
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENTER THE VOID: EXPLORING WITH HIGH ENTROPY
PLANS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-based reinforcement learning (MBRL) offers an intuitive way to increase
the sample efficiency of model-free RL methods by simultaneously training a world
model that learns to predict the future. These models constitute the large majority
of training compute and time and they are subsequently used to train actors entirely
in simulation, but once this is done they are quickly discarded. We show in this
work that utilising these models at inference time can not only boost performance
but also sample efficiency. We propose a novel approach that anticipates and
actively seeks out high-entropy states using the world model’s short-horizon latent
predictions, offering a principled alternative to traditional curiosity-driven methods
that chase once-novel states well after they were stumbled into. While many model
predictive control (MPC) based methods offer similar alternatives, they typically
lack commitment, synthesising multiple multi-step plans at every step. To mitigate
this, we present a hierarchical planner that dynamically decides when to replan,
planning horizon length, and the commitment to searching entropy. While our
method can theoretically be applied to any model that trains its own actors with
solely model generated data, we have applied it to Dreamer to illustrate the concept.
Our method finishes Miniworld’s procedurally generated mazes 50% faster than
base Dreamer at convergence and in only 60% of the environment steps that base
Dreamer’s policy needs; it displays reasoned exploratory behaviour in Crafter,
achieves the same reward as base Dreamer in a third of the steps; planning is shown
to accelerate and improve even Deepmind Control performance.

1 INTRODUCTION

In recent years, reinforcement learning (RL) has achieved remarkable success across a variety
of domains, from mastering Go (Silver et al., 2017b) to racing drones at high speed (Kaufmann
et al., 2023). However, these successes often rely on dense reward signals and highly structured
environments. In real-world applications such as autonomous navigation, exploration, and disaster
response, rewards are sparse and environments are stochastic and partially observable. In these
conditions, achieving efficient exploration and good sample efficiency remain an active research
problem. Curiosity-based bonuses tend to pursue aleatoric novelty, whereas MPC-style planners
replan myopically at each step, offering little commitment at substantial computational cost.

Another avenue to address these challenges is model-based reinforcement learning (MBRL), where
models of the environment (world models (Ha & Schmidhuber, 2018)) are concurrently trained to
predict transitions. In this work, we propose to augment Dreamer (Hafner et al., 2020), a prominent
and efficient world model, with a planner to anticipate and seek informative states as soon as they are
about to occur to drive reasoned exploration. To do this, we leverage the world model by combining
it with the greedy actor to generate a selection of high scoring rollouts, from which we choose the
rollout whose predicted states have the highest entropy. We also introduce a lightweight Proximal
Policy Optimisation (PPO) based hierarchical planner that dynamically decides when to commit to a
pre-selected rollout and when to discard it to replan. While our experiments focus on Dreamer, our
method is model-agnostic and can be applied to any MBRL framework; the mathematical formulation
of our method places no such restrictions.

Our contributions are:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• Recast world-model training as a min–max objective that couples model learning with
entropy-seeking exploration, improving information gain and sample efficiency.

• Use short-horizon latent predictions at inference time to proactively target high-entropy
states, yielding active and reasoned exploration.

• Introducing a reactive hierarchical planner that dynamically selects between committing to a
plan and replanning based on new information received, making the method more efficient,
committal, and decisive.

The rest of the paper is structured as follows. In Section 2, we review related work in intrinsic
motivation, planning, and hierarchical RL. In Section 3, we provide background on Dreamer and
its training formulation. Section 4 introduces our entropy-seeking planner and reactive hierarchical
policy. Section 5 details our experimental setup, evaluates performance on Miniworld’s procedurally
generated 3D maze environment, Crafter, and DMC’s vision based control environment. Section 6
concludes this work and outlines limitations.

2 RELATED WORK

2.1 INTRINSIC REWARD

Intrinsic motivation methods can be grouped into retrospective and anticipatory approaches. Retro-
spective methods assign reward after experience has occurred, using prediction error (Pathak et al.,
2017), state novelty (Burda et al., 2018), episodic novelty (Badia et al., 2020), or representation
surprise (Raileanu & Rocktäschel, 2020). While simple and broadly compatible with model-free RL,
they are vulnerable to the white-noise problem (attraction to aleatoric uncertainty) and detachment
(Burda et al., 2018; Ecoffet et al., 2019). Anticipatory methods instead steer agents toward potentially
novel states using short-horizon predictions of epistemic uncertainty (Shyam et al., 2019; Sekar et al.,
2020; Chua et al., 2018). When combined with reward conditioning they better avoid aleatoric traps,
but typically introduce multi-step planning components that increase architectural and computational
complexity.

2.2 PLANNING

Planning in RL ranges from tree search to trajectory optimization. Monte Carlo Tree Search (MCTS)
has proved effective in games (Coulom, 2006; Silver et al., 2016; 2017a) but assumes (near) full
observability and discrete action spaces, limiting its applicability in stochastic, partially observed
environments. Path-integral / MPPI-style control samples and reweights trajectories under learned
dynamics (Gómez et al., 2014; Williams et al., 2015); TD-MPC and TD-MPC2 pair this with TD
learning for vision-based control (Hansen et al., 2022; 2023), but the planner’s actions can drift
from the policy network, risking distribution shift and value overestimation. Closer to our setting,
Look Before You Leap prefers low-entropy, high-reward states, which can suppress exploration
early in training (Wang et al., 2018); MaxEnt-Dreamer biases the actor towards toward high entropy
states but where this method could have been reactive, it instead is retrospective (Svidchenko &
Shpilman, 2021); RAIF optimizes posterior over prior uncertainty but this necessitates evaluating
gains retrospectively, blind to emerging novelty (Nguyen et al., 2024).

2.3 HIERARCHICAL POLICIES

Hierarchical RL introduces temporal abstraction via high- and low-level controllers. Option-Critic
learns options and termination conditions end-to-end (Bacon et al., 2017), while HiPPO runs PPO
at two temporal scales (Li et al., 2019). These methods improve long-horizon credit assignment,
but fixed intervals or frequent replanning can limit adaptability; excessive termination also reduces
effective commitment. Our planner differs by explicitly learning when to replan versus commit,
driven by signals computed from imagined rollouts.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

Dreamer (Hafner et al., 2019; 2020; 2023) learns a compact latent dynamics model and performs
policy optimization entirely in latent space. In this work, we use DreamerV3 as it is the most recent
and advanced formulation of the Dreamer series of models. At its core, Dreamer relies on a RSSM
that factorizes the environment into deterministic recurrent states and stochastic latent representations.
While our method is model agnostic, we choose to use dreamer as it is the most general and well
performing method that still makes use of an GRU based model, facilitating planning. The RSSM is
described by the following formulations:

Recurrent model: ht = fϕ(ht−1, zt−1, at−1)

Transition predictor (prior): ẑt ∼ pϕ(· | ht)

Representation model (posterior): zt ∼ qϕ(· | ht, xt)
Predictors (Image, Reward, Discount): x̂t, r̂t, γ̂t ∼ pϕ(· | ht, zt)

Here, xt is the observation at time t, and ht is the deterministic recurrent state. At each step, Dreamer
generates a prior latent state ẑt from the deterministic recurrent state ht via pϕ(· | ht), and updates
it into a posterior qϕ(· | ht, xt) once the new observation xt has been received. The KL divergence
between the prior and posterior is minimized to train the model:

LKL = DKL

(
qϕ(zt | ht, xt) ∥ pϕ(· | ht)

)
. (1)

Dreamer’s policy network is trained using imagined trajectories generated by the world model. This
ensures that policy training remains effectively on-policy. The buffer that the world model trains from
is populated by a naive ϵ-greedy actor. We show in this work that filling the buffer with high-entropy
transitions can lead to greater training efficiency and improved exploration.

4 METHOD

4.1 ENTROPY

DreamerV3 models latent states as factorised discrete variables. For exposition only, we analyse an
equivalent case with a diagonal Gaussian prior/posterior to make the maximum-entropy argument
transparent; all experiments however use DreamerV3’s discrete RSSM. The same reasoning carries
over by replacing differential entropy with categorical entropy of the latent logits (summing per-factor
entropies) and using prior predictive entropy along short imagined rollouts. Thus the latent state in
this method section is represented by:

ẑt ∼ N (µt,Σt) (2)

The conclusions derived from this will apply to the discrete case as well. We use σp to refer to the
standard deviation of the prior’s latent state, and σq to refer to the standard deviation of the posterior’s
latent state, which can also be seen as a rough uncertainty measure.

Training the model involves minimizing a KL divergence loss between the prior and posterior
distributions (equation 1); the same KL divergence loss can also be interpreted as the model’s
information gain (IG) about the environment at the current timestep (Quinlan, 1986).

IG =
1

2

(
k
σ2
q

σ2
p

+
∥µp − µq∥2

σ2
p

− k + k log

(
σ2
p

σ2
q

))
(3)

When the model has trained long enough such that the reconstruction loss and the KL loss are below
a reasonable threshold, the model should set σp and µp such that any rise in ∥µp − µq∥ should be
counterbalanced by a proportional increase in σp to minimise KL loss. Conversely, it is probable that
∥µp − µq∥ is high where σp is low.

To increase information gain, we can increase µp−µq , or the σq , or σp. If we are to use an anticipatory
approach so that the model can react to novel interesting states as they emerge, the posterior of the
state is not available to us. Thus, to increase information gain, we must attempt to find states where

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

σp is high, as this implies that the model expects µp − µq to be high too. We can find these states by
querying the world model to estimate prior uncertainty by generating a short horizon rollout of states.

Rather than optimising for raw standard deviation, we choose the entropy of the state distribution as
it is a good descriptive statistic. The entropy of the state’s distribution therefore can be taken as an
estimate for the model’s uncertainty, as:

H(state) =
k

2
log(2πe) +

k∑
i=1

log(σp,i) (4)

where k is the dimensionality of the state.

Thus, the objective becomes to maximise prior entropy:

J = maxH(state) (5)

There are two primary failure modes for this kind of uncertainty-based exploration. The first arises in
environments with high aleatoric uncertainty, where a state has multiple plausible successors due to
stochasticity inherent to the environment. In these cases, even a well-understood state st may produce
a high-entropy predictive distribution despite all potential outcomes being familiar, purely because
there are multiple potential outcomes. This is due to the RSSM’s unimodal predictive structure:
the prior predictor must approximate a multi-modal distribution comprised of several low-variance
potential states using a single Gaussian with an artificially inflated variance:

p̂(st+1 | st, at, h0:t) ∼ N (µ, σ2), where σ2 > σ2
i for all i

Here h0:t denotes the history of recurrent hidden states up to time t. In this case, elevated entropy
arises from aleatoric uncertainty rather than epistemic uncertainty. To avoid over-exploration in
these regions, we condition planning not solely on entropy but jointly on both entropy and predicted
reward. This is done via using the greedy actor to generate all candidate trajectories, thus implicitly
conditioning the trajectories toward reward before they are used to choose the one with the highest
entropy.

The second failure mode arises in environments with latent transitions that require specific, rarely
executed actions. In such cases, the ideal transition distribution remains:

p∗(st+1 | st, at) =
n∑

i=1

wi · N (st+1 | µi, σ
2
i) (6)

Here, each mode corresponds to a distinct possible outcome, with weights wi representing their
respective likelihoods. The weight associated with the common transitions, denoted wC , satisfies
wC ≫ w̸C , where w̸C is the total weight of the rare transitions. If the agent has only encountered the
high-probability transitions, the learned model will be ignorant of the rare outcomes and estimate:

p̂(st+1 | st, h0:t) ∼ N (µ, σ2), where σ2 ≪ 1

In these cases, a state’s uncertainty may be chronically underestimated and subsequently under-
explored. This form of hidden epistemic uncertainty cannot be resolved by naïvely increasing
entropy-seeking behavior globally or by enabling random exploration at all states. Addressing this
likely requires mode-seeking mechanisms (option discovery, social learning, teacher-student learning).
While this is outside the scope of the present method, it is possible to amplify this method with some
future work.

4.2 REACTIVE HIERARCHICAL PLANNER

At each environment step we generate N short-horizon imagined rollouts (we use N=64) starting
from the current latent state using the greedy actor. Because proposals are actor-guided, they are
already reward-seeking; among these candidates we select the plan whose latent prior has the highest
cumulative entropy:

τ̂⋆ = arg max
τ̂∈{actor rollouts}

t+H−1∑
t′=t

Hprior(zt′).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We then execute the selected action prefix unless the meta-policy decides to replan (below). This
focuses compute on informative futures without having to trade off reward in the score itself.

We use a light PPO head to control when to commit to old plans and when to generate a new plan:
The meta planner outputs a categorical over pt ∈ {0, 0.25, 0.5, 0.75, 1} which we squashed as p2t
to decide replanning: draw ut ∼U(0, 1) and replan if ut < p2t . We find in practice that excessive
replanning is a problem that frequently plagues such planners, a finding echoed across the hierarchical
RL literature (Klissarov et al., 2017; Chunduru & Precup, 2022; Johnson & Weitzenfeld, 2025) which
is why we change the enaction condition from ut < pt to ut < p2t , discouraging excessive replanning
without explicitly punishing replanning or rewarding commitment.

Importantly, planning decisions are re-evaluated at every environment step, allowing for flexible
replanning without commitment if needed. Pseudocode for our planning algorithm is given in
Appendix B.

As input to the PPO policy, we provide the encoder embedding; the RSSM feature vector; the current
step number normalized by the episode time limit; the greedy action proposed by the actor; the
position within the current plan (normalized); a binary in-plan flag; and the “final” RSSM feature that
is predicted to be observed if the current plan is followed to the end.

We maintain replay buffers of meta-transitions with fields: ppo observation, ppo action, ppo sample
log prob, implemented flag (whether a replan signal was sent), per-step entropy, next base reward,
and done. We form length-L sequences and compute a shaped scalar reward for PPO:

rmeta = 1
2L

(∑
t

base_rewardt︸ ︷︷ ︸
env return

+
∑
t

Hprior(zt)︸ ︷︷ ︸
latent entropy

)
,

with L set to 32 for most experiments conducted here. This is because cancelling or replanning can
have temporally far reaching consequences. Since the maximum rollout here is roughly 16 steps, we
use double this length’s rewards so that long term behaviour is adjusted for rather than short term
gain. We then compute advantages with GAE(γ, λ) and optimize a clipped PPO objective (separate
actor/critic) with a naive entropy bonus, using Adam for both policy and value heads. The PPO head
trains on all collected transitions. To encourage early behavioral diversity we use He initialization
and bias the PPO head’s initial logits toward intermediate pt values.

5 EXPERIMENTS

We evaluate across three regimes that stress different aspects of decision making: procedurally
generated 3D mazes in MiniWorld for long-horizon navigation under partial observability and sparse
reward, Crafter (Hafner (2021)) for survival-style open-world play with diverse subgoals, and vision-
based control tasks from the DeepMind Control suite (Tassa et al. (2018)) for closed-loop continuous
control. We report means with variability over 5 seeds for MiniWorld [0, 409, 412, 643, 996] and
DMC [0, 413, 604, 765, 891], and 3 seeds for Crafter [0, 920, 11]. Because MiniWorld and Crafter
are procedurally generated, training and test distributions coincide; we therefore report training curves
only. MuJoCo-based DMC tasks have no train/test split under our setup, so we also report training
performance.

We compare with PLan2Explore (Sekar et al. (2020)) as a baseline; it supplies an anticipatory
exploration baseline that scores novelty via ensemble disagreement, giving a contrast between
disagreement-based uncertainty and our inference-time entropy signal from a single world model.
We also add PPO on MiniWorld as a model-free reference (Schulman et al., 2017). For Crafter and
DMC, competitive pixel-based model-free methods (augmented SAC/DrQ-style agents) are known
to be sensitive to implementation and tuning (Engstrom et al., 2020; Henderson et al., 2018); to
avoid confounding factors and keep compute comparable, we omit them here (Kostrikov et al., 2020;
Yarats et al., 2021; Laskin et al., 2020; Srinivas et al., 2020). Dreamer is a widely adopted and strong
pixel-based MBRL agent that already surpasses earlier model-based and many model-free methods in
visual control (Hafner et al., 2019; 2020; 2023). Since our contribution is an inference-time planner
that augments a learned world model, we instantiate it on Dreamer to illustrate benefits. Our method
is however model-agnostic and could be plugged into other MBRL backbones.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: Episode lengths across different porosity levels. Lower porosity increases maze difficulty.

We train MiniWorld mazes for 350,000 environment steps (approximate convergence for Dreamer
under our setup). On DMC and Crafter we use a fixed 24-hour wall-clock budget per method to
ensure compute parity. Metrics are task-appropriate: episode time to completion for MiniWorld
(shorter is better) and undiscounted training return for DMC and Crafter. All curves use a rolling
mean (window 10%) with shaded ±1 s.d. across seeds.

5.1 MAZE EXPLORER

We use a 3D maze environment adapted from MiniWorld (Chevalier-Boisvert et al., 2023), where each
episode presents a new random layout. The agent receives RGB image observations and performs
continuous actions to locate three goal boxes. We introduce a porosity parameter that controls wall
density to vary exploration difficulty. Observations are augmented with a binary spatial map that
encodes visited regions and current orientation, providing a simple episodic memory. The reward
function combines exploration, proximity, and goal rewards to encourage both coverage and task
success. Full environment details are in Appendix C.

5.1.1 TASK DIFFICULTY

Varying the porosity parameter controls maze difficulty (low porosity leads to difficult mazes). Visual
examples of mazes at different porosity levels are provided in Appendix D. Figure 1 shows that
our method maintains low episode lengths even in denser mazes, outperforming both Dreamer and
PPO. PPO underperforms across all settings, likely due to its lack of memory and long-horizon
reasoning. Dreamer’s performance degrades under low porosity, where rewards are harder to reach,
while our method shows robust and consistent performance. Our method also exhibits lower variance,
suggesting more consistent behavior across seeds.

Under the most difficult condition (porosity = 0), where only a single path exists between the agent and
three goals, both our method and Dreamer perform worse. However, our approach still outperforms
Dreamer, achieving 20% shorter episode lengths on average, albeit with higher variance due to the
increased exploration burden. Plan2Explore underperforms here, which we hypothesize stems from
frequent replanning without commitment; ensemble disagreement identifies novelty but does not
enforce trajectory-level persistence.

5.2 VISION-BASED CONTROL (DMC-VISION)

We evaluate six pixel-control tasks from the DeepMind Control Suite: cartpole_swingup,
walker_walk, cheetah_run, reacher_hard, acrobot_swingup, and hopper_hop.
Rather than sweeping the entire benchmark, we select a compact set that spans complementary
regimes. Agents observe 64×64 RGB frames and act in continuous spaces. For each task we train
(i) a base Dreamer agent without planning (“no plan”), (ii) our commit-aware planning variant
(“planning variant”), and (iii) Plan2Explore, all under identical step budgets; curves report mean ±1
s.d. across seeds (rolling window 10%). To isolate reasoned exploration, we use a single environment

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) walker_walk: planning variant
maintains a widening lead over no
plan.

(b) reacher_hard: clear gains from
purposeful multi-step corrections.

(c) cheetah_run: planning variant
avoids mid-training regressions and
finishes higher.

(d) cartpole_swingup: Not much
change between planning and no
planning variants.

(e) acrobot_swingup: planning vari-
ant is on par or slightly better, but
plan2explore greatly improves upon
both here.

(f) hopper_hop: Our method starts
finding the control sequences that
will make the hopper hop much ear-
lier than the no planning variant.

Figure 2: DMC-Vision learning curves (return vs. environment steps) for no-plan, the planning variant, and
Plan2Explore. Shaded bands: ±1 s.d. across seeds. The planning variant helps most when dynamics/observations
induce higher variance and remains competitive elsewhere.

instance (no vectorization), since heavy parallelism can introduce “free” random exploration. For
the same reason, we omit sparse-reward variants (e.g., cartpole_swingup_sparse), where
neither base Dreamer nor our planner is expected to reliably discover narrow reward regions within
the given budget.

Across four of six tasks, the planning variant improves sample efficiency and final return. Gains are
largest in contact-rich or higher-variance control (Figures 2a, 2f), where short commitments reduce
dithering and stabilize control under pixel noise while collecting informative trajectories. On smoother,
lower-variance dynamics (Figures 2e, 2d), improvements are smaller but positive on average. Despite
hopper_hop often benefiting from increased parallelism or longer training, our method discovers
effective hopping sequences earlier than no-plan (Figure 2f). Plan2Explore underperforms on most
tasks here but is strong on acrobot_swingup, suggesting that disagreement-based novelty aligns
with that underactuated swing-up; by contrast, our approach provides broader improvements across
the suite.

We did not expect an entropy-aware planner to dominate dense-control tasks; accordingly, gains
are modest but consistent. A plausible mechanism is that short, commit-aware exploratory rollouts
improve representation coverage and reduce vacillation, yielding small yet reliable sample-efficiency
gains under pixel observations.

5.3 OPEN-ENDED SURVIVAL (CRAFTER)

Crafter stresses long-horizon exploration and routine formation. We train for 300k environment
steps (approximately 24 hours on a GeForce RTX 5090 GPU) and report means with variability
over 3 seeds. The budget was chosen such that compute usage remained efficient while highlighting
interesting behaviours. We run a single environment here as well (no parallel rollouts), which is the
default for Crafter.

Overall, the planning variant is about 20% higher in average return and reaches comparable thresholds
in roughly 50% of the steps that base Dreamer takes (Fig. 3). Gains are concentrated in routine-
forming achievements such as collecting wood, placing tables, and defeating zombies where short,
commit-aware exploratory rollouts appear to reduce dithering and stabilize representation learning

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Episode returns during Crafter training.

(Figs. 4a, 4b, 4c). In contrast, deeper crafting branches (make wooden sword/pickaxe) remain low
within 300k steps, especially for the planning variant (Figs. 4g, 4h). We hypothesise this is because
the agent attempts these actions early game and finds they do nothing consistently (a nearby table and
correct materials in the inventory are necessary to make tools), so the corresponding states become
high-confidence low-reward states and are not attempted again. Even so, the planning variant remains
better than or competitive with the baseline across the panel (Fig. 4).

Tasks like collect wood and place table are repeatable and reward-dense; plan commitment converts
them into habits, yielding steady slopes and higher returns (Figs. 4a, 4b). Combat against zombies sits
between routine and opportunistic: once wood/table routines are established, the planner’s broader
coverage increases encounter rate, so the zombie curve rises earlier and higher than no-plan but still
exhibits spikes (Fig. 4c). Making tools remains low for both agents; the planning variant is especially
conservative (Figs. 4g, 4h). It is interesting that even though we do not explicitly optimise for reward
in the planner, the inherent bias toward rewarding rollouts results in what is effectively zombie and
tree farming behaviour (Figs. 4a, 4c). Collect drink, collect sapling and eat cow (Figs. 4a, 4b) are all
roughly matched between the no plan variant and the planning variant, indicating . Plan2Explore
does not do well in Crafter either, as it requires committed exploration instaed of naive one step
exploration.

5.4 ABLATION STUDY

To isolate the contributions of individual components, we compare:

Base Dreamer: The standard agent without planning.

MPC Style: To evaluate the value of our underlying planner, we modify the meta planner to replan
at every step, mimicking MPC behaviour.

We run all MPC ablation variants for 90% of the normal experiments’ step count to account for the
fact that MPC style experiments are slower to run than the full experiments. This threshold was
chosen to reduce training time while still capturing meaningful differences in learning dynamics.

Figure 5a demonstrates the value of committing to plans over extended horizons. Myopic planning in
a maze will result in the agent constantly choosing between different paths and never committing
enough to either path to finish exploration. Myopic planning in the Crafter environment, as shown
in Figure 5b, yields the same relative performance as it did in the maze environment as Crafter also
benefits from committing to planned trajectories. MPC style is also not as efficient as the full planner,
showing that committing to plans yields efficiency gains.

6 CONCLUSION

We present a robust method with a strong theoretical foundation and fast convergence to drive
structured exploration in MBRL, suggesting it can generalize across domains and model architectures.
This is not without limitations: inflating the KL objective in this way can lead to instabilities, so
reinforcing the model is recommended. We also note that an inherent limitation of our method is that
the actor must be trained purely with world model generated states rather than through experience
replay, as this method biases collection of experiences towards high model entropy, leading to a
distributional shift between the actor’s policy and the actual behaviour policy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) collect_wood (b) place_table (c) defeat_zombie

(d) collect_drink (e) collect_sapling (f) eat_cow

(g) make_wood_pickaxe (h) make_wood_sword (i) wake_up

Figure 4: Crafter achievement counts over 300k steps (3 seeds) for no plan vs the planning variant vs plan2explore.
The planning agent forms reliable routines (wood, table, zombie) and improves sample efficiency, while deeper
crafting remains conservative within this budget.

(a) ObjectNav: Episode lengths during training for
different ablations. The full planner outperforms both
the base Dreamer and MPC-style variants, highlight-
ing the benefit of plan commitment.

(b) Crafter: Episode returns during training for dif-
ferent ablations. The full planner has greater perfor-
mance and takes less time than the MPC variant, sig-
nalling efficiency benefits of plan commitment.

Figure 5: Comparison of episode lengths during training for ObjectNav (left) and Crafter (right)
across different ablations.

Reproducibility Statement. We document datasets, preprocessing, and step-by-step training and
evaluation procedures in the Experiments section. Random seeds used for all runs are listed in the
experiments section. We will release the complete codebase on GitHub upon acceptance; in the
meantime, the paper and appendix provide all details needed to reimplement our results. Configuration
settings are located in Appendix E.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never give
up: Learning directed exploration strategies. arXiv preprint arXiv:2002.06038, 2020.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. CoRR, abs/2306.13831,
2023.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Raviteja Chunduru and Doina Precup. Attention option-critic. arXiv preprint arXiv:2201.02628,
2022.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
and Aleksander Madry. Implementation matters in deep policy gradients: A case study on PPO and
TRPO. In International Conference on Learning Representations (ICLR), 2020. arXiv:2005.12729.

Vicenç Gómez, Hilbert J Kappen, Jan Peters, and Gerhard Neumann. Policy search for path integral
control. In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part I 14, pp. 482–497.
Springer, 2014.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021. URL https://arxiv.org/abs/2109.06780.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. arXiv preprint arXiv:2203.04955, 2022.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control. arXiv preprint arXiv:2310.16828, 2023.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In AAAI Conference on Artificial Intelligence (AAAI),
2018. doi: 10.1609/aaai.v32i1.11694.

Brendon Johnson and Alfredo Weitzenfeld. Hierarchical reinforcement learning in multi-goal spatial
navigation with autonomous mobile robots. arXiv preprint arXiv:2504.18794, 2025.

10

https://arxiv.org/abs/2109.06780

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature, 620
(7976):982–987, 2023.

Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-to-end for
continuous action tasks. arXiv preprint arXiv:1712.00004, 2017.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020. NeurIPS
2020 camera-ready.

Alexander C Li, Carlos Florensa, Ignasi Clavera, and Pieter Abbeel. Sub-policy adaptation for
hierarchical reinforcement learning. arXiv preprint arXiv:1906.05862, 2019.

Viet Dung Nguyen, Zhizhuo Yang, Christopher L Buckley, and Alexander Ororbia. R-aif: Solving
sparse-reward robotic tasks from pixels with active inference and world models. arXiv preprint
arXiv:2409.14216, 2024.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. arXiv preprint arXiv:2002.12292, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International conference on machine
learning, pp. 8583–8592. PMLR, 2020.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In
International conference on machine learning, pp. 5779–5788. PMLR, 2019.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017a.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017b.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. CURL: Contrastive unsupervised represen-
tations for reinforcement learning. In Proceedings of the 37th International Conference on Ma-
chine Learning (ICML). PMLR, 2020. URL https://proceedings.mlr.press/v119/
laskin20a.html.

Oleg Svidchenko and Aleksei Shpilman. Maximum entropy model-based reinforcement learning.
arXiv preprint arXiv:2112.01195, 2021.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A.
Riedmiller. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018. URL https:
//arxiv.org/abs/1801.00690.

11

https://proceedings.mlr.press/v119/laskin20a.html
https://proceedings.mlr.press/v119/laskin20a.html
https://arxiv.org/abs/1801.00690
https://arxiv.org/abs/1801.00690

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xin Wang, Wenhan Xiong, Hongmin Wang, and William Yang Wang. Look before you leap: Bridg-
ing model-free and model-based reinforcement learning for planned-ahead vision-and-language
navigation. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 37–53,
2018.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral control
using covariance variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LLM / AI TOOLING DISCLOSURE

We used AI-assisted tools during this project as follows.

Tools.

• Cursor (AI coding assistant): Used to generate boilerplate code, suggest refactorings,
produce docstrings and unit-test skeletons, and surface API idioms. All produced code was
reviewed, modified as needed, and verified by the authors.

• ChatGPT (writing assistant): Used for copy-editing, grammar and style suggestions,
tightening wording, expanding or condensing paragraphs on request, and clarifying phrasing.
We did not use it for ideation, technical contributions, or to generate substantive claims.

The authors reviewed and verified all AI-assisted outputs for correctness and originality, and accept
full responsibility for the code and text included in the paper. Any code suggested by tools was tested
and adapted to our setting before inclusion.

B PLANNING ALGORITHM

Algorithm 1 Entropy Seeking Anticipatory Planning

1: Input: Observation ot
2: Meta-policy computes discrete planning probability pt ∈ {0, 0.05, 0.25, 0.55, 1} (via squaring

sampled values from {0, 0.25, 0.5, 0.75, 1.0})
3: Sample ut ∼ U(0, 1)
4: if ut < pt then
5: Greedy actor samples C (256) candidate actions a1, . . . , aC from ot
6: for i = 1 to C do
7: Roll out trajectory τi of length H (maximum rollout length, 16 here) using world model

and greedy actor
8: Compute EH = 1

H

∑H
t=1 E

(i)
t

9: Select trajectory τbest = argmaxEH

10: Set plan to τbest
11: Continue interacting with environment; repeat planning check at next step

C MINIWORLD ENVIRONMENT AND REWARD SCHEME

We extend the MiniWorld Maze environment(Chevalier-Boisvert et al., 2023) with several task
relevant augmentations. The maze environment is a 3 dimensional procedurally generated maze
of size 8x8 (using recursive backtracking) where the agent can take continuous actions along three
dimensions - forward/back (step size attenuated if moving backwards to encourage progress), strafe
left/right, turn left/right. Each observation consists of a forward-facing RGB image of size (64x64x3).
Each episode ends when the time limit (4096) is reached, or the three goal boxes have been found.
Each training run samples a new maze structure every episode to prevent memorization. No regions
of the maze are sectioned off from the rest of the maze and all the goal states are reachable.

To promote structured exploration, we introduce a porosity parameter that controls wall density:
with probability p, wall segments are randomly removed during generation. This provides a tunable
complexity gradient for navigation tasks by creating variable maze connectivity.

An auxiliary binary 2D map of size (64x64x3) that records agent visitation over the course of an
episode has been concatenated to the observation. This map records visited coordinates as 1s whereas
unvisited coordinates are kept at 0. The position of the agent and the direction it is looking in is
also visible on the map. This serves as episodic spatial memory that enables agents to reason about
coverage and connect their actions to the current observation. This mirrors plausible real-world
capabilities that can be enacted through GPS tracking or odometry.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The reward function consists of three components:

Exploration Reward: A positive reward is granted when the agent visits a previously unvisited
cell in its binary exploration map. The reward magnitude is proportional to the number of
newly visited cells within a square region around the agent, the size of which is controlled
by the blur parameter, given by b. While this reward introduces non-Markovian dynamics
by incorporating visitation history, the inclusion of a binary map in the observation allows
memory-less model-free agents such as PPO to perform effectively in this environment.

exploration reward =


∆t

b2
if b > 1

∆t otherwise

where ∆t = number of newly explored cells at time t

Proximity Reward: A smoothly decaying signal is emitted by each goal object, with exponentially
scaled rewards given when the agent is within an x-unit radius. This mimics real-world
analogs such as bluetooth signals or radio signals for search and rescue, animal noises
for ecological monitoring, or semantic hints for more advanced exploration. This reward
takes the form of two bars in the center of the image - if the agent is near a goal box of a
particular colour (red, green, or blue), the bars will turn that colour with intensity varying
with distance.

Proximity reward =

{
0 if ∆ < 0 or ∆ > 10

(10−∆)2 · pmul otherwise

where ∆ = dist − (ragent + rbox + s) and pmul = 0.03

Goal Reward: The agent gets a reward for moving into a coloured box. It gets 50 per box and then
150 when it gets the third box.

Thus the overall reward is composed of these three elements summed onto the baseline of -10. The
lower limit of reward gained in an episode is −T where T is the time limit, and the upper limit is 0.

D MAZE IMAGES

To visualize the effect of varying porosity on maze complexity, we provide top-down views of
generated mazes at increasing porosity levels, see Fig. 6. As porosity increases, more internal walls
are removed, resulting in more open environments. These top-down maps reflect the structural
differences that influence planning difficulty.

To contextualize the agent’s perspective within these mazes, we also provide an example of the full
map layout and a corresponding visual observation seen by the agent, as given in Figure 7.

E DEFAULT CONFIGURATION AND CODE BASE

E.1 DEFAULT CONFIGURATION

The following listing provides the default hyperparameters and settings used in our experiments.

use_plan: True

logdir: null
traindir: null
evaldir: null
offline_traindir: ’’
offline_evaldir: ’’
seed: 0
deterministic_run: False
steps: 1e6
parallel: False

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(a) Porosity 0.0 (b) Porosity 0.1 (c) Porosity 0.2

(d) Porosity 0.4 (e) Porosity 0.6 (f) Porosity 0.8

Figure 6: Top-down maze layouts at selected porosity levels. Higher porosity values remove more
internal walls, increasing openness and reducing planning difficulty.

(a) Agent’s visual observation (b) Agent’s map observation

Figure 7: Image of what the agent perceives - the visual observation (left) and of the map observation
(right).

eval_every: 1e4
eval_episode_num: 10
log_every: 1e4
reset_every: 0
device: ’cuda:0’
compile: True
precision: 16

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

debug: False

Environment
task: ’dmc_walker_walk’
size: [64, 64]
envs: 1
action_repeat: 1
time_limit: 1000
grayscale: False
prefill: 2500
reward_EMA: True

Model
dyn_hidden: 512
dyn_deter: 512
dyn_stoch: 32
dyn_discrete: 32
dyn_rec_depth: 2
dyn_mean_act: ’none’
dyn_std_act: ’sigmoid2’
dyn_min_std: 0.1
grad_heads: [’decoder’, ’reward’, ’cont’, ’entropy’]
units: 512
act: ’SiLU’
norm: True
encoder:

{mlp_keys: ’$^’, cnn_keys: ’image’, act: ’SiLU’, norm: True, cnn_depth: 64, kernel_size: 4, minres: 4, mlp_layers: 5, mlp_units: 1024, symlog_inputs: True}
decoder:

{mlp_keys: ’$^’, cnn_keys: ’image’, act: ’SiLU’, norm: True, cnn_depth: 32, kernel_size: 4, minres: 4, mlp_layers: 5, mlp_units: 1024, cnn_sigmoid: False, image_dist: mse, vector_dist: symlog_mse, outscale: 1.0}
actor:

{layers: 2, dist: ’normal’, entropy: 3e-4, unimix_ratio: 0.01, std: ’learned’, min_std: 0.1, max_std: 1.0, temp: 0.1, lr: 3e-5, eps: 1e-5, grad_clip: 100.0, outscale: 1.0}
Q:

{layers: 2, dist: ’symlog_disc’, slow_target: True, slow_target_update: 1, slow_target_fraction: 0.02, lr: 3e-5, eps: 1e-5, grad_clip: 100.0, outscale: 1.0} #CHANGE
critic:

{layers: 2, dist: ’symlog_disc’, slow_target: True, slow_target_update: 1, slow_target_fraction: 0.02, lr: 3e-5, eps: 1e-5, grad_clip: 100.0, outscale: 0.0}
reward_head:

{layers: 2, dist: ’symlog_disc’, loss_scale: 1.0, outscale: 1.0} #CHANGE
entropy_head:

{layers: 2, dist: ’symlog_disc’, loss_scale: 1.0, outscale: 1.0} #CHANGE
cont_head:

{layers: 2, loss_scale: 1.0, outscale: 1.0}
dyn_scale: 0.5
rep_scale: 0.1
kl_free: 1.0
weight_decay: 0.0
unimix_ratio: 0.01
initial: ’learned’

Training
batch_size: 16
batch_length: 64
train_ratio: 512
pretrain: 100
model_lr: 1e-4
opt_eps: 1e-8
grad_clip: 1000
dataset_size: 1000000
opt: ’adam’

Behavior.
discount: 0.997
discount_lambda: 0.95
imag_horizon: 15
imag_gradient: ’dynamics’
imag_gradient_mix: 0.0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

eval_state_mean: False

Exploration
expl_behavior: ’greedy’
expl_until: 0
expl_extr_scale: 0.0
expl_intr_scale: 1.0
disag_target: ’stoch’
disag_log: True
disag_models: 10
disag_offset: 1
disag_layers: 4
disag_units: 400
disag_action_cond: False

plan_behavior:
plan_max_horizon: 16
plan_choices: 256
plan_train_every: 32
sub_batch_size: 64
num_epochs: 30
buffer_size: 32768
clip_epsilon: 0.2
gamma: 0.99
lmbda: 0.95
entropy_eps: 0.1
num_cells: 256
lr: 0.003
seq_length: 8
buffer_minimum: 512
meta_action_quant: 5 # used in CategoricalSpec
num_meta_action_lwr: 2 # used in CategoricalSpec
ent_multiplier: 1.0 # multiplier for entropy in _flow method
rew_multiplier: 1.0 # multiplier for reward in _flow method

dmc_vision:
steps: 1e6
action_repeat: 2
envs: 1
train_ratio: 512
video_pred_log: false
encoder: {mlp_keys: ’$^’, cnn_keys: ’image’}
decoder: {mlp_keys: ’$^’, cnn_keys: ’image’}

crafter:
task: crafter_reward
step: 1e6
action_repeat: 1
envs: 1
train_ratio: 512
video_pred_log: false
dyn_hidden: 1024
dyn_deter: 4096
units: 1024
encoder: {mlp_keys: ’$^’, cnn_keys: ’image’, cnn_depth: 96, mlp_layers: 5, mlp_units: 1024}
decoder: {mlp_keys: ’$^’, cnn_keys: ’image’, cnn_depth: 96, mlp_layers: 5, mlp_units: 1024}
actor: {layers: 5, dist: ’onehot’, std: ’none’}
value: {layers: 5}
reward_head: {layers: 5}
cont_head: {layers: 5}
imag_gradient: ’reinforce’

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 8: Replanning probabilities across porosities. While mean values remain comparable, variance
across seeds diminishes faster at higher porosities.

E.2 CODE BASE

Our implementation is forked from https://github.com/NM512/dreamerv3-torch/
blob/main/dreamer.py. We adapt this code to our setting while retaining the default configu-
ration listed above.

F OTHER RESULTS

In this section, we present additional metrics and quantities tracked during our experiments. While
these results are not central to the main text, they provide further insight into the model’s internal
behavior and performance dynamics.

From the porosity comparison study, we highlight the internal planning parameters set by the meta-
policy. Specifically:

- The probability of replanning is shown in Figure 8, with its intra-episode standard deviation in
Figure 9.

Shaded intervals in all graphs represent variation across different random seeds, while intra-episode
standard deviations are shown in dedicated plots.

We explore the replanning probability, which captures how often the agent updates its plan mid-
episode. Figure 8 shows the average replanning probabilities over training for each porosity level.
While the means are broadly similar, a clear reduction in variability across seeds is observed at higher
porosities, reflecting more deterministic behavior under lower uncertainty. Figure 9 complements
this by plotting the intra-episode standard deviation of the replanning probability. Here, we observe
a steady decline over training, indicating growing confidence in the agent’s planning under all
conditions.

Figure 10 shows KL divergence values between the prior and posterior. Higher KL indicates that
the world model is encountering states it cannot yet predict, which can reflect either model failure or
valuable learning. Given that our method leads to better downstream performance, we interpret this
as a sign of active, informed exploration.

Figure 11 shows that our method maintains approximately 10% higher prior entropy across training,
indicating greater predictive uncertainty of the world model and a broader exploration strategy.

Figure 12 presents the actor loss across different porosities, indicating that our method does not
significantly affect the actor component itself, but instead the gains in performance are driven by
directly optimising the world model. Interestingly, a divergence between the planned and unplanned
variants becomes apparent toward the end of training in the 0.2 porosity setting. This may suggest
that, as the world model converges and its predictive uncertainty decreases, the actor also stabilizes
and its loss declines. Additionally, the standard deviation of the actor loss is notably lower for the

18

https://github.com/NM512/dreamerv3-torch/blob/main/dreamer.py
https://github.com/NM512/dreamerv3-torch/blob/main/dreamer.py

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 9: Intra-episode standard deviations of replanning probabilities. These deviations drop quickly
as meta-policies converge.

Figure 10: KL divergence across porosity levels. Higher porosity results in a more marked difference
between our method and base Dreamer.

planned agent in higher-porosity environments, which is likely a consequence of reduced epistemic
uncertainty in the world model.

Figure 13 presents the length of a plan before replanning occurs. This measure is generally stable
across porosities, but the variance across seeds is higher in more difficult (low porosity) settings.
Interestingly, as shown in Figure 14, the intra-episode standard deviation remains low, suggesting
that while different seeds may converge to distinct stable values, intra-run variability remains small.
The variation between seeds in Figure 14 is higher in the hardest setting, as noted in previous plots.
This could be because of the world model not reaching convergence as easily.

Figure 11: Prior entropies through different porosities, reflecting the model’s estimated uncertainty.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 12: Actor loss across porosities. The actor remains stable across planning variants, with some
divergence occurring later in training for 0.2 porosity.

Figure 13: Length of plan before replanning across porosities. Stability is observed overall, with
higher inter-seed variation in low-porosity settings.

Figure 14: Intra-episode standard deviation of plan length before replanning. Values remain low
across porosities, suggesting consistent behavior within each run.

20

	Introduction
	Related Work
	Intrinsic Reward
	Planning
	Hierarchical Policies

	Preliminaries
	Method
	Entropy
	Reactive hierarchical planner

	Experiments
	Maze Explorer
	Task Difficulty

	Vision-based control (DMC-Vision)
	Open-ended survival (Crafter)
	Ablation Study

	Conclusion
	LLM / AI Tooling Disclosure
	Planning Algorithm
	Miniworld Environment and Reward Scheme
	Maze Images
	Default Configuration and Code Base
	Default Configuration
	Code Base

	Other Results

