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Abstract

Designing de novo molecules with desired proper-
ties requires efficient exploration of an immense
chemical space spanning 1023 to 1060 potential
candidates. Although Molecular Large Language
Models (Mol-LLMs) enable scalable exploration
using string-based representations, the effects of
language modeling practices such as tokenization,
model size, and dataset scale on molecular genera-
tion performance remain unclear. In this study, we
introduce NovoMolGen, a family of transformer-
based foundation models pretrained on 1.5 billion
molecules, to systematically investigate these key
factors. Our analyses demonstrate a weak corre-
lation between standard pretraining metrics and
downstream molecular generation performance,
highlighting critical differences compared to gen-
eral NLP models. NovoMolGen achieves state-
of-the-art results, outperforming prior Mol-LLMs
and specialized generative models in both uncon-
strained and goal-directed molecule generation
tasks.

1. Introduction
The discovery of new drugs for oncology, immunology,
and rare or infectious diseases is challenging as exhaustive
experimental screening is extremely time- and resource-
intensive (Kirkpatrick & Ellis, 2004). Efficient computa-
tional strategies are thus essential to explore this vast space
and identify novel synthesizable molecules with desired
pharmacological properties. Recent progress in deep gen-
erative models has transformed molecular design by learn-
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ing complex structure-property representations from large
chemical databases, enabling automated de novo lead gener-
ation and optimization (Grisoni et al., 2020; Jin et al., 2020a;
Podda et al., 2020; Mahmood et al., 2021; Hoogeboom et al.,
2022). Notably, various molecular representations have
been explored to facilitate in silico experimentation, includ-
ing vector-based (Rogers & Hahn, 2010), graph-based (Lee
et al., 2023; Yang et al., 2024), 3D structure-based (Xu et al.,
2023; Huang et al., 2023; Zhang et al., 2023), and string-
based approaches. Among those, string-based representa-
tions, such as SMILES (Simplified Molecular Input Line
Entry System) (Weininger, 1988), DeepSMILES (O’Boyle
& Dalke, 2018), SELFIES (Self-Referencing Embedded
Strings) (Krenn et al., 2022), and SAFE (Sequential Attach-
ment Fragment Embedding) (Noutahi et al., 2024), provide
a scalable and computationally efficient solution. Their
effectiveness is further supported by large-scale databases
like GDB-13 (Ruddigkeit et al., 2012) and ZINC (Tingle
et al., 2023), which contain billions of molecules in string
format. Hence, deep generative models based on string rep-
resentations have a huge potential to develop scalable solu-
tions for generating diverse, chemically valid, and property-
optimized molecules.

Building on this foundation, advancements in Molecular
Language Models have further highlighted the effectiveness
of string-based representations for automated molecule gen-
eration and optimization. For instance, REINVENT (Olive-
crona et al., 2017) utilized a Recurrent Neural Network
(RNN) to build molecules sequentially, atom-by-atom, in
an unconstrained and unrestrained manner. The pretrained
model was subsequently fine-tuned using reinforcement
learning to generate compounds predicted to be active
against a specific biological target. MolGPT (Bagal et al.,
2022), inspired by GPT-2, employs an autoregressive de-
coder trained on SMILES strings to generate structurally
valid molecules, treating molecular generation as a se-
quence prediction task while capturing both the syntax
and semantics of SMILES. SMILES-GPT further enhances
this approach by incorporating Byte Pair Encoding (BPE)
and specialized embeddings, thereby improving represen-
tation learning for molecular generation (Adilov, 2021).
BindGPT (Zholus et al., 2024) further advances autoregres-
sive architectures, revealing that self-supervised pretraining
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Figure 1. (a) SMILES deduplication, canonicalization, and conversion to SELFIES, SAFE, and DeepSMILES, with Atom-wise and Byte
Pair Encoding (BPE) tokenization. (b) Pretraining of NovoMolGen and unconstrained molecular generation along the learned manifold.
(c) Reinforcement learning-based fine-tuning for goal-directed molecular design.

enables transformers to implicitly encode spatial molecular
features. Beyond autoregressive models, encoder-decoder
architectures like BARTSmiles (Chilingaryan et al., 2022)
pretrain molecular representations via denoising autoen-
coding, where the model reconstructs corrupted SMILES
strings, enhancing robustness for downstream tasks. Mol-
Gen (Fang et al., 2023) further refines this paradigm by
adopting SELFIES that guarantees chemical validity by de-
sign and self-feedback mechanisms, a reinforcement learn-
ing strategy where the model critiques and iteratively edits
its outputs to optimize validity and diversity.

Scaling the pretraining of molecular language models has
demonstrated strong potential for improving molecular gen-
eration and representation learning. SAFE-GPT (Noutahi
et al., 2024) exemplifies this trend, training an 87M-
parameter GPT-like architecture on 1.1B SAFE strings to
improve fragment-based design, enabling scaffold decora-
tion, motif extension, and linker generation. f -RAG (Lee
et al., 2024) leverages the SAFE-GPT architecture in com-
bination with a fragment injection module, which suggests
additional fragments based on input fragments to complete
and generate novel molecules. Building on SMILES-based
pretraining, MoLFormer (Ross et al., 2022) employs linear
attention and rotary embeddings to pretrain a transformer en-
coder on 1.1 billion SMILES. GP-MoLFormer (Ross et al.,
2024) extends this approach to autoregressive generation,

training a 46.8M-parameter decoder on 1.1 billion SMILES
and investigating the trade-off between novelty and memo-
rization at extreme scales.

While molecular language models draw inspiration from
recent breakthroughs in natural language processing (NLP),
directly applying LLM methodologies to molecular genera-
tion presents unique challenges. Small molecule representa-
tions impose fundamentally different constraints compared
to natural languages, with shorter sequence lengths, smaller
vocabularies, and highly structured syntax that affects how
models capture chemical relationships. Despite progress
in the development of string-specific individual models, a
fundamental question has remained unanswered: “How to
tailor and optimize language modeling techniques to the
unique specificities of small molecules?”. Frey et al. (2023)
examine neural scaling behavior in large chemical models
by varying model and dataset sizes; however, their anal-
ysis is limited to pretraining loss and does not extend to
downstream molecular optimization tasks, which are more
indicative of practical performance. Yu et al. (2024) explore
molecular generation in the context of a broader chemistry-
focused AI assistant, but rely primarily on basic metrics
such as validity and fingerprint Tanimoto similarity. Sim-
ilarly, Özçelik & Grisoni (2024) employ a considerably
smaller dataset (∼1.5M molecules) and focus on evaluation
metrics such as Fréchet ChemNet Distance (FCD), which,
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while informative, offer a narrower assessment of genera-
tion quality. So far, no systematic study has examined how
architectural decisions and training protocols influence the
validity, diversity, and property optimizability of generated
molecules. Furthermore, while pretraining improves molec-
ular representations, its impact on downstream task perfor-
mance remains poorly understood. This highlights the need
to investigate how the different aspects of the Mol-LLMs
pipeline affect both pretraining efficiency and fine-tuning
effectiveness, ensuring that Mol-LLMs generalize well to
real-world molecular design challenges.

To bridge these gaps and address open questions in Mol-
LLM design, we make the following key contributions:

• We conduct the largest systematic study to date on pre-
training molecular foundation models, simultaneously
evaluating how molecular representations, tokenization
strategies, model scaling, and dataset size influence Mol-
LLM performance in de novo molecular generation.

• We introduce NovoMolGen, a family of transformer-
based models pretrained on 1.5 billion molecules, achiev-
ing state-of-the-art performance in both unconstrained
generation and goal-directed molecular design.

• We investigate the impact of model scaling, finding that
while increasing model size shows some trends in goal-
directed generation tasks, it does not lead to consistent
improvements across all metrics.

• We systematically compare SMILES, SELFIES, SAFE,
and DeepSMILES molecular representations with atom-
wise and BPE tokenization, revealing that no single rep-
resentation is universally optimal but that representation
choices significantly impact generalization and down-
stream task performance.

• We find that pretraining efficiency reaches an early
plateau, indicating that extended training does not al-
ways enhance performance. Surprisingly, in fine-tuning,
even our earliest checkpoints outperform strong base-
lines, demonstrating that pretrained models already cap-
ture essential molecular properties.

To facilitate reproducibility and further research, we open-
source our models, datasets, and code, establishing a com-
prehensive benchmark for advancing large-scale pretraining
in molecular generation.

2. Methodology
This section details the molecule generation process using
Mol-LLMs, which consists of four stages, as illustrated
in Figure 1. The process begins with data preprocessing
and preparation (§2.1), where molecular datasets are con-
structed using various representations, including SMILES,
DeepSMILES, SELFIES, and SAFE. This is followed by
pretraining (§2.2) using transformer models based on the

Llama architecture, ranging from 32M to 300M param-
eters. Subsequently, fine-tuning (§2.3) is performed for
task-specific molecule generation, leveraging an oracle to
compute rewards. Finally, the models undergo generation
and evaluation (§3.1) to assess performance across key met-
rics relevant to drug discovery.

2.1. Data Preparation

For our experiments, we utilize the ZINC-22 database, the
largest publicly available molecular library, encompass-
ing approximately 70 billion synthesizable and commer-
cially available compounds as of September 8, 2024. This
database provides extensive coverage of purchasable chem-
ical space, making it a valuable resource for large-scale
molecular modeling and generative tasks. The molecules
are encoded in the SMILES format and organized based
on their heavy atom count, which ranges from 4 to 49. To
maintain diversity during pretraining, we employ a random
stratified sampling strategy based on heavy atom count to
select 1.5 billion molecules from the database. Additionally,
to ensure uniqueness and consistency across the dataset,
we remove duplicate entries and canonicalize the SMILES
strings in the molecular database. To the best of our knowl-
edge, this represents the largest dataset used to date for
pretraining in de novo molecule generation.

To explore the effect of molecular representation on gen-
eration quality, we also transformed the molecules from
SMILES into other textual representations, including SELF-
IES, SAFE, and Deep SMILES. We ensured the dataset’s
diversity in terms of molecular length and structural similar-
ity, with the average Tanimoto similarity between molecules
in a batch kept below 0.5. Details of this analysis, including
molecular diversity metrics and visualizations, are provided
in Appendix D.

To enable a comprehensive evaluation of the generaliza-
tion capabilities of our models, we constructed two distinct
validation sets. First, a scaffold-based validation set was
generated using Bemis-Murcko scaffolds (Bemis & Murcko,
1996), which define core molecular frameworks. This split
ensures that scaffolds in the validation set do not appear
in the training set, thereby enabling a stringent test of gen-
eralization to novel chemical frameworks. This practice
is consistent with established protocols in molecular ma-
chine learning (Wu et al., 2018; Polykovskiy et al., 2020)
and reflects the demands of real-world applications such as
lead optimization in drug discovery. Although some struc-
turally similar molecules may fall under different scaffolds,
more precise alternatives such as Butina or UMAP-based
clustering (Guo et al., 2024) require computing molecular
similarities at a scale that is currently infeasible for our
dataset.

Following the creation of the scaffold-based set, we con-
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structed a second validation set by randomly sampling 10
million molecules from the remaining training data. This
random subset captures a chemically diverse yet structurally
familiar distribution, allowing us to assess model perfor-
mance in a setting that more closely resembles the training
domain. Together, the scaffold-based and random validation
sets provide complementary perspectives on generalization.

2.2. Pretraining

Pretraining begins with an autoregressive decoder-only
model, a natural choice for de novo molecule generation due
to its ability to model the sequential dependencies in repre-
sentations such as SMILES and SELFIES. These models
are trained to predict the next token in a sequence, enabling
molecules to be constructed incrementally in a left-to-right
manner. This self-supervision encourages the model to learn
the syntactic structure and underlying chemical validity of
string-based molecular representations during training, en-
abling the generation of diverse and plausible molecules
while efficiently capturing local and global dependencies
within large-scale datasets.

In this study, we adopted the Llama architecture (Dubey
et al., 2024) for its popularity in large-scale generative tasks.
To further explore the impact of molecular representation
on generative performance, we employed atom-wise and
byte-pair encoding (BPE) tokenization strategies. The atom-
wise tokenization (Schwaller et al., 2019) uses a regular
expression to split SMILES strings into meaningful units,
including atoms, bonds, and functional groups, ensuring
the preservation of stereochemistry and bond order. For
the BPE tokenization (Kudo, 2018), we trained a tokenizer
with a maximum vocabulary size of 500 and a dropout of
0.1 using a subset of 100 million molecules from the train-
ing dataset. This approach captures common substructures
and recurring patterns in molecular strings, enabling effi-
cient representation of complex chemical structures while
balancing granularity and scalability.

Our experiments utilized three model sizes, 32M, 157M,
and 300M parameters, to investigate the relationship be-
tween model capacity and generative quality. The archi-
tectural configurations for each model are summarized in
Appendix Table E2. These configurations were selected
based on the optimal width-to-depth ratio recommended
by Levine et al. (2020), which supports efficient scaling of
transformer models. The training was conducted using the
FlashAttention library (Dao et al., 2024) integrated within
the HuggingFace (Wolf et al., 2019) Trainer framework,
enabling efficient handling of large batch sizes and signifi-
cantly improving training speed.

Each model was trained on 1.5 billion molecules from the
ZINC-22 dataset, employing a next-token prediction ob-
jective to capture the sequential dependencies within the

chemical space. The training process maintained a fixed
global batch size of 19,200 molecules (1.2M tokens per
gradient step) across 4xA100 GPUs, with optimization per-
formed using the AdamW optimizer and a cosine learning
rate scheduler, reaching a peak learning rate of 6 × 10−4.
Additional training details are provided in the Appendix E.

2.3. Fine-Tuning

Fine-tuning in de novo molecule generation is crucial for
optimizing pretrained models to generate molecules with
specific, desirable properties. While pretraining captures
general chemical properties and ensures the generation of
valid, diverse molecules, fine-tuning is essential to align the
model’s outputs with specific goals, such as drug-likeness
or bioactivity. Reinforcement learning (RL) plays a cen-
tral role in this process, providing an effective framework
for optimizing molecule generation under task-specific con-
straints. These tasks often face practical limitations, such as
a restricted budget of a few thousand oracle calls, making
sample efficiency a critical factor in achieving high-quality
results.

We found that the REINVENT fine-tuning pipeline (Olive-
crona et al., 2017), which utilizes a straightforward rein-
forcement learning framework for molecular optimization,
performs surprisingly well despite its simplicity. Given its
effectiveness and ease of integration, we adopted it in our
approach, while recognizing that more sophisticated or tar-
geted methods may further enhance performance in future
work. The framework includes a fixed pretrained model,
Pprior(x), to preserve chemical validity and syntax, and a
trainable agent model, Pagent(x), which is optimized to max-
imize a task-specific reward function, s(x). The primary
objective is to minimize the cost function, J(x), defined as:

J(x) = [logPprior(x)− logPagent(x) + σ · s(x)]2 (1)

where σ is a scaling factor that controls the influence of
the reward function. This loss balances the dual objectives
of adhering to the prior distribution and optimizing for the
reward, ensuring that the agent generates molecules that are
both valid and aligned with task-specific goals.

Additionally, we use a penalty term, Jp(x) = −1
logPagent(x)

,
to discourage the generation of molecules with extremely
low likelihoods under the agent’s learned distribution. This
regularization prevents degenerate solutions, promotes con-
fidence in the agent’s predictions, and enhances training
stability. The final objective combines these components:

Jθ = J + λ · Jp, (2)

where λ is a hyperparameter that weights the penalty term.
Extensive hyperparameter tuning revealed the critical im-
portance of λ, with its optimal range being significantly

4



NovoMolGen: Rethinking Molecular Language Model Pretraining

different from that proposed in REINVENT, reflecting the
specific requirements of our molecular generation task.

To improve sample efficiency and ensure broader explo-
ration of the chemical space, we incorporate an experience
replay mechanism with a molecular memory buffer. The
memory buffer stores top-performing molecules, which are
periodically revisited and used to reinforce high-quality
samples during training. By combining newly generated
high-reward candidates with stored experiences, the model
avoids overfitting to narrow solutions and ensures efficient
utilization of the oracle budget. Further implementation de-
tails, including hyperparameter configurations, are provided
in Appendix J.

3. Experiments
Our study systematically investigates the impact of four
key factors: model size (§3.2), molecule representation
(§3.3), tokenization strategy (§3.4), and pretraining data
scale (§3.5). To evaluate downstream effectiveness, we
fine-tune the models using reinforcement learning for goal-
directed molecular design and compare their performance
against state-of-the-art baselines.

For each experiment, we tracked the training and validation
loss on two validation sets: one created via random sam-
pling and the other using scaffold-based splitting. The final
checkpoint used for evaluation was taken at 75,000 steps,
corresponding to a full epoch over the training dataset.

3.1. Generation and Evaluation

We evaluated the pretrained models by generating 30,000
molecules using temperature sampling (T = 1.0) without
top-k or top-p filtering, as shown in Table 1. Generated
molecules were assessed using several metrics: Validity,
defined as the proportion of chemically plausible structures
based on RDKit parsing; Novelty, measuring the fraction of
molecules absent from the complete 1.5-billion-molecule
training set using canonical SMILES comparison; and Inter-
nal Diversity (IntDiv), which quantifies structural diversity
within the generated set. We used the Fréchet ChemNet
Distance (FCD) to evaluate distributional similarity to drug-
like molecules, comparing learned representations of gener-
ated and reference molecules. Additionally, we computed
Fragment Similarity and Scaffold Similarity to quantify
the alignment of fragment distributions based on BRICS
fragments and Bemis–Murcko scaffolds, respectively. Sim-
ilarity to Nearest Neighbor (SNN) quantifies how closely
each generated molecule resembles the nearest molecule in
the reference set, reflecting the model’s capacity to explore
novel regions of chemical space. Metrics requiring a refer-
ence distribution (e.g., FCD, SNN) were computed using
a random subset of 175,000 molecules from the validation

dataset. The novelty metric was excluded for all baseline
models except GP-MoLFormer, as prior work typically com-
putes novelty with respect to the MOSES dataset rather than
the whole training set used in our evaluation, leading to
inconsistent comparisons. Most baselines were trained on
the smaller MOSES dataset (∼1.5M molecules). In con-
trast, our models were trained on the significantly larger
ZINC dataset (1.5B molecules), affecting the comparability
of novelty, SNN, and Scaffold metrics. Accordingly, we
report metrics relative to training–validation overlap (Train)
for consistent evaluation. Detailed descriptions of the evalu-
ation metrics are provided in Appendix G, with additional
results available in Appendix H.1.

3.2. Impact of Model Size

To investigate the impact of model size on the perfor-
mance of pretrained molecule language models, we evalu-
ated models with 32M, 157M, and 300M parameters using
atom-wise tokenization and compared their results to the
GP-MoLFormer baseline, which shares a similar training
pipeline to our method. Unlike GP-MoLFormer’s linear
attention, our methodology adopts full self-attention mecha-
nisms with a broader systematic study of tokenization and
molecular representations and model size to assess their role
in de novo molecule generation. Our results show compa-
rable performance across most metrics, with high Validity,
Fragment, and FCD scores. Notably, our models outper-
form GP-MoLFormer significantly in Novelty, demonstrat-
ing their ability to explore unexplored regions of chemical
space.

However, increasing model size from 32M to 300M did
not yield significant improvements. Metrics such as SNN,
FCD, and Frag remained stable across model sizes, suggest-
ing that smaller models already capture essential chemical
properties. These findings indicate that while larger models
may offer marginal benefits, smaller models, such as the
32M variant, achieve similar performance with significantly
lower computational cost, making them a practical choice
for molecule generation.

3.3. Impact of Molecular Representation

To investigate the effect of different molecular representa-
tions, we pretrained 32M models on SMILES, SELFIES,
SAFE, and DeepSMILES using atom-wise tokenization and
evaluated their performance. The results show no significant
overall advantage for any specific representation, as each
excels in certain metrics while underperforming in others.
SELFIES and SAFE inherently enforce chemical validity
by design, ensuring that all generated molecules are valid,
which explains their perfect Validity scores. However, this
strict structure may also limit diversity, as seen in their lower
Scaffold Similarity and SNN scores. SAFE achieves the
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Table 1. Comprehensive performance metrics for baseline models and NovoMolGen. The baselines for CharRNN, VAE, and JT-VAE are
sourced from Polykovskiy et al. (2020), while the results for LIMO, MolGen-7B, and GP-Molformer are taken from Ross et al. (2024).
Blue = best, Pink = second-best.

REPRESENTATION TOKENIZATION MODEL SIZE Valid (↑) IntDiv (↑) Novelty (↑) FCD (↓) SNN (↑) Frag (↑) Scaff (↑)

Train – – 1.000 1.000 0.0 0.0376 0.4657 0.9999 0.5144

CHARRNN (Polykovskiy et al., 2020) Atom-wise – 0.9748 0.856 – 0.0732 0.6015 0.9998 0.9242
VAE (Polykovskiy et al., 2020) Atom-wise – 0.9767 0.855 – 0.0990 0.6257 0.9994 0.9386
JT-VAE (Jin et al., 2018) Atom-wise – 1.000 0.855 – 0.3954 0.5477 0.9965 0.8964
LIMO (Eckmann et al., 2022) Atom-wise – 1.000 0.854 – 26.78 0.2464 0.6989 0.0079
MOLGEN-7B (Fang et al., 2023) Atom-wise 7B 1.000 0.855 – 0.0435 0.5138 0.9999 0.6538
GP-MOLFORMER (Ross et al., 2024) Atom-wise 46.8M 1.000 0.865 0.390 0.0591 0.5045 0.9998 0.7383

NOVOMOLGEN-SMILES

Atom-wise
32M 0.999 0.851 0.983 0.0394 0.4657 0.9999 0.5309
157M 0.999 0.851 0.981 0.0426 0.4656 0.9999 0.5200
300M 0.999 0.851 0.981 0.0419 0.4657 0.9999 0.5219

BPE
32M 0.999 0.851 0.982 0.0384 0.4654 0.9999 0.5182
157M 0.999 0.852 0.980 0.0384 0.4655 0.9999 0.5193
300M 0.999 0.851 0.979 0.0380 0.4657 0.9999 0.5173

NOVOMOLGEN-SELFIES Atom-wise 32M 1.000 0.852 0.982 0.0799 0.4651 0.9996 0.4765
BPE 32M 1.000 0.851 0.984 0.0386 0.4649 0.9999 0.5105

NOVOMOLGEN-DEEPSMILES Atom-wise 32M 0.999 0.851 0.981 0.0400 0.4661 0.9999 0.5218
BPE 32M 0.997 0.851 0.982 0.0380 0.4655 0.9999 0.5165

NOVOMOLGEN-SAFE Atom-wise 32M 0.957 0.853 0.953 0.9475 0.4562 0.9955 0.4521
BPE 32M 0.997 0.852 0.976 0.3283 0.4599 0.9972 0.4913

highest Novelty, outperforming other representations, yet
performs poorly in FCD, indicating weaker alignment with
the training distribution.

While our models generally outperform GP-MoLFormer, it
is important to consider the differences in the pretraining
datasets. GP-MoLFormer was trained on a combination
of ZINC and PubChem, whereas our models were trained
solely on ZINC. Although ZINC is one of the largest molec-
ular databases and emphasizes drug-like and synthesizable
compounds, PubChem offers a broader and more diverse
chemical space. Specifically, PubChem includes a wider
variety of exotic moieties, natural products, and compounds
with annotated bioactivity data that are largely absent in
ZINC. This difference in training data likely contributes to
GP-MoLFormer’s higher IntDiv scores, despite its lower
Novelty. These findings suggest that while molecular repre-
sentations like SAFE and SELFIES bring specific strengths,
there is no one-size-fits-all representation. The choice of
representation should align with task-specific goals, and
further exploration of hybrid or ensemble approaches may
help balance the trade-offs observed across metrics.

3.4. Impact of Tokenization

We evaluated the impact of the two most common tokeniza-
tion strategies, atom-wise and BPE, across different molec-
ular representations. Atom-wise results are depicted in blue
shades, while BPE results are in red shades. Despite the-
oretical differences between the two approaches, such as
atom-wise tokenization’s interpretability and chemical rele-

vance compared to BPE’s larger vocabulary and potential
for better generalization, no significant trends emerge in the
results across these metrics.

These findings highlight that the choice of tokenization
strategy may have minimal impact on overall performance
and should instead be guided by practical considerations,
such as the specific task requirements or efficiency during
training. A similar comparison for different model sizes is
provided in the appendix for completeness.

3.5. Progression of Metrics During Pretraining

A central question in Mol-LLM training is whether per-
formance saturates over time and how well training loss
correlates with generative quality. To investigate this, we
evaluated intermediate checkpoints using multiple metrics,
tracking the progression of FCD and Validity during train-
ing. Figure 2(a) presents FCD trends for different model
sizes (32M, 157M, 300M) and tokenization strategies (atom-
wise in blue, BPE in red), while Figure 2(b) shows Validity
scores across molecular representations. In both plots, the
x-axis corresponds to the number of unique molecules seen
during training.

FCD improves modestly over time, with consistent trends
across model sizes and tokenizations. Validity remains
high throughout and converges to near-perfect values for
all molecular formats. These results indicate that perfor-
mance stabilizes early, with minimal gains from continued
training. Moreover, variations in model size, tokenization
strategy, and representation format have limited impact un-
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Figure 2. (a) FCD during training for different model sizes. (b)
Validity during training for different molecular representations.
Both use atom-wise (blue) and BPE (red) tokenization. The x-axis
shows the number of molecules seen during training.

der our experimental conditions. The results suggest that
pretrained models quickly learn the core structure of chemi-
cal space, and further training primarily refines rather than
significantly enhances generative capabilities.

3.6. Goal-Directed Molecular Optimization: PMO
Benchmark

To evaluate the effectiveness of NovoMolGen in goal-
directed molecular generation, we benchmark our mod-
els on the Practical Molecular Optimization (PMO) bench-
mark (Gao et al., 2022), which evaluates sample-efficient
molecular optimization across diverse tasks. PMO includes
molecular optimization challenges relevant to drug discov-
ery, encompassing physicochemical properties, biological
activity, and multi-property objectives. Each task employs
an oracle function to score molecules based on predefined
criteria, with a fixed budget of 10,000 function evaluations
to ensure a fair comparison.

For each PMO task, we fine-tuned our pretrained models
using the simple reinforcement learning-based fine-tuning
approach described in Section 2.3. The details of our hyper-
parameter search procedure are provided in Appendix J. To
ensure a fair comparison, we first performed an exhaustive
hyperparameter search using the Perindopril MPO and Za-
leplon MPO tasks, optimizing hyperparameters across three

different random seeds per setting. The best hyperparameter
configurations were then applied to fine-tune all PMO tasks.
We evaluate different models with 32M, 157M, and 300M
parameters using both atom-wise and BPE tokenization to
assess their impact on optimization performance. For bench-
marking, we compare against REINVENT (Olivecrona et al.,
2017), which demonstrated the best performance as reported
by Gao et al. (2022), and f -RAG (Lee et al., 2024), the
current state-of-the-art on PMO benchmark.

In Figure 3, we present the results for NovoMolGen across
different model size and tokenization strategies. The
heatmap on the left visualizes the performance scores of
each model across multiple PMO benchmark tasks, while
the bar chart on the right provides the overall aggregate score
for each model. Higher values indicate better performance
in goal-directed molecular generation. NovoMolGen consis-
tently outperforms both baselines, achieving substantial im-
provements over REINVENT and surpassing f -RAG across
most tasks. Moreover, we observe a clear scaling trend: as
model size increases, the total PMO score improves. How-
ever, this trend saturates at 300M parameters, where the
performance gain becomes marginal. This aligns with our
findings in Section 3.2, where all model sizes performed
similarly in capturing molecular properties from the training
data. Interestingly, as shown in Figure 4, when fine-tuning
a small model (32M, atom-wise) with its best hyperparame-
ters, we observe minimal performance improvement across
training checkpoints, with even the earliest checkpoint sur-
passing both REINVENT and f -RAG.

4. Discussion
Our empirical analyses suggest that molecular language
models (Mol-LLMs) follow training dynamics that are sub-
stantially different from those observed in natural language
models. In particular, while the NLP community frequently
benefits from large-scale model scaling and extended train-
ing times, our intermediate checkpoint evaluations reveal
that performance improvements in molecular generative
tasks can saturate quickly. Metrics such as FCD and Validity
converge to near-optimal values at an early stage of pretrain-
ing, and further training yields only minor gains. Strikingly,
when fine-tuning on the PMO benchmark, we find that even
the earliest checkpoint of our smallest model (32M param-
eters), pretrained on approximately 100 million molecules
and fine-tuned with optimal hyperparameters, already sur-
passes strong baselines such as REINVENT and f -RAG.
This result underscores that extended training, while crucial
in some generative paradigms, may not be the driving factor
in boosting performance for molecular generation tasks.

These findings highlight that the current landscape of molec-
ular datasets presents key limitations for self-supervised
pretraining. Unlike genomic or proteomic sequences, where
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Figure 3. PMO benchmark results for NovoMolGen across different model sizes. The heatmap (left) displays scores for each task, while
the bar chart (right) shows total scores, where higher values indicate better performance. NovoMolGen-300M (Atom-wise) achieves the
highest overall score, outperforming other model variants. Results for REINVENT and f -RAG are taken directly from their respective
publications.
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Figure 4. Total PMO score across intermediate checkpoints for
NovoMolGen-32M (Atom-wise) with best hyperparameter config-
uration. Surprisingly, model performance remains stable through-
out training, with the earliest checkpoint already surpassing both
f -RAG and REINVENT baselines.

evolutionary pressure imparts a rich and functionally mean-
ingful learning signal, datasets of small molecules often lack
such inherent contextual information. While natural prod-
ucts such as secondary metabolites reflect evolutionary se-
lection for biological activity and could provide biologically
relevant signals, their dataset sizes remain limited (Sorokina
& Steinbeck, 2020). In contrast, large-scale chemical li-
braries like ZINC, which are commonly used for pretraining,
are composed of synthetically accessible or commercially
available molecules with no inherent selection for biological
function. Consequently, these datasets offer only a weak
pretraining signal, primarily encouraging the model to learn
chemical syntax rather than functional semantics. Given

the relative ease of learning syntactic patterns in molecu-
lar string representations, relying solely on self-supervised
objectives is insufficient. Instead, we believe it would be
beneficial to incorporate contextual signals early in training
to guide models toward learning biologically relevant fea-
tures, such as protein-ligand interactions, physicochemical
properties, or experimental bioactivity outcomes. Moreover,
reinforcement learning can be introduced at earlier stages
to align generation with functional objectives. These ap-
proaches can provide a “fitness” signal analogous to natural
selection, enabling models to capture chemical validity and
functional utility.

5. Conclusion
We conducted a broad exploration of how different model
sizes, molecular representations, tokenization strategies,
and training protocols affect the capabilities of Mol-LLMs.
NovoMolGen, which we pretrained on 1.5B molecules in
multiple string-based formats, establishes state-of-the-art
performance in both unconstrained generation and goal-
directed optimization, surpassing the existing Mol-LLMs
and specialized generative approaches. Notably, our find-
ings challenge NLP-inspired assumptions about the neces-
sity of extensive training or larger models, suggesting that
performance can saturate relatively early. These observa-
tions provide a practical framework for building scalable,
task-focused molecular foundation models and underscore
the need for more demanding benchmarks that capture the
true complexity of medicinal chemistry.
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Impact Statement
Our study revealed that molecular language models do not
need to be large or extensively pre-trained to perform com-
petitively on downstream tasks. Building on this insight,
we introduced NovoMolGen, a family of efficient and state-
of-the-art molecular language models. Although there are
risks of Mol-LLMs misuse in designing harmful compounds,
NovoMolGen significantly accelerates drug discovery and
represents a crucial step toward making molecular modeling
tools faster, cheaper, more inclusive, and sustainable.
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A. Limitations
This work systematically investigates the effects of molecular string representations, tokenization schemes, and model
scaling on de novo molecule generation performance. While we explored model scaling in-depth, this analysis was limited
to the SMILES representation, which remains the most widely adopted format in molecular generative modeling. However,
similar scaling studies for alternative representations such as SELFIES, DeepSMILES, and SAFE were not conducted and
remain an avenue for future work.

Additionally, our evaluation focuses exclusively on de novo molecular generation. While this task is critical for benchmarking
and assessing generative capabilities, its practical utility in real-world drug discovery pipelines is limited. In practice, tasks
such as fragment-constrained generation, including scaffold morphing, motif extension, and superstructure generation, are
of greater relevance for lead optimization and structure-based design. Future work should extend our framework to evaluate
performance on these constraint-driven generative tasks systematically.

B. Broader Impact
Our work demonstrates that NovoMolGen achieves state-of-the-art performance across multiple tasks in de novo molecule
generation, underscoring its strong potential for real-world applications in drug discovery. While these capabilities present
opportunities for accelerating pharmaceutical research, they also raise concerns about potential misuse, such as generating
harmful or toxic compounds. To mitigate such risks, safeguards can be implemented at various stages of the generation
pipeline. For example, incorporating toxicity-aware objectives in the reward function or applying rigorous post-generation
filtering based on toxicity and adverse effect profiles can help prevent the synthesis of hazardous molecules. We encourage
the responsible deployment of generative models in chemistry and emphasize the importance of incorporating ethical
considerations and safety constraints into future development and usage.

C. Related Work
C.1. Representation of Molecules

Molecules are commonly depicted using structural diagrams, traditionally drawn with pen and paper, to represent bonds and
atoms visually. However, in chem-informatics, more advanced representations are needed for the computational processing
of molecular structures. In this context, ”molecular representations” encompass any encoding of a chemical compound that
can be employed for computational exploration of the chemical space. The current approaches to representing molecules
can be broadly classified into four types: (i) Vector-based representations, (ii) Graph-based representations, (iii) 3D-based
representations, and (iv) String-based representations.

Vector-based: Topological fingerprints, such as Extended Connectivity FingerPrints (ECFP) (Rogers & Hahn, 2010) and
Molecular ACCess System (MACCS) (Durant et al., 2002), have traditionally been employed for substructure and molecule
similarity searches. These fingerprints encode molecules as a sequence of bits in an identifier list, each denoting the
presence or absence of a specific substructure. Although each molecular structure can be deterministically mapped to a
fingerprint, the fingerprints are only partially invertible (Le et al., 2020), which limits their applicability in de-novo molecule
generation (Gómez-Bombarelli et al., 2018; Tazhigulov et al., 2022). Additionally, the fingerprints can be augmented with
2D molecular descriptors such as Molecular Weight, QED score, and Number of Aromatic Rings to help impose specific
constraints on the generated molecules and make them more aligned with desired chemical properties or biological activity.

Graph-based: A 2D molecular graph is defined as G = (V, E) where V is the set of nodes (atoms) and E is the set of edges
(bonds). The type of atoms and edges can be represented using a feature matrix X . Graph Neural Networks (GNNs) have
been used to learn the representations of molecules (Kipf & Welling, 2017; Xu* et al., 2018; Xiong et al., 2021) for tasks such
as reaction prediction, property prediction and drug discovery. The initial frameworks for learning molecule representation
used Message Passing Neural Networks (MPNNs) to compute the atom embedding based on neighbourhood information
capturing local interaction effects (Gilmer et al., 2017). Although many variants of GNNs have been proposed (Morris et al.,
2019; Maron et al., 2019; Zhang et al., 2019; Brockschmidt, 2020; Xiong et al., 2020; Li et al., 2024), challenges remain in
terms of higher-order expressivity, scalability, and computational cost.

3D-based: While using Graph Neural Networks (GNNs) on 2D molecular graphs is convenient and seem to be the obvious
choice, the resulting representations often overlook crucial spatial information, such as the spatial direction and torsion
between atoms (Guo et al., 2023). Recent advancements in molecule representation learning have focused on integrating
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3D coordinate information into 2D molecular graphs (Luo et al., 2024; Fang et al., 2022; Li et al., 2022). Uni-Mol (Zhou
et al., 2022) introduced a pretraining framework capable of directly utilizing 3D positions as inputs and outputs. However, a
significant challenge in this approach is the existence of multiple low-energy conformations for a given molecule. These
conformations are not easily accessible and are particularly difficult to compute, especially for large molecules and the vast
chemical space, which spans billions of possible molecules.

String-based: 2D molecular structures can also be encoded as linear notations, which use specialized languages to represent
molecular structures and compositions in chemistry. The earliest example of such a molecular language was developed in the
1980s by Weininger (1988). The SMILES (Simplified Molecular Input Line Entry System) notation encodes atoms, bonds,
and connectivity patterns using ASCII strings, where atoms are represented by characters (e.g., ’C’ for carbon, ’N’ for
nitrogen) and bonds by special characters (e.g., ’-’ for a single bond, ’=’ for a double bond, ’#’ for a triple bond). However,
the syntax rules and restrictive grammar of SMILES can result in many invalid molecules during parsing, even when the
string appears to represent a plausible molecular structure. To address some of these limitations, DeepSMILES (O’Boyle &
Dalke, 2018) was introduced, which avoids the issue of unbalanced parentheses by using only closing parentheses, where the
number of parentheses indicates the branch length. More recently, SELFIES (Self-Referencing Embedded Strings) (Krenn
et al., 2022) was developed as a linear notation that is 100% robust; every SELFIES string corresponds to a valid molecule,
even for entirely random strings. Additionally, SAFE (Sequential Attachment-based Fragment Embedding) (Noutahi et al.,
2024) introduced a framework for fragment-constrained molecule generation tasks while maintaining compatibility with
existing SMILES parsers.

String-based molecular representations offer a computationally efficient and scalable approach to exploring the vast chemical
space using unlabelled data without relying on additional information such as 3D geometry or complex optimization
techniques. Despite their simplicity, these methods capture essential chemical information and structural features, making
them valuable tools in computational chemistry and drug discovery.

C.2. Deep Generative Models for De-Novo Molecule Generation

Deep generative models have become a key approach for de novo molecule generation, facilitating the discovery of novel
compounds by capturing complex patterns within the vast chemical space. Numerous methods have emerged, each focused
on different molecular representations and assembly strategies (Olivecrona et al., 2017; Jin et al., 2018; Polykovskiy et al.,
2020; Jin et al., 2020b; Bagal et al., 2022; Eckmann et al., 2022; Jo et al., 2022; Irwin et al., 2022; Fang et al., 2023; Lee
et al., 2023; Yang et al., 2024; Ross et al., 2024).

Assembly Methods: Early approaches (Gómez-Bombarelli et al., 2018; Jin et al., 2018; Winter et al., 2019; Tazhigulov
et al., 2022) primarily utilized Variational Autoencoders (VAEs) to transform SMILES representations into a continuous
latent space, followed by sampling and decoding to generate discrete molecular structures. Graph-based generative models
have emerged as a natural extension, directly leveraging the molecular graph structure where atoms are represented as nodes
and bonds as edges (Cao & Kipf, 2022). GraphVAE (Graph Variational Autoencoder) (Simonovsky & Komodakis, 2018)
encodes and decodes molecules using edge-conditioned graph convolutions. MoFlow (Zang & Wang, 2020), a flow-based
graph generative model learns invertible mappings between molecular graphs and their latent representations. Graph
generation approaches utilize small molecular building blocks such as atoms and their performance degrades significantly
for larger molecules. To tackle this problem recent works employ significantly larger and more flexible graph motifs as basic
building blocks (Kuznetsov & Polykovskiy, 2021). In parallel, 3D molecule generation has gained substantial attention,
particularly through the use of diffusion models. G-Schnet (Gebauer et al., 2019), for instance, utilizes an autoregressive
process to iteratively sample atoms and bonds in 3D space. Similarly, inspired by the success of diffusion models in other
domains (Sohl-Dickstein et al., 2015; Ho et al., 2020; Kong et al., 2023), Hoogeboom et al. (2022) proposed an equivariant
diffusion model for generating novel 3D molecular structures.

Optimization Methods: Molecule optimization involves navigating an immense and complex chemical space, which
requires sophisticated algorithms capable of efficiently searching for and generating molecules with optimal characteristics.
Several computational approaches have been developed to tackle this challenge, each with distinct mechanisms for exploring
the design space and optimizing molecular properties. Reinforcement Learning treats molecule optimization as a sequential
decision-making problem. In this context, the state typically represents a partially generated molecule, and actions correspond
to modifications at the graph or string level. The reward function is based on the properties of the generated molecules,
guiding the model toward desirable outcomes. Bayesian Optimization operates by learning a continuous latent space of
molecular representations, optimizing target properties by navigating through this latent space. Genetic algorithms, inspired
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by natural evolutionary processes, explore the chemical space through operations such as mutation and crossover applied to
a pool of candidate molecules, promoting diversity and exploration. Gradient ascent methods, on the other hand, estimate
the gradient of a molecular property across the chemical space and use backpropagation to optimize molecular structures.
Hill Climbing is an iterative optimization method with high-performing molecules from previous rounds incorporated into
the training data to refine the generative model progressively.

While graph-based and 3D deep generative models have made significant strides in generating molecular structures, recent
advances in natural language processing have opened new possibilities for de novo molecule generation and optimization.
Large Language Models (LLMs) offer a novel approach for navigating the large chemical space, presenting new opportunities
for optimizing molecular properties in a scalable and computationally feasible manner. Combining these models with
traditional optimization techniques can further enhance the search for de novo molecules with desired properties, marking a
significant step forward in drug discovery.

C.3. Language Models in Molecule Generation

LLMs can effectively model sequential data and have shown remarkable proficiency in understanding and generating
human language (Dubey et al., 2024; Jiang et al., 2023; Groeneveld et al., 2024). These architectures are now being
repurposed to explore and generate molecular structures. When treated as sequences of tokens, 1D molecular representations
inherently encode chemical information, including 2D bonding topology patterns, while LLMs further enhance this by
learning to generate diverse molecular structures. These models leverage unlabelled molecular data from across the chemical
space, offering a novel approach to de novo molecule generation and broadening the potential for chemical discovery.
MolGPT (Bagal et al., 2022) employs a decoder-only transformer architecture, inspired by GPT, to predict SMILES token
sequences for molecular generation. Building on these advancements, models like cMolGPT (Wang et al., 2023) have
been developed to generate target-specific compounds by incorporating conditional training for property optimization.
Taiga (Mazuz et al., 2023) extends this approach by employing a two-stage framework: first, the model treats molecular
generation as a language modeling task by predicting the next token in SMILES strings. Subsequently, reinforcement
learning (RL) is applied to optimize simple chemical properties such as QED (Quantitative Estimate of Drug-likeness) and
logP (Octanol-Water Partition Coefficient). MolGen (Fang et al., 2023), in contrast, utilizes an encoder-decoder BART
architecture, focusing on generating chemically valid molecules through the SELFIES notation. It incorporates a chemical
feedback mechanism to align generative probabilities with real-world chemical preferences. SAFE-GPT (Noutahi et al.,
2024) introduces a new line notation and trains a GPT-like model on 1.1 billion SAFE notations, demonstrating versatile and
robust performance in both de novo and fragment-constrained molecule generation tasks.

Tokenizers, which convert raw text sequences into tokens, are a critical component of modern language models. In molecular
language models, token vocabularies are often constructed using a predefined regular expression developed by Schwaller
et al. (2019), which splits SMILES strings into relevant tokens representing each atom (e.g., ’C’ for carbon, ’N’ for
nitrogen). Less commonly, subword tokenization algorithms such as Byte Pair Encoding (BPE) (Sennrich et al., 2016) or
Unigram (Kudo, 2018) are employed, sometimes combined with atom-wise pretokenization and BPE. Given that tokenizer
design impacts every stage of the modeling pipeline, this study explores the effects of using learned tokenization methods
versus hand-crafted approaches.

D. Dataset Diversity
To ensure the diversity of the dataset, we confirmed that it contains a broad range of molecular structures, which is crucial
for generating a wide variety of valid, novel, and unique molecules. Figure D5 illustrates the diversity of the data. The
left plot shows the distribution of molecular lengths, tokenized using an atom-wise tokenizer, demonstrating variation in
molecule size across batches. The right plot displays the Tanimoto similarity between molecule pairs, showcasing the
structural diversity in each batch — an essential factor for robust molecular generation.

E. Pretraining Configuration
Our pretraining experiments leverage the computational enhancements of the FlashAttention library (Dao et al., 2024),
utilizing its Llama implementation within the HuggingFace Trainer framework 1. Training was conducted in mixed precision
mode using bfloat16 to maximize GPU memory efficiency. We adopted the AdamW optimizer with a learning rate of

1https://huggingface.co/docs/transformers/en/main_classes/trainer
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Figure D5. Diversity of the data across batches. The left plot shows the distribution of molecular lengths, tokenized using an atom-wise
tokenizer, indicating variation in molecule length within each batch. The right plot shows Tanimoto similarity between molecule pairs,
demonstrating structural diversity in each batch.

Table E2. NovoMolGen Configurations

Components NovoMolGen-32M NovoMolGen-157M NovoMolGen-300M

Attention Heads 8 10 12
Hidden Layers 12 24 32
Hidden Size 512 640 768
Intermediate Size 1024 2560 3072

6× 10−4, paired with a cosine learning rate scheduler configured with a half cycle. The scheduler includes a warmup phase
of 2% of the total training steps, during which the learning rate linearly increases to its peak value of 6 × 10−4 before
gradually decaying to a minimum of 6× 10−5.

To ensure consistency across experiments, we maintained a fixed global batch size of 19,200 molecules, with gradient
accumulation and per-device batch size selected to fit within the memory constraints of 4 NVIDIA A100 GPUs (80 GB
each). Weight decay was set to 0.01 to prevent overfitting, and gradient clipping was applied with a maximum gradient
norm of 1.0. The AdamW optimizer used β1 = 0.9 and β2 = 0.95, ensuring stability during training.

F. Training curves
The training curves for various model sizes, tokenization strategies, and molecular representations are shown in Figures F6
to F9. Across model sizes (32M, 157M, 300M), we observe minimal difference in validation loss between random and
scaffold-based splits for both the atom-wise (Figure F6) and BPE (Figure F7) tokenizers, suggesting comparable performance
under both evaluation strategies. Notably, in Figures F8 and F9, the DeepSMILES representation consistently achieves
the lowest validation loss across both splits. Overall, models evaluated on the random split achieve slightly lower losses
than those assessed on the scaffold split, indicating a modest challenge in generalizing to unseen scaffolds, although the
performance gap remains small.

G. Evaluation Details
G.1. Pretraining Metrics

This section describes the metrics used to assess the performance of our molecule generation model during pretraining,
following the metrics outlined in the MOSES benchmark (Polykovskiy et al., 2020). These metrics are computed based on
the generated set of molecules from the model, denoted as G, and two reference sets: Rvalid (ZINC-Random) and Rtest

(ZINC-Scaffold), which correspond to molecules derived from a random split and a scaffold-based split, respectively. All
reported metrics are calculated using the subset of G consisting of valid molecules identified through a post-generation
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Figure F6. Training and validation loss curves for different model sizes. Solid lines denote performance on randomly split validation sets,
while dashed lines indicate results on scaffold-split validation sets. The x-axis shows the number of molecules seen during training.
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Figure F7. Training and validation loss curves for different model sizes with BPE tokenizer. Solid lines denote performance on randomly
split validation sets, while dashed lines indicate results on scaffold-split validation sets. The x-axis shows the number of molecules seen
during training.

filtering process except for validity.

1. Validity: Validity is determined using RDKit’s molecular structure parser, which verifies atomic valency and the
consistency of bonds within aromatic rings. The metric ensures that the model adheres to relevant chemical constraints
and measures the proportion of valid molecules generated within G. For molecular representations other than SMILES,
we convert the generated set to SMILES and assess whether the corresponding decoder successfully decodes the
molecule string to SMILES format. This step is essential, as representations that adhere to their respective syntactic
rules may still produce chemically invalid molecules.

2. Novelty: This metric quantifies the proportion of molecules in G that do not appear in the training dataset. The
molecules in G are canonicalized and compared against the training dataset, which comprises 1.5 billion molecules.

3. Internal Diversity (IntDiv): Chemical diversity within the generated set, G, is evaluated using this metric. Higher
values indicate better diversity. It is calculated as the average pairwise Tanimoto similarity of Morgan fingerprints for
the molecules in G, with values ranging from 0 to 1.

4. Fréchet ChemNet Distance (FCD): Derived from the activations of the penultimate layer of ChemNet, a deep neural
network trained to predict the biological activities of drugs, this measure captures the chemical and biological properties
of molecules. Activations for canonical SMILES representations of molecules are compared between the generated and
reference sets. Lower values indicate better overlap, and the metric is non-negative.

5. Fragment Similarity (Frag): The distribution of BRICS fragments (Degen et al., 2008) is compared between the
generated and reference sets. Higher values signify a closer match in fragment distributions, ensuring no fragment is
disproportionately overrepresented or underrepresented.
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Figure F8. Training and validation loss curves for different Molecule type with atom-wise tokenizer. Solid lines denote performance
on randomly split validation sets, while dashed lines indicate results on scaffold-split validation sets. The x-axis shows the number of
molecules seen during training.
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Figure F9. Training and validation loss curves for different Molecule type with BPE tokenizer. Solid lines denote performance on
randomly split validation sets, while dashed lines indicate results on scaffold-split validation sets. The x-axis shows the number of
molecules seen during training.

6. Scaffold Similarity (Scaff): Similar to Fragment Similarity, this comparison uses Bemis-Murcko scaffolds instead of
BRICS fragments to evaluate the resemblance between scaffolds in the generated and reference datasets.

7. Similarity to Nearest Neighbor (SNN): The average Tanimoto similarity between each molecule in the generated set
and its nearest counterpart in the reference set is calculated. Lower values suggest the generated molecules are farther
from the reference set’s manifold, while higher values indicate closer alignment.

H. Additional Analysis and Results
H.1. Pretraining Benchmark

To ensure a fair comparison with baseline models (Polykovskiy et al., 2020; Jin et al., 2018; Eckmann et al., 2022; Fang et al.,
2023), we report results for the generation of 30,000 molecules using held-out test sets of 175,000 molecules. All results
are averaged over three independent model initialization seeds. Based on the results from Tables H3 to H5, NovoMolGen
demonstrates state-of-the-art performance in terms of validity, novelty, and FCD scores. It performs comparably to other
baselines on metrics related to fragments and scaffolds. Overall, the SMILES representation, across multiple model sizes
and tokenization schemes, yields the best performance, although the differences among them are not substantial. SAFE
underperforms in all metrics, with the exception of Internal Diversity. Furthermore, Byte Pair Encoding (BPE) emerges as
the preferred tokenization strategy, outperforming atom-wise for SAFE.
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Table H3. Performance metrics for baseline models and NovoMolGen on Validity, Internal Diversity (IntDiv), and Novelty. Results are
reported as mean(std) over three independent model initializations. Blue denotes the best performing model, while Pink represents the
second-best performing model.

REPRESENTATION TOKENIZATION MODEL SIZE Valid (↑) IntDiv (↑) Novelty (↑)

Train – – 1.000(0.0) 1.000(0.0) 0.0(0.0)

GP-MOLFORMER (Ross et al., 2024) ATOM-WISE 46.8M 1.000 0.997 0.390

SMILES

ATOM-WISE
32M 0.999(0.0001) 0.851(0.0001) 0.983(0.0001)

157M 0.999(0.0001) 0.851(0.0001) 0.981(0.0001)
300M 0.999(0.0001) 0.851(0.0001) 0.981(0.0001)

BPE
32M 0.999(0.0000) 0.851(0.0001) 0.982(0.0001)

157M 0.999(0.0000) 0.852(0.0001) 0.980(0.0001)
300M 0.999(0.0001) 0.851(0.0000) 0.979(0.0001)

SELFIES ATOM-WISE 32M 1.000(0.0000) 0.852(0.0002) 0.982(0.0001)

BPE 32M 1.000(0.0000) 0.851(0.0000) 0.984(0.0001)

DEEPSMILES ATOM-WISE 32M 0.999(0.0001) 0.851(0.0001) 0.981(0.0001)
BPE 32M 0.997(0.0001) 0.851(0.0001) 0.982(0.0001)

SAFE ATOM-WISE 32M 0.957(0.0012) 0.853(0.0001) 0.953(0.0001)
BPE 32M 0.997(0.0007) 0.852(0.0001) 0.976(0.0001)

H.2. PMO Benchmark

This appendix provides a comprehensive analysis of the PMO benchmark results for NovoMolGen, assessing its perfor-
mance across varying model sizes, tokenization strategies, and intermediate training checkpoints. In Figure H10, the results
are presented, highlighting the influence of model size and tokenization approaches on the performance of NovoMolGen.
Additionally, Figure H11 tracks the performance progression of NovoMolGen-32M-Atom-wise across intermediate check-
points, demonstrating the evolution of model performance with the optimal hyperparameter configuration and atom-wise
tokenization. The evaluation includes comparisons with the REINVENT and f -RAG baselines, with the mean and standard
deviation of 3 independent runs presented in Table H6.
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Figure H10. PMO benchmark results for NovoMolGen-32M across model sizes and tokenization strategies. The heatmap (left) shows
normalized scores per task, while the bar chart (right) presents total scores (higher is better). Baselines are REINVENT and f -RAG .

I. Property Distributions
The distribution of properties serves as a valuable tool for visually evaluating the generated structures. We present a
kernel density estimation of these distributions and calculate the Wasserstein-1 distance to compare the distributions of the
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Table H4. Performance metrics for baseline models and NovoMolGen on Fréchet ChemNet Distance (FCD) and Similarity to Nearest
Neighbor (SNN). Results are presented for both the random test set (Test) and scaffold-split test set (TestSF), with values reported as
mean(std) over three independent model initializations. Blue denotes the best performing model, while Pink represents the second-best
performing model. The baselines for CharRNN, VAE, and JT-VAE are sourced from Polykovskiy et al. (2020), while the results for
LIMO, MolGen-7b, and GP-Molformer are taken from Ross et al. (2024).

REPRESENTATION TOKENIZATION MODEL SIZE
FCD (↓) SNN (↑)

Test TestSF Test TestSF

Train – – 0.0376(0.0002) 0.2392(0.01) 0.4657(0.0001) 0.4550(0.0001)

CHARRNN (Polykovskiy et al., 2020) ATOM-WISE – 0.0732(0.0247) 0.5204(0.0379) 0.6015(0.0206) 0.5649(0.0142)

VAE (Polykovskiy et al., 2020) ATOM-WISE – 0.0990(0.0125) 0.5670(0.0338) 0.6257(0.0005) 0.5783(0.0008)

JT-VAE (Jin et al., 2018) ATOM-WISE – 0.3954(0.0234) 0.9382(0.0531) 0.5477(0.0076) 0.5194(0.007)
LIMO (Eckmann et al., 2022) ATOM-WISE – 26.78 – 0.2464 –
MOLGEN-7B (Fang et al., 2023) ATOM-WISE 7B 0.0435 – 0.5138 –
GP-MOLFORMER (Ross et al., 2024) ATOM-WISE 46.8M 0.0591 – 0.5045 –

SMILES

ATOM-WISE
32M 0.0394(0.0002) 0.2386(0.0039) 0.4657(0.0002) 0.4551(0.0001)
157M 0.0426(0.0012) 0.2225(0.0006) 0.4656(0.0002) 0.4551(0.0001)
300M 0.0419(0.0004) 0.2446(0.0074) 0.4657(0.0001) 0.4548(0.0001)

BPE
32M 0.0384(0.0008) 0.2402(0.0045) 0.4654(0.0003) 0.4550(0.0001)
157M 0.0384(0.0008) 0.2404(0.0034) 0.4655(0.0003) 0.4547(0.0001)
300M 0.0380(0.0003) 0.2463(0.0125) 0.4657(0.0003) 0.4550(0.0002)

SELFIES ATOM-WISE 32M 0.0799(0.0031) 0.2480(0.0032) 0.4651(0.0003) 0.4549(0.0002)
BPE 32M 0.0386(0.0006) 0.2436(0.0019) 0.4649(0.0004) 0.4541(0.0002)

DEEPSMILES ATOM-WISE 32M 0.0400(0.0006) 0.2504(0.0018) 0.4661(0.0001) 0.4554(0.0002)
BPE 32M 0.0380(0.0004) 0.2390(0.0048) 0.4655(0.0001) 0.4546(0.0002)

SAFE ATOM-WISE 32M 0.9475(0.0042) 1.1979(0.0106) 0.4562(0.0001) 0.4459(0.0003)
BPE 32M 0.3283(0.0045) 0.5506(0.0004) 0.4599(0.0002) 0.4492(0.0003)

generated and reference datasets. We use the following properties:

1. Quantitative Estimation of Drug-likeness (QED): A metric derived from medicinal chemistry principles that
quantifies the drug-likeness of molecules on a scale from 0 to 1.

2. Synthetic Accessibility (SA): A measure of a molecule’s synthesizability, calculated based on the contributions of
molecular fragments. The metric ranges from 10 (difficult to synthesize) to 2 (easily synthesizable).

3. Octanol-Water Partition Coefficient (logP): Represents the ratio of a compound’s concentration in the octanol phase
to its concentration in the aqueous phase in a two-phase octanol/water system, serving as an indicator of solubility.

4. Molecular Weight (MW): Evaluates whether the generated set is biased toward heavier or lighter molecules, computed
as the sum of atomic weights.

5. Topological Polar Surface Area (TPSA): Estimated based on functional group contributions from a database of
substructures, this metric reflects lipid solubility and molecular polarity. Higher TPSA values indicate reduced
absorption and distribution within the body.

6. Bertz Complexity: A graph-theoretical measure that quantifies molecular complexity using structural invariants and
information-theoretic principles.

7. Number of Rings (NumRings) and Rotatable Bonds: Represents the number of independent closed-ring structures
and rotatable bonds within a molecule, which are essential for analyzing molecular topology and are commonly used in
cheminformatics for compound classification and comparison.

The kernel density estimation plots in Figure I12 indicate that NovoMolGen successfully generates molecules whose
property distributions align closely with those of both the training dataset and the scaffold-split dataset. Additionally, a
lower Wasserstein-1 distance is observed across all properties, further demonstrating the model’s ability to replicate the
reference distributions. The training dataset contains a higher proportion of molecules with favorable drug-like properties,
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Table H5. Performance metrics for baseline models and NovoMolGen on Fragment similarity (Frag) and Scaffold similarity (Scaff).
Results are presented for both the random test set (Test) and scaffold-split test set (TestSF), with values reported as mean(std) over three
independent model initializations. Blue denotes the best performing model, while Pink represents the second-best performing model.
The baselines for CharRNN, VAE, and JT-VAE are sourced from Polykovskiy et al. (2020), while the results for LIMO, MolGen-7b, and
GP-Molformer are taken from Ross et al. (2024).

REPRESENTATION TOKENIZATION MODEL SIZE
Frag (↑) Scaf (↑)

Test TestSF Test TestSF

Train – – 0.9999(0.00006) 0.9974(0.0001) 0.5144(0.005) 0.0(0.0)

CHARRNN (Polykovskiy et al., 2020) ATOM-WISE – 0.9998(0.0002) 0.9983(0.0003) 0.9242(0.0058) 0.1101(0.0081)

VAE (Polykovskiy et al., 2020) ATOM-WISE – 0.9994(0.0001) 0.9984(0.0003) 0.9386(0.0021) 0.0588(0.0095)
JT-VAE (Jin et al., 2018) ATOM-WISE – 0.9965(0.0003) 0.9947(0.0002) 0.8964(0.0039) 0.1009(0.0105)

LIMO (Eckmann et al., 2022) ATOM-WISE – 0.6989 – 0.0079 –
MOLGEN-7B (Fang et al., 2023) ATOM-WISE 7B 0.9999 – 0.6538 –
GP-MOLFORMER (Ross et al., 2024) ATOM-WISE 46.8M 0.9998 – 0.7383 –

SMILES

ATOM-WISE
32M 0.9999(0.0000) 0.9977(0.0001) 0.5309(0.0022) 0.0091(0.0023)
157M 0.9999(0.0000) 0.9980(0.0001) 0.5200(0.0045) 0.0095(0.0036)
300M 0.9999(0.0000) 0.9973(0.0002) 0.5219(0.0136) 0.0065(0.0009)

BPE
32M 0.9999(0.0000) 0.9974(0.0001) 0.5182(0.0126) 0.0098(0.0013)
157M 0.9999(0.0000) 0.9974(0.0001) 0.5193(0.0099) 0.0114(0.0036)
300M 0.9999(0.0000) 0.9974(0.0001) 0.5173(0.0094) 0.0131(0.0023)

SELFIES ATOM-WISE 32M 0.9996(0.0000) 0.9977(0.0000) 0.4765(0.0066) 0.0071(0.0005)
BPE 32M 0.9999(0.0000) 0.9973(0.0002) 0.5105(0.0133) 0.0061(0.0028)

DEEPSMILES ATOM-WISE 32M 0.9999(0.0000) 0.9974(0.0000) 0.5218(0.0080) 0.0098(0.0044)
BPE 32M 0.9999(0.0000) 0.9973(0.0001) 0.5165(0.0008) 0.0070(0.0032)

SAFE ATOM-WISE 32M 0.9955(0.0001) 0.9936(0.0002) 0.4521(0.0137) 0.0094(0.0019)
BPE 32M 0.9972(0.0000) 0.9946(0.0002) 0.4913(0.0014) 0.0059(0.0028)

including higher drug-likeness scores (QED > 0.6), greater synthetic accessibility (SA < 4), optimal solubility (1 < logP <
4), and an ideal molecular weight range (300 < MW < 500). By closely matching this distribution, NovoMolGen generates
molecules with an increased likelihood of exhibiting drug-like characteristics. Furthermore, the model effectively captures
molecular topology, as reflected in the distributions of NumRings, Rotatable Bonds, and Bertz Complexity. These results
highlight the potential of NovoMolGen in generating chemically relevant and synthetically accessible molecules suitable for
drug discovery applications.

J. Hyperparameter Tuning for Fine-tuning Method
J.1. Hyperparameter Search Setup for PMO Benchmark

To fine-tune our models for goal-directed molecular design tasks, we performed an exhaustive hyperparameter search
using the REINVENT-inspired framework. Our experiments focused on two benchmark tasks, Perindopril MPO and
Zaleplon MPO, with the overall performance aggregated as the sum of scores across these tasks. Each hyperparameter
configuration was evaluated over three different random seeds, and the final score was averaged across seeds to mitigate
variability.

The hyperparameter space explored includes the following:

• Penalty Coefficient (λ): [10, 100, 500]

• Batch Size: [64, 128]

• Sigma (σ): [1000, 1500, 2000, 2500]

• Learning Rate (lr): [1× 10−4, 5× 10−4]

Initially, we observed that the penalty coefficient (λ) used in the REINVENT implementation (5000) was not optimal
for our models due to differences in the likelihood scale of generated molecules. Adjusting this hyperparameter was
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Figure H11. PMO benchmark results for intermediate checkpoints for NovoMolGen-32M (best hyperparameter configuration, atom-wise
tokenization).

Table H6. PMO top-10 results. The results are the mean and standard deviation of 3 independent runs. Values shown are mean ± std.
Blue denotes the best performing model, while Pink represents the second-best performing model.
Oracle f -RAG REINVENT NovoMolGen-32M (AtomWise) NovoMolGen-157M (AtomWise) NovoMolGen-300M (AtomWise)

albuterol similarity 0.977 ± 0.002 0.882± 0.006 0.958± 0.003 0.968 ± 0.002 0.954± 0.002
amlodipine mpo 0.749 ± 0.019 0.635± 0.035 0.732 ± 0.024 0.730± 0.037 0.730± 0.007
celecoxib rediscovery 0.778 ± 0.007 0.713± 0.067 0.732± 0.009 0.777± 0.132 0.904 ± 0.022
drd2 0.936± 0.011 0.666± 0.044 0.973 ± 0.001 0.983 ± 0.002 0.972± 0.001
deco hop 0.992 ± 0.000 0.945 ± 0.007 0.902± 0.007 0.853± 0.115 0.785± 0.130
fexofenadine mpo 0.856 ± 0.016 0.784± 0.006 0.802± 0.008 0.790± 0.028 0.803 ± 0.018
gsk3b 0.969 ± 0.003 0.865± 0.043 0.955 ± 0.006 0.949± 0.005 0.941± 0.012
isomers c7h8n2o2 0.955 ± 0.008 0.852± 0.036 0.961± 0.001 0.965 ± 0.002 0.949± 0.005
isomers c9h10n2o2pf2cl 0.850± 0.005 0.642± 0.054 0.898± 0.032 0.926 ± 0.024 0.915 ± 0.022
jnk3 0.904 ± 0.004 0.783± 0.023 0.787± 0.014 0.809 ± 0.066 0.808± 0.045
median1 0.340± 0.007 0.356± 0.009 0.380 ± 0.003 0.354± 0.027 0.379 ± 0.002
median2 0.323 ± 0.005 0.276± 0.008 0.300± 0.013 0.299± 0.001 0.304 ± 0.019
mestranol similarity 0.671± 0.021 0.618± 0.048 0.712± 0.047 0.739 ± 0.068 0.796 ± 0.046
osimertinib mpo 0.866± 0.009 0.837± 0.009 0.874 ± 0.013 0.858± 0.001 0.871 ± 0.011
perindopril mpo 0.681 ± 0.017 0.537± 0.016 0.637± 0.050 0.649± 0.037 0.668 ± 0.011
qed 0.939± 0.001 0.941± 0.000 0.945± 0.000 0.946 ± 0.000 0.945 ± 0.000
ranolazine mpo 0.820 ± 0.016 0.760± 0.009 0.784± 0.007 0.797 ± 0.023 0.779± 0.024
scaffold hop 0.576± 0.014 0.560± 0.019 0.783 ± 0.123 0.735± 0.140 0.791 ± 0.160
sitagliptin mpo 0.601± 0.011 0.021± 0.009 0.677 ± 0.018 0.708 ± 0.038 0.635± 0.043
thiothixene rediscovery 0.584± 0.009 0.534± 0.013 0.635 ± 0.018 0.624 ± 0.050 0.584± 0.062
troglitazone rediscovery 0.448± 0.017 0.441± 0.032 0.470± 0.042 0.516 ± 0.010 0.524 ± 0.058
zaleplon mpo 0.486± 0.004 0.358± 0.062 0.579 ± 0.023 0.559± 0.013 0.599 ± 0.000

Sum 16.30 14.01 16.48 16.54 16.64

critical to stabilize training and avoid degenerate solutions. In total, 48 unique configurations were tested, resulting in
288 experimental runs (3 seeds per configuration, 2 tasks) for each model. The Aggregated Score, defined as the sum
of the averaged scores for Perindopril MPO and Zaleplon MPO, was used as the primary metric for selecting the optimal
hyperparameters. We excluded our models from the analysis of the Valsartan SMARTS task, as no matching patterns were
identified in the training dataset, and the model failed to generate any viable molecules conforming to the pattern.

J.2. Results and Analysis

For the SMILES (atom-wise) model, we visualized the impact of hyperparameters on the aggregated score using a Parallel
Coordinates Plot (see Figure J13). In this plot, the most influential hyperparameters are placed to the right, emphasizing
their relative importance. We observe that, a higher penalty coefficient (λ) significantly decreases performance, indicating
that smaller values are better suited for our model. Also, a higher learning rate consistently improves performance for the
SAFE (atom-wise) model.
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Figure I12. Distributions of molecular properties for reference sets (ZINC-Random and ZINC-Scaffold, 175,000 molecules each) and a
generated set from NovoMolGen-SMILES-Atom-wise-32M (100,000 molecules). The properties include QED, SA, logP, MW, TPSA,
Bertz Complexity, number of rotatable bonds, and number of rings.
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Figure J13. Parallel Coordinates Plot for the SMILES (AtomWise) model (32M), showing the importance and effects of hyperparameters
on the Aggregated Score. The most influential hyperparameters are positioned on the right side of the plot.
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Figure J14. Parallel Coordinates Plot for the SMILES (BPE) model (32M).
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Figure J15. Parallel Coordinates Plot for the SMILES (AtomWise) model (157M).
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Figure J16. Parallel Coordinates Plot for the SMILES (BPE) model (157M).
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Figure J17. Parallel Coordinates Plot for the SMILES (AtomWise) model (300M).
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Figure J18. Parallel Coordinates Plot for the SMILES (BPE) model (300M).
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