward for moving into a coloured box. It gets 50 per box and then
150 when it gets the third box.

Thus the overall reward is composed of these three elements summed onto the baseline of -10. The
lower limit of reward gained in an episode is −T where T is the time limit, and the upper limit is 0.

E MAZE IMAGES

To visualize the effect of varying porosity on maze complexity, we provide top-down views of
generated mazes at increasing porosity levels, see Fig. 6. As porosity increases, more internal walls
are removed, resulting in more open environments. These top-down maps reflect the structural
differences that influence planning difficulty.

To contextualize the agent’s perspective within these mazes, we also provide an example of the full
map layout and a corresponding visual observation seen by the agent, as given in Figure 7.

F TIMING AND COMPUTE OVERHEAD

This appendix reports detailed timing for our planning module and the PPO-based meta-policy. All
timings were measured on the same hardware used for the main experiments, with the default planner
unless otherwise stated (H=16, N=256 candidates).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Agent’s visual observation (b) Agent’s map observation

Figure 7: Image of what the agent perceives - the visual observation (left) and of the map observation
(right).

Environment H=16, N=256 mean (s) std (s) notes

MiniWorld Maze 0.0463 0.0008 continuous actions
Crafter 0.0493 0.0010 discrete actions
DMC-Vision 0.0478 0.0007 continuous actions

Table 1: Default planning-call latency. Values are mean ± std seconds per call.

F.1 PLANNING CALL LATENCY

Table 1 reports the mean wall-clock cost of a single imagination-and-score planning call under default
settings. Across Maze, Crafter, and DMC-Vision, a planning call is consistently ≈50ms.

F.2 SCALING WITH HORIZON AND CANDIDATE COUNT

Planning cost scales approximately linearly with the rollout horizon H: halving H from 16 to 8
roughly halves latency in all environments (e.g., Maze: 0.046s → 0.022s; Crafter: 0.049s → 0.025s;
DMC: 0.048s → 0.024s). By contrast, varying the number of candidates N has only a small effect
on wall-clock time, because candidates are evaluated in a single batched GPU forward pass. As a
concrete illustration, replanning every other step adds ≈ 0.05s × 50,000 ≈ 2,500s (∼42 minutes)
per 100k environment steps.

For completeness, Tables 2–4 show the full horizon–choices timing matrices.

F.3 META-POLICY (PPO) SEQUENCE PROCESSING

The meta-policy is trained using PPO on sequences of length L. Table 5 reports the wall-clock cost
of processing a batch of sequences for different L. At the default L=8, PPO sequence processing
costs ≈8–10ms per update, which is small compared to the planning-call cost.

F.4 ENVIRONMENT THROUGHPUT AND CPU BOTTLENECKS (MINIWORLD)

We observe that MiniWorld throughput is more CPU-bound than GPU-bound under our setup. On
otherwise comparable systems, 350k training steps took 16 hours on an RTX 5090 with an Intel
i9-14900K (24 cores, 6.0 GHz max), compared to 24 hours on an RTX 4090 with an i7-13700K (16
cores, 5.4 GHz max), and 36 hours on an RTX 4070 Ti with a Ryzen 9 5900X (12 cores, 4.8 GHz

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

H / N 256 128 64 32 16 8 4 2

16 0.0463 0.0464 0.0457 0.0445 0.0434 0.0423 0.0419 0.0446
8 0.0225 0.0230 0.0227 0.0223 0.0216 0.0212 0.0209 0.0212
4 0.0114 0.0116 0.0115 0.0114 0.0110 0.0106 0.0107 0.0109
2 0.0058 0.0059 0.0059 0.0058 0.0056 0.0054 0.0054 0.0055

Table 2: MiniWorld Maze planning-call timings (seconds per call). Means shown; stds are < 10−3s
except for N=2 due to measurement noise.

H / N 256 128 64 32 16 8 4 2

16 0.0493 0.0495 0.0488 0.0479 0.0462 0.0450 0.0445 0.0471
8 0.0246 0.0249 0.0244 0.0241 0.0232 0.0228 0.0225 0.0227
4 0.0123 0.0125 0.0123 0.0122 0.0117 0.0115 0.0114 0.0117
2 0.0063 0.0064 0.0063 0.0062 0.0060 0.0060 0.0059 0.0059

Table 3: Crafter planning-call timings (seconds per call).

max). This suggests that CPU core count and clock speed significantly influence environment-step
throughput in these RL environments (we found similar trends with the other two environments).

G ABLATION AND SENSITIVITY ANALYSIS

This appendix provides additional ablations and sensitivity sweeps referenced in the main text. We
focus on (i) the meta-reward used to train the meta-policy, and (ii) robustness to planner hyperpa-
rameters such as the number of candidate rollouts and the commitment (sequence) horizon. Unless
otherwise stated, each curve reports the mean with shaded ±95% confidence intervals computed as
2×SEM across seeds.

G.1 META-REWARD (ENTROPY VS. REWARD) ABLATIONS

The main paper reports Crafter meta-reward ablations in Fig. 5a. Here we provide the corresponding
ablations on representative DMC-Vision tasks (Fig. 8). We vary the components of rmeta between
entropy-only, reward-only, and a 50/50 mixture. As shown in Fig. 8, entropy-only and reward-
only yield broadly similar learning trends across tasks, with reward-only often exhibiting slightly
higher variance. This is expected given the small number of seeds and the fact that Dreamer’s
reward predictor can be noisier than the world-model uncertainty signal. The mixed objective is
not consistently better and in several cases is slightly worse, suggesting that entropy and reward are
only partially aligned in these tasks; mixing them can dilute the planner’s anticipatory drive without
adding a clearer control signal. Overall, the ablation supports our claim that the method is robust to
the entropy reward weighting and does not require careful tuning.

G.2 SENSITIVITY TO CANDIDATE COUNT

We sweep the number of actor-guided candidates N evaluated per replanning step. Crafter sensitivity
to candidate count is shown in the left panel of Fig. 9 (see Fig. 9a), while DMC-Vision sensitivity is
shown in Fig. 10. In both regimes, gains persist across a wide span of candidate counts, and the default
(N=256) lies in a stable region. Very small candidate sets (e.g., N=16) can reduce performance,
consistent with the planner having fewer high-return futures to choose among. Because candidates
are generated by a greedy actor, trajectories are partially redundant, so moderate oversampling is
expected. Importantly, these sweeps align with the timing analysis (Appendix F): increasing N has
only a modest impact on wall-clock cost because candidate evaluation is batched on the GPU.

G.3 SENSITIVITY TO COMMITMENT / META HORIZON

We sweep the commitment horizon (meta PPO sequence length / replanning interval, denoted “seq”).
Crafter results are shown in the right panel of Fig. 9 (see Fig. 9b), and DMC-Vision results are
shown in Fig. 11. Short-to-moderate commitment typically yields the most reliable gains, matching
the main finding that commitment reduces dithering while retaining flexibility to replan. Longer

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

H / N 256 128 64 32 16 8 4 2

16 0.0478 0.0485 0.0479 0.0467 0.0457 0.0443 0.0461 0.0445
8 0.0240 0.0243 0.0239 0.0235 0.0228 0.0225 0.0221 0.0224
4 0.0121 0.0122 0.0121 0.0119 0.0115 0.0114 0.0111 0.0113
2 0.0062 0.0063 0.0062 0.0061 0.0059 0.0058 0.0057 0.0059

Table 4: DMC-Vision planning-call timings (seconds per call).

Environment L=16 L=8 L=4 L=2

Maze 0.0261 0.0099 0.0092 0.0043
Crafter 0.0234 0.0083 0.0044 0.0041
DMC 0.0240 0.0095 0.0048 0.0077

Table 5: Meta-policy PPO sequence processing time (seconds per update) as a function of sequence
length L.

commitment can occasionally help (e.g., for smoother dynamics), but is less stable overall. These
trends also explain the practical overhead reduction discussed in the timing analysis (Appendix F):
longer average commitment amortizes replanning cost over more environment steps.

H PLANNER METRICS

This section reports diagnostics that characterise the learned meta-policy and help interpret the
practical behaviour of commit-aware replanning. Both plots aggregate quantities per episode and then
average across seeds (and environment collections): the solid curve is the mean, the shaded region
denotes a single standard deviation, averaged in the same way as the mean but calculated per episode,
and the dotted curve shows the average episode-wise maximum, highlighting occasional extreme
behaviours, or flexibility. These metrics also connect directly to the compute overhead discussion in
Appendix F.

Figure 12 plots the probability that the meta-policy chooses to replan at a given environment step.
Across domains, the meta-policy quickly moves away from “always replan” and stabilises at a
selective regime: Crafter gradually increases from roughly 0.5 to around 0.6–0.7 over training, while
Maze and DMC stabilise between ∼ 0.6 and ∼ 0.7. The dotted average-maximum trace remains close
to 1.0, showing that some episodes briefly approach near-always replanning, but the mean behaviour
does not collapse to this regime. Overall, the learned policy maintains the intended commit-aware
behaviour while retaining flexibility to replan more aggressively when needed, while proposing
different planning regimes for different environments and tasks.

Figure 13 reports the number of environment steps executed before the next replanning event.
Commitment lengths remain short on average: Maze and DMC typically commit for about ∼ 2 steps
before reconsidering, while Crafter shows slightly longer commitments early in training (∼ 2–3
steps) before settling to a similar range. The dotted average-maximum curve, however, remains
much higher (around ∼ 8–12 steps depending on domain), indicating that some episodes sustain
substantially longer commitments even though typical behaviour favours frequent opportunities to
replan.

Appendix F reports an average cost of ≈ 0.05s per planning call with default settings. Figures 12
and 13 show that replanning occurs on only about half to two-thirds of environment steps, and
that each plan is typically executed for multiple steps before replanning. Thus the planning cost is
amortised over committed rollouts, reducing the effective overhead per step by roughly a factor of
two relative to a worst-case “replan every step” scenario. In expectation this corresponds to an added
∼ 25–30ms per step (about 40–50 minutes per 100k steps), consistent with the wall-clock parity
discussion in the timing analysis. Commit-aware replanning therefore provides both behavioural
benefits (reduced dithering) and practical throughput gains by avoiding unnecessary imagined rollouts.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 8: DMC-Vision meta-reward ablation. We vary the meta objective: entropy-only, reward-only,
and a 50/50 mixture. Entropy-only and reward-only are comparable (reward-only slightly noisier),
while the mixed objective is not consistently better, supporting robustness to rmeta weighting.

(a) Candidate count sweep N (plan choices). (b) Commitment horizon sweep (seq length).

Figure 9: Crafter sensitivity sweeps. Left: varying the number of imagined candidates N per
replanning step. Right: varying the commitment / replanning horizon (seq). Curves show mean return
with shaded ±95% confidence intervals computed as 2×SEM across 5 seeds.

I CRAFTER ACHIEVEMENT BREAKDOWN

To better understand where the return gains in Sec. 5.3 come from, we report per-achievement learning
curves over the 300k-step budget. Gains are concentrated in routine-forming achievements such
as collecting wood, placing tables, and defeating zombies, where short, commit-aware exploratory
rollouts appear to reduce dithering and stabilize representation learning (Figs. 14a, 14b, 14c). In
contrast, deeper crafting branches (make wooden sword/pickaxe) remain low within 300k steps,
especially for the planning variant (Figs. 14g, 14h). We hypothesise this is because the agent attempts
these actions early game and finds they do nothing consistently (a nearby table and correct materials

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 10: DMC-Vision sensitivity to candidate count N (plan choices) across four tasks
(cartpole_swingup, walker_walk, hopper_hop, reacher_hard). Each panel reports
mean return with shaded ±95% confidence intervals (2×SEM).

in the inventory are prerequisites before the "make pickaxe" or "make axe" button make the respective
tools), so the corresponding states become high-confidence low-reward states and are not attempted
again, as detailed in failure mode #2. Even so, the planning variant remains better than or competitive
with the baseline across the panel (Fig. 14).

Tasks like collect wood and place table are repeatable and reward-dense; plan commitment converts
them into habits, yielding steady slopes and higher returns (Figs. 14a, 14b). Combat against zombies
sits between routine and opportunistic: once wood/table routines are established, the planner’s broader
coverage increases encounter rate, so the zombie curve rises earlier and higher than no-plan but still
exhibits spikes (Fig. 14c). Making tools remains low for both agents; the planning variant is especially
conservative (Figs. 14g, 14h). It is interesting that even though we do not explicitly optimise for
reward in the planner, the inherent bias toward rewarding rollouts results in what is effectively zombie
and tree farming behaviour (Figs. 14a, 14c). Collect drink, collect sapling and eat cow (Figs. 14d,
14e, 14f) are all roughly matched between the no plan variant and the planning variant, indicating
these routine-light behaviours benefit less from commitment.

J DEFAULT CONFIGURATION AND CODE BASE

J.1 DEFAULT CONFIGURATION

The following listing provides the default hyperparameters and settings used in our experiments.

use_plan: True

logdir: null
traindir: null
evaldir: null
offline_traindir: ’’
offline_evaldir: ’’
seed: 0

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 11: DMC-Vision sensitivity to commitment horizon (seq length) across four tasks
(cartpole_swingup, walker_walk, hopper_hop, reacher_hard). Each panel reports
mean return with shaded ±95% confidence intervals (2×SEM).

Figure 12: Planning probability over training. Solid: mean across seeds; shaded band: 1 standard
deviation averaged; dotted: average episode-wise maximum. The meta-policy settles into a selective
replanning regime, with replan probabilities typically between ∼ 0.5 and ∼ 0.7 rather than replan-
every-step behaviour.

deterministic_run: False
steps: 1e6
parallel: False

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 13: Length before replanning. Solid: mean across seeds; shaded band: 1 standard deviation
averaged; dotted: average episode-wise maximum. The planner usually commits for ∼ 2–3 steps,
with occasional long commitments.

(a) collect_wood (b) place_table (c) defeat_zombie

(d) collect_drink (e) collect_sapling (f) eat_cow

(g) make_wood_pickaxe (h) make_wood_sword (i) wake_up

Figure 14: Crafter achievement counts over 300k steps (3 seeds) for no plan vs the planning variant vs
plan2explore. The planning agent forms reliable routines (wood, table, zombie) and improves sample efficiency,
while deeper crafting remains conservative within this budget.

eval_every: 1e4
eval_episode_num: 10
log_every: 1e4

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

reset_every: 0
device: ’cuda:0’
compile: True
precision: 16
debug: False

Environment
task: ’dmc_walker_walk’
size: [64, 64]
envs: 1
action_repeat: 1
time_limit: 1000
grayscale: False
prefill: 2500
reward_EMA: True

Model
dyn_hidden: 512
dyn_deter: 512
dyn_stoch: 32
dyn_discrete: 32
dyn_rec_depth: 2
dyn_mean_act: ’none’
dyn_std_act: ’sigmoid2’
dyn_min_std: 0.1
grad_heads: [’decoder’, ’reward’, ’cont’, ’entropy’]
units: 512
act: ’SiLU’
norm: True
encoder:

{mlp_keys: ’$^’, cnn_keys: ’image’, act: ’SiLU’, norm: True, cnn_depth: 64, kernel_size: 4, minres: 4, mlp_layers: 5, mlp_units: 1024, symlog_inputs: True}
decoder:

{mlp_keys: ’$^’, cnn_keys: ’image’, act: ’SiLU’, norm: True, cnn_depth: 32, kernel_size: 4, minres: 4, mlp_layers: 5, mlp_units: 1024, cnn_sigmoid: False, image_dist: mse, vector_dist: symlog_mse, outscale: 1.0}
actor:

{layers: 2, dist: ’normal’, entropy: 3e-4, unimix_ratio: 0.01, std: ’learned’, min_std: 0.1, max_std: 1.0, temp: 0.1, lr: 3e-5, eps: 1e-5, grad_clip: 100.0, outscale: 1.0}
Q:

{layers: 2, dist: ’symlog_disc’, slow_target: True, slow_target_update: 1, slow_target_fraction: 0.02, lr: 3e-5, eps: 1e-5, grad_clip: 100.0, outscale: 1.0}
critic:

{layers: 2, dist: ’symlog_disc’, slow_target: True, slow_target_update: 1, slow_target_fraction: 0.02, lr: 3e-5, eps: 1e-5, grad_clip: 100.0, outscale: 0.0}
reward_head:

{layers: 2, dist: ’symlog_disc’, loss_scale: 1.0, outscale: 1.0}
entropy_head:

{layers: 2, dist: ’symlog_disc’, loss_scale: 1.0, outscale: 1.0}
cont_head:

{layers: 2, loss_scale: 1.0, outscale: 1.0}
dyn_scale: 0.5
rep_scale: 0.1
kl_free: 1.0
weight_decay: 0.0
unimix_ratio: 0.01
initial: ’learned’

Training
batch_size: 16
batch_length: 64
train_ratio: 512
pretrain: 100
model_lr: 1e-4
opt_eps: 1e-8
grad_clip: 1000
dataset_size: 1000000
opt: ’adam’

Behavior.
discount: 0.997

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

discount_lambda: 0.95
imag_horizon: 15
imag_gradient: ’dynamics’
imag_gradient_mix: 0.0
eval_state_mean: False

Exploration
expl_behavior: ’greedy’
expl_until: 0
expl_extr_scale: 0.0
expl_intr_scale: 1.0
disag_target: ’stoch’
disag_log: True
disag_models: 10
disag_offset: 1
disag_layers: 4
disag_units: 400
disag_action_cond: False

plan_behavior:
plan_max_horizon: 16
plan_choices: 256
plan_train_every: 32
sub_batch_size: 64
num_epochs: 30
buffer_size: 32768
clip_epsilon: 0.2
gamma: 0.99
lmbda: 0.95
entropy_eps: 0.1
num_cells: 256
lr: 0.003
seq_length: 8
buffer_minimum: 512
meta_action_quant: 5 # used in CategoricalSpec
num_meta_action_lwr: 2 # used in CategoricalSpec
ent_multiplier: 1.0 # multiplier for entropy in _flow method
rew_multiplier: 1.0 # multiplier for reward in _flow method

dmc_vision:
steps: 1e6
action_repeat: 2
envs: 1
train_ratio: 512
video_pred_log: false
encoder: {mlp_keys: ’$^’, cnn_keys: ’image’}
decoder: {mlp_keys: ’$^’, cnn_keys: ’image’}

crafter:
task: crafter_reward
step: 1e6
action_repeat: 1
envs: 1
train_ratio: 512
video_pred_log: false
dyn_hidden: 1024
dyn_deter: 4096
units: 1024
encoder: {mlp_keys: ’$^’, cnn_keys: ’image’, cnn_depth: 96, mlp_layers: 5, mlp_units: 1024}
decoder: {mlp_keys: ’$^’, cnn_keys: ’image’, cnn_depth: 96, mlp_layers: 5, mlp_units: 1024}
actor: {layers: 5, dist: ’onehot’, std: ’none’}
value: {layers: 5}
reward_head: {layers: 5}
cont_head: {layers: 5}
imag_gradient: ’reinforce’

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

J.2 CODE BASE

Our implementation is forked from https://github.com/NM512/dreamerv3-torch/
blob/main/dreamer.py. We adapt this code to our setting while retaining the default configu-
ration listed above.

26

https://github.com/NM512/dreamerv3-torch/blob/main/dreamer.py
https://github.com/NM512/dreamerv3-torch/blob/main/dreamer.py

	Introduction
	Related Work
	Intrinsic Reward
	Planning
	Hierarchical Policies

	Preliminaries
	Method
	Entropy
	Reactive hierarchical planner

	Experiments
	Maze Explorer
	Task Difficulty

	Vision-based control (DMC-Vision)
	Open-ended survival (Crafter)
	Ablation Study
	Timing Analysis

	Limitations & Conclusion
	LLM / AI Tooling Disclosure
	MDP Formalism
	Planning Algorithm
	MiniWorld Environment and Reward Scheme
	Maze Images
	Timing and Compute Overhead
	Planning Call Latency
	Scaling with Horizon and Candidate Count
	Meta-policy (PPO) Sequence Processing
	Environment Throughput and CPU Bottlenecks (MiniWorld)

	Ablation and Sensitivity Analysis
	Meta-reward (entropy vs. reward) ablations
	Sensitivity to candidate count
	Sensitivity to commitment / meta horizon

	Planner Metrics
	Crafter achievement breakdown
	Default Configuration and Code Base
	Default Configuration
	Code Base

