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ABSTRACT

Model-based reinforcement learning (MBRL) offers an intuitive way to increase
the sample efficiency of model-free RL methods by simultaneously training a world
model that learns to predict the future. These models constitute the large majority
of training compute and time and they are subsequently used to train actors entirely
in simulation, but once this is done they are quickly discarded. We show in this
work that utilising these models at inference time can not only boost performance
but also sample efficiency. We propose a novel approach that anticipates and
actively seeks out high-entropy states using the world model’s short-horizon latent
predictions, offering a principled alternative to traditional curiosity-driven methods
that chase once-novel states well after they were stumbled into. While many model
predictive control (MPC) based methods offer similar alternatives, they typically
lack commitment, synthesising multiple multi-step plans at every step. To mitigate
this, we present a hierarchical planner that dynamically decides when to replan,
planning horizon length, and the commitment to searching entropy. While our
method can theoretically be applied to any model that trains its own actors with
solely model generated data, we have applied it to Dreamer to illustrate the concept.
Our method finishes Miniworld’s procedurally generated mazes 50% faster than
base Dreamer at convergence and in only 60% of the environment steps that base
Dreamer’s policy needs; it displays reasoned exploratory behaviour in Crafter,
achieves the same reward as base Dreamer in a third of the steps; planning is shown
to accelerate and improve even Deepmind Control performance.

1 INTRODUCTION

In recent years, reinforcement learning (RL) has achieved remarkable success across a variety
of domains, from mastering Go (Silver et al., 2017b) to racing drones at high speed (Kaufmann
et al., 2023). However, these successes often rely on dense reward signals and highly structured
environments. In real-world applications such as autonomous navigation, exploration, and disaster
response, rewards are sparse and environments are stochastic and partially observable. In these
conditions, achieving efficient exploration and good sample efficiency remain an active research
problem. Curiosity-based bonuses tend to pursue aleatoric novelty, whereas MPC-style planners
replan myopically at each step, offering little commitment at substantial computational cost.

Another avenue to address these challenges is model-based reinforcement learning (MBRL), where
models of the environment (world models (Ha & Schmidhuber, 2018)) are concurrently trained to
predict transitions. In this work, we propose to augment Dreamer (Hafner et al., 2020), a prominent
and efficient world model, with a planner to anticipate and seek informative states as soon as they are
about to occur to drive reasoned exploration. To do this, we leverage the world model by combining
it with the greedy actor to generate a selection of high scoring rollouts, from which we choose the
rollout whose predicted states have the highest entropy. We also introduce a lightweight Proximal
Policy Optimisation (PPO) based hierarchical planner that dynamically decides when to commit to a
pre-selected rollout and when to discard it to replan. While our experiments focus on Dreamer, our
method is model-agnostic and can be applied to any MBRL framework; the mathematical formulation
of our method places no such restrictions.

Our contributions are:
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• Recast world-model training as a min–max objective that couples model learning with
entropy-seeking exploration, improving information gain and sample efficiency.

• Use short-horizon latent predictions at inference time to proactively target high-entropy
states, yielding active and reasoned exploration.

• Introducing a reactive hierarchical planner that dynamically selects between committing to a
plan and replanning based on new information received, making the method more efficient,
committal, and decisive.

The rest of the paper is structured as follows. In Section 2, we review related work in intrinsic
motivation, planning, and hierarchical RL. In Section 3, we provide background on Dreamer and
its training formulation. Section 4 introduces our entropy-seeking planner and reactive hierarchical
policy. Section 5 details our experimental setup, evaluates performance on Miniworld’s procedurally
generated 3D maze environment, Crafter, and DMC’s vision based control environment. Section 6
concludes this work and outlines limitations.

2 RELATED WORK

2.1 INTRINSIC REWARD

Intrinsic motivation methods can be grouped into retrospective and anticipatory approaches. Retro-
spective methods assign reward after experience has occurred, using prediction error (Pathak et al.,
2017), state novelty (Burda et al., 2018), episodic novelty (Badia et al., 2020), or representation
surprise (Raileanu & Rocktäschel, 2020). While simple and broadly compatible with model-free RL,
they are vulnerable to the white-noise problem (attraction to aleatoric uncertainty) and detachment
(Burda et al., 2018; Ecoffet et al., 2019). Anticipatory methods instead steer agents toward potentially
novel states using short-horizon predictions of epistemic uncertainty (Shyam et al., 2019; Sekar et al.,
2020; Chua et al., 2018). When combined with reward conditioning they better avoid aleatoric traps,
but typically introduce multi-step planning components that increase architectural and computational
complexity.

2.2 PLANNING

Planning in RL ranges from tree search to trajectory optimization. Monte Carlo Tree Search (MCTS)
has proved effective in games (Coulom, 2006; Silver et al., 2016; 2017a) but assumes (near) full
observability and discrete action spaces, limiting its applicability in stochastic, partially observed
environments. Path-integral / MPPI-style control samples and reweights trajectories under learned
dynamics (Gómez et al., 2014; Williams et al., 2015); TD-MPC and TD-MPC2 pair this with TD
learning for vision-based control (Hansen et al., 2022; 2023), but the planner’s actions can drift
from the policy network, risking distribution shift and value overestimation. Closer to our setting,
Look Before You Leap prefers low-entropy, high-reward states, which can suppress exploration
early in training (Wang et al., 2018); MaxEnt-Dreamer biases the actor towards toward high entropy
states but where this method could have been reactive, it instead is retrospective (Svidchenko &
Shpilman, 2021); RAIF optimizes posterior over prior uncertainty but this necessitates evaluating
gains retrospectively, blind to emerging novelty (Nguyen et al., 2024).

2.3 HIERARCHICAL POLICIES

Hierarchical RL introduces temporal abstraction via high- and low-level controllers. Option-Critic
learns options and termination conditions end-to-end (Bacon et al., 2017), while HiPPO runs PPO
at two temporal scales (Li et al., 2019). These methods improve long-horizon credit assignment,
but fixed intervals or frequent replanning can limit adaptability; excessive termination also reduces
effective commitment. Our planner differs by explicitly learning when to replan versus commit,
driven by signals computed from imagined rollouts.
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3 PRELIMINARIES

Dreamer (Hafner et al., 2019; 2020; 2023) learns a compact latent dynamics model and performs
policy optimization entirely in latent space. In this work, we use DreamerV3 as it is the most recent
and advanced formulation of the Dreamer series of models. At its core, Dreamer relies on a RSSM
that factorizes the environment into deterministic recurrent states and stochastic latent representations.
While our method is model agnostic, we choose to use dreamer as it is the most general and well
performing method that still makes use of an GRU based model, facilitating planning. The RSSM is
described by the following formulations:

Recurrent model: ht = fϕ(ht−1, zt−1, at−1)

Transition predictor (prior): ẑt ∼ pϕ(· | ht)

Representation model (posterior): zt ∼ qϕ(· | ht, xt)
Predictors (Image, Reward, Discount): x̂t, r̂t, γ̂t ∼ pϕ(· | ht, zt)

Here, xt is the observation at time t, and ht is the deterministic recurrent state. At each step, Dreamer
generates a prior latent state ẑt from the deterministic recurrent state ht via pϕ(· | ht), and updates
it into a posterior qϕ(· | ht, xt) once the new observation xt has been received. The KL divergence
between the prior and posterior is minimized to train the model:

LKL = DKL

(
qϕ(zt | ht, xt) ∥ pϕ(· | ht)

)
. (1)

Dreamer’s policy network is trained using imagined trajectories generated by the world model. This
ensures that policy training remains effectively on-policy. The buffer that the world model trains from
is populated by a naive ϵ-greedy actor. We show in this work that filling the buffer with high-entropy
transitions can lead to greater training efficiency and improved exploration.

4 METHOD

4.1 ENTROPY

DreamerV3 models latent states as factorised discrete variables. For exposition only, we analyse an
equivalent case with a diagonal Gaussian prior/posterior to make the maximum-entropy argument
transparent; all experiments however use DreamerV3’s discrete RSSM. The same reasoning carries
over by replacing differential entropy with categorical entropy of the latent logits (summing per-factor
entropies) and using prior predictive entropy along short imagined rollouts. Thus the latent state in
this method section is represented by:

ẑt ∼ N (µt,Σt) (2)

The conclusions derived from this will apply to the discrete case as well. We use σp to refer to the
standard deviation of the prior’s latent state, and σq to refer to the standard deviation of the posterior’s
latent state, which can also be seen as a rough uncertainty measure.

Training the model involves minimizing a KL divergence loss between the prior and posterior
distributions (equation 1); the same KL divergence loss can also be interpreted as the model’s
information gain (IG) about the environment at the current timestep (Quinlan, 1986).

IG =
1

2

(
k
σ2
q

σ2
p

+
∥µp − µq∥2

σ2
p

− k + k log

(
σ2
p

σ2
q

))
(3)

When the model has trained long enough such that the reconstruction loss and the KL loss are below
a reasonable threshold, the model should set σp and µp such that any rise in ∥µp − µq∥ should be
counterbalanced by a proportional increase in σp to minimise KL loss. Conversely, it is probable that
∥µp − µq∥ is high where σp is low.

To increase information gain, we can increase µp−µq , or the σq , or σp. If we are to use an anticipatory
approach so that the model can react to novel interesting states as they emerge, the posterior of the
state is not available to us. Thus, to increase information gain, we must attempt to find states where
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σp is high, as this implies that the model expects µp − µq to be high too. We can find these states by
querying the world model to estimate prior uncertainty by generating a short horizon rollout of states.

Rather than optimising for raw standard deviation, we choose the entropy of the state distribution as
it is a good descriptive statistic. The entropy of the state’s distribution therefore can be taken as an
estimate for the model’s uncertainty, as:

H(state) =
k

2
log(2πe) +

k∑
i=1

log(σp,i) (4)

where k is the dimensionality of the state.

Thus, the objective becomes to maximise prior entropy:

J = maxH(state) (5)

There are two primary failure modes for this kind of uncertainty-based exploration. The first arises in
environments with high aleatoric uncertainty, where a state has multiple plausible successors due to
stochasticity inherent to the environment. In these cases, even a well-understood state st may produce
a high-entropy predictive distribution despite all potential outcomes being familiar, purely because
there are multiple potential outcomes. This is due to the RSSM’s unimodal predictive structure:
the prior predictor must approximate a multi-modal distribution comprised of several low-variance
potential states using a single Gaussian with an artificially inflated variance:

p̂(st+1 | st, at, h0:t) ∼ N (µ, σ2), where σ2 > σ2
i for all i

Here h0:t denotes the history of recurrent hidden states up to time t. In this case, elevated entropy
arises from aleatoric uncertainty rather than epistemic uncertainty. To avoid over-exploration in
these regions, we condition planning not solely on entropy but jointly on both entropy and predicted
reward. This is done via using the greedy actor to generate all candidate trajectories, thus implicitly
conditioning the trajectories toward reward before they are used to choose the one with the highest
entropy.

The second failure mode arises in environments with latent transitions that require specific, rarely
executed actions. In such cases, the ideal transition distribution remains:

p∗(st+1 | st, at) =
n∑

i=1

wi · N (st+1 | µi, σ
2
i ) (6)

Here, each mode corresponds to a distinct possible outcome, with weights wi representing their
respective likelihoods. The weight associated with the common transitions, denoted wC , satisfies
wC ≫ w̸C , where w̸C is the total weight of the rare transitions. If the agent has only encountered the
high-probability transitions, the learned model will be ignorant of the rare outcomes and estimate:

p̂(st+1 | st, h0:t) ∼ N (µ, σ2), where σ2 ≪ 1

In these cases, a state’s uncertainty may be chronically underestimated and subsequently under-
explored. This form of hidden epistemic uncertainty cannot be resolved by naïvely increasing
entropy-seeking behavior globally or by enabling random exploration at all states. Addressing this
likely requires mode-seeking mechanisms (option discovery, social learning, teacher-student learning).
While this is outside the scope of the present method, it is possible to amplify this method with some
future work.

4.2 REACTIVE HIERARCHICAL PLANNER

At each environment step we generate N short-horizon imagined rollouts (we use N=64) starting
from the current latent state using the greedy actor. Because proposals are actor-guided, they are
already reward-seeking; among these candidates we select the plan whose latent prior has the highest
cumulative entropy:

τ̂⋆ = arg max
τ̂∈{actor rollouts}

t+H−1∑
t′=t

Hprior(zt′).

4
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We then execute the selected action prefix unless the meta-policy decides to replan (below). This
focuses compute on informative futures without having to trade off reward in the score itself.

We use a light PPO head to control when to commit to old plans and when to generate a new plan:
The meta planner outputs a categorical over pt ∈ {0, 0.25, 0.5, 0.75, 1} which we squashed as p2t
to decide replanning: draw ut ∼U(0, 1) and replan if ut < p2t . We find in practice that excessive
replanning is a problem that frequently plagues such planners, a finding echoed across the hierarchical
RL literature (Klissarov et al., 2017; Chunduru & Precup, 2022; Johnson & Weitzenfeld, 2025) which
is why we change the enaction condition from ut < pt to ut < p2t , discouraging excessive replanning
without explicitly punishing replanning or rewarding commitment.

Importantly, planning decisions are re-evaluated at every environment step, allowing for flexible
replanning without commitment if needed. Pseudocode for our planning algorithm is given in
Appendix B.

As input to the PPO policy, we provide the encoder embedding; the RSSM feature vector; the current
step number normalized by the episode time limit; the greedy action proposed by the actor; the
position within the current plan (normalized); a binary in-plan flag; and the “final” RSSM feature that
is predicted to be observed if the current plan is followed to the end.

We maintain replay buffers of meta-transitions with fields: ppo observation, ppo action, ppo sample
log prob, implemented flag (whether a replan signal was sent), per-step entropy, next base reward,
and done. We form length-L sequences and compute a shaped scalar reward for PPO:

rmeta = 1
2L

( ∑
t

base_rewardt︸ ︷︷ ︸
env return

+
∑
t

Hprior(zt)︸ ︷︷ ︸
latent entropy

)
,

with L set to 32 for most experiments conducted here. This is because cancelling or replanning can
have temporally far reaching consequences. Since the maximum rollout here is roughly 16 steps, we
use double this length’s rewards so that long term behaviour is adjusted for rather than short term
gain. We then compute advantages with GAE(γ, λ) and optimize a clipped PPO objective (separate
actor/critic) with a naive entropy bonus, using Adam for both policy and value heads. The PPO head
trains on all collected transitions. To encourage early behavioral diversity we use He initialization
and bias the PPO head’s initial logits toward intermediate pt values.

5 EXPERIMENTS

We evaluate across three regimes that stress different aspects of decision making: procedurally
generated 3D mazes in MiniWorld for long-horizon navigation under partial observability and sparse
reward, Crafter (Hafner (2021)) for survival-style open-world play with diverse subgoals, and vision-
based control tasks from the DeepMind Control suite (Tassa et al. (2018)) for closed-loop continuous
control. We report means with variability over 5 seeds for MiniWorld [0, 409, 412, 643, 996] and
DMC [0, 413, 604, 765, 891], and 3 seeds for Crafter [0, 920, 11]. Because MiniWorld and Crafter
are procedurally generated, training and test distributions coincide; we therefore report training curves
only. MuJoCo-based DMC tasks have no train/test split under our setup, so we also report training
performance.

We compare with PLan2Explore (Sekar et al. (2020)) as a baseline; it supplies an anticipatory
exploration baseline that scores novelty via ensemble disagreement, giving a contrast between
disagreement-based uncertainty and our inference-time entropy signal from a single world model.
We also add PPO on MiniWorld as a model-free reference (Schulman et al., 2017). For Crafter and
DMC, competitive pixel-based model-free methods (augmented SAC/DrQ-style agents) are known
to be sensitive to implementation and tuning (Engstrom et al., 2020; Henderson et al., 2018); to
avoid confounding factors and keep compute comparable, we omit them here (Kostrikov et al., 2020;
Yarats et al., 2021; Laskin et al., 2020; Srinivas et al., 2020). Dreamer is a widely adopted and strong
pixel-based MBRL agent that already surpasses earlier model-based and many model-free methods in
visual control (Hafner et al., 2019; 2020; 2023). Since our contribution is an inference-time planner
that augments a learned world model, we instantiate it on Dreamer to illustrate benefits. Our method
is however model-agnostic and could be plugged into other MBRL backbones.

5
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Figure 1: Episode lengths across different porosity levels. Lower porosity increases maze difficulty.

We train MiniWorld mazes for 350,000 environment steps (approximate convergence for Dreamer
under our setup). On DMC and Crafter we use a fixed 24-hour wall-clock budget per method to
ensure compute parity. Metrics are task-appropriate: episode time to completion for MiniWorld
(shorter is better) and undiscounted training return for DMC and Crafter. All curves use a rolling
mean (window 10%) with shaded ±1 s.d. across seeds.

5.1 MAZE EXPLORER

We use a 3D maze environment adapted from MiniWorld (Chevalier-Boisvert et al., 2023), where each
episode presents a new random layout. The agent receives RGB image observations and performs
continuous actions to locate three goal boxes. We introduce a porosity parameter that controls wall
density to vary exploration difficulty. Observations are augmented with a binary spatial map that
encodes visited regions and current orientation, providing a simple episodic memory. The reward
function combines exploration, proximity, and goal rewards to encourage both coverage and task
success. Full environment details are in Appendix C.

5.1.1 TASK DIFFICULTY

Varying the porosity parameter controls maze difficulty (low porosity leads to difficult mazes). Visual
examples of mazes at different porosity levels are provided in Appendix D. Figure 1 shows that
our method maintains low episode lengths even in denser mazes, outperforming both Dreamer and
PPO. PPO underperforms across all settings, likely due to its lack of memory and long-horizon
reasoning. Dreamer’s performance degrades under low porosity, where rewards are harder to reach,
while our method shows robust and consistent performance. Our method also exhibits lower variance,
suggesting more consistent behavior across seeds.

Under the most difficult condition (porosity = 0), where only a single path exists between the agent and
three goals, both our method and Dreamer perform worse. However, our approach still outperforms
Dreamer, achieving 20% shorter episode lengths on average, albeit with higher variance due to the
increased exploration burden. Plan2Explore underperforms here, which we hypothesize stems from
frequent replanning without commitment; ensemble disagreement identifies novelty but does not
enforce trajectory-level persistence.

5.2 VISION-BASED CONTROL (DMC-VISION)

We evaluate six pixel-control tasks from the DeepMind Control Suite: cartpole_swingup,
walker_walk, cheetah_run, reacher_hard, acrobot_swingup, and hopper_hop.
Rather than sweeping the entire benchmark, we select a compact set that spans complementary
regimes. Agents observe 64×64 RGB frames and act in continuous spaces. For each task we train
(i) a base Dreamer agent without planning (“no plan”), (ii) our commit-aware planning variant
(“planning variant”), and (iii) Plan2Explore, all under identical step budgets; curves report mean ±1
s.d. across seeds (rolling window 10%). To isolate reasoned exploration, we use a single environment

6
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(a) walker_walk: planning variant
maintains a widening lead over no
plan.

(b) reacher_hard: clear gains from
purposeful multi-step corrections.

(c) cheetah_run: planning variant
avoids mid-training regressions and
finishes higher.

(d) cartpole_swingup: Not much
change between planning and no
planning variants.

(e) acrobot_swingup: planning vari-
ant is on par or slightly better, but
plan2explore greatly improves upon
both here.

(f) hopper_hop: Our method starts
finding the control sequences that
will make the hopper hop much ear-
lier than the no planning variant.

Figure 2: DMC-Vision learning curves (return vs. environment steps) for no-plan, the planning variant, and
Plan2Explore. Shaded bands: ±1 s.d. across seeds. The planning variant helps most when dynamics/observations
induce higher variance and remains competitive elsewhere.

instance (no vectorization), since heavy parallelism can introduce “free” random exploration. For
the same reason, we omit sparse-reward variants (e.g., cartpole_swingup_sparse), where
neither base Dreamer nor our planner is expected to reliably discover narrow reward regions within
the given budget.

Across four of six tasks, the planning variant improves sample efficiency and final return. Gains are
largest in contact-rich or higher-variance control (Figures 2a, 2f), where short commitments reduce
dithering and stabilize control under pixel noise while collecting informative trajectories. On smoother,
lower-variance dynamics (Figures 2e, 2d), improvements are smaller but positive on average. Despite
hopper_hop often benefiting from increased parallelism or longer training, our method discovers
effective hopping sequences earlier than no-plan (Figure 2f). Plan2Explore underperforms on most
tasks here but is strong on acrobot_swingup, suggesting that disagreement-based novelty aligns
with that underactuated swing-up; by contrast, our approach provides broader improvements across
the suite.

We did not expect an entropy-aware planner to dominate dense-control tasks; accordingly, gains
are modest but consistent. A plausible mechanism is that short, commit-aware exploratory rollouts
improve representation coverage and reduce vacillation, yielding small yet reliable sample-efficiency
gains under pixel observations.

5.3 OPEN-ENDED SURVIVAL (CRAFTER)

Crafter stresses long-horizon exploration and routine formation. We train for 300k environment
steps (approximately 24 hours on a GeForce RTX 5090 GPU) and report means with variability
over 3 seeds. The budget was chosen such that compute usage remained efficient while highlighting
interesting behaviours. We run a single environment here as well (no parallel rollouts), which is the
default for Crafter.

Overall, the planning variant is about 20% higher in average return and reaches comparable thresholds
in roughly 50% of the steps that base Dreamer takes (Fig. 3). Gains are concentrated in routine-
forming achievements such as collecting wood, placing tables, and defeating zombies where short,
commit-aware exploratory rollouts appear to reduce dithering and stabilize representation learning

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Episode returns during Crafter training.

(Figs. 4a, 4b, 4c). In contrast, deeper crafting branches (make wooden sword/pickaxe) remain low
within 300k steps, especially for the planning variant (Figs. 4g, 4h). We hypothesise this is because
the agent attempts these actions early game and finds they do nothing consistently (a nearby table and
correct materials in the inventory are necessary to make tools), so the corresponding states become
high-confidence low-reward states and are not attempted again. Even so, the planning variant remains
better than or competitive with the baseline across the panel (Fig. 4).

Tasks like collect wood and place table are repeatable and reward-dense; plan commitment converts
them into habits, yielding steady slopes and higher returns (Figs. 4a, 4b). Combat against zombies sits
between routine and opportunistic: once wood/table routines are established, the planner’s broader
coverage increases encounter rate, so the zombie curve rises earlier and higher than no-plan but still
exhibits spikes (Fig. 4c). Making tools remains low for both agents; the planning variant is especially
conservative (Figs. 4g, 4h). It is interesting that even though we do not explicitly optimise for reward
in the planner, the inherent bias toward rewarding rollouts results in what is effectively zombie and
tree farming behaviour (Figs. 4a, 4c). Collect drink, collect sapling and eat cow (Figs. 4a, 4b) are all
roughly matched between the no plan variant and the planning variant, indicating . Plan2Explore
does not do well in Crafter either, as it requires committed exploration instaed of naive one step
exploration.

5.4 ABLATION STUDY

To isolate the contributions of individual components, we compare:

Base Dreamer: The standard agent without planning.

MPC Style: To evaluate the value of our underlying planner, we modify the meta planner to replan
at every step, mimicking MPC behaviour.

We run all MPC ablation variants for 90% of the normal experiments’ step count to account for the
fact that MPC style experiments are slower to run than the full experiments. This threshold was
chosen to reduce training time while still capturing meaningful differences in learning dynamics.

Figure 5a demonstrates the value of committing to plans over extended horizons. Myopic planning in
a maze will result in the agent constantly choosing between different paths and never committing
enough to either path to finish exploration. Myopic planning in the Crafter environment, as shown
in Figure 5b, yields the same relative performance as it did in the maze environment as Crafter also
benefits from committing to planned trajectories. MPC style is also not as efficient as the full planner,
showing that committing to plans yields efficiency gains.

6 CONCLUSION

We present a robust method with a strong theoretical foundation and fast convergence to drive
structured exploration in MBRL, suggesting it can generalize across domains and model architectures.
This is not without limitations: inflating the KL objective in this way can lead to instabilities, so
reinforcing the model is recommended. We also note that an inherent limitation of our method is that
the actor must be trained purely with world model generated states rather than through experience
replay, as this method biases collection of experiences towards high model entropy, leading to a
distributional shift between the actor’s policy and the actual behaviour policy.

8
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(a) collect_wood (b) place_table (c) defeat_zombie

(d) collect_drink (e) collect_sapling (f) eat_cow

(g) make_wood_pickaxe (h) make_wood_sword (i) wake_up

Figure 4: Crafter achievement counts over 300k steps (3 seeds) for no plan vs the planning variant vs plan2explore.
The planning agent forms reliable routines (wood, table, zombie) and improves sample efficiency, while deeper
crafting remains conservative within this budget.

(a) ObjectNav: Episode lengths during training for
different ablations. The full planner outperforms both
the base Dreamer and MPC-style variants, highlight-
ing the benefit of plan commitment.

(b) Crafter: Episode returns during training for dif-
ferent ablations. The full planner has greater perfor-
mance and takes less time than the MPC variant, sig-
nalling efficiency benefits of plan commitment.

Figure 5: Comparison of episode lengths during training for ObjectNav (left) and Crafter (right)
across different ablations.

Reproducibility Statement. We document datasets, preprocessing, and step-by-step training and
evaluation procedures in the Experiments section. Random seeds used for all runs are listed in the
experiments section. We will release the complete codebase on GitHub upon acceptance; in the
meantime, the paper and appendix provide all details needed to reimplement our results. Configuration
settings are located in Appendix E.
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A LLM / AI TOOLING DISCLOSURE

We used AI-assisted tools during this project as follows.

Tools.

• Cursor (AI coding assistant): Used to generate boilerplate code, suggest refactorings,
produce docstrings and unit-test skeletons, and surface API idioms. All produced code was
reviewed, modified as needed, and verified by the authors.

• ChatGPT (writing assistant): Used for copy-editing, grammar and style suggestions,
tightening wording, expanding or condensing paragraphs on request, and clarifying phrasing.
We did not use it for ideation, technical contributions, or to generate substantive claims.

The authors reviewed and verified all AI-assisted outputs for correctness and originality, and accept
full responsibility for the code and text included in the paper. Any code suggested by tools was tested
and adapted to our setting before inclusion.

B PLANNING ALGORITHM

Algorithm 1 Entropy Seeking Anticipatory Planning

1: Input: Observation ot
2: Meta-policy computes discrete planning probability pt ∈ {0, 0.05, 0.25, 0.55, 1} (via squaring

sampled values from {0, 0.25, 0.5, 0.75, 1.0})
3: Sample ut ∼ U(0, 1)
4: if ut < pt then
5: Greedy actor samples C (256) candidate actions a1, . . . , aC from ot
6: for i = 1 to C do
7: Roll out trajectory τi of length H (maximum rollout length, 16 here) using world model

and greedy actor
8: Compute EH = 1

H

∑H
t=1 E

(i)
t

9: Select trajectory τbest = argmaxEH

10: Set plan to τbest
11: Continue interacting with environment; repeat planning check at next step

C MINIWORLD ENVIRONMENT AND REWARD SCHEME

We extend the MiniWorld Maze environment(Chevalier-Boisvert et al., 2023) with several task
relevant augmentations. The maze environment is a 3 dimensional procedurally generated maze
of size 8x8 (using recursive backtracking) where the agent can take continuous actions along three
dimensions - forward/back (step size attenuated if moving backwards to encourage progress), strafe
left/right, turn left/right. Each observation consists of a forward-facing RGB image of size (64x64x3).
Each episode ends when the time limit (4096) is reached, or the three goal boxes have been found.
Each training run samples a new maze structure every episode to prevent memorization. No regions
of the maze are sectioned off from the rest of the maze and all the goal states are reachable.

To promote structured exploration, we introduce a porosity parameter that controls wall density:
with probability p, wall segments are randomly removed during generation. This provides a tunable
complexity gradient for navigation tasks by creating variable maze connectivity.

An auxiliary binary 2D map of size (64x64x3) that records agent visitation over the course of an
episode has been concatenated to the observation. This map records visited coordinates as 1s whereas
unvisited coordinates are kept at 0. The position of the agent and the direction it is looking in is
also visible on the map. This serves as episodic spatial memory that enables agents to reason about
coverage and connect their actions to the current observation. This mirrors plausible real-world
capabilities that can be enacted through GPS tracking or odometry.

13
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The reward function consists of three components:

Exploration Reward: A positive reward is granted when the agent visits a previously unvisited
cell in its binary exploration map. The reward magnitude is proportional to the number of
newly visited cells within a square region around the agent, the size of which is controlled
by the blur parameter, given by b. While this reward introduces non-Markovian dynamics
by incorporating visitation history, the inclusion of a binary map in the observation allows
memory-less model-free agents such as PPO to perform effectively in this environment.

exploration reward =


∆t

b2
if b > 1

∆t otherwise

where ∆t = number of newly explored cells at time t

Proximity Reward: A smoothly decaying signal is emitted by each goal object, with exponentially
scaled rewards given when the agent is within an x-unit radius. This mimics real-world
analogs such as bluetooth signals or radio signals for search and rescue, animal noises
for ecological monitoring, or semantic hints for more advanced exploration. This reward
takes the form of two bars in the center of the image - if the agent is near a goal box of a
particular colour (red, green, or blue), the bars will turn that colour with intensity varying
with distance.

Proximity reward =

{
0 if ∆ < 0 or ∆ > 10

(10−∆)2 · pmul otherwise

where ∆ = dist − (ragent + rbox + s) and pmul = 0.03

Goal Reward: The agent gets a reward for moving into a coloured box. It gets 50 per box and then
150 when it gets the third box.

Thus the overall reward is composed of these three elements summed onto the baseline of -10. The
lower limit of reward gained in an episode is −T where T is the time limit, and the upper limit is 0.

D MAZE IMAGES

To visualize the effect of varying porosity on maze complexity, we provide top-down views of
generated mazes at increasing porosity levels, see Fig. 6. As porosity increases, more internal walls
are removed, resulting in more open environments. These top-down maps reflect the structural
differences that influence planning difficulty.

To contextualize the agent’s perspective within these mazes, we also provide an example of the full
map layout and a corresponding visual observation seen by the agent, as given in Figure 7.

E DEFAULT CONFIGURATION AND CODE BASE

E.1 DEFAULT CONFIGURATION

The following listing provides the default hyperparameters and settings used in our experiments.

use_plan: True

logdir: null
traindir: null
evaldir: null
offline_traindir: ’’
offline_evaldir: ’’
seed: 0
deterministic_run: False
steps: 1e6
parallel: False

14
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(a) Porosity 0.0 (b) Porosity 0.1 (c) Porosity 0.2

(d) Porosity 0.4 (e) Porosity 0.6 (f) Porosity 0.8

Figure 6: Top-down maze layouts at selected porosity levels. Higher porosity values remove more
internal walls, increasing openness and reducing planning difficulty.

(a) Agent’s visual observation (b) Agent’s map observation

Figure 7: Image of what the agent perceives - the visual observation (left) and of the map observation
(right).

eval_every: 1e4
eval_episode_num: 10
log_every: 1e4
reset_every: 0
device: ’cuda:0’
compile: True
precision: 16

15
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debug: False

# Environment
task: ’dmc_walker_walk’
size: [64, 64]
# envs: 1
# action_repeat: 1
time_limit: 1000
grayscale: False
prefill: 2500
reward_EMA: True

# Model
dyn_hidden: 512
dyn_deter: 512
dyn_stoch: 32
dyn_discrete: 32
dyn_rec_depth: 2
dyn_mean_act: ’none’
dyn_std_act: ’sigmoid2’
dyn_min_std: 0.1
grad_heads: [’decoder’, ’reward’, ’cont’, ’entropy’]
units: 512
act: ’SiLU’
norm: True
encoder:

{mlp_keys: ’$^’, cnn_keys: ’image’, act: ’SiLU’, norm: True, cnn_depth: 64, kernel_size: 4, minres: 4, mlp_layers: 5, mlp_units: 1024, symlog_inputs: True}
decoder:

{mlp_keys: ’$^’, cnn_keys: ’image’, act: ’SiLU’, norm: True, cnn_depth: 32, kernel_size: 4, minres: 4, mlp_layers: 5, mlp_units: 1024, cnn_sigmoid: False, image_dist: mse, vector_dist: symlog_mse, outscale: 1.0}
actor:

{layers: 2, dist: ’normal’, entropy: 3e-4, unimix_ratio: 0.01, std: ’learned’, min_std: 0.1, max_std: 1.0, temp: 0.1, lr: 3e-5, eps: 1e-5, grad_clip: 100.0, outscale: 1.0}
Q:

{layers: 2, dist: ’symlog_disc’, slow_target: True, slow_target_update: 1, slow_target_fraction: 0.02, lr: 3e-5, eps: 1e-5, grad_clip: 100.0, outscale: 1.0} #CHANGE
critic:

{layers: 2, dist: ’symlog_disc’, slow_target: True, slow_target_update: 1, slow_target_fraction: 0.02, lr: 3e-5, eps: 1e-5, grad_clip: 100.0, outscale: 0.0}
reward_head:

{layers: 2, dist: ’symlog_disc’, loss_scale: 1.0, outscale: 1.0} #CHANGE
entropy_head:

{layers: 2, dist: ’symlog_disc’, loss_scale: 1.0, outscale: 1.0} #CHANGE
cont_head:

{layers: 2, loss_scale: 1.0, outscale: 1.0}
dyn_scale: 0.5
rep_scale: 0.1
kl_free: 1.0
weight_decay: 0.0
unimix_ratio: 0.01
initial: ’learned’

# Training
batch_size: 16
batch_length: 64
train_ratio: 512
pretrain: 100
model_lr: 1e-4
opt_eps: 1e-8
grad_clip: 1000
dataset_size: 1000000
opt: ’adam’

# Behavior.
discount: 0.997
discount_lambda: 0.95
imag_horizon: 15
imag_gradient: ’dynamics’
imag_gradient_mix: 0.0
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eval_state_mean: False

# Exploration
expl_behavior: ’greedy’
expl_until: 0
expl_extr_scale: 0.0
expl_intr_scale: 1.0
disag_target: ’stoch’
disag_log: True
disag_models: 10
disag_offset: 1
disag_layers: 4
disag_units: 400
disag_action_cond: False

# plan_behavior:
plan_max_horizon: 16
plan_choices: 256
plan_train_every: 32
sub_batch_size: 64
num_epochs: 30
buffer_size: 32768
clip_epsilon: 0.2
gamma: 0.99
lmbda: 0.95
entropy_eps: 0.1
num_cells: 256
lr: 0.003
seq_length: 8
buffer_minimum: 512
meta_action_quant: 5 # used in CategoricalSpec
num_meta_action_lwr: 2 # used in CategoricalSpec
ent_multiplier: 1.0 # multiplier for entropy in _flow method
rew_multiplier: 1.0 # multiplier for reward in _flow method

dmc_vision:
steps: 1e6
action_repeat: 2
envs: 1
train_ratio: 512
video_pred_log: false
encoder: {mlp_keys: ’$^’, cnn_keys: ’image’}
decoder: {mlp_keys: ’$^’, cnn_keys: ’image’}

crafter:
task: crafter_reward
step: 1e6
action_repeat: 1
envs: 1
train_ratio: 512
video_pred_log: false
dyn_hidden: 1024
dyn_deter: 4096
units: 1024
encoder: {mlp_keys: ’$^’, cnn_keys: ’image’, cnn_depth: 96, mlp_layers: 5, mlp_units: 1024}
decoder: {mlp_keys: ’$^’, cnn_keys: ’image’, cnn_depth: 96, mlp_layers: 5, mlp_units: 1024}
actor: {layers: 5, dist: ’onehot’, std: ’none’}
value: {layers: 5}
reward_head: {layers: 5}
cont_head: {layers: 5}
imag_gradient: ’reinforce’
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Figure 8: Replanning probabilities across porosities. While mean values remain comparable, variance
across seeds diminishes faster at higher porosities.

E.2 CODE BASE

Our implementation is forked from https://github.com/NM512/dreamerv3-torch/
blob/main/dreamer.py. We adapt this code to our setting while retaining the default configu-
ration listed above.

F OTHER RESULTS

In this section, we present additional metrics and quantities tracked during our experiments. While
these results are not central to the main text, they provide further insight into the model’s internal
behavior and performance dynamics.

From the porosity comparison study, we highlight the internal planning parameters set by the meta-
policy. Specifically:

- The probability of replanning is shown in Figure 8, with its intra-episode standard deviation in
Figure 9.

Shaded intervals in all graphs represent variation across different random seeds, while intra-episode
standard deviations are shown in dedicated plots.

We explore the replanning probability, which captures how often the agent updates its plan mid-
episode. Figure 8 shows the average replanning probabilities over training for each porosity level.
While the means are broadly similar, a clear reduction in variability across seeds is observed at higher
porosities, reflecting more deterministic behavior under lower uncertainty. Figure 9 complements
this by plotting the intra-episode standard deviation of the replanning probability. Here, we observe
a steady decline over training, indicating growing confidence in the agent’s planning under all
conditions.

Figure 10 shows KL divergence values between the prior and posterior. Higher KL indicates that
the world model is encountering states it cannot yet predict, which can reflect either model failure or
valuable learning. Given that our method leads to better downstream performance, we interpret this
as a sign of active, informed exploration.

Figure 11 shows that our method maintains approximately 10% higher prior entropy across training,
indicating greater predictive uncertainty of the world model and a broader exploration strategy.

Figure 12 presents the actor loss across different porosities, indicating that our method does not
significantly affect the actor component itself, but instead the gains in performance are driven by
directly optimising the world model. Interestingly, a divergence between the planned and unplanned
variants becomes apparent toward the end of training in the 0.2 porosity setting. This may suggest
that, as the world model converges and its predictive uncertainty decreases, the actor also stabilizes
and its loss declines. Additionally, the standard deviation of the actor loss is notably lower for the
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Figure 9: Intra-episode standard deviations of replanning probabilities. These deviations drop quickly
as meta-policies converge.

Figure 10: KL divergence across porosity levels. Higher porosity results in a more marked difference
between our method and base Dreamer.

planned agent in higher-porosity environments, which is likely a consequence of reduced epistemic
uncertainty in the world model.

Figure 13 presents the length of a plan before replanning occurs. This measure is generally stable
across porosities, but the variance across seeds is higher in more difficult (low porosity) settings.
Interestingly, as shown in Figure 14, the intra-episode standard deviation remains low, suggesting
that while different seeds may converge to distinct stable values, intra-run variability remains small.
The variation between seeds in Figure 14 is higher in the hardest setting, as noted in previous plots.
This could be because of the world model not reaching convergence as easily.

Figure 11: Prior entropies through different porosities, reflecting the model’s estimated uncertainty.
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Figure 12: Actor loss across porosities. The actor remains stable across planning variants, with some
divergence occurring later in training for 0.2 porosity.

Figure 13: Length of plan before replanning across porosities. Stability is observed overall, with
higher inter-seed variation in low-porosity settings.

Figure 14: Intra-episode standard deviation of plan length before replanning. Values remain low
across porosities, suggesting consistent behavior within each run.
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