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Abstract

Predicting protein function from amino acid sequence remains a central chal-1

lenge in data-scarce (low-N ) regimes, limiting machine learning–guided protein2

design when only small amounts of assay-labeled sequence-function data are3

available. Protein language models (pLMs) have advanced the field by providing4

evolutionary-informed embeddings and sparse autoencoders (SAEs) have enabled5

decomposition of these embeddings into interpretable latent variables that capture6

structural and functional features. However, the effectiveness of SAEs for low-N7

function prediction and protein design has not been systematically studied. Herein,8

we evaluate SAEs trained on fine-tuned ESM2 embeddings across diverse fitness9

extrapolation and protein engineering tasks. We show that SAEs, with as few10

as 24 sequences, consistently outperform or compete with their ESM2 baselines11

in fitness prediction, indicating that their sparse latent space encodes compact12

and biologically meaningful representations that generalize more effectively from13

limited data. Moreover, steering predictive latents exploits biological motifs in14

pLM representations, yielding top-fitness variants in 83% of cases compared to15

designing with ESM2 alone.16

1 Introduction17

Machine learning (ML)–guided protein engineering seeks to predict and optimize protein function18

by leveraging evolutionary information and assay-labeled sequence data to model the underlying19

sequence–function landscape [1–3]. In practice, however, ML models are often constrained by the20

scarcity of experimental data. Functional assays are costly and time-consuming, so only a small21

number of variants (low-N ) can typically be characterized, creating a fundamental bottleneck for22

ML-guided design [4–6].23

Protein language models (pLMs), trained on large evolutionary sequence datasets, provide em-24

beddings that achieve state-of-the-art performance in zero-shot function prediction [7–9]. These25

embeddings are widely believed to capture amino acid interactions underlying protein function [10–26

12], yet they remain difficult to interrogate. More recently, sparse autoencoders (SAEs) have emerged27

as a powerful interpretability framework, factorizing pLM embeddings into sparse, biologically mean-28

ingful latent variables. In high-N regimes (e.g., N > 800 labeled sequences), these latents have been29

shown to align with structural and functional motifs [13–16] and can be steered to design sequences30

with targeted functional properties [17–19]. Despite these advances, the function prediction and31

steering performance of SAEs in realistic data-scarce (low-N ) settings has not been systematically32

evaluated. We hypothesize that the sparse latent space of SAEs, originally introduced as a strategy to33
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Figure 1: Overview of downstream low-N tasks for SAEs. a, We train SAEs on the layer
embeddings of ESM2. By projecting the model embedding x to the latent representation z, and
reconstructing the model embedding as x̂, the activations in z correspond to specific biological motifs.
b, In low-N fitness extrapolation, a linear probe is trained on top of the SAE’s latent space to predict
protein fitness from N many training sequences. c, Using the learned linear probe weights, we steer
predictive latents to design highly-functional variants.

enhance interpretability, also encodes compressed and regularized representations that enable accu-34

rate fitness prediction and effective protein design from limited data. To test this, we reposition SAEs35

from proof-of-concept interpretability tools to actionable predictors and design engines, evaluating36

their performance on downstream protein engineering tasks under low-N conditions. Specifically,37

we assess their utility across diverse fitness extrapolation challenges that reflect real-world design38

constraints, and we further examine their ability to design high-functioning variants through latent39

steering. Our main contributions are as follows:40

• We train SAEs on fine-tuned ESM2 embeddings across five proteins with diverse functions.41

• We show that SAEs, with as few as 24 sequences, outperform their ESM2 baselines in 58%42

of fitness extrapolation tasks, while maintaining comparable performance in the remainder.43

• We demonstrate that steering SAEs along their most predictive latents produces a diverse pool44

of highly functional variants, including the top fitness variants in 83% of cases, compared to45

designing with ESM2 alone.46

• We analyze the best-performing steered variants in green fluorescent protein (GFP) and47

the IgG-binding domain of protein G (GB1), uncovering biologically meaningful motifs48

that SAEs exploit for steering. All codes and data are available on our GitHub repository49

https://github.com/amirgroup-codes/LowNSAE.50

2 Sparse Autoencoders (SAE)51

SAEs are autoencoders designed to learn meaningful representations of model embeddings in their52

latent space (Fig. 1a). We use SAEs with TopK activation [20] to enforce sparsity in the latent53

space. Given the model embedding x ∈ Rdmodel×L, where L is the sequence length and dmodel is the54

embedding dimension, the encoder maps x to the SAE latent representation z ∈ RdSAE×L via:55

z = TopK(Wenc(x− bpre)), (1)

where Wenc ∈ RdSAE×dmodel are the encoder weights and bpre ∈ Rdmodel×L is a bias term. The TopK56

function is applied column-wise to the resulting matrix, keeping only the k largest activations for57

each of the L sequence positions and setting all other values to zero. The decoder then reconstructs58

the input x from z as:59

x̂ = Wdecz+ bpre, (2)

where Wdec ∈ Rdmodel×dSAE are the decoder weights. As illustrated in Fig. 1a, where L = 1 for60

simplicity, the activations in z have been shown to correspond to biological motifs [13, 14].61

During training, SAEs minimize both mean squared error and an auxiliary loss. The mean squared62

error between the original embedding x and its reconstruction x̂ is defined as LMSE = ∥x − x̂∥22.63
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To reduce the number of dead latents, defined as latents that never activate [20], an auxiliary loss64

is included. Given the original reconstruction loss e = x − x̂, the auxiliary loss is defined as65

Laux = ∥e − ê∥22, where ê is found by multiplying the decoder matrix by the top-kaux latents in z,66

where kaux is a hyperparameter. The total SAE training objective, LSAE, is a weighted sum of these67

two losses:68

LSAE = LMSE + αLaux,

where α is also a hyperparameter. This joint objective enables SAEs to not only reconstruct the69

original model embeddings faithfully, but also maximize the number of biologically interpretable70

latents.71

3 SAEs for Low-N Fitness Extrapolation72

In this section, we first detail the datasets used and how we trained our SAEs. Then, we rigorously73

evaluate the ability of SAEs to generalize to unseen variants under various low-N regimes (Fig. 1b).74

To capture the challenges faced in real-world design settings, we define five distinct fitness extrap-75

olation tasks that stress different aspects of the sequence–function landscape: random, position,76

mutation, regime, and score extrapolation.77

3.1 Datasets and SAE Training Details78

Datasets. We evaluated our SAEs on six deep mutational scanning (DMS) assays from Prote-79

inGym [21], spanning five distinct proteins (Table 1). These proteins were selected to ensure robust80

evaluation across a variety of functions. Additionally, these DMS assays also contain multipoint81

mutations, which are crucial for our fitness extrapolation tasks (see Section 3.2).82

Table 1: Summary of DMS assays used.

DMS Description Function Tested Variants MSA Sequences
GFP_AEQVI_Sarkisyan [22] Green fluorescent protein Fluorescence 51,714 396
SPG1_STRSG_Olson [23] IgG-binding domain of protein G Binding 536,962 44
SPG1_STRSG_Wu [24] IgG-binding domain of protein G Binding 149,360 3,109
DLG4_HUMAN_Faure [25] Third PDZ domain of PSD95 Yeast growth 6,976 25,338
GRB2_HUMAN_Faure [25] C-terminal SH3 domain of GRB2 Yeast growth 63,366 33,228
F7YBW8_MESOW_Ding [26] Antitoxin ParD3 Growth enrichment 7,922 38,613

Training. For each DMS assay, we trained a unique SAE on a fine-tuned ESM2-650M model [7].83

Each model was fine-tuned on multiple sequence alignment (MSA) sequences from Table 1 using84

LoRA adapters, where the MSA sequences were obtained from ProteinGym. Embeddings x to85

train the SAE were then obtained by passing the MSA sequences through the fine-tuned model.86

Following [14], we chose to extract embeddings from layer 24, and set dSAE = 4096, k = 128,87

α = 1/32, and kaux = 256. For more details on training, see Appendices A.1 and A.2.88

3.2 Experimental Setup89

Low-N Regimes. To evaluate the performance of our SAEs and ESM2 in the low-N regime, we first90

created four distinct N sizes to train a supervised model on top of the SAE latent space and ESM291

embeddings, respectively, to predict fitness: N ∈ [8, 24, 96, 384]. These sizes correspond to standard92

plate-well sizes used in protein engineering experiments [4].93

Fitness Extrapolation Tasks. For each of our DMS assays, we designed five different fitness94

extrapolation tasks based on ref. [27] to test the ability of our SAE and ESM2 to generalize to unseen95

variants (see Fig. 2):96

1. Random extrapolation: We randomly sampled N sequences from the DMS for training97

and validation, with 10% of the DMS held out as a test set (Fig. 2b).98

2. Mutation extrapolation: We randomly designated 80% of all possible mutations as training99

mutations (Fig. 2c). We sampled N sequences for training that only had training mutations.100

The other 20% of mutations were held out as a test set.101
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Figure 2: Comparative performance of low-N fitness extrapolation in SAEs versus ESM2. a,
Average correlations of SAE, ESM layer, and ESM logits across all low-N regimes on random
extrapolation. Fitness extrapolation correlations over each DMS assay using N = 24 sequences
across b, random, c, mutation, d, position, e, regime, and f, score extrapolations. Error bars represent
the standard deviation across nine independent runs with different random seeds.

3. Position extrapolation: We randomly designated 80% of amino acid positions as training102

positions (Fig. 2d). We then sampled N sequences for training that had mutations exclusively103

at the training positions. The other 20% of positions were held out as a test set.104

4. Regime extrapolation: For DMS assays containing only single and double mutations,105

we trained on N single mutations and tested on all double mutations. For DMS assays106

with more than two mutations, we trained on N sequences drawn from single and double107

mutations, and tested on all sequences with more than two mutations (Fig. 2e).108

5. Score extrapolation: We trained on N sequences with a fitness score lower than the109

wildtype and tested on all sequences with a fitness score higher than the wildtype (Fig. 2f).110

Linear Probes. For each of these extrapolations, we trained a linear probe with Ridge regression on111

top of the SAE latent space. To benchmark against the performance of ESM2 without help from an112

SAE, we also trained linear probes on the ESM2 layer 24 embedding and ESM2 logits. For brevity,113

we refer to these methods as 1) SAE, 2) ESM layer, and 3) ESM logits. Following [14], we mean-pool114

the input to the linear probe over the respective embedding dimension. Formally, in SAEs, we denote115

z̄ ∈ RdSAE to be the meaned activations of the latent space and w ∈ RdSAE to be weights of the linear116

probe. The linear probe then computes the fitness score y via: y = wT z̄ (Fig. 1b). For all tasks, we117

set aside a portion of the training sequences to be used as validation. Further details are provided in118

Appendix A.3.119

To ensure the robustness of our results, we ran a total of nine trials for each extrapolation. For random,120

position, and mutation extrapolations, we used three different random seeds to create the test set.121

For each of these test sets, we then randomly sampled N training sequences three times. For the122
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regime and score extrapolations, where the test set is deterministic, we randomly sampled N training123

sequences nine times.124

3.3 SAEs Achieve Improved Generalization to Unseen Variants Compared to ESM2125

Fig. 2a shows the average Spearman correlation of SAE, ESM layer, and ESM logits under random126

extrapolation across all low-N regimes, while Table 2 breaks down results by DMS assay. SAEs127

achieve higher correlations than their ESM2 counterparts in 67% of random extrapolation experiments,128

and across all low-N regimes and fitness extrapolation tasks (Appendix B), they outperform in 58%129

of cases. These results suggest that SAE latents capture more biologically meaningful patterns and130

enable more reliable generalization to unseen variants. Among the different extrapolation settings,131

position, regime, and score extrapolation emerge as the most challenging, since they require the model132

to capture structural context and nonlinear interactions underlying protein function. Notably, SAEs133

outperform their ESM2 counterparts in 69% of position and regime extrapolation tasks, suggesting134

that their sparse latent space encodes fundamental biological constraints. We additionally notice that135

SAEs are not able to generalize to unseen variants when ESM2 does a poor job, such as in score136

extrapolation. This is not surprising, as intuitively, SAEs are trained to reorganize the information137

encoded by ESM2 into a more compact and disentangled representation. Thus, when the underlying138

pLM provides a limited predictive signal, the bottleneck in performance lies in the pLM rather than139

in the SAE.140

Table 2: Average Spearman ρ across all low-N regimes under random extrapolation across each
DMS assay. A full summary of results for other fitness extrapolation tasks is located in Appendix B.

Method DMS N= 8 ↑ N= 24 ↑ N= 96 ↑ N= 384 ↑

SAE

GFP_AEQVI_Sarkisyan 0.26 ± 0.15 0.38 ± 0.12 0.56 ± 0.05 0.67 ± 0.01
SPG1_STRSG_Olson 0.16 ± 0.17 0.33 ± 0.09 0.67 ± 0.03 0.82 ± 0.01

SPG1_STRSG_Wu 0.12 ± 0.16 0.15 ± 0.14 0.34 ± 0.04 0.35 ± 0.03
DLG4_HUMAN_Faure 0.45 ± 0.16 0.60 ± 0.05 0.67 ± 0.03 0.76 ± 0.02
GRB2_HUMAN_Faure 0.31 ± 0.15 0.53 ± 0.05 0.63 ± 0.02 0.73 ± 0.01

F7YBW8_MESOW_Ding 0.42 ± 0.19 0.51 ± 0.10 0.64 ± 0.02 0.68 ± 0.02

ESM layer

GFP_AEQVI_Sarkisyan 0.21 ± 0.13 0.26 ± 0.10 0.46 ± 0.07 0.61 ± 0.01
SPG1_STRSG_Olson 0.17 ± 0.22 0.28 ± 0.10 0.64 ± 0.02 0.81 ± 0.01

SPG1_STRSG_Wu 0.13 ± 0.15 0.17 ± 0.14 0.31 ± 0.05 0.36 ± 0.07
DLG4_HUMAN_Faure 0.40 ± 0.16 0.58 ± 0.05 0.66 ± 0.05 0.76 ± 0.02
GRB2_HUMAN_Faure 0.28 ± 0.14 0.52 ± 0.05 0.60 ± 0.03 0.73 ± 0.02

F7YBW8_MESOW_Ding 0.40 ± 0.15 0.51 ± 0.11 0.65 ± 0.02 0.70 ± 0.01

ESM logits

GFP_AEQVI_Sarkisyan 0.31 ± 0.12 0.43 ± 0.03 0.49 ± 0.05 0.57 ± 0.03
SPG1_STRSG_Olson 0.12 ± 0.13 0.23 ± 0.13 0.42 ± 0.02 0.55 ± 0.01

SPG1_STRSG_Wu 0.01 ± 0.13 0.14 ± 0.11 0.21 ± 0.08 0.30 ± 0.04
DLG4_HUMAN_Faure 0.17 ± 0.17 0.28 ± 0.10 0.47 ± 0.05 0.60 ± 0.04
GRB2_HUMAN_Faure 0.14 ± 0.10 0.29 ± 0.10 0.41 ± 0.07 0.59 ± 0.02

F7YBW8_MESOW_Ding 0.38 ± 0.25 0.49 ± 0.13 0.65 ± 0.03 0.67 ± 0.02

Fig. 2b-f further illustrates the performance of SAE, ESM layer, and ESM logits across all extrapo-141

lation tasks with N = 24 sequences. We designated this as the smallest low-N regime for reliable142

extrapolation, with the SAE achieving an average correlation of 0.42. Across nearly all tasks, SAEs143

either match or outperform both ESM layers and ESM logits, highlighting their robustness and144

effectiveness in diverse low-N extrapolation settings. For additional results, see Appendix B.145

4 SAEs for Low-N Protein Engineering146

After demonstrating that SAEs are able to generalize to unseen variants, we then looked to assess their147

performance in generating high-functioning proteins (Fig. 1c). To explicitly optimize for function,148

we implemented a modified version of feature steering [28], which leverages the predictive scores149

from the linear probes. For all experiments, we used the linear probes trained on N = 24 sequences.150
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Table 3: Protein engineering results using N = 24 training sequences. All variants were constrained
to a maximum of five mutations away from the wild type.

Method DMS Mean fitness ↑ Max fitness ↑ Top 10% fitness ↑ Top 20% fitness ↑
SAE GFP_AEQVI_Sarkisyan 3.49 ± 0.44 3.87 3.75 ± 0.08 3.71 ± 0.07

SPG1_STRSG_Olson 2.75 ± 1.29 4.53 4.47 ± 0.04 4.29 ± 0.24
SPG1_STRSG_Wu 0.67 ± 0.94 3.89 2.70 ± 0.79 2.18 ± 0.76

DLG4_HUMAN_Faure 0.39 ± 0.22 0.68 0.66 ± 0.02 0.62 ± 0.05
GRB2_HUMAN_Faure -0.10 ± 0.48 0.67 0.59 ± 0.07 0.49 ± 0.12

F7YBW8_MESOW_Ding 0.81 ± 0.33 1.16 1.15 ± 0.01 1.13 ± 0.03

ESM layer GFP_AEQVI_Sarkisyan 3.29 ± 0.66 3.72 3.71 ± 0.01 3.70 ± 0.01
SPG1_STRSG_Olson 0.29 ± 1.95 3.19 2.74 ± 0.35 2.44 ± 0.39

SPG1_STRSG_Wu 0.08 ± 0.30 1.69 0.81 ± 0.63 0.41 ± 0.60
DLG4_HUMAN_Faure -0.10 ± 0.41 0.63 0.45 ± 0.14 0.36 ± 0.13
GRB2_HUMAN_Faure -0.40 ± 0.39 0.30 0.24 ± 0.05 0.17 ± 0.10

F7YBW8_MESOW_Ding 1.06 ± 0.10 1.16 1.15 ± 0.02 1.12 ± 0.03

ESM logits GFP_AEQVI_Sarkisyan 3.13 ± 0.86 3.76 3.73 ± 0.02 3.72 ± 0.02
SPG1_STRSG_Olson -1.11 ± 2.21 2.27 2.05 ± 0.42 1.56 ± 0.60

SPG1_STRSG_Wu 0.15 ± 0.37 1.69 1.13 ± 0.33 0.76 ± 0.50
DLG4_HUMAN_Faure -0.15 ± 0.38 0.53 0.36 ± 0.14 0.27 ± 0.13
GRB2_HUMAN_Faure -0.26 ± 0.44 0.58 0.44 ± 0.09 0.32 ± 0.14

F7YBW8_MESOW_Ding 1.05 ± 0.06 1.12 1.11 ± 0.01 1.11 ± 0.01

Random GFP_AEQVI_Sarkisyan 3.36 ± 0.70 3.75 3.72 ± 0.02 3.70 ± 0.02
SPG1_STRSG_Olson -1.25 ± 2.63 3.05 2.40 ± 0.49 1.99 ± 0.55

SPG1_STRSG_Wu 0.33 ± 0.76 3.61 2.27 ± 0.82 1.36 ± 1.11
DLG4_HUMAN_Faure -0.34 ± 0.43 0.35 0.32 ± 0.04 0.24 ± 0.10
GRB2_HUMAN_Faure -0.96 ± 0.38 0.16 -0.13 ± 0.18 -0.30 ± 0.22

F7YBW8_MESOW_Ding 0.66 ± 0.37 1.16 1.11 ± 0.03 1.06 ± 0.06

4.1 Experimental Setup151

For feature steering, we first identified the most predictive latent features by examining the largest-152

magnitude weights of the linear probe. For each of these high-impact latents, we increased its153

activation by a hyperparameter multiplier. The updated latent representation was then passed through154

the SAE decoder and fed into ESM2 to design a new sequence. We optimized the multiplier by155

selecting the value that yielded the highest predicted fitness score from the linear probe. Similar to156

fitness extrapolation, to benchmark against the performance of ESM2, we also designed sequences157

using the linear probes trained on the ESM layer and ESM logits via simulated annealing, following158

the procedure detailed in [27]. Additionally, we included a random baseline by generating sequences159

with a random number of mutations and amino acid substitutions. Further details on our experimental160

setup are provided in Appendix A.4.161

We used a multi-layer perceptron (MLP) trained on the DMS assays to evaluate the fitness of our162

designed variants (see Appendix A.5). To constrain our search space and ensure the MLP’s predictions163

are a good proxy for experimental fitness, we limited all designed variants to a maximum of five164

mutations away from the wildtype. A notable exception to this setup is the SPG1_STRSG_Wu165

DMS: this assay provides ground-truth fitness values for all possible combinatorial variants over four166

positions. Therefore, we directly used the fitness values from SPG1_STRSG_Wu to evaluate our167

designed variants and limited our maximum number of mutations to four. A total of 50 variants were168

designed per DMS assay.169

4.2 SAEs Design High-functional Variants and Capture Biological Motifs170

Table 3 shows the performance of all methods in generating highly-functional variants. Across171

all metrics and DMS assays, SAEs outperform their ESM2 counterparts in 88% of cases. More172

specifically, our SAE steering approach designed the top fitness variants in five out of the six DMS173

assays. Additionally, SAE steering designed the highest top 10% fitness variants across all DMS174

assays and the highest top 20% variants in five out of six DMS assays. This suggests that SAE175

steering is not only capable of discovering the single top-performing variant, but also is capable of176

generating a diverse pool of highly functional variants.177
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Figure 3: Analysis of the top-performing steered variants. a, Our analysis of the top-performing
GFP variants revealed that steering activated latent features corresponding to key biological motifs,
including active site amino acids, the C-terminus, and hydrophobic and charged amino acids. b, GB1
variants activated latent features associated with allosteric, binding, and epistatic sites.

To better understand why feature steering designs high-functional variants, we performed a qualitative178

analysis on the top-performing variants for the green fluorescent protein (GFP) and the IgG-binding179

domain of protein G (GB1). We identified the ten latent dimensions most strongly associated with180

changes in fitness. We also analyzed any shifts in their activation patterns between the wildtype181

and the designed variant. Finally, we projected these activated residues onto the variant’s structure182

(generated via AlphaFold3 [29]) to identify amino acid concentrations and infer their biological183

relevance. Further details are provided in Appendix A.6.184

Our analysis revealed that SAEs preferentially activated latent features associated with known185

biological motifs. For instance, in GFP, this includes latents activating on active site amino acids,186

which are crucial for fluorescence [30], and the C-terminus, a disordered region also known to affect187

fluorescence (Fig. 3a) [31]. We also found that steering favored latent features corresponding to188

hydrophobic and charged amino acids, which are essential for maintaining the protein’s structural189

stability [32]. Similarly, our analysis of the top-performing variants in GB1 highlighted key functional190

regions (Fig. 3b). The top latents were most active at sites that are allosteric [25], which modulate191

protein function, or binding, which directly interact with the protein IgG [23]. Furthermore, latents192

activated on epistatic sites [23], demonstrating the SAE’s ability to design variants in the presence of193

complex, non-additive mutations. These findings collectively demonstrate that SAEs, even without194

explicit training, successfully learn and leverage fundamental biological principles to design new195

variants.196

5 Discussion197

In this paper, we demonstrated that sparse autoencoders (SAEs) can serve as a powerful tool for198

low-N tasks. We demonstrated that SAEs consistently outperform their ESM2 counterparts in a199

variety of low-N fitness extrapolation tasks and are highly effective for generating novel, high-fitness200

protein variants. Our work expands the biologist’s toolkit for resource-constrained applications and201

takes the first step toward extracting actionable biological knowledge from pLMs.202

Sparsity in SAEs. Although SAEs introduce a larger dimensionality to the linear probes, they203

consistently outperform their ESM2 counterparts in low-N fitness extrapolation and protein en-204

gineering tasks. At first glance, this appears counterintuitive: in low-N regimes, simpler models205
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Figure 4: Sparsity in SAEs underlies improved low-N performance. Histogram of linear probe
weight magnitudes for the SAE latent space, ESM layer embeddings, and ESM logits. Given the top
5% of weights by magnitude, SAE weights explain 37± 9% of the variance, compared to 27± 4%
in ESM layer weights and 25 ± 12% in ESM logits weights. See Appendix A.7 for details on the
visualization procedure.

with fewer parameters are typically less prone to overfitting. We attribute the superior performance206

of SAEs to their ability to compress biologically relevant information into a sparse latent space207

(Fig. 4). To quantify this effect, we measure the variance explained by the magnitude of the top 5%208

of probe weights. Under this definition, SAE weights explain 38± 9% of the variance, whereas ESM209

layer and ESM logits weights explain 28± 3% and 31± 17%, respectively. These results suggest210

that SAEs compress information from ESM2 into a more compact and disentangled representation,211

where the biological relevant signal is concentrated in a select few latents. In the low-N regime,212

this compression is particularly advantageous: sparser models are less prone to overfitting and thus213

generalize more effectively from limited experimental data. This also allows each high-impact latent214

to disentangle which amino acids contribute to fitness, enhancing the effectiveness of our steering215

approach.216

Low-N Performance Variability. Across fitness extrapolation tasks, we observe relatively high217

standard deviation in all methods, This is not surprising, given that the linear probes are trained in218

the low-N regime, making the performance sensitive to which sequences are sampled. Despite this219

variability, we emphasize that SAEs outperform their ESM2 counterparts in 58% of cases on average,220

indicating a consistent advantage. Moreover, SAEs tend to design more high-functioning variants,221

suggesting that their sparse latent space captures a more informative view of the functional landscape.222

Limitations and Future Work. Our work analyzes the performance of SAEs across a wide range of223

proteins and molecular functions. However, our evaluation could be extended to other proteins with224

clinically relevant functions such as antibiotic resistance and viral replication, which may open new225

avenues for therapeutic design. We also observed that SAE performance is strongly influenced by the226

number of MSA sequences available for training. For example, proteins such as DLG4, GRB2, and227

F7YBW8, which consistently achieved high fitness extrapolation correlations, each had more than228

20,000 MSA sequences. Future work should explore strategies for robust SAE training when MSAs229

are shallow or unavailable.230

To validate the designed variants, our protein engineering experiments rely on trained fitness models231

in silico. While this is a good proxy for fitness, further validation through wet lab experiments is nec-232

essary to verify the function of designed variants. Nevertheless, our results on the SPG1_STRSG_Wu233

DMS assay, for which ground-truth fitness values are available for all combinatorial variants, demon-234

strate that our SAE steering approach still produces the highest-fitness variants compared to other235

methods. Additionally, we clarify that successful protein design requires not only highly-functional,236

but also highly-stable variants. Certain mutations that promote function may also destabilize the237

protein [33, 34], reinforcing the need for wet lab experiments to test designs. A promising future238

direction is to couple SAE steering with physics-based tools such as Rosetta [35] to jointly optimize239

for both function and stability.240

Lastly, in our protein engineering experiments, we constrained variants to be a maximum of five241

mutations away from the wildtype. Beyond this radius, we found it difficult to design highly-242

functional sequences using just one predictive latent. Additionally, because predictive information243
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is concentrated in a small number of latents, we restricted the amount of variants designed to 50244

per DMS assay. Future work towards expanding the design space could involve steering multiple245

latents at once, which could enable both further mutational exploration and more diverse pools of246

functional variants. However, we note that in silico evaluation tools become less reliable the further247

away variants from the wildtype are, reinforcing the need for wet lab validation.248
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A Additional Experimental Details379

A.1 Fine-tuning ESM2380

We fine-tuned the pre-trained ESM-2-650M model on the MSA of each DMS assay using LoRA381

(Low-Rank Adaptation) adapters to each layer. For each DMS assay, we loaded its corresponding382

MSA and masked 15% of the amino acids in each sequence, consistent with ESM2’s original masked383

language modeling objective.384

To prevent overfitting, we subsample the MSA by randomly selecting up to 1000 sequences to385

fine-tune on. The number of fine-tuning epochs was dynamically determined based on the number of386

sequences used. The epoch schedule was set as follows:387

• < 100 sequences: 20 epochs388

• 100-299 sequences: 10 epochs389

• 300-499 sequences: 5 epochs390

• 500-799 sequences: 4 epochs391

• ≥ 800 sequences: 3 epochs392

We fine-tuned the model using the AdamW optimizer with a learning rate of 10−4. We set the393

hyperparameters of LoRA to be the following: r=8, lora_alpha=16, lora_dropout=0.05, and394

bias=None.395

A.2 Training SAEs396

We trained a unique SAE for each of the DMS assays. For each DMS assay, we first load in the397

respective fine-tuned ESM2 model (Appendix A.1). We adapted code from https://github.com/398

etowahadams/interprot [14] to train on embeddings from layer 24. We dynamically set the399

number of training epochs based on the number of MSA sequences in each assay. The epoch schedule400

was set as follows:401

• < 500 sequences: 1000 epochs402

• 500-999 sequences: 500 epochs403

• 1000-4999 sequences: 100 epochs404

• ≥ 5000 sequences: 10 epochs405

A.3 Fitness Extrapolation406

For all tasks except regime extrapolation, we set aside 10% of the training sequences to use as a407

validation set and perform a grid search over regularization strengths. In regime extrapolation, we set408

aside 20% as validation. Since the dataset for F7YBW8_MESOW_Ding only has 166 single and409

double mutations, we modify the regime split to train on single, double, and triple mutations, and test410

on datapoints with more than three mutations. Since the DMS for SPG1_STRSG_Wu has only 4411

sites with mutations, we also modify the position split to instead take 75% of amino acid positions as412

training positions and 25% as test.413

A full summary of results can be found in Appendix B. In each fitness extrapolation table, we report414

the absolute value of the Spearman correlation plus the standard deviation across all nine trials.415

A.4 Protein Engineering416

In this section, we provide additional details on our protein engineering experimental setup. To ensure417

our trained MLPs can properly score the designed variants, we only design mutations at positions418

that are present in the DMS assays.419

Feature Steering. Given the wildtype sequence, we first pass it through ESM2 to get the layer420

embeddings, and then pass it through the SAE encoder to get the latent representation z. For the ith421

predictive latent, we multiply the ith row of z by a hyperparameter multiplier. The modified latent422

vector is then passed through the SAE decoder. The resulting vector is fed through the remaining423
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layers of ESM2 to output the logits of the mutated sequence, xlogits,mut ∈ RL×V , where L is the424

sequence length and V is the vocabulary size.425

We compare these new logits to the logits of the wild-type sequence, xlogits,wt ∈ RL×V . For each426

amino acid position, we calculate the cosine similarity between the respective logit vectors. We only427

accept a mutation at a given position if the cosine similarity is below 0.98, ensuring that we only428

mutate amino acids where ESM2 has made a meaningful change.429

To find the optimal multiplier, we perform a grid search over values from -3 to 3 with a step size of430

0.2. For each multiplier, we use the linear probe to predict the fitness of the resulting sequence. We431

then select the top 50 unique sequences with the highest predicted fitness. If a sequence has been432

previously designed, we move to the next highest-scoring sequence to ensure we design 50 unique433

variants.434

Simulated Annealing. We adapt the simulated annealing code from https://github.com/435

gitter-lab/metl-pub/tree/main/sim-annealing [27]. All parameters are left as default.436

We run simulated annealing over the linear probes trained on the ESM layer and ESM logits. The437

number of mutations per designed sequence was determined by sampling from the Poisson distribu-438

tion Pois(2) + 1, ensuring that the maxmimum number of mutations possible is still five. To ensure a439

fair comparison, we ensured both feature steering and simulated annealing took a comparable amount440

of time. We set the number of simulated annealing timesteps based on the time required for feature441

steering to design 50 variants. This was done by first measuring the time needed to complete 1,000442

simulated annealing timesteps and then scaling accordingly.443

Random. To create the random baseline, we sample from the Poisson distribution of Pois(2) + 1 to444

determine the number of mutations to make. We then choose the mutated amino acid uniformly at445

random.446

A.5 MLP Training447

To create a fitness prediction model for our protein engineering tasks, we trained an MLP for each448

DMS assay. The MLP is a three-layer feedforward network with ReLU activation functions, taking449

in a flattened one-hot encoding of the entire protein sequence as input. The network architecture450

consists of an input layer, a hidden layer with 128 neurons, a second hidden layer with 64 neurons,451

and a final output layer with a single neuron to predict the fitness score.452

For each DMS assay, we split the full data into a training set (80%) and a validation set (20%). We453

then trained the MLP for up to 1000 epochs using the AdamW optimizer with a learning rate of454

10−3 and Mean Squared Error (MSE) as the loss function. To prevent overfitting, we employed early455

stopping with a patience of 10 epochs based on the validation loss.456

A.6 Feature Visualization457

Given the wildtype sequence, we find the latent representation z ∈ RdSAE×L by passing the sequence458

through layer 24 of ESM2 to get the embeddings and then passing the embeddings through the SAE459

encoder. We use the linear probe weights and find the indices that correspond to the five largest460

positive and negative probe weight indices for which the corresponding index in z is active as well.461

We then find the amino acids in the sequence that are being activated by the SAE: given the ith latent,462

the amino acid activations associated with this latent are z[i, :]. We then use the top five mutants463

with the highest fitness found from steering the SAE and analyze the activation difference to find the464

amino acids in the sequence that had the largest absolute activation difference between the wild-type465

and steered sequence SAE embeddings. We use PyMOL to visualize these changes.466

To identify active sites in GFP, we utilize the positions provided in [30] under the Methods section467

titled “Refinement and mutational scan”. For GB1, we identify allosteric and binding sites based468

on [25] from Extended Data Fig. 7c. We additionally identify epistatic sites based on [23].469

A.7 Weight Sparsity470

To quantify sparsity in linear probe weights, we measure the proportion of total variance explained471

by the top 5% of weights ranked by magnitude. Using linear probe weights from the random472

extrapolation task with the first seed, we compute, for each training size N , the ratio between the473
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variance captured by the top 5% of weights and the total variance of all weights (where the total474

number of weights is dSAE for SAE, dESM for ESM layer, and V for ESM logits) is computed. We475

plot the magnitude of probe weights for each model in Fig. 4. For visualization purposes, we exclude476

weights that have a magnitude greater than 3. This occurs 11 times in the ESM logits but not in the477

ESM layer or SAE.478

B Additional Experimental Results479

Table 4: Average Spearman ρ across all low-N regimes under mutation extrapolation.
Method DMS N = 8 ↑ N = 24 ↑ N = 96 ↑ N = 384 ↑

SAE

GFP_AEQVI_Sarkisyan 0.06 ± 0.09 0.15 ± 0.10 0.29 ± 0.08 0.36 ± 0.04
SPG1_STRSG_Olson 0.15 ± 0.13 0.42 ± 0.09 0.67 ± 0.05 0.79 ± 0.02

SPG1_STRSG_Wu 0.14 ± 0.25 0.31 ± 0.21 0.34 ± 0.11 0.46 ± 0.13
DLG4_HUMAN_Faure 0.32 ± 0.13 0.39 ± 0.07 0.50 ± 0.09 0.61 ± 0.05
GRB2_HUMAN_Faure 0.33 ± 0.22 0.49 ± 0.06 0.63 ± 0.04 0.67 ± 0.03

F7YBW8_MESOW_Ding 0.54 ± 0.23 0.57 ± 0.16 0.61 ± 0.17 0.63 ± 0.20

ESM layer

GFP_AEQVI_Sarkisyan 0.05 ± 0.09 0.11 ± 0.11 0.23 ± 0.06 0.29 ± 0.07
SPG1_STRSG_Olson 0.20 ± 0.19 0.34 ± 0.07 0.63 ± 0.04 0.78 ± 0.02

SPG1_STRSG_Wu 0.17 ± 0.32 0.30 ± 0.23 0.30 ± 0.09 0.33 ± 0.22
DLG4_HUMAN_Faure 0.22 ± 0.14 0.33 ± 0.08 0.47 ± 0.07 0.55 ± 0.11
GRB2_HUMAN_Faure 0.33 ± 0.22 0.44 ± 0.08 0.61 ± 0.04 0.67 ± 0.03

F7YBW8_MESOW_Ding 0.51 ± 0.23 0.54 ± 0.21 0.59 ± 0.17 0.64 ± 0.20

ESM logits

GFP_AEQVI_Sarkisyan 0.13 ± 0.10 0.13 ± 0.13 0.22 ± 0.06 0.30 ± 0.03
SPG1_STRSG_Olson 0.16 ± 0.12 0.29 ± 0.09 0.42 ± 0.06 0.58 ± 0.03

SPG1_STRSG_Wu 0.10 ± 0.13 0.07 ± 0.24 0.08 ± 0.23 0.26 ± 0.28
DLG4_HUMAN_Faure 0.13 ± 0.11 0.15 ± 0.08 0.22 ± 0.12 0.34 ± 0.10
GRB2_HUMAN_Faure 0.15 ± 0.17 0.30 ± 0.07 0.50 ± 0.08 0.59 ± 0.03

F7YBW8_MESOW_Ding 0.37 ± 0.41 0.52 ± 0.32 0.64 ± 0.19 0.64 ± 0.20

Table 5: Average Spearman ρ across all low-N regimes under position extrapolation.
Method DMS N = 8 ↑ N = 24 ↑ N = 96 ↑ N = 384 ↑

SAE

GFP_AEQVI_Sarkisyan 0.10 ± 0.09 0.13 ± 0.11 0.25 ± 0.09 0.26 ± 0.15
SPG1_STRSG_Olson 0.18 ± 0.15 0.36 ± 0.28 0.54 ± 0.10 0.65 ± 0.09

SPG1_STRSG_Wu 0.11 ± 0.32 0.08 ± 0.26 0.15 ± 0.28 0.25 ± 0.23
DLG4_HUMAN_Faure 0.37 ± 0.20 0.52 ± 0.10 0.53 ± 0.10 0.57 ± 0.08
GRB2_HUMAN_Faure 0.28 ± 0.20 0.27 ± 0.24 0.51 ± 0.08 0.48 ± 0.11

F7YBW8_MESOW_Ding 0.09 ± 0.46 0.10 ± 0.47 0.06 ± 0.50 0.29 ± 0.33

ESM layer

GFP_AEQVI_Sarkisyan 0.04 ± 0.10 0.09 ± 0.09 0.23 ± 0.06 0.25 ± 0.12
SPG1_STRSG_Olson 0.18 ± 0.19 0.42 ± 0.32 0.46 ± 0.18 0.55 ± 0.15

SPG1_STRSG_Wu 0.16 ± 0.29 0.12 ± 0.24 0.14 ± 0.40 0.20 ± 0.30
DLG4_HUMAN_Faure 0.15 ± 0.38 0.41 ± 0.24 0.41 ± 0.23 0.58 ± 0.07
GRB2_HUMAN_Faure 0.25 ± 0.21 0.24 ± 0.21 0.40 ± 0.21 0.40 ± 0.09

F7YBW8_MESOW_Ding 0.05 ± 0.54 0.07 ± 0.51 0.25 ± 0.37 0.05 ± 0.38

ESM logits

GFP_AEQVI_Sarkisyan 0.12 ± 0.05 0.13 ± 0.10 0.21 ± 0.09 0.26 ± 0.07
SPG1_STRSG_Olson 0.17 ± 0.20 0.30 ± 0.19 0.41 ± 0.16 0.50 ± 0.16

SPG1_STRSG_Wu 0.13 ± 0.26 0.03 ± 0.19 0.14 ± 0.27 0.05 ± 0.16
DLG4_HUMAN_Faure 0.00 ± 0.14 0.14 ± 0.15 0.26 ± 0.20 0.39 ± 0.10
GRB2_HUMAN_Faure 0.20 ± 0.16 0.27 ± 0.14 0.41 ± 0.10 0.49 ± 0.08

F7YBW8_MESOW_Ding 0.07 ± 0.51 0.44 ± 0.33 0.34 ± 0.38 0.39 ± 0.19
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Table 6: Average Spearman ρ across all low-N regimes under regime extrapolation.
Method DMS N = 8 ↑ N = 24 ↑ N = 96 ↑ N = 384 ↑

SAE

GFP_AEQVI_Sarkisyan 0.11 ± 0.10 0.23 ± 0.13 0.36 ± 0.05 0.56 ± 0.05
SPG1_STRSG_Olson 0.21 ± 0.14 0.39 ± 0.06 0.69 ± 0.05 0.84 ± 0.01

SPG1_STRSG_Wu 0.14 ± 0.16 0.22 ± 0.11 0.27 ± 0.10 0.32 ± 0.04
DLG4_HUMAN_Faure 0.31 ± 0.20 0.39 ± 0.14 0.58 ± 0.09 0.67 ± 0.06
GRB2_HUMAN_Faure 0.34 ± 0.11 0.39 ± 0.15 0.65 ± 0.07 0.77 ± 0.01

F7YBW8_MESOW_Ding 0.37 ± 0.20 0.53 ± 0.08 0.60 ± 0.06 0.65 ± 0.03

ESM layer

GFP_AEQVI_Sarkisyan 0.06 ± 0.10 0.17 ± 0.15 0.32 ± 0.06 0.49 ± 0.04
SPG1_STRSG_Olson 0.23 ± 0.09 0.38 ± 0.08 0.64 ± 0.05 0.83 ± 0.01

SPG1_STRSG_Wu 0.14 ± 0.18 0.23 ± 0.11 0.22 ± 0.08 0.29 ± 0.06
DLG4_HUMAN_Faure 0.25 ± 0.14 0.34 ± 0.17 0.49 ± 0.13 0.70 ± 0.05
GRB2_HUMAN_Faure 0.30 ± 0.09 0.40 ± 0.14 0.65 ± 0.06 0.76 ± 0.01

F7YBW8_MESOW_Ding 0.35 ± 0.17 0.52 ± 0.09 0.59 ± 0.05 0.68 ± 0.02

ESM logits

GFP_AEQVI_Sarkisyan 0.11 ± 0.27 0.17 ± 0.15 0.24 ± 0.17 0.40 ± 0.04
SPG1_STRSG_Olson 0.16 ± 0.13 0.25 ± 0.09 0.42 ± 0.03 0.56 ± 0.02

SPG1_STRSG_Wu 0.04 ± 0.09 0.14 ± 0.07 0.16 ± 0.05 0.23 ± 0.03
DLG4_HUMAN_Faure 0.16 ± 0.12 0.27 ± 0.07 0.34 ± 0.09 0.36 ± 0.07
GRB2_HUMAN_Faure 0.05 ± 0.12 0.32 ± 0.06 0.48 ± 0.04 0.59 ± 0.03

F7YBW8_MESOW_Ding 0.35 ± 0.14 0.56 ± 0.08 0.60 ± 0.04 0.64 ± 0.02

Table 7: Average Spearman ρ across all low-N regimes under score extrapolation.
Method DMS N = 8 ↑ N = 24 ↑ N = 96 ↑ N = 384 ↑

SAE

GFP_AEQVI_Sarkisyan 0.01 ± 0.09 0.01 ± 0.05 0.02 ± 0.04 0.02 ± 0.03
SPG1_STRSG_Olson 0.04 ± 0.13 0.03 ± 0.10 0.12 ± 0.10 0.09 ± 0.04

SPG1_STRSG_Wu 0.07 ± 0.07 0.04 ± 0.07 0.10 ± 0.09 0.18 ± 0.05
DLG4_HUMAN_Faure 0.05 ± 0.09 0.04 ± 0.08 0.01 ± 0.06 0.06 ± 0.05
GRB2_HUMAN_Faure 0.01 ± 0.06 0.16 ± 0.11 0.20 ± 0.07 0.27 ± 0.05

F7YBW8_MESOW_Ding 0.17 ± 0.24 0.00 ± 0.31 0.22 ± 0.20 0.27 ± 0.10

ESM layer

GFP_AEQVI_Sarkisyan 0.01 ± 0.06 0.01 ± 0.05 0.01 ± 0.04 0.01 ± 0.04
SPG1_STRSG_Olson 0.06 ± 0.08 0.03 ± 0.08 0.12 ± 0.08 0.13 ± 0.05

SPG1_STRSG_Wu 0.11 ± 0.11 0.02 ± 0.08 0.11 ± 0.08 0.23 ± 0.06
DLG4_HUMAN_Faure 0.01 ± 0.09 0.04 ± 0.06 0.03 ± 0.07 0.07 ± 0.07
GRB2_HUMAN_Faure 0.02 ± 0.07 0.14 ± 0.11 0.18 ± 0.06 0.30 ± 0.04

F7YBW8_MESOW_Ding 0.14 ± 0.24 0.03 ± 0.31 0.23 ± 0.19 0.37 ± 0.09

ESM logits

GFP_AEQVI_Sarkisyan 0.01 ± 0.08 0.05 ± 0.08 0.06 ± 0.04 0.00 ± 0.06
SPG1_STRSG_Olson 0.00 ± 0.11 0.01 ± 0.09 0.09 ± 0.10 0.05 ± 0.06

SPG1_STRSG_Wu 0.02 ± 0.06 0.03 ± 0.07 0.08 ± 0.05 0.13 ± 0.05
DLG4_HUMAN_Faure 0.05 ± 0.10 0.01 ± 0.07 0.02 ± 0.04 0.00 ± 0.04
GRB2_HUMAN_Faure 0.02 ± 0.08 0.04 ± 0.08 0.12 ± 0.05 0.23 ± 0.04

F7YBW8_MESOW_Ding 0.15 ± 0.30 0.03 ± 0.22 0.30 ± 0.21 0.39 ± 0.14
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