

000
001
002
003
004
005
006
007 **🎬 CML-BENCH: A FRAMEWORK FOR EVALUATING**
008 **AND ENHANCING LLM-POWERED MOVIE SCRIPTS**
009 **GENERATION**

010 **Anonymous authors**

011 Paper under double-blind review

012 **ABSTRACT**

013 Large Language Models (LLMs) have demonstrated remarkable proficiency in
014 generating highly structured texts. However, while exhibiting a high degree of
015 structural organization, movie scripts demand an additional layer of nuanced story-
016 telling and emotional depth—the ‘soul’ of compelling cinema—that LLMs often
017 fail to capture. To investigate this deficiency, we first curated **CML-Dataset**, a
018 dataset comprising (*summary*, *content*) pairs for Cinematic Markup Language
019 (CML), where ‘content’ consists of segments from esteemed, high-quality movie
020 scripts and ‘summary’ is a concise description of the content. Through an in-depth
021 analysis of the intrinsic multi-shot continuity and narrative structures within these
022 authentic scripts, we identified three pivotal dimensions for quality assessment:
023 *Dialogue Coherence (DC)*, *Character Consistency (CC)*, and *Plot Reasonableness (PR)*. Informed by these findings, we propose the **CML-Bench**, featuring
024 quantitative metrics across these dimensions. CML-Bench effectively assigns high
025 scores to well-crafted, human-written scripts while concurrently pinpointing the
026 weaknesses in screenplays generated by LLMs. To further validate our benchmark,
027 we introduce **CML-Instruction**, a prompting strategy with detailed instructions on
028 character dialogue and event logic, to guide LLMs to generate more structured and
029 cinematically sound scripts. Extensive experiments validate the effectiveness of
030 our benchmark and demonstrate that LLMs guided by CML-Instruction generate
031 higher-quality screenplays, with results aligned with human preferences. Our
032 work offers a comprehensive framework for both evaluating and guiding LLMs in
033 screenplay authoring.

034 **1 INTRODUCTION**

035 Large Language Models (LLMs) have shown strong performance in various creative text generation
036 tasks, from poetry to narrative fiction Radford et al. (2019); Brown et al. (2020); Raffel et al. (2020);
037 Touvron et al. (2023); Grattafiori et al. (2024); Bai et al. (2023a); Yang et al. (2024); Team (2023);
038 Team et al. (2024a;b). However, movie screenwriting presents unique challenges. Unlike general
039 text, movie scripts have a strict structure defined by specific formatting rules (scene headings, action
040 lines, dialogue blocks) and require careful organization of story elements, character development, and
041 plot progression. While current LLMs can generate scripts that follow basic structural rules Gervás
042 (2013); Isaza & Kopp (2025); Mirowski et al. (2023); Kumaran et al. (2023); He et al. (2023); Zheng
043 et al. (2024), they often fail to create scripts with the essential qualities that make movies engaging
044 - emotional depth, thematic meaning, and narrative coherence Liu et al. (2024); Tian et al. (2024);
045 Rashkin et al. (2020); Hueth (2019); Mahon & Lapata (2024); Wang et al. (2025). This quality gap
046 drives our research into new methods for evaluating and improving LLM-generated screenplays.

047 To systematically investigate the quality gap and understand what constitutes a well-written screenplay,
048 we first constructed a dataset of human-authored scripts, termed the **CML-Dataset**. Starting from the
049 training set of MovieSum Saxena & Keller (2024), which contains approximately 1,800 movie scripts,
050 we filtered this collection using IMDb ratings Maas et al. (2011) and selected 100 classic films with
051 high scores and broad genre coverage All scripts were standardized to the MovieSum format. Given
052 the length and complexity of the original scripts, we employed the Qwen model Yang et al. (2024)

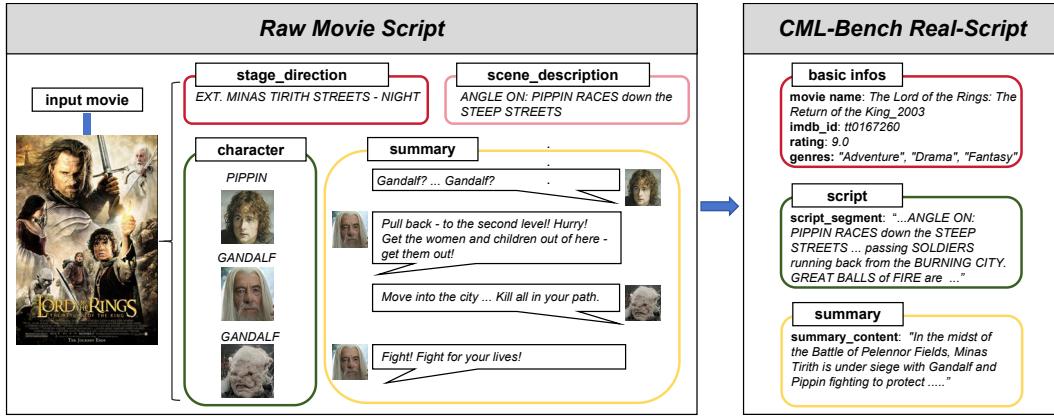


Figure 1: **CML-Dataset construction pipeline**: Raw movie script elements (e.g., stage direction, scene description, character, dialogue) are extracted and transformed into a structured CML-Dataset entry containing basic information, the script segment (content), and an LLM-generated summary.

to automatically extract coherent multi-shot narrative units of 15 to 20 scenes from each script with token distribution statisticized in Figure 7. For each selected segment (the “content”), we used a large language model with carefully designed prompts (see Appendix) to generate a concise summary that captures the main events, characters, and actions, resulting in 100 (*Movie Name*, *IMDB ID*, *Content*, *Summary*) pairs with 600K tokens in total. These high-quality, human-written scripts serve as the ground truth for subsequent analysis and evaluation of LLM-generated scripts with summaries in Sec 5. To further identify the intrinsic characteristics that define high-quality screenwriting, we systematically analyzed the CML-Dataset along three key dimensions: *Dialogue Coherence (DC)*, *Character Consistency (CC)*, and *Plot Reasonableness (PR)*. For DC, we examined the thematic continuity of adjacent dialogue turns; for CC, we assessed the stability and authenticity of each character’s linguistic style and emotional expression; and for PR, we evaluated the logical and causal progression of key actions and events. As shown in Sec 3, through linguistic analyses and comparing scripts from highly rated and poorly rated movies, we empirically validated that DC, CC, and PR are pivotal for script quality.

Building on these empirical insights, we introduce **CML-Bench** (Cinematic Markup Language Benchmark), a comprehensive evaluation framework designed to quantitatively assess screenplay quality along the three core dimensions. CML-Bench comprises eight interpretable metrics: DC1 measures the semantic similarity of adjacent dialogue turns, DC2 quantifies topic concentration within dialogues, and DC3 evaluates the relevance of question-answer pairs; CC1 assesses the emotional stability of each character, CC2 measures the consistency of their linguistic style, and CC3 examines the alignment between a character’s stated intentions and subsequent actions; PR1 captures the semantic coherence of event sequences, while PR2 quantifies the density of causal relationships between key plot events. Each metric is implemented through a combination of structured parsing, language model-based feature extraction, and embedding similarity calculation, enabling fine-grained and objective evaluation more than simply LLM-based scoring. As illustrated in Figure ??, CML-Bench reveals that, under base prompting, all seven LLMs consistently underperform compared to human-written scripts across all core dimensions, with particularly large gaps in dialogue coherence, character consistency, and plot reasonableness. This phenomenon highlights the persistent deficiencies of current LLMs in generating high-quality, cinematically sound screenplays.

To address the deficiencies highlighted by CML-Bench and to further validate our benchmark, we introduce **CML-Instruction**. CML-Instruction is a prompting strategy that provides LLMs with detailed instructions on character dialogue and event logic, guiding them to generate more structured and cinematically sound scripts. Extensive experiments validate the effectiveness of this approach. As shown in Figure 4 and Table 1, LLMs guided by CML-Instruction achieve substantial improvements across all CML-Bench metrics. To validate the robustness of CML-Bench across diverse cinematic styles, we conduct case studies (see Figure 5) on scripts from various genres within the CML-Dataset. Furthermore, ablation studies (Figure ??) are performed to assess the impact of specific components within CML-Instruction on the script generation capabilities of seven different LLMs. Finally,

108 user studies (Table 2) confirm a strong correlation between CML-Bench evaluations and human
 109 preferences.
 110

111 Our contributions can be summarized as follows: (1) We propose **CML-Dataset**, a specialized
 112 dataset of 100 (*summary, content*) pairs derived from classic movie scripts, serving as a high-
 113 quality ground truth for screenplay analysis and evaluation. (2) Through analysis of the CML-
 114 Dataset, we empirically establish *Dialogue Coherence (DC)*, *Character Consistency (CC)*, and
 115 *Plot Reasonableness (PR)* as pivotal dimensions for assessing screenplay quality. (3) We introduce
 116 **CML-Bench**, a comprehensive evaluation framework comprising eight interpretable quantitative
 117 metrics designed to assess these three core dimensions, enabling fine-grained analysis of LLM-
 118 generated scripts. (4) We develop **CML-Instruction**, a prompting strategy that provides LLMs with
 119 detailed, component-level instructions, significantly improving their ability to generate structured and
 120 cinematically sound screenplays, as validated by CML-Bench and human evaluations.
 121

2 RELATED WORKS

122 **LLM-powered Cinematic Contents Creation** Large Language Models have demonstrated remarkable
 123 capabilities across natural language tasks Radford et al. (2019); Brown et al. (2020); Raffel et al.
 124 (2020); Touvron et al. (2023); Grattafiori et al. (2024); Bai et al. (2023a); Yang et al. (2024); Team
 125 (2023) and are increasingly applied to creative content generation, particularly visual storytelling He
 126 et al. (2023); Lin et al. (2023); Long et al. (2024); Xie et al. (2024); Zheng et al. (2024); Zhao et al.
 127 (2024); Blattmann et al. (2023); Khachatryan et al. (2023). Movie scriptwriting has advanced through
 128 hierarchical planning (Re³ Yang et al. (2022b), DOC Yang et al. (2022a)), adapted for screenplays
 129 in Dramatron Mirowski et al. (2023), multi-agent dialogue in IBSEN Han et al. (2024), and causal
 130 plot refinement in R2 Lin et al. (2025). However, effective guidance requires understanding intrinsic
 131 screenplay characteristics Rashkin et al. (2020); Hueth (2019); Wang et al. (2024); Liu et al.
 132 (2024). Screenwriting literature emphasizes narrative structure, character arcs, dialogue function,
 133 and thematic development Field (2005); McKee (1997); Stuart (1999), highlighting that effective
 134 screenplays are carefully constructed narratives designed for a visual medium. By identifying key
 135 dimensions from actual movie scripts, CML-Bench provides a structured framework for evaluating
 136 LLM-generated content and instruction-level guidance to help LLMs produce more cinematically
 137 sound and narratively compelling screenplays.
 138

139 **Evaluation Methods for Movie Scripts** Traditional NLG metrics like BLEU Papineni et al. (2002),
 140 ROUGE Ganesan (2018), and perplexity struggle with creative long-form content, prioritizing lexical
 141 overlap over semantic and structural screenplay quality Novikov et al. (2018); Clark & Smith (2021).
 142 Long-form content evaluation Kryscynski et al. (2021); Kryscynski (2021); Louis & Nenkova (2013);
 143 Durmus et al. (2020); Chen et al. (2024); Yuan et al. (2024) often lacks domain-specific nuances for
 144 screenplays. Existing benchmarks like LongBench Bai et al. (2023b) and targeted probes Liu et al.
 145 (2023a); Mohtashami & Jaggi (2023) reveal LLMs' challenges with extended context, highlighting
 146 the need for specialized creative evaluation frameworks. While "LLM-as-a-judge" shows strong
 147 correlation with human judgments Gu et al. (2024); Li et al. (2024); Farchi et al. (2024); Liu et al.
 148 (2023b); Chiang et al. (2024); Myung et al. (2024); Zhong et al. (2024), studies indicate LLMs often
 149 lack domain-specific understanding for creative content Paech (2023); Zhong et al. (2022); Shen
 150 et al. (2025); Saha et al. (2025), potentially overlooking expert-valued qualities. Our CML-Bench
 151 addresses these limitations by providing interpretable metrics derived from established screenwriting
 152 principles Field (2005); McKee (1997); Stuart (1999). It leverages LLMs for sophisticated feature
 153 extraction (e.g., question-answer relevance, causality) but grounds the final assessment in these
 154 structured, rule-based evaluations to ensure objectivity and provide actionable feedback on screenplay
 155 quality.
 156

3 MOVIE SCRIPTS ANALYSIS AND DATASET CONSTRUCTION

3.1 DATASET CONSTRUCTION

157 A movie script is a structured document that serves as the blueprint for film production. It consists of
 158 several essential components:
 159

- **Scene Headings (Sluglines):** Indicate the location (INT./EXT.), setting, and time of day (DAY/NIGHT), providing the spatial and temporal context for each scene.
- **Action Lines:** Describe the visual actions, settings, and character movements, conveying what the audience sees and hears, excluding dialogue.
- **Character Cues:** Specify which character is speaking, typically centered on the page.
- **Dialogue:** The spoken words of the characters, indented beneath the corresponding cue.
- **Parentheticals:** Brief instructions or descriptions related to dialogue delivery or action, placed in parentheses below the character cue.
- **Transitions:** Instructions for editing between scenes (e.g., FADE IN, CUT TO, DISSOLVE TO), guiding the flow of the narrative.

To construct a high-quality evaluation benchmark, we curated a dataset from the training set of MovieSum Saxena & Keller (2024), which originally contains approximately 1,800 movie scripts. We filtered this pool using IMDb scores Maas et al. (2011), selecting 100 classic films with high ratings and broad genre coverage. For each selected movie, we extracted the script and standardized its format to match the MovieSum convention. The data preparation process is illustrated in Figure 1. Given that original scripts are often lengthy and contain multiple narrative arcs, we employed the Qwen large language model to automatically identify and extract a segment of 15 to 20 scenes, denoted as $\mathcal{C} = \{c_1, c_2, \dots, c_N\}$, where $N = 100$. Each c_i is a multi-shot narrative unit that can be summarized into a complete story. This process ensures that each excerpt is both coherent and representative of the original work. The distribution of token lengths for both script segments and summaries is presented in Figure 7, demonstrating that our dataset maintains diversity in content while controlling for length.

Formally, our dataset consists of $N = 100$ tuples (m_i, s_i, c_i, a_i) , where m_i is the movie name, s_i is the IMDb ID, c_i is the selected script content, and a_i is the corresponding summary. These 100 human-written script contents serve as the ground truth for all subsequent evaluation and analysis, and the genre distribution is shown in Figure 2

To assess the ability of large language models to generate high-quality screenplays, we use the summary a_i of each movie as input and employ seven different LLMs (see Table 1) to generate scripts. The details of the model selection and generation process are provided in Section 5. The generated scripts are then compared against the ground truth contents c_i using our proposed evaluation metrics.

This curated dataset provides a reliable foundation for analyzing script structure and evaluating the performance of large language models in screenplay generation.

3.2 INTRINSIC CHARACTERISTICS ANALYSIS

To empirically identify the core quality dimensions that distinguish high-quality screenplays, we conducted a systematic analysis of the curated human-written script dataset. Our goal is to move beyond superficial structural features and quantitatively capture the intrinsic properties that underpin effective cinematic storytelling. We focus on three fundamental dimensions: dialogue, character, and logic in plots. For each dimension, we designed specific analytical procedures:

1. **Dialogue Coherence (DC):** We posit that the topic of a well-written script dialogue should be highly consistent. Therefore, it is necessary to conduct a thematic consistency analysis of adjacent dialogues.
2. **Character Consistency (CC):** We argue that a character in a script is only considered three-dimensional and vivid if the language they use corresponds to the emotional traits they

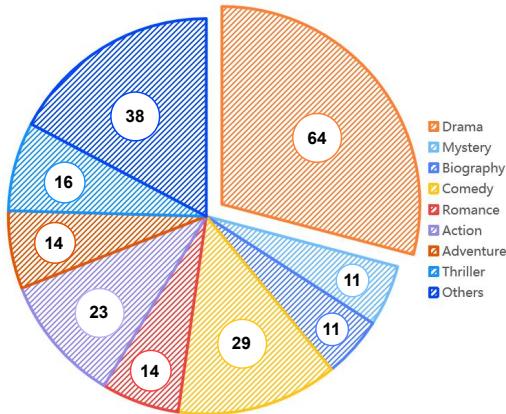


Figure 2: **Genre distribution in CML-Dataset.**
The dataset includes all major movie types.

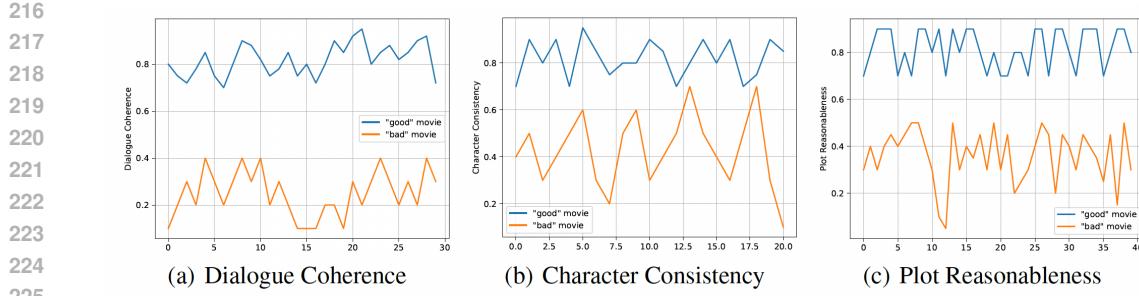


Figure 3: Intrinsic Characteristics Analysis.

are meant to convey. Thus, a linguistic and emotional consistency analysis of a character’s speech is required.

3. **Plot Reasonableness (PR):** We believe that a character’s actions should be consistent with the current scene to logically advance the plot. Therefore, it is essential to analyze whether a character’s behavior is logically consistent with the ongoing events.

To validate these criteria, a comparative analysis was performed on script segments from two distinct movie groups based on IMDb ratings: one cohort with ratings above 9 (indicative of high quality) and another with ratings below 3 (indicative of low quality), applying the aforementioned analytical methods and visualizing the results with the Gemini 2.5 Pro model. As depicted in Figure ??, scripts from the high-quality group consistently exhibited strong dialogue, character, and plot, whereas scripts from the low-quality group showed marked deficiencies in these areas; this empirical investigation therefore confirms that Dialogue Coherence (DC), Character Consistency (CC), and Plot Reasonableness (PR) serve as pivotal dimensions for assessing screenplay quality, directly informing the design of our evaluation metrics and the construction of the CML-Bench benchmark.

4 CINEMATIC MARKUP LANGUAGE BENCHMARKING (CML-BENCH)

4.1 AUTOMATED QUANTITATIVE EVALUATION METRICS

To overcome the deficiencies of generic text evaluations and the limitations of current LLM-as-a-judge approaches in capturing domain-specific nuances for screenplay assessment, the CML-Bench framework offers an objective and fine-grained quantitative evaluation. This framework is structured around nine interpretable metrics, systematically organized into three principal dimensions—*Dialogue Coherence (DC)*, *Character Consistency (CC)*, and *Plot Reasonableness (PR)*—which are implemented using a combination of structured parsing, LLM-based information extraction (Gemma Team et al. (2024b) for lightweight feature extraction and Qwen Yang et al. (2024) for complex analysis), and embedding-based similarity calculation. Consequently, CML-Bench provides a reproducible and detailed analysis designed to capture the essential qualities of compelling cinematic writing, moving beyond superficial assessments.

4.1.1 DIALOGUE COHERENCE (DC)

The first dimension, Dialogue Coherence (DC), is designed to capture the logical and topical flow of conversations within a script. Let $\mathcal{D} = [d_1, d_2, \dots, d_N]$ denote the ordered sequence of dialogue turns in a script segment.

DC1: Adjacent Turn Topic Similarity. For each pair of adjacent dialogue turns (d_i, d_{i+1}) , we compute their semantic embeddings $\mathbf{e}_i, \mathbf{e}_{i+1}$ using the Gemma model. The metric is defined as the mean cosine similarity:

$$DC1(\mathcal{D}) = \frac{1}{N-1} \sum_{i=1}^{N-1} \frac{\mathbf{e}_i \cdot \mathbf{e}_{i+1}}{\|\mathbf{e}_i\| \|\mathbf{e}_{i+1}\|}. \quad (1)$$

A higher value indicates greater topical continuity between turns.

270 **DC2: Dialogue Topic Concentration.** For each d_i , Gemma is used to extract a set of keywords K_i .
 271 Let $P(w)$ be the empirical distribution of all keywords w across the segment. The topic concentration
 272 is measured by the normalized entropy:
 273

$$274 \quad DC2(\mathcal{D}) = 1 - \frac{H(P)}{\log |\mathcal{V}|}, \quad H(P) = - \sum_{w \in \mathcal{V}} P(w) \log P(w), \quad (2)$$

276 where \mathcal{V} is the vocabulary of extracted keywords. Lower entropy (higher DC2) reflects more focused
 277 dialogue.
 278

279 **DC3: Linguistic Creativity.** Creative language features (metaphors, unique expressions, innovative
 280 word usage) are extracted from dialogue using Gemma. For each feature f_i , Qwen generates a
 281 creativity analysis a_i , and embeddings \mathbf{e}_{a_i} are computed. The linguistic creativity is measured by
 282 inverting the mean pairwise cosine similarity between these analysis embeddings:
 283

$$284 \quad DC3(\mathcal{D}) = 1 - \frac{2}{L(L-1)} \sum_{i=1}^{L-1} \sum_{j=i+1}^L \frac{\mathbf{e}_{a_i} \cdot \mathbf{e}_{a_j}}{\|\mathbf{e}_{a_i}\| \|\mathbf{e}_{a_j}\|}, \quad (3)$$

286 where L is the number of extracted creative features. Lower similarity (higher creativity) yields
 287 higher scores.
 288

289 4.1.2 CHARACTER CONSISTENCY (CC)

290 The second dimension, Character Consistency (CC), evaluates the stability and distinctiveness of
 291 character behavior and language.
 292

293 **CC1: Character Emotional Stability.** For each character c , let $E_c = [e_1, \dots, e_{N_c}]$ be the sequence
 294 of classified emotions (e.g., mapped to $\{-1, 0, 1\}$ for negative, neutral, positive) for their dialogue
 295 turns. The emotional stability is measured as:
 296

$$297 \quad CC1(c) = 1 - \frac{1}{N_c - 1} \sum_{i=1}^{N_c-1} |e_{i+1} - e_i|/2. \quad (4)$$

299 The overall metric is the mean over all characters. Higher values indicate smoother, more plausible
 300 emotional arcs.
 301

302 **CC2: Character Originality.** For each character c , distinctive speech features are extracted using
 303 Gemma, then analyzed by Qwen to produce uniqueness embeddings \mathbf{u}_c . The originality is measured
 304 by combining inter-character dissimilarity and intra-character consistency:
 305

$$306 \quad CC2 = \lambda_1 \cdot \left(1 - \frac{2}{K(K-1)} \sum_{i=1}^{K-1} \sum_{j=i+1}^K \frac{\mathbf{u}_i \cdot \mathbf{u}_j}{\|\mathbf{u}_i\| \|\mathbf{u}_j\|} \right) + \lambda_2 \cdot \frac{1}{K} \sum_{c=1}^K S_c, \quad (5)$$

309 where K is the number of characters, S_c is the intra-character dialogue similarity for character c , and
 310 $\lambda_1 + \lambda_2 = 1$. Higher values indicate characters are both distinctive from each other and internally
 311 consistent.
 312

313 **CC3: Action-Intention Alignment.** Intention-expressing dialogues are identified for each character,
 314 and their embeddings are compared to those of subsequent action descriptions. The metric is the
 315 mean of the maximal cosine similarity between each intention and any action embedding:
 316

$$317 \quad CC3 = \frac{1}{L} \sum_{k=1}^L \max_a \frac{\mathbf{u}_k \cdot \mathbf{w}_a}{\|\mathbf{u}_k\| \|\mathbf{w}_a\|}, \quad (6)$$

318 where \mathbf{u}_k is the embedding of the k -th intention, \mathbf{w}_a is an action embedding, and L is the number of
 319 intentions.
 320

321 4.1.3 PLOT REASONABILITY (PR)

322 The third dimension, Plot Reasonableness (PR), quantifies the logical structure and plausibility of the
 323 narrative.
 324

PR1: Event Sequence Semantic Coherence. Key events or scene descriptions $[s_1, \dots, s_K]$ are extracted (using Qwen or tags), and their embeddings are computed. The metric is the mean cosine similarity between adjacent events:

$$\text{PR1} = \frac{1}{K-1} \sum_{i=1}^{K-1} \frac{\mathbf{s}_i \cdot \mathbf{s}_{i+1}}{\|\mathbf{s}_i\| \|\mathbf{s}_{i+1}\|}. \quad (7)$$

Higher values indicate more coherent event progression.

PR2: Event Coherence. Qwen is used to extract key plot events from scenes and actions, producing a chronological event sequence. The coherence is measured by the mean cosine similarity between adjacent event embeddings, reflecting logical event progression.

PR3: Narrative Innovation. Narrative structure patterns (plot devices, storytelling techniques, structural innovations) are extracted from scenes and actions using Gemma. For each pattern p_i , Qwen analyzes its innovation potential to produce embeddings \mathbf{n}_i . The narrative innovation is measured by inverting the weighted combination of pattern similarity metrics:

$$\text{PR3} = 1 - \left[\lambda_3 \cdot \frac{2}{P(P-1)} \sum_{i=1}^{P-1} \sum_{j=i+1}^P \frac{\mathbf{n}_i \cdot \mathbf{n}_j}{\|\mathbf{n}_i\| \|\mathbf{n}_j\|} + \lambda_4 \cdot \frac{1}{P} \sum_{i=1}^P \frac{\mathbf{n}_i \cdot \bar{\mathbf{n}}}{\|\mathbf{n}_i\| \|\bar{\mathbf{n}}\|} \right], \quad (8)$$

where P is the number of narrative patterns, $\bar{\mathbf{n}}$ is the centroid of pattern embeddings, and $\lambda_3 + \lambda_4 = 1$. Lower similarity (higher innovation) yields higher scores.

4.2 CML-INSTRUCTION: STRUCTURED PROMPTING FOR SCRIPT GENERATION

To address the structural and narrative deficiencies identified by CML-Bench, we propose **CML-Instruction**, a prompting strategy that guides large language models to generate structured movie scripts using detailed, component-level instructions. As a complex instruction, CML-Instruction provides explicit guidance, specifying requirements for scene organization, character dialogue, action descriptions, and other screenplay elements. In particular, the instructions emphasize the consistency and depth of character dialogue, the logical flow of events, and the use of cinematic conventions such as scene headings and transitions. By incorporating these fine-grained instructions, CML-Instruction enables LLMs to better capture the hierarchical and semantic structure of professional screenplays as demonstrated in our experiments in Section 5 and more details are provided in Appendix E.

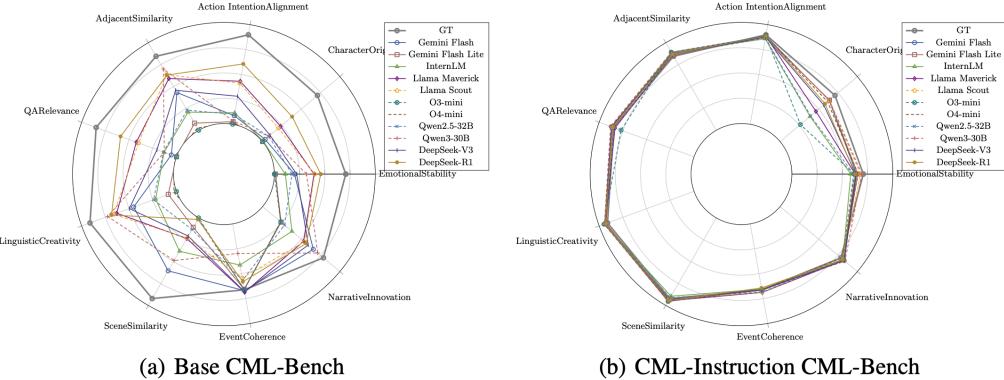


Figure 4: **CML-Bench evaluation of LLM-generated screenplays.** (a) Human (GT) vs. LLMs with base prompt settings. (b) Human (GT) vs. LLMs with CML-Instruction.

5 EXPERIMENTS

5.1 MAIN RESULTS

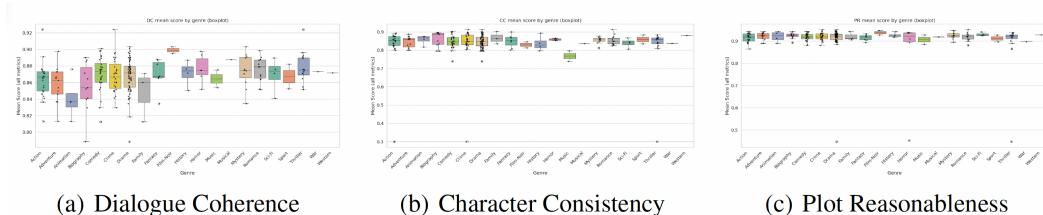
With experimental settings provided in Appendix F, the main experimental results are presented in Table 1. We report the performance of eleven leading LLMs under base and CML-Instruction

378 Table 1: Main results on the CML-bench. Each model is evaluated on Dialogue Coherence (DC),
 379 Character Consistency (CC), and Plot Reasonableness (PR), with sub-metrics DC1–3, CC1–3, PR1–3.
 380 The top block shows base LLM generations; the bottom (shaded) block shows results with CML-
 381 instruction prompting.

382 Model	383 Dialogue Coherence			384 Character Consistency			385 Plot Reasonableness		
	386 DC1	387 DC2	388 DC3	389 CC1	390 CC2	391 CC3	392 PR1	393 PR2	394 PR3
385 Human (GT)	0.85	0.85	0.91	0.71	0.284	0.90	0.92	0.90	0.39
386 o3-mini-base	0.00	0.00	0.00	0.00	0.000	0.00	0.00	0.90	0.12
387 o4-mini-base	0.03	0.03	0.03	0.01	0.003	0.02	0.01	0.90	0.12
388 llama-4-maverick-base	0.59	0.42	0.63	0.39	0.094	0.43	0.24	0.91	0.27
389 llama-4-scout-base	0.63	0.40	0.66	0.40	0.082	0.41	0.23	0.86	0.27
390 gemini-flash-base	0.43	0.05	0.45	0.20	0.013	0.09	0.60	0.90	0.33
391 gemini-flash-lite-base	0.08	0.00	0.09	0.01	0.000	0.03	0.11	0.90	0.12
392 internlm3-8b-base	0.21	0.13	0.22	0.11	0.003	0.12	0.38	0.82	0.19
393 qwen2.5-32b-base	0.23	0.14	0.24	0.18	0.032	0.10	0.13	0.87	0.14
394 qwen3-30b-base	0.70	0.13	0.73	0.32	0.033	0.03	0.49	0.79	0.36
395 deepseek-v3-base	0.46	0.21	0.50	0.22	0.039	0.28	0.21	0.90	0.30
396 deepseek-r1-base	0.63	0.59	0.69	0.46	0.153	0.61	0.02	0.87	0.28
397 o3-mini-instr	0.89	0.77	0.95	0.62	0.105	0.89	0.95	0.90	0.41
398 o4-mini-instr	0.87	0.86	0.93	0.66	0.246	0.88	0.95	0.90	0.40
399 llama-4-maverick-instr	0.87	0.83	0.94	0.63	0.186	0.89	0.95	0.91	0.41
400 llama-4-scout-instr	0.87	0.86	0.94	0.68	0.254	0.88	0.93	0.91	0.41
401 gemini-flash-instr	0.88	0.87	0.94	0.64	0.254	0.89	0.94	0.90	0.41
402 gemini-flash-lite-instr	0.86	0.85	0.93	0.65	0.256	0.88	0.94	0.90	0.41
403 internlm3-8b-instr	0.89	0.87	0.94	0.58	0.155	0.86	0.89	0.90	0.41
404 qwen2.5-32b-instr	0.87	0.84	0.94	0.61	0.158	0.86	0.91	0.91	0.40
405 qwen3-30b-instr	0.89	0.88	0.95	0.69	0.255	0.88	0.95	0.90	0.420
406 deepseek-v3-instr	0.87	0.87	0.94	0.63	0.226	0.88	0.93	0.90	0.420
407 deepseek-r1-instr	0.87	0.86	0.94	0.63	0.233	0.89	0.94	0.89	0.41

409 (see Sec 4.2) prompting settings, alongside human-written scripts in **CML-Dataset** described in
 410 Sec 3.1. Each model is evaluated on the three core dimensions of script quality, with enhanced metrics
 411 including **CC2: Character Originality** (measuring character distinctiveness and consistency) and
 412 **PR3: Narrative Innovation** (measuring creative storytelling patterns), expanding our evaluation
 413 from 8 to 9 comprehensive metrics.

414 Figure 4 shows human scripts achieve high CML-Bench scores while base LLMs perform poorly.
 415 Table 1 reveals: (1) Base models struggle with creativity metrics (near-zero CC2 scores, PR3 varies
 416 0.117–0.357); (2) Many models score zero due to structural failures; (3) Qwen3-30B achieves highest
 417 PR3 score (0.420), exceeding human ground truth (0.394). CML-Instruction significantly improves
 418 all metrics, with instruction-tuned models approaching human-level coherence but showing room for
 419 improvement in character originality.



430 Figure 5: **Case studies on diverse movie genres** (a) xxx. (b) xxx. (c) xxx.

432 Table 2: User Study Results: Correlation between CML-Bench scores and human ratings for scripts
 433 generated by different models. Human raters evaluated a random subset of scripts on Dialogue
 434 Coherence (DC), Character Consistency (CC), and Plot Reasonableness (PR).

Model	CML-Bench Score			Human Rating (Avg.)		
	DC	CC	PR	DC	CC	PR
Human (GT)	0.87	0.84	0.91	3.00	2.66	3.33
o3-mini-base	0.00	0.00	0.45	1.67	1.21	1.21
o4-mini-base	0.03	0.02	0.46	1.46	1.33	1.21
llama-4-maverick-base	0.55	0.43	0.58	1.42	1.29	1.25
llama-4-scout-base	0.56	0.43	0.55	1.13	1.04	1.42
gemini-flash-base	0.31	0.14	0.75	1.46	1.33	1.29
gemini-flash-lite-base	0.06	0.01	0.51	1.29	1.21	1.25
internlm3-8b-base	0.19	0.12	0.60	1.25	1.67	1.21
qwen2.5-32b-base	0.23	0.18	0.50	1.49	1.57	1.46
qwen3-30b-base	0.70	0.32	0.64	1.51	1.82	1.55
deepseek-v3-base	0.46	0.22	0.56	1.78	1.63	1.36
deepseek-r1-base	0.63	0.46	0.45	1.66	1.79	1.48
o3-mini-instr	0.86	0.76	0.93	3.50	3.33	3.25
o4-mini-instr	0.89	0.82	0.93	3.58	3.58	3.33
llama-4-maverick-instr	0.88	0.81	0.93	3.50	3.42	3.50
llama-4-scout-instr	0.89	0.83	0.92	3.42	3.42	3.50
gemini-flash-instr	0.90	0.82	0.92	3.50	3.42	3.58
gemini-flash-lite-instr	0.88	0.82	0.92	3.42	3.50	3.50
internlm3-8b-instr	0.90	0.77	0.90	3.17	3.25	3.42
qwen2.5-32b-instr	0.87	0.61	0.91	3.42	3.39	3.44
qwen3-30b-instr	0.89	0.69	0.93	3.49	3.35	3.51
deepseek-v3-instr	0.87	0.63	0.92	3.51	3.48	3.42
deepseek-r1-instr	0.87	0.63	0.92	3.57	3.55	3.39

5.2 COMPREHENSIVE ANALYSIS

463 **Case Study** To validate the robustness of CML-Bench across diverse cinematic styles, we present
 464 case studies on human-written scripts from various genres in the CML-Dataset (see Figure 2 for
 465 genre distribution). Figure 5 illustrates the boxplot distributions for Dialogue Coherence (DC),
 466 Character Consistency (CC), and Plot Reasonableness (PR) scores across these genres. These results
 467 demonstrate that CML-Bench consistently assigns high scores to quality scripts across the genre
 468 spectrum, affirming its robust applicability for evaluating diverse screenplay types.

470 **Human Evaluation** To validate CML-Bench’s reliability, human experts rated script excerpts
 471 from five randomly sampled movies on **DC**, **CC**, and **PR** using a 0-5 integer scale, involving ten
 472 participants. Our analysis in Table 2 reveals a strong alignment between CML-Bench scores and
 473 human judgments, evidenced by an overall Spearman correlation of 0.80 between averaged CML-
 474 Bench scores and averaged human ratings (details in Appendix G.2). This significant correlation
 475 confirms that CML-Bench’s automated metrics effectively capture human perceptions of screenplay
 476 quality, establishing it as a robust and interpretable benchmark.

6 CONCLUSION

479 We introduce a comprehensive framework for evaluating and generating high-quality movie screen-
 480 plays using large language models. Our contributions include the CML-Dataset (100 classic script
 481 excerpts), empirical identification of three pivotal quality dimensions (Dialogue Coherence, Character
 482 Consistency, Plot Reasonableness). Building upon these insights, we developed CML-Bench, an
 483 interpretable benchmark with eight quantitative metrics, and CML-Instruction, a structured prompting
 484 strategy designed to improve LLM-based script generation. Extensive experiments validate strong
 485 alignment with human preferences and demonstrate significant screenplay quality improvements,
 advancing creative AI for screenwriting.

486
487
ETHICS STATEMENT

488 Our CML-Bench framework is designed for academic research in screenplay evaluation and gener-
 489 ation. The CML-Dataset derives from MovieSum under CC BY-NC 4.0 license, which we strictly
 490 follow. All LLM experiments use publicly available APIs in accordance with their terms of service.
 491 Human evaluation participants received fair compensation following regional ethical standards, with
 492 privacy rigorously protected. While our work enhances creative screenplay generation, we acknowl-
 493 edge potential environmental impact from computational resources and possible misuse of generative
 494 content. We commit to responsible dissemination through open-source releases (GitHub/Hugging-
 495 Face) with clear academic-use guidelines. Dataset bias toward English-language classic films may
 496 limit cross-cultural applicability, which future work should address through multilingual expansion.
 497

498
499
REPRODUCIBILITY STATEMENT

500 1. CML-Bench implementation details are described in Section 4; comprehensive metric
 501 formulations are provided in Equations (1)-(8).

502 2. CML-Dataset construction process is detailed in Section 3.1 and Appendix B. The complete
 503 dataset will be released on HuggingFace under CC BY-NC 4.0 license.

504 3. Source code for all metrics and evaluation pipelines will be available on GitHub under MIT
 505 license. Experimental hyperparameters and model configurations are detailed in Appendix F.

506 4. Human evaluation protocols and correlation analysis methods are described in Section 5
 507 with statistical details in Appendix G.2.

508
509
REFERENCES

510
 511 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
 512 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023a.

513
 514 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
 515 Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
 516 multitask benchmark for long context understanding. *arXiv preprint arXiv:2308.14508*, 2023b.

517
 518 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
 519 Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models,
 520 2023.

521
 522 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 523 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 524 few-shot learners, 2020.

525
 526 Haodong Chen, Haojian Huang, Junhao Dong, Mingzhe Zheng, and Dian Shao. Fineclip: Multi-
 527 modal fine-grained clip for dynamic facial expression recognition with adapters. In *Proceedings of
 528 the 32nd ACM International Conference on Multimedia*, pp. 2301–2310, 2024.

529
 530 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
 531 Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open
 532 platform for evaluating llms by human preference. In *Forty-first International Conference on
 533 Machine Learning*, 2024.

534
 535 Elizabeth Clark and Noah A Smith. Choose your own adventure: Paired suggestions in collaborative
 536 writing for evaluating story generation models. In *Proceedings of the 2021 Conference of the
 537 North American Chapter of the Association for Computational Linguistics: Human Language
 538 Technologies*, pp. 3566–3575, 2021.

539
 540 Esin Durmus, He He, and Mona Diab. Feqa: A question answering evaluation framework for
 541 faithfulness assessment in abstractive summarization. *arXiv preprint arXiv:2005.03754*, 2020.

542
 543 Eitan Farchi, Shmulik Froimovich, Rami Katan, and Orna Raz. Automatic generation of benchmarks
 544 and reliable llm judgment for code tasks. *arXiv preprint arXiv:2410.21071*, 2024.

540 Syd Field. *Screenplay: The foundations of screenwriting*. Delta, 2005.
 541

542 Kavita Ganeshan. Rouge 2.0: Updated and improved measures for evaluation of summarization tasks,
 543 2018. URL <https://arxiv.org/abs/1803.01937>.

544 Pablo Gervás. Computational modelling of poetry generation. In *Artificial Intelligence and Poetry*
 545 *Symposium, AISB Convention*, volume 2, pp. 2, 2013.

546

547 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 548 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 549 models. *arXiv preprint arXiv:2407.21783*, 2024.

550

551 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
 552 Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint arXiv:2411.15594*,
 553 2024.

554

555 Senyu Han, Lu Chen, Li-Min Lin, Zhengshan Xu, and Kai Yu. Ibsen: Director-actor agent collabora-
 556 tion for controllable and interactive drama script generation. *arXiv preprint arXiv:2407.01093*,
 557 2024.

558

559 Yingqing He, Menghan Xia, Haoxin Chen, Xiaodong Cun, Yuan Gong, Jinbo Xing, Yong Zhang,
 560 Xintao Wang, Chao Weng, Ying Shan, et al. Animate-a-story: Storytelling with retrieval-augmented
 561 video generation. *arXiv preprint arXiv:2307.06940*, 2023.

562

563 Alan Hueth. *Scriptwriting for film, television and new media*. Routledge, 2019.

564

565 Paulina Toro Isaza and Nalani Kopp. The literary canons of large-language models: An exploration
 566 of the frequency of novel and author generations across gender, race and ethnicity, and nationality.
 567 In *Proceedings of the 5th International Conference on Natural Language Processing for Digital*
 568 *Humanities*, pp. 214–231, 2025.

569

570 Levon Khachatryan, A. Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang,
 571 Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models are
 572 zero-shot video generators. *IEEE International Conference on Computer Vision*, 2023. doi:
 10.1109/ICCV51070.2023.01462.

573

574 David Kryscynski. Firm-specific worker incentives, employee retention, and wage–tenure slopes.
 575 *Organization Science*, 32(2):352–375, 2021.

576

577 David Kryscynski, Russ Coff, and Benjamin Campbell. Charting a path between firm-specific
 578 incentives and human capital-based competitive advantage. *Strategic management journal*, 42(2):
 579 386–412, 2021.

580

581 Vikram Kumaran, Jonathan Rowe, Bradford Mott, and James Lester. Scenecraft: automating
 582 interactive narrative scene generation in digital games with large language models. In *Proceedings*
 583 *of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment*, volume 19,
 584 pp. 86–96, 2023.

585

586 Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan, Amrita
 587 Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, et al. From generation to judgment:
 588 Opportunities and challenges of llm-as-a-judge. *arXiv preprint arXiv:2411.16594*, 2024.

589

590 Han Lin, Abhay Zala, Jaemin Cho, and Mohit Bansal. Videodirectorgpt: Consistent multi-scene
 591 video generation via llm-guided planning. *arXiv preprint arXiv:2309.15091*, 2023.

592

593 Zefeng Lin, Yi Xiao, Zhiqiang Mo, Qifan Zhang, Jie Wang, Jiayang Chen, Jiajing Zhang, Hui Zhang,
 594 Zhengyi Liu, Xianyong Fang, et al. R Θ : A llm based novel-to-screenplay generation framework
 595 with causal plot graphs. *arXiv preprint arXiv:2503.15655*, 2025.

596

597 Jiaheng Liu, Zehao Ni, Haoran Que, Sun Sun, Noah Wang, Jian Yang, Hongcheng Guo, Zhongyuan
 598 Peng, Ge Zhang, Jiayi Tian, et al. Roleagent: Building, interacting, and benchmarking high-
 599 quality role-playing agents from scripts. *Advances in Neural Information Processing Systems*, 37:
 600 49403–49428, 2024.

594 Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
 595 and Percy Liang. Lost in the middle: How language models use long contexts. *arXiv preprint*
 596 *arXiv:2307.03172*, 2023a.

597 Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
 598 evaluation using gpt-4 with better human alignment. *arXiv preprint arXiv:2303.16634*, 2023b.

600 Fuchen Long, Zhaofan Qiu, Ting Yao, and Tao Mei. Videostudio: Generating consistent-content
 601 and multi-scene videos. In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten
 602 Sattler, and Gü̈l Varol (eds.), *Computer Vision - ECCV 2024 - 18th European Conference, Milan,
 603 Italy, September 29-October 4, 2024, Proceedings, Part LX*, volume 15118 of *Lecture Notes in
 604 Computer Science*, pp. 468–485. Springer, 2024. doi: 10.1007/978-3-031-73027-6_27. URL
 605 https://doi.org/10.1007/978-3-031-73027-6_27.

606 Annie Louis and Ani Nenkova. Automatically assessing machine summary content without a gold
 607 standard. *Computational Linguistics*, 39(2):267–300, 2013.

609 Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
 610 Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th Annual Meeting*
 611 *of the Association for Computational Linguistics: Human Language Technologies*, pp. 142–150,
 612 Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL <http://www.aclweb.org/anthology/P11-1015>.

614 Louis Mahon and Mirella Lapata. Screenwriter: Automatic screenplay generation and movie
 615 summarisation. *arXiv preprint arXiv:2410.19809*, 2024.

617 Robert McKee. Story: Substance, structure, style and the principles of screenwriting, 1997.

619 Piotr Mirowski, Kory W Mathewson, Jaylen Pittman, and Richard Evans. Co-writing screenplays
 620 and theatre scripts with language models: Evaluation by industry professionals. In *Proceedings of*
 621 *the 2023 CHI conference on human factors in computing systems*, pp. 1–34, 2023.

622 Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
 623 length for transformers. *arXiv preprint arXiv:2305.16300*, 2023.

625 Junho Myung, Nayeon Lee, Yi Zhou, Jiho Jin, Rifki Putri, Dimosthenis Antypas, Hsuvas Borkakoty,
 626 Eunsu Kim, Carla Perez-Almendros, Abinew Ali Ayele, et al. Blend: A benchmark for llms on
 627 everyday knowledge in diverse cultures and languages. *Advances in Neural Information Processing*
 628 *Systems*, 37:78104–78146, 2024.

629 Alexey A Novikov, Dimitrios Lenis, David Major, Jiří Hladvka, Maria Wimmer, and Katja Bühl-
 630 ler. Fully convolutional architectures for multiclass segmentation in chest radiographs. *IEEE*
 631 *transactions on medical imaging*, 37(8):1865–1876, 2018.

633 Samuel J Paech. Eq-bench: An emotional intelligence benchmark for large language models. *arXiv*
 634 *preprint arXiv:2312.06281*, 2023.

635 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 636 evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
 637 *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics*, pp.
 638 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics.
 639 doi: 10.3115/1073083.1073135. URL <https://aclanthology.org/P02-1040/>.

640 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 641 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

643 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 644 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 645 transformer, 2020.

647 Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and Jianfeng Gao. Plotmachines: Outline-conditioned
 648 generation with dynamic plot state tracking. *arXiv preprint arXiv:2004.14967*, 2020.

648 Swarnadeep Saha, Xian Li, Marjan Ghazvininejad, Jason Weston, and Tianlu Wang. Learning to plan
 649 & reason for evaluation with thinking-llm-as-a-judge. *arXiv preprint arXiv:2501.18099*, 2025.
 650

651 Rohit Saxena and Frank Keller. Moviesum: An abstractive summarization dataset for movie screen-
 652 plays, 2024. URL <https://arxiv.org/abs/2408.06281>.

653 Jiaxin Shen, Jinan Xu, Huiqi Hu, Luyi Lin, Fei Zheng, Guoyang Ma, Fandong Meng, Jie Zhou, and
 654 Wenjuan Han. A law reasoning benchmark for llm with tree-organized structures including factum
 655 probandum, evidence and experiences. *arXiv preprint arXiv:2503.00841*, 2025.
 656

657 Voytilla Stuart. Myth and the movies: Discovering the mythic structure of 50 unforgettable films.
 658 *Michael Weise Productions, Studio City*, 1999.

659 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
 660 Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
 661 based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024a.
 662

663 Gemma Team, Morgane Rivière, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
 664 Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
 665 Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*,
 666 2024b.

667 InternLM Team. Internlm: A multilingual language model with progressively enhanced capabilities,
 668 2023.

669 Yufei Tian, Tenghao Huang, Miri Liu, Derek Jiang, Alexander Spangher, Muahao Chen, Jonathan
 670 May, and Nanyun Peng. Are large language models capable of generating human-level narratives?
 671 *arXiv preprint arXiv:2407.13248*, 2024.

672 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 673 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 674 efficient foundation language models, 2023.

675 Yi Wang, Qian Zhou, and David Ledo. Storyverse: Towards co-authoring dynamic plot with llm-based
 676 character simulation via narrative planning. In *Proceedings of the 19th International Conference
 677 on the Foundations of Digital Games*, pp. 1–4, 2024.

678 Zhecheng Wang, Jiaju Ma, Eitan Grinspun, Bryan Wang, and Tovi Grossman. Script2screen: Supporting
 679 dialogue scriptwriting with interactive audiovisual generation. *arXiv preprint arXiv:2504.14776*,
 680 2025.

681 Zhifei Xie, Daniel Tang, Dingwei Tan, Jacques Klein, Tegawend F Bissyand, and Saad Ezzini.
 682 Dreamfactory: Pioneering multi-scene long video generation with a multi-agent framework. *arXiv
 683 preprint arXiv:2408.11788*, 2024.

684 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 685 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 686 arXiv:2412.15115*, 2024.

687 Kevin Yang, Dan Klein, Nanyun Peng, and Yuandong Tian. Doc: Improving long story coherence
 688 with detailed outline control. *arXiv preprint arXiv:2212.10077*, 2022a.

689 Kevin Yang, Yuandong Tian, Nanyun Peng, and Dan Klein. Re3: Generating longer stories with
 690 recursive reprompting and revision. *arXiv preprint arXiv:2210.06774*, 2022b.

691 Shenghai Yuan, Jinfa Huang, Yongqi Xu, Yaoyang Liu, Shaofeng Zhang, Yujun Shi, Rui-Jie Zhu,
 692 Xinhua Cheng, Jiebo Luo, and Li Yuan. Chronomagic-bench: A benchmark for metamorphic
 693 evaluation of text-to-time-lapse video generation. *Advances in Neural Information Processing
 694 Systems*, 37:21236–21270, 2024.

695 Canyu Zhao, Mingyu Liu, Wen Wang, Weihua Chen, Fan Wang, Hao Chen, Bo Zhang, and Chunhua
 696 Shen. Moviedreamer: Hierarchical generation for coherent long visual sequence. *arXiv preprint
 697 arXiv:2407.16655*, 2024.

702 Mingzhe Zheng, Yongqi Xu, Haojian Huang, Xuran Ma, Yexin Liu, Wenjie Shu, Yatian Pang, Feilong
703 Tang, Qifeng Chen, Harry Yang, et al. Videogen-of-thought: A collaborative framework for
704 multi-shot video generation. *arXiv preprint arXiv:2412.02259*, 2024.

705
706 Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu Jiao, Pengfei Liu, Chenguang Zhu, Heng Ji,
707 and Jiawei Han. Towards a unified multi-dimensional evaluator for text generation. *arXiv preprint*
708 *arXiv:2210.07197*, 2022.

709 Shanshan Zhong, Zhongzhan Huang, Shanghua Gao, Wushao Wen, Liang Lin, Marinka Zitnik, and
710 Pan Zhou. Let's think outside the box: Exploring leap-of-thought in large language models with
711 creative humor generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
712 *Pattern Recognition*, pp. 13246–13257, 2024.

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Table 3: **Comparison of CML-Bench with other evaluation approaches, highlighting its specialized focus on cinematic narrative dimensions in screenplays.**

Benchmark	Type	Focus	Domain Specificity
LongBench Bai et al. (2023b)	Metrics Analysis	Contextual Understanding	General Long Text
G-Eval Liu et al. (2023b)	LLM-as-a-judge	Holistic Scoring/Ranking	General NLG
EQ-Bench Paech (2023)	LLM-as-a-judge	Holistic Scoring/Ranking	General NLG
LoTBench Zhong et al. (2024)	LLM-as-a-judge	Multi-step Reasoning	General
CML-Bench (Ours)	Metrics Analysis & LLM-as-a-judge	Cinematic Narrative Quality	Screenplay-Specific

APPENDIX

A LIMITATIONS AND FUTURE WORKS

Limitations Our framework, while effective, has certain limitations. First, the CML-Dataset, while diverse with 600K tokens, is currently confined to 100 classic English-language films, which may not fully encompass the stylistic variety of contemporary or non-English screenplays. Additionally, CML-Bench metrics require a structured script format for analysis and might not be ideal for scripts written in a more free-form, natural language manner.

Future Works Building on these limitations, future work will focus on two primary directions. First, we plan to extend the range and diversity of CML-Dataset and CML-Bench, incorporating a broader array of genres, contemporary scripts, and multilingual content to enhance robustness and applicability. Second, a crucial next step is to bridge the gap between script and screen by transferring script-level analysis to tangible movie-level visual outputs. This involves exploring methodologies to automatically generate visual representations (e.g., storyboards, character sketches, keyframes) from scripts and developing new metrics within CML-Bench to evaluate the potential visual impact and cinematic feasibility of generated screenplays.

B STATISTICS ABOUT DATASET CONSTRUCTION

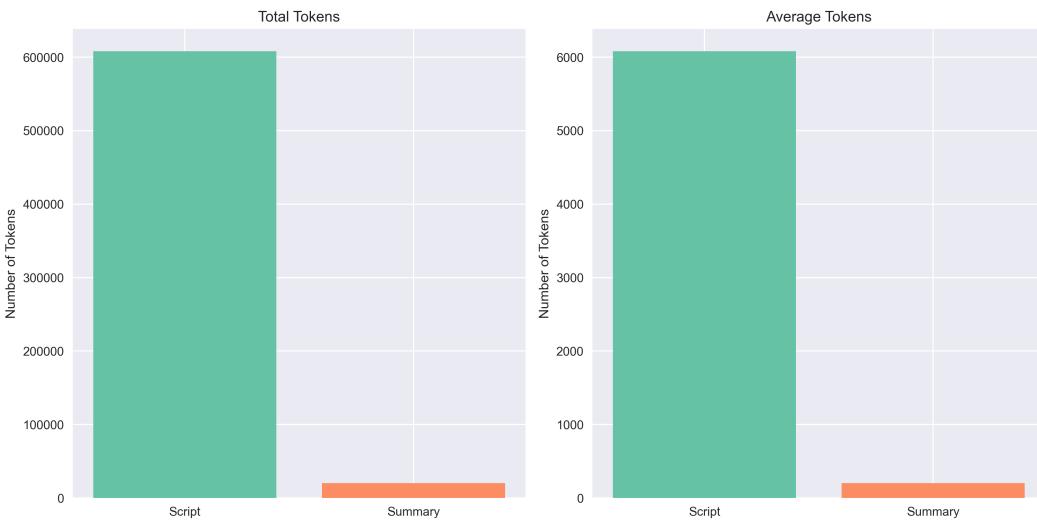


Figure 6: Overall token statistics for scripts and summaries in the CML-Dataset. The left panel shows total token counts, while the right panel shows average token counts.

Overall Token Statistics. Figure 6 presents an overview of the token counts within the CML-Dataset. The left panel illustrates the total number of tokens, revealing a substantial volume for script content (approximately 600,000 tokens) compared to their corresponding summaries (around 20,000

tokens). The right panel shows that, on average, script segments contain roughly 6,000 tokens, while summaries are significantly more concise with an average of about 200 tokens.

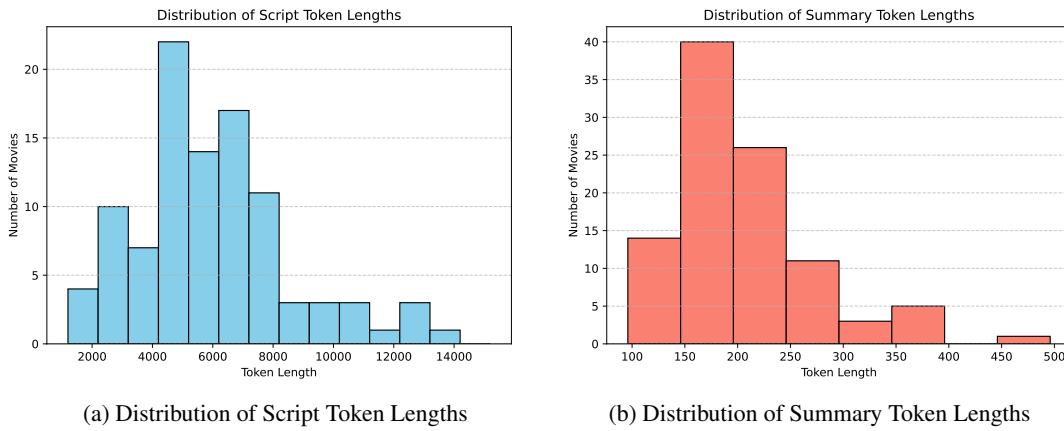


Figure 7: **Token length distribution in CML-Dataset.** The dataset maintains text diversity while controlling length.

Token Length Distributions. The distributions of token lengths for script segments and their summaries are detailed in Figure 7. Panel (a) shows that script excerpts typically range from 1,500 to 14,000 tokens, with a concentration between 4,000 and 7,000 tokens, indicating diverse yet manageable complexity. Panel (b) demonstrates that summaries are consistently short, generally falling between 120 and 250 tokens, ensuring they are succinct inputs for generation tasks.

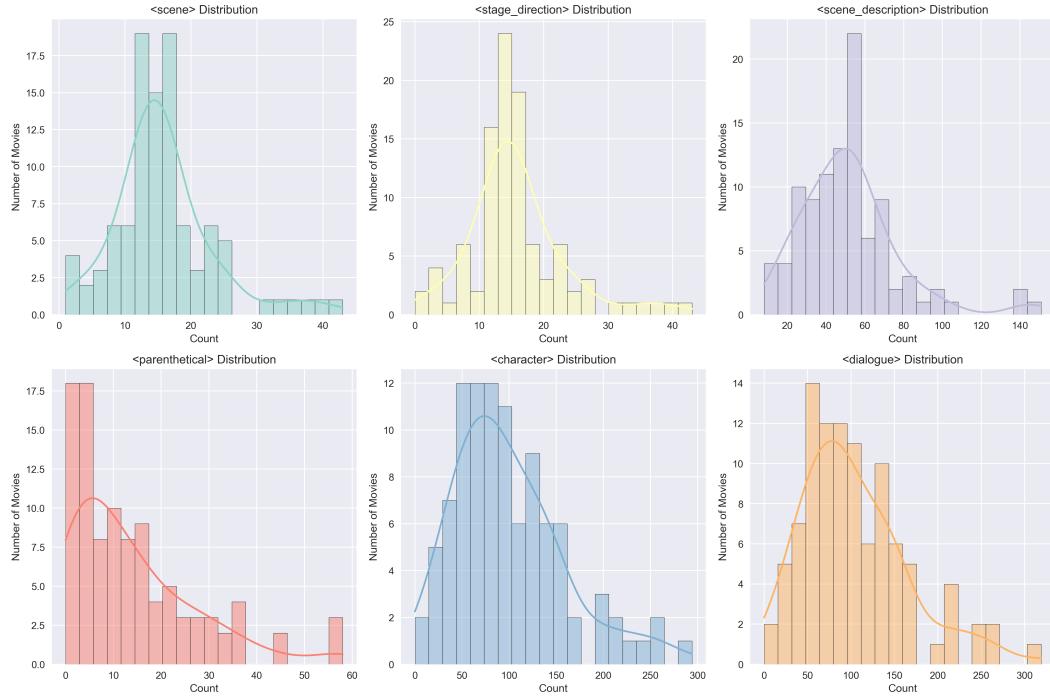


Figure 8: Distribution of common screenplay tags within the CML-Dataset script segments, including scene, stage direction, scene description, parenthetical, character, and dialogue tags.

Screenplay Tag Distributions. Figure 8 displays the frequency distributions for key screenplay tags across the CML-Dataset. The histograms illustrate common counts for elements such as `<scene>`, `<stage_direction>`, `<scene_description>`, `<parenthetical>`, `<character>`, and `<dialogue>` tags within the script segments. These distributions provide insights into the structural composition of the movie scripts included in our dataset.

864 **Quality Control Process.** Our systematic dataset construction approach employs a multi-stage
 865 quality control process to ensure high-quality screenplay content. We employed IMDb ratings 7.0 as
 866 our primary quality filter, ensuring selection of human-recognized high-quality scripts from critically
 867 acclaimed films. This approach leverages established human consensus on screenplay quality rather
 868 than subjective academic judgments. Our comprehensive approach included: (1) IMDb score-based
 869 filtering for human-validated quality, (2) professional screenplay format verification, (3) narrative
 870 completeness assessment, and (4) expert manual review for cinematic authenticity. This rigorous
 871 process ensures that our dataset maintains consistent quality standards while encompassing diverse
 872 cinematic styles and genres.

873 C QUALITATIVE ANALYSIS EXAMPLES

874 C.1 GOOD AND BAD CASE ANALYSIS

875 To demonstrate the effectiveness of our pre-set experiment in Section 3.2, we conducted LLM-as-a-
 876 judge analysis using Gemini 2.5 Pro to validate our intrinsic characteristics analysis. This analysis
 877 supports our framework’s ability to distinguish screenplay quality through systematic evaluation of
 878 narrative logic and character authenticity.

879 **Low-Quality Case Analysis.** We examined “Dumb and Dumberer: When Harry Met Lloyd” (2003,
 880 IMDB: tt0329028), which represents a low-quality screenplay example. The following dialogue
 881 excerpt illustrates fundamental issues in plot reasonableness:

```
882     <character>LLOYD</character>
 883     <dialogue>You could've saved that for the tooth fairy!</dialogue>
 884     <character>HARRY</character>
 885     <dialogue>That's stupid! I happen to know my mom is the tooth
 886     fairy.</dialogue>
 887     <character>LLOYD</character>
 888     <dialogue>Your mom is the tooth fairy? That is so cool!</dialogue>
 889     <character>HARRY</character>
 890     <dialogue>Yeah, she must do all the flying around when
 891     I'm asleep.</dialogue>
```

892 Gemini 2.5 Pro analysis identified this case as scoring 0.0 in plot reasonableness because adult
 893 characters treat childhood mythology (tooth fairy) as factual reality without narrative justification,
 894 demonstrating a fundamental breakdown in logical consistency.

895 **High-Quality Case Analysis.** In contrast, “Lake Placid” (1999, IMDB: tt0139414) exemplifies
 896 well-constructed screenplay dialogue:

```
897     <character>KEOUGH</character>
 898     <dialogue>And what would he do come winter?</dialogue>
 899     <character>HECTOR</character>
 900     <dialogue>They can survive winter. As long as their nostrils
 901     don't freeze,
 902     they survive.</dialogue>
 903     <character>HECTOR</character>
 904     <dialogue>What I'm saying is if it's a crocodile that cut a man in half
 905     he would have to be over twenty feet which would make him well over
 906     a hundred years old, it would be unthinkable to destroy him.</dialogue>
```

907 This example scored 4.3/5 as characters demonstrate logical reasoning about environmental survival
 908 and biological constraints, maintaining professional discourse appropriate to their expertise. The
 909 dialogue exhibits coherent topic progression and character-consistent knowledge demonstration.

910 This comparative analysis confirms that our LLM-as-a-judge framework effectively captures the qual-
 911 itative differences that distinguish high-quality screenplays from poorly constructed ones, validating
 912 our approach to automated screenplay evaluation.

918 **D ADDITIONAL DETAILS OF BENCHMARKING**
919920 **D.1 PARSING RULES**
921922 The system uses a two-stage parsing strategy to extract elements from screenplays, prioritizing
923 XML-like structures and falling back to plain text interpretation. This is primarily handled by the
924 `parse_script_segment` function, with `parse_script_segment_base` as an alternative.
925926 **Primary XML-like Parser.** This parser targets scripts with explicit tags.
927928

1. **Preprocessing:** Input is cleaned of common wrappers (e.g., ``xml, `<script>`) and HTML
929 entities are unescaped.
2. **Scene Segmentation:** Scripts are segmented into scenes using `<scene>...</scene>` tags.
930 If no such tags are found, the entire script is treated as a single scene/action block.
3. **Element Extraction:** Within scenes, content is extracted from `<character>`, `<dialogue>`,
931 `<parenthetical>`, `<action>`, `<scene_description>`, and `<stage_direction>`
932 tags. Nested tags within these are removed.
4. **Data Collection:** Dialogues are ordered and grouped by character, with parentheticals linked to
933 their respective dialogue. Actions and scene descriptions (including initial stage directions) are
934 collected; these descriptions also inform scene-level coherence metrics (e.g., PR1).

935936 **Fallback Plain Text Parser.** This parser is used for less structured inputs.
937938

1. **Scene Segmentation:** Text is split into scenes based on multiple empty lines or keywords like
939 “INT.”/“EXT.”
2. **Dialogue and Action Extraction:** Dialogues are identified by “CHARACTER NAME: Text”
940 patterns. Remaining text within a scene segment is considered an action.

941 This dual approach ensures that structural elements crucial for metric calculation are extracted from
942 varied script formats, directly impacting the data available for quality assessment.
943944 **D.2 EXPLAINING ZERO SCORES FOR SOME LLMs**
945946 Several Large Language Models (LLMs), particularly when used with basic prompting (“base”
947 versions), may generate outputs that result in zero or near-zero scores for multiple CML-Bench
948 metrics. This is often not an indictment of the metric’s sensitivity but rather a direct consequence
949 of the LLM’s failure to produce a structurally coherent and parsable screenplay. The parsing rules,
950 detailed in Section D.1, are designed to extract specific screenplay elements, and if these elements
951 are absent or incorrectly formatted, the data required for metric calculation cannot be obtained.
952953 **Impact of Poor Structure on Parsing.** As defined in Sec 3, movie scripts are highly structured
954 data types. Consider an output from a model like “o3-mini” under base prompting conditions. A
955 typical failure mode involves the generation of text that lacks clear delimitation of scenes, character
956 cues, or dialogue. The primary parser would find no `<scene>`, `<character>`, or `<dialogue>`
957 tags. The fallback parser might struggle if character cues do not strictly adhere to the “CHARACTER:
958 Text” format or if scene boundaries are ambiguous. Consequently, the parsing process might yield
959 empty or sparsely populated lists for “dialogues ordered”, “dialogues by character”, “scenes”, and
960 “actions”.
961962 **Consequences for Metric Scores.** The absence of correctly parsed elements directly leads to low
963 or zero scores for several metrics:
964965

- **Dialogue Coherence (DC):**

966

- For DC1 (Adjacent Turn Topic Similarity, Equation 1 in Section 4), if fewer than two dialogue
967 turns are extracted (“dialogues ordered” is too short), the metric defaults to 0.
- For DC2 (Dialogue Topic Concentration, Equation 2), a lack of dialogue means no keywords
968 can be extracted, resulting in a score of 0.
- For DC3 (Question-Answer Pair Relevance, Equation 3), no dialogues mean no Question-Answer
969 pairs can be identified, leading to a 0 score.

970

- **Character Consistency (CC):**

972 – For CC1 (Emotional Stability, Equation 4) and CC2 (Linguistic Style Consistency, Equation 5),
 973 if a character has fewer than two or three dialogue turns parsed respectively (“dialogues by
 974 character”), these metrics cannot be computed for that character, lowering the overall average. If
 975 no characters have sufficient dialogue, the scores become 0.
 976 – For CC3 (Action-Intention Alignment, Equation 6), if no dialogues (for intentions) or no actions
 977 are parsed, the score is 0.
 978 • **Plot Reasonableness (PR):**
 979 – For PR1 (Event Sequence Semantic Coherence, Equation 7), if fewer than two scenes are parsed,
 980 the score is 0.
 981 – For PR2 (Causality Density, Equation 8), if no scenes or actions are extracted to form a basis for
 982 event identification $K = 0$, leading to a 0 score. However, we found that PR2 did not appear to
 983 be 0, while Table 1 and Figure 4 also show that PR2 is not a good indicator of discrimination.

984 **Contrast with Instruction-Tuned Output.** In contrast, an instruction-tuned model like “o3-mini-
 985 instruction”, when guided by CML-Instruction (Section E), typically produces output that adheres to
 986 the expected XML-like structure. As a result, all CML-Bench metrics can be computed, leading to
 987 more meaningful (non-zero) scores that reflect the actual quality of the generated content rather than
 988 a parsing failure. The significant performance gap often observed between “base” and “instruction”
 989 versions of models in Table 1 can thus be substantially attributed to the improvement in structural
 990 adherence guided by CML-Instruction, which enables successful parsing and subsequent metric
 991 evaluation.

992 E CML-INSTRUCTION

993 E.1 PROMPT ENGINEERING FOR *Base* SUMMARIES

994 Our goal in the first stage is to obtain a concise yet information-dense *summary* a_i for every 15–20-
 995 scene script segment c_i (cf. Section 3.1). We found that a single “structured-bullet” prompt works
 996 robustly across genres and lengths.

1000 E.2 PROMPT ENGINEERING FOR INSTRUCTION SCRIPT GENERATION

1001 CML-Instruction is a complex prompt designed to guide an LLM to expand a given movie summary
 1002 into a well-structured screenplay segment. In our implementation, the final instruction prompt is
 1003 constructed by concatenating four key string components: “*prompt start llm*”, “*prompt instructions*
 1004 *content*”, “*prompt example*”, and “*prompt end llm*”. These components are detailed below. (Note:
 1005 The overall LLM interaction typically begins with a system message like “You are an award-winning
 1006 screenwriter,” which sets the persona before this concatenated user prompt is provided.)

1007 COMPONENT 1: STARTING DIRECTIVE (*prompt start llm*)

1008 This component sets the expert role for the AI and introduces the primary task, including placeholders
 1009 for the movie title and summary that are filled at runtime.

1010 You are an expert AI scriptwriter. Your task is to generate a detailed
 1011 and professional movie script segment based on the provided Movie
 1012 Title and Movie Summary. The script should be formatted in an XML-
 1013 like structure, mirroring professional screenplay standards.

1014 **Input:**
 1015 Movie Title: {movie_name}
 1016 Movie Summary: {summary}

1017 Listing 1: Content of “*prompt start llm*”.

1022 COMPONENT 2: DETAILED CONTENT INSTRUCTIONS (*prompt instructions content*)

1023 This part provides specific rules for script generation, covering overall structure, scene elements, and
 1024 content/style guidelines. These instructions are designed to align the generated script with the quality
 1025 dimensions evaluated by CML-Bench.

```

1026
1027 **Instructions for Script Generation:***
1028
1029 1. **Overall Structure:***
1030   * The entire script segment must be enclosed within '<script> ... </
1031     script>' tags.
1032   * The script should be divided into multiple '<scene> ... </scene>'*
1033     blocks.
1034
1035 2. **Scene Elements (within each '<scene>'):***
1036   * **Stage Direction (Scene Heading):** Start each scene with a '<
1037     stage_direction>...</stage_direction>' tag. This should specify
1038     the location (INT. or EXT.), the specific place, and the time (DAY,
1039     NIGHT, CONTINUOUS, etc.). For example: '<stage_direction>INT.
1040     POLICE STATION - DAY</stage_direction>'.
1041   * **Scene Description:** Use '<scene_description>...<
1042     scene_description>' tags for detailed narrative descriptions. This
1043     includes:
1044     * Setting details (visuals, atmosphere).
1045     * Character actions, movements, and significant non-verbal
1046       expressions.
1047     * Key sounds or visual cues.
1048     * The flow of events within the scene.
1049   * **Character Dialogue:***
1050     * Introduce a speaking character with '<character>CHARACTER NAME</
1051       character>' tag (character names are typically in ALL CAPS).
1052     * Follow with their speech in a '<dialogue>...</dialogue>' tag.
1053     * If a character has brief acting notes or delivery instructions
1054       directly related to their dialogue, use a '<parenthetical>(note)
1055         </parenthetical>' tag immediately before or interspersed within
1056         their '<dialogue>' as appropriate. For example, '<
1057           parenthetical>(whispering)</parenthetical>' or '<parenthetical
1058             >(V.O.)</parenthetical>'.
1059   * **Actions/Further Descriptions within Scenes:** Additional '<
1060     scene_description>' tags can be used within a scene to describe
1061     actions that occur between dialogues or to elaborate further on
1062     the ongoing scene. Ensure these descriptions are vivid and
1063     contribute to the scene's progression.
1064
1065 3. **Content and Style:***
1066   * The generated script segment should logically follow from the
1067     provided Movie Summary, developing key events and character
1068     interactions implied by it.
1069   * Maintain consistency in character voice, behavior, and motivations
1070     throughout the segment.
1071   * Ensure dialogue is natural, engaging, and serves both plot
1072     advancement and character development.
1073   * Scene descriptions should be vivid, concise, and provide enough
1074     detail for visualization, focusing on what can be seen and heard.
1075   * The script should be coherent, with smooth and logical transitions
1076     between descriptions, actions, and dialogues.
1077   * Focus on creating a script segment that feels like a continuous and
1078     integral part of a larger, professional screenplay.
1079   * The tone and style should match that of a production-ready script.

```

Listing 2: Content of “prompt instructions content”.

COMPONENT 3: ILLUSTRATIVE EXAMPLE (*prompt example*)

An example snippet is provided to further clarify the expected XML-like format and the interplay of different tags.

```

1079 **Example Snippet of Expected Format:***
1080   '''xml

```

```
1080
1081 <script>
1082   <scene>
1083     <stage_direction>INT. COFFEE SHOP - DAY</stage_direction>
1084     <scene_description>The coffee shop is bustling. ANNA (30s), dressed in
1085       a sharp business suit, sips her latte, looking impatient. MARK
1086       (30s), disheveled and out of breath, rushes in.</scene_description>
1087
1088     <character>MARK</character>
1089     <dialogue>Sorry I'm late! The traffic was insane.</dialogue>
1090     <character>ANNA</character>
1091     <parenthetical>(glancing at her watch)</parenthetical>
1092     <dialogue>Insane or you overslept?</dialogue>
1093     <scene_description>Mark pulls out a chair and slumps into it, running
1094       a hand through his messy hair. He looks exhausted.</
1095       scene_description>
1096     <character>MARK</character>
1097     <dialogue>Okay, a bit of both. But mostly insane traffic.</dialogue>
1098   </scene>
1099   <scene>
1100     <stage_direction>EXT. PARK - LATER</stage_direction>
1101     <scene_description>Sunlight dapples through the trees. Anna and Mark
1102       walk along a paved path, a little more relaxed now.</
1103       scene_description>
1104     <character>ANNA</character>
1105     <dialogue>So, about the Henderson account... We need a new strategy.</
1106       dialogue>
1107   </scene>
1108 </script>
1109 ``
1110
```

Listing 3: Content of “prompt example”.

COMPONENT 4: FINAL COMMAND (*prompt end llm*)

This concluding part explicitly instructs the LLM to generate the script based on the provided inputs and guidelines, reinforcing the desired output format.

Please generate the script segment based on the Movie Title and Summary provided above, adhering strictly to this XML-like format and content guidelines. Ensure the output is a single block of text starting with '<script>' and ending with '</script>'.

Listing 4: Content of “prompt end llm”.

F EXPERIMENT SETTINGS

All experiments and metric computations were conducted on a single server node equipped with eight NVIDIA H100 GPUs. The calculation of our proposed CML-Bench metrics utilized two primary large language models: Qwen QwQ 32B Yang et al. (2024) and Gemma-2-2B Team et al. (2024b). Specifically, the Qwen QwQ 32B model, when employed for certain complex metric calculations (e.g., those requiring deep contextual understanding or causal reasoning), processed input sequences of up to 55K tokens. For these tasks, the Qwen model typically required approximately 36GB of VRAM in two H100 GPUs. Evaluating a full set of scripts generated by the seven baseline LLMs (as detailed in Table 1 in the main paper) using two H100 GPUs took approximately 2 hours to complete. The Gemma-2-2B model was utilized for lighter-weight tasks such as embedding generation and keyword extraction, offering efficient processing.

1134
1135

G ADDITIONAL DETAILS OF USER STUDY

1136
1137

G.1 INSTRUCTIONS FOR HUMAN EVALUATION RATING

1138
1139
1140
1141
1142

Human experts were tasked with evaluating script excerpts generated by various models and human-written ground truth. To guide this process, evaluators were presented with a standardized interface, examples of which are illustrated in Figure 9. This figure shows how movie script segments were paired with rating scales for three key dimensions: Dialogue Coherence (DC), Character Consistency (CC), and Plot Reasonableness (PR).

1143
1144
1145

Participants, comprising ten individuals with experience in narrative assessment, rated excerpts from five randomly sampled movies. For each excerpt, they assigned scores from 0 (very poor) to 5 (excellent) for each of the three dimensions based on the following criteria:

1146
1147
1148
1149
1150
1151
1152
1153
1154

- **Dialogue Coherence (DC):** Evaluates the logical flow, naturalness, and topical consistency of conversations. A high score indicates that dialogue is easy to follow, relevant to the context, and maintains a clear purpose.
- **Character Consistency (CC):** Assesses the stability of characters' linguistic styles, emotional expressions, and motivations throughout the excerpt. A high score means characters behave and speak in a way that is consistent with their established persona.
- **Plot Reasonableness (PR):** Judges the plausibility and logical progression of events and character actions within the narrative. A high score reflects a storyline that is coherent and whose developments are well-motivated.

1155

<scene><stage_direction>INT.

EDDIE POOL'S APARTMENT -

CONTINUOUS</stage_direction><u>

<scene_description>Seen through Wellers binoculars and projected onto his wall. EDDIE POOL, 30s, greasy and nervous, paces in front of a sleazy-looking DISTRIBUTOR, 40s, bored and unimpressed.</scene_description>\n<character>EDDIE POOL</character><u>

<dialogue>Look, I told you, the quality

ain't always top-notch.

<scene_description>A modest, but tidy apartment. Dennis pours two glasses of champagne. Margaret paces, still buzzing from the election.</scene_description>\n<character>DENNIS</character><u><ch

acter>MARGARET</character><u>

<dialogue>Maggie, darling. Relax. You

fought a good fight. A glass of bubbly

will do you good.</dialogue><character>MARGARET</character><u>

<dialogue>I need to analyse the

results. Where did we go wrong?

What can we do better?....

<scene_description><u><char

acter>JAMES</character><u><dialogue>

(Slightly hesitantly)</dialogue><u><dialogue>

o, oh. I made you

something. </dialogue><u><action>Ja

mes extends the mixtape case to

Em.</action><u><character>EM</char

acter><u><dialogue>A mixtape?

Really?</dialogue><u><action>Em

takes the mixtape. Her expression is a

mix of amusement and genuine

interest.</action><u><character>JAM

ES</character><u><dialogue>Dilett

ivo!</dialogue><u>....

1176

Figure 9: **Demonstration of the interface elements shown to human evaluators.** For each movie (represented by its poster), experts rated script excerpts on Dialogue Coherence, Character Consistency, and Plot Reasonableness using a 0-5 scale for each dimension.

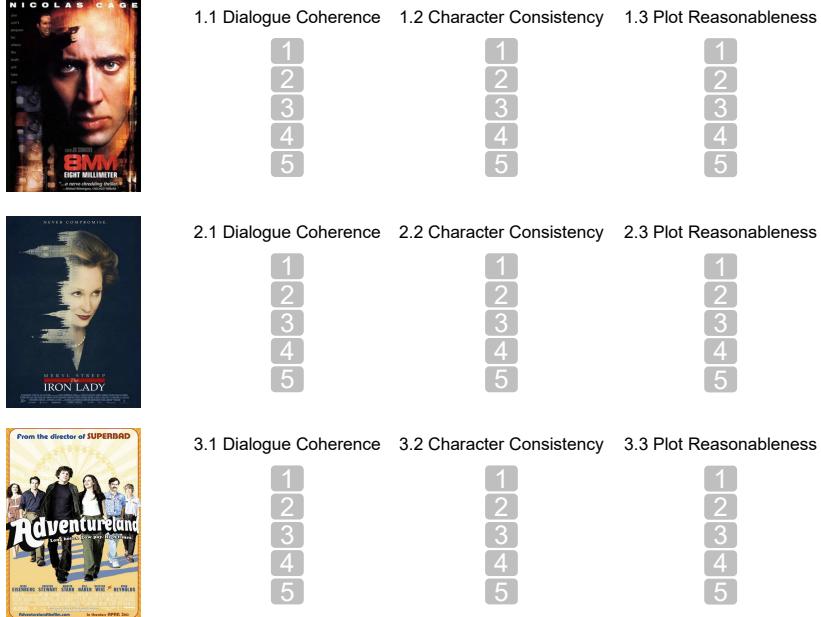
1180

G.2 DETAILED CORRELATION ANALYSIS WITH HUMAN JUDGMENTS

1181
1182
1183
1184
1185
1186
1187

To quantify the agreement between CML-Bench and human evaluations, we performed a correlation analysis using the Spearman rank correlation coefficient (ρ). This non-parametric measure assesses the strength and direction of a monotonic relationship between two ranked variables. It is suitable when the data may not be normally distributed or when the relationship is not strictly linear but consistently increasing or decreasing.

The Spearman correlation coefficient is calculated by first converting the scores for each variable (e.g., average CML-Bench scores and average human ratings for each script source listed in Table 2)



1188 into ranks. Then, the Pearson correlation coefficient is computed on these ranks. Alternatively, if
 1189 there are no tied ranks, it can be calculated using the formula:
 1190

$$\rho = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)}$$

1194 where d_i is the difference between the two ranks for each observation (script source), and n is the
 1195 number of observations (15 script sources in our case, including Human Ground Truth, 7 base LLMs,
 1196 and 7 instruction-tuned LLMs).

1197 First, for each of the 15 evaluated script sources, an average CML-Bench score was calculated by
 1198 taking the mean of its scores for Dialogue Coherence (DC), Character Consistency (CC), and Plot
 1199 Reasonableness (PR), as detailed in Table 2. Second, a corresponding average human rating was
 1200 calculated for each script source by averaging the human-assigned scores for DC, CC, and PR, also
 1201 from Table 2.

1202 The analysis yielded an overall Spearman correlation coefficient of $\rho = 0.80$ with a p-value of
 1203 0.0000. A p-value this small indicates that the observed correlation is statistically significant and
 1204 unlikely to have occurred by chance. This strong positive correlation (ρ close to 1) suggests that
 1205 as the CML-Bench scores for screenplay quality increase, human ratings also tend to increase,
 1206 confirming a high degree of monotonic agreement between our automated benchmark and averaged
 1207 human perceptions of overall screenplay quality. This reinforces the benchmark’s utility in reflecting
 1208 human-like evaluation judgments for script assessment.

1209 H THE USAGE OF LARGE LANGUAGE MODELS

1210 Large Language Models play a fundamental role in multiple aspects of our CML-Bench framework,
 1211 extending beyond traditional text processing to core methodological contributions:

1212 **Dataset Creation and Curation.** LLMs are integral to our dataset construction process. We
 1213 employ Qwen large language models to automatically identify and extract coherent 15-20 scene
 1214 segments from lengthy movie scripts, ensuring each excerpt forms a complete narrative unit. This
 1215 automated segmentation process leverages LLMs’ understanding of narrative structure to maintain
 1216 story coherence while creating manageable evaluation units. Additionally, LLMs assist in format
 1217 standardization and quality verification of screenplay content during the curation process.

1218 **Novel LLM-as-Info Benchmarking Framework.** Our core methodological innovation involves
 1219 using LLMs as information extractors rather than direct judges. Specifically, we employ Gemma-
 1220 2-2b-bit for lightweight feature extraction (keywords, creative language features, character traits)
 1221 and Qwen models for complex semantic analysis and embedding generation. This dual-LLM
 1222 architecture enables sophisticated feature extraction while maintaining computational efficiency. The
 1223 extracted information is then processed through our quantitative metrics that combine similarity and
 1224 dissimilarity calculations to assess both coherence (similarity-based) and creativity (dissimilarity-
 1225 based) aspects of screenplays.

1226 **Metric Design and Validation.** LLMs contribute to the design and validation of our nine evaluation
 1227 metrics across Dialogue Coherence (DC), Character Consistency (CC), and Plot Reasonableness
 1228 (PR) dimensions. For instance, in our creativity metrics (DC3: Linguistic Creativity, CC2: Character
 1229 Originality, PR3: Narrative Innovation), LLMs analyze creative elements and generate embeddings
 1230 that are subsequently processed through cosine similarity calculations with 1-x transformations to
 1231 measure novelty and originality.

1232 **Experimental Evaluation and Analysis.** LLMs are employed in our comparative analysis frame-
 1233 work, including the intrinsic characteristics analysis that validates our three core dimensions. Gemini
 1234 2.5 Pro is specifically used for qualitative analysis of good versus bad screenplay examples, providing
 1235 detailed reasoning about plot logic, character consistency, and dialogue coherence that supports our
 1236 quantitative findings.

1242 **Traditional Research Support.** Beyond these methodological contributions, LLMs assist in
1243 conventional research activities including grammar checking, format optimization of figures and
1244 tables, and language polishing for clarity and academic style. However, all content generated by
1245 LLMs undergoes thorough human review and validation.
1246

1247 **Responsibility and Oversight.** All authors maintain full responsibility for LLM-generated content.
1248 Every output is carefully reviewed, validated, and integrated into our research framework with
1249 appropriate human oversight. The LLM contributions are designed to enhance rather than replace
1250 human expertise in screenplay analysis and evaluation methodology development.
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295