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Abstract

Automated Theorem Proving (ATP) in formal languages is a foundational challenge
for AI. While Large Language Models (LLMs) have driven remarkable progress,
a significant gap remains between their powerful informal reasoning capabilities
and their weak formal proving performance. Recent studies show that the informal
accuracy exceeds 80% while formal success remains below 8% on benchmarks
like PutnamBench. We argue this gap persists because current state-of-the-art
provers, by tightly coupling reasoning and proving, are trained with paradigms that
inadvertently punish deep reasoning in favor of shallow, tactic-based strategies.
To bridge this fundamental gap, we propose a novel framework that decouples
high-level reasoning from low-level proof generation. Our approach utilizes two
distinct, specialized models: a powerful, general-purpose Reasoner to generate
diverse, strategic subgoal lemmas, and an efficient Prover to rigorously verify them.
This modular design liberates the model’s full reasoning potential and bypasses
the pitfalls of end-to-end training. We evaluate our method on a challenging
set of post-2000 IMO problems, a problem set on which no prior open-source
prover has reported success. Our decoupled framework successfully solves 5 of
these problems, demonstrating a significant step towards automated reasoning on
exceptionally difficult mathematical challenges. To foster future research, we will
release our full dataset of generated and verified lemmas for a wide range of IMO
problems, after the paper acceptance.

1 Introduction

Automated Theorem Proving (ATP) aims to automatically generate machine-verified proofs for
mathematical statements. Recent progress, driven by Large Language Models (LLMs), has been
substantial. However, a critical gap has emerged: top-tier LLMs can achieve over 80% accuracy
in generating informal, natural-language solutions to complex math problems, but state-of-the-art
formal provers struggle to solve even 8% of the same problems on benchmarks like PutnamBench
[Dekoninck et al., 2025]. This highlights that while LLMs possess powerful mathematical reasoning
abilities, current ATP systems fail to harness them for formal verification.

We argue this failure stems from a fundamental design flaw in modern provers like DeepSeek-Prover-
v2 [Ren et al., 2025] and Kimina [Wang et al., 2025]. These models tightly couple high-level reasoning
(planning or sketching) and low-level proof generation within a single, monolithic architecture. They
are typically trained using Reinforcement Learning with Verifiable Rewards (RLVR), a paradigm
that rewards only the final binary success of the generated code. This training objective inadvertently
incentivizes models to suppress deep, human-like reasoning in favor of shallow, brittle strategies,
such as brute-forcing automated tactics (ring, omega, etc.). This "reasoning degradation" explains
their failure on exceptionally difficult problems, like International Mathematical Olympiad (IMO).
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We identify the root cause of this failure in the prevailing training paradigm: reinforcement learning
with verifiable rewards (RLVR). This methodology, used to train models like DeepSeek-Prover-v2 and
Kimina, rewards only the final binary success or failure of the generated Lean code. This paradigm is
fundamentally misaligned with the goal of bridging the reasoning-proving gap. Instead of rewarding
hard-to-define, human-like strategies (the kind that achieve >80% informal success), RLVR teaches
a degenerated policy to maximize reward by any means necessary. It is incentivized to suppress
its powerful, latent reasoning abilities in favor of heuristically decomposing goals into trivial sub-
problems that can be solved by brute-forcing automatic tactics like ring or omega. This over-reliance
is not merely a shortcut, but a symptom of a training-induced degradation of its reasoning capabilities.

To bridge this gap, we propose a new framework built on the principle of decoupling reasoning from
proving. Our approach uses two distinct, specialized models: A powerful, general-purpose LLM
as a dedicated Reasoner, tasked with generating high-level, strategic subgoal lemmas. An efficient,
specialized ATP model as a Prover, tasked with formally verifying these lemmas and constructing the
final proof. This architectural separation liberates the Reasoner to leverage its full reasoning capacity
without being constrained by the immediate demands of formal proof generation. We evaluate our
framework on a challenging set of post-2000 IMO problems and successfully solve 5 problems, a
first for any open-source prover. To support future research, we release our dataset of verified lemmas
for a wide range of IMO problems.

Subgoals

theorem linear_form_plus_f_f_x_implies_solutions (f : ℤ → ℤ) (c
: ℤ) (h_f_form : ∀ x, f x = c * x + f 0) (h_f_f_x : ∀ x, f (f x) = 2 * f x
+ f 0) := by

theorem prop_cauchy_like (f : ℤ → ℤ) (h_f_all : ∀ a b, f (2 * a) +
2 * (f b) = f (f (a + b))) (h_f_f_x : ∀ x, f (f x) = 2 * f x + f 0) (h_f_2x
: ∀ x, f (2 * x) = 2 * f x - f 0) (x y : ℤ) : f (x + y) = f x + f y - f 0 :=
by

theorem prop_f_f_x (f : ℤ → ℤ) (h_f_all : ∀ a b, f (2 * a) + 2 * (f b)
= f (f (a + b))) (x : ℤ) : f (f x) = 2 * f x + f 0 := by

theorem prop_f_2x (f : ℤ → ℤ) (h_f_all : ∀ a b, f (2 * a) + 2 * (f b)
= f (f (a + b))) (h_f_f_x : ∀ x, f (f x) = 2 * f x + f 0) (x : ℤ) : f (2 * x)
= 2 * f x - f 0 := by

theorem cauchy_implies_linear_form (f : ℤ → ℤ) (h_cauchy_like
: ∀ x y, f (x + y) = f x + f y - f 0) : ∃ c : ℤ, ∀ x, f x = c * x + f 0 := by

theorem step6_zero_function_is_solution (f : ℤ → ℤ) (h_zero : ∀
x, f x = 0) : (∀ a b, f (2 * a) + 2 * (f b) = f (f (a + b))) := by

theorem step7_linear_function_is_solution (f : ℤ → ℤ) (c : ℤ)
(h_lin : ∀ x, f x = 2 * x + c) : (∀ a b, f (2 * a) + 2 * (f b) = f (f (a +
b))) := by

Problem

NL: Solve over ℤ the functional equation

LEAN: theorem imo2019_p1 (f : ℤ → ℤ) :
    (∀ a b : ℤ, f (2 * a) + 2 * f b = f (f (a +

b))) ↔ solution_set f := by

Final Proof

def solution_set (f : ℤ → ℤ) : Prop :=
  (∀ x : ℤ, f x = 0) ∨ ∃ c : ℤ, ∀ x : ℤ, f x = 2 * x + c
theorem imo2019_p1 (f : ℤ → ℤ) :
    (∀ a b : ℤ, f (2 * a) + 2 * f b = f (f (a + b))) ↔ solution_set f := by
  -- ↦ direction
  constructor
  · intro h_fe
    have h_ff : ∀ x, f (f x) = 2 * f x + f 0 := prop_f_f_x f h_fe
    have h_f2 : ∀ x, f (2 * x) = 2 * f x - f 0 := prop_f_2x f h_fe h_ff
    have h_add : ∀ x y, f (x + y) = f x + f y - f 0 :=
      prop_cauchy_like f h_fe h_ff h_f2
    rcases cauchy_implies_linear_form f h_add with ⟨c, h_lin0⟩
    have h_split : (∀ x, f x = 0) ∨ (∀ x, f x = 2 * x + f 0) :=
      linear_form_plus_f_f_x_implies_solutions f c h_lin0 h_ff
    cases h_split with
    | inl h0 =>
        exact Or.inl h0
    | inr h2 =>
        exact Or.inr ⟨f 0, h2⟩
  -- ↤ direction
  · intro h_sol
    cases h_sol with
    | inl h0 =>
        exact step6_zero_function_is_solution f h0
    | inr h_exists =>
        rcases h_exists with ⟨c, h_lin⟩
        exact step7_linear_function_is_solution f c h_lin

Subgoal generation and verification Final Proving

Reasoning
1. First glance …  
Solve 
on . Linearise
.
2. Nesting cracks …  Set :

.

3. Doubling cracks …  Set :
.

4. Shifted Cauchy …  Substitute back
→ .

5. Linear form …  On ,
.

6. Case split …  Plug into step 2 →
either  or .

Figure 1: The overall pipeline of our framework, taking IMO 2019 P1 as an example. The Reasoner
first generates strategic subgoals (lemmas). These are then verified by the Prover. Finally, the main
theorem is proven using the verified lemmas as building blocks.

2 A Framework for Decoupled Reasoning and Proving

Our framework, illustrated in Figure 1, consists of a three-stage pipeline designed to leverage the
distinct strengths of reasoning and proving models.

Stage 1: Strategic Subgoal Generation. The first stage uses a powerful, general-purpose LLM
as a Reasoner (we found Gemini 2.5 Pro to be most effective) to decompose the main theorem
into strategic subgoals. The quality of these subgoals is paramount, so we guide the Reasoner
with a carefully designed prompt. The prompt instructs the model to first "think step-by-step to
devise a feasible and complete proof strategy" in natural language *before* outputting any formal
code. This forces it to engage in high-level planning. Crucially, it is also explicitly instructed
to "avoid trivial splits" and ensure that each proposed subgoal represents a "meaningful proof
milestone." This prevents the generation of shallow, unhelpful decompositions. Only after formulating
a coherent plan is the model asked to translate these milestones into a list of formal Lean statements
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(e.g., ‘theoremlemma1... := bysorry‘). This focuses the model on its core strength—strategic
thinking—while constraining the output to a machine-parsable format, which we reliably extract
using a simple regular expression.

Stage 2: Subgoal Verification and Filtering. Each candidate lemma from Stage 1 is passed to a
dedicated Prover (we use DeepSeek-Prover-v2 7B) for verification. The Prover attempts to find a
formal proof for each lemma. Only the lemmas that can be successfully proven are retained. This
stage acts as a critical filter, grounding the Reasoner’s creative and sometimes speculative ideas in
formal logic.

Stage 3: Final Proof Construction. In the final stage, the prover attempts to solve the main
theorem using the set of verified lemmas from Stage 2. A crucial challenge we identified here was
domain shift. We initially hypothesized that the same Prover from Stage 2 (DeepSeek-Prover-v2)
would be optimal. However, we observed that this model, when presented with auxiliary lemmas,
often struggled to effectively utilize them, likely because its training data did not emphasize this
specific pattern of formal proving. It tended to ignore the provided lemmas and attempt to prove
the theorem from scratch, defeating the purpose of our pipeline. This led to a key insight: the
ability to leverage existing lemmas is a distinct skill. After experimentation, we found that powerful
general LLMs, such as OpenAI-o3 and Gemini 2.5 Pro, are significantly more adept at integrating
and applying provided lemmas. This highlights the importance of selecting the right tool for each
sub-task in a decoupled system.

3 Experiments and Analysis

We evaluated our framework on non-geometry problems from the International Mathematical
Olympiad (IMO) from 2000 to 2024, a benchmark known for its extreme difficulty. Our method
successfully solved 5 of these problems, for which no prior open-source prover had reported success:
IMO 2000 Problem 2 ,IMO 2005 Problem 3, IMO 2011 Problem 3, IMO 2019 Problem 1, IMO 2020
Problem 2. We will release all the sub-theorems and full solutions upon paper acceptance.

3.1 Qualitative Analysis: Strategic vs. Brittle Reasoning

To illustrate the benefit of our approach, we compare the reasoning strategy generated by our
framework for IMO 2019 Problem 1 against that of the state-of-the-art DeepSeek-Prover-v2 671B.

Our Reasoner produced a structured, insightful decomposition that mirrors a human mathematician’s
approach. It began by identifying fundamental algebraic properties of the function (e.g., f(f(x)) =
2f(x)+f(0)), then used these to derive a crucial Cauchy-like additive identity. This identity logically
led to the conclusion that the function must have a linear form (f(x) = cx+ d), which it then used
to constrain the parameters and find the two valid solutions. This is a hierarchical, property-driven
strategy where each lemma builds logically on the last.

In stark contrast, DeepSeek-Prover-v2 exhibited degenerate, brittle strategies shaped by its training
objective. Its attempts were not strategic but tactical. One common failure mode was brute-
force instantiation: generating a flat, unstructured list of dozens of ad-hoc algebraic identities by
substituting various integers into the original equation (e.g., f(0), f(1), f(x+ 1)), and then hoping
powerful automated tactics like linarith or ring could mechanically find a solution in the resulting
morass of equations. Another typical strategy was unjustified guessing: asserting the final linear
form of the solution as a hypothesis without any preceding logical derivation, and then attempting
to work backward. These strategies lack mathematical insight and fail to scale, revealing a core
weakness of models trained with end-to-end RLVR which rewards any path to a proof, no matter how
unprincipled.

1 theorem amc12b_2002_p7 (a b c : N) (h0 : 0 < a ∧ 0 < b ∧ 0 < c)
2 (h1 : b = a + 1) (h2 : c = b + 1)
3 (h3 : a * b * c = 8 * (a + b + c)) : a^2 + b^2 + c^2 = 77 := by
4 have hb : b = a + 1 := h1
5 have hc : c = a + 2 := by omega
6 rw [hb, hc] at h3
7 have h4 : a = 4 := by
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8 have h_pos : 0 < a := h0.left
9 have : a ≤ 6 := by

10 nlinarith
11 interval_cases a <;> omega
12 have ha : a = 4 := h4
13 have hb' : b = 5 := by omega
14 have hc' : c = 6 := by omega
15 rw [ha, hb', hc']
16 norm_num

3.2 Quantitative Evidence of Reasoning Degradation

Our central hypothesis is that RLVR-based fine-tuning for formal proving degrades a model’s general
mathematical reasoning ability. To test this, we compared the performance of a specialized prover
(Kimina-Prover) with its general-purpose base model (Qwen2.5-Math-7B-Instruct) on standard
math reasoning benchmarks (MATH and AIME) that do not require formal proof generation. The

Table 1: Performance comparison on general mathematical reasoning benchmarks.

MATH AIME24
Model pass@1 pass@1 pass@4 pass@8 pass@16
Qwen2.5-Math-7B-Instruct (base model) 83.6% 16.7% 33.3% 43.3% 46.7%
Kimina-Prover-Preview-Distill-7B (prover) 78.7% 11.0% 24.1% 32.0% 40.9%

Performance Drop (pts) -4.9 -5.7 -9.2 -11.3 -5.8

results in Table 1 provide clear evidence for our hypothesis. The prover model shows a significant
and consistent performance drop across all metrics compared to its base model. This confirms that
the specialization process for formal theorem proving, driven by verifiable rewards, comes at the cost
of the model’s intrinsic reasoning skills. This finding strongly motivates our decoupled approach,
which preserves the full power of a dedicated reasoning model.

3.3 Discussion

On the Utilization of External Knowledge. A key challenge we identified is that state-of-the-art
provers, when presented with verified subgoals as standalone lemmas, often ignore them and attempt
to re-prove everything from scratch. This "contextual blindness" suggests their training biases them
against leveraging modular, pre-proven knowledge. In contrast, in-proof have statements force local
fact usage but lack the flexibility of reusable lemmas. Our finding that general LLMs are better at
utilizing external lemmas highlights a crucial gap: provers must be trained not just to prove, but to
effectively continue proofs using existing results.

Limitations and Failure Analysis. Our framework’s primary bottleneck is the Prover’s inability to
verify highly complex lemmas generated by the Reasoner. In an oracle setting where we manually
proved these key lemmas, our framework could solve many more problems. This shows our pipeline
is currently bounded by the raw power of the Prover component. A second, deeper challenge is the
"ingenuity gap": our Reasoner excels at systematic, logical decomposition but struggles to produce
the single, non-obvious "magical" insight that often characterizes elegant human solutions to the
hardest problems.

4 Conclusion

In conclusion, we introduced a novel framework that decouples strategic reasoning from formal proof
generation. By delegating high-level thinking to a powerful Reasoner and verification to a specialized
Prover, our method successfully solves 5 post-2000 IMO problems, a new milestone for open-source
ATP. Our analysis shows this separation is crucial for overcoming the reasoning degradation induced
by current training paradigms. Future work will focus on improving the Prover’s ability to handle
complex lemmas and fine-tuning models to utilize pre-proven results.
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A Data Release

To foster further research and collaboration within both the mathematics and ATP communities, we
are releasing a comprehensive dataset and a project website. While our framework successfully
solved 5 IMO problems, our efforts in subgoal generation and verification have yielded a much larger
collection of high-quality, formally verified lemmas for a broad range of post-2000 IMO problems.
We believe this resource serves a dual purpose:

• For mathematicians and IMO researchers, this collection of machine-generated lemmas may
offer novel perspectives or reveal non-obvious decompositions, potentially inspiring new
human-led proof strategies.

• For the ATP community, our dataset acts as a new, challenging benchmark. By providing
verified intermediate steps, it allows researchers to focus on solving the remaining difficult
lemmas or on the final, complex proof-synthesis stage for problems currently beyond reach.

The dataset will be publicly available on HuggingFace, and we are committed to its active maintenance
and expansion. We welcome community contributions, such as new proofs for existing lemmas
or alternative strategic decompositions. The project website, which provides access to the data
repository, tracks our ongoing progress, and presents detailed case studies, will be released after
paper acceptance.
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B Comparing Reasoning Quality in IMO 2019 Problem 1

To evaluate the qualitative difference between reasoning strategies, we analyze how our frame-
work’s Reasoner compares against existing prover-driven approaches when applied to a challenging
benchmark: IMO 2019 Problem 1. This problem asks to find all functions f : Z → Z satisfying
f(2a) + 2f(b) = f(f(a+ b)) for all integers a, b.

Our goal is to demonstrate that the reasoning path generated by our decoupled Reasoner-Prover
framework leads to a principled, structured solution strategy, in stark contrast to prover-only models,
which often exhibit brittle or degenerate behavior.

B.1 Our Reasoner’s Strategic Decomposition

In our framework, the Reasoner is responsible for identifying high-level mathematical structure and
generating a roadmap of lemmas. On this problem, the Reasoner produces the following structured
decomposition:

1. Identify fundamental properties: By strategic instantiation of the functional equation, the
Reasoner isolates key identities:

• prop_f_f_x: f(f(x)) = 2f(x) + f(0) for all x
• prop_f_2x: f(2x) = 2f(x)− f(0) for all x

2. Uncover additive structure: Combining the above, the Reasoner deduces:
• prop_cauchy_like: f(x+ y) = f(x) + f(y)− f(0)

3. Characterize the function form: Using the Cauchy-like identity, the Reasoner infers:
• cauchy_implies_linear_form: There exists c ∈ Z such that f(x) = cx+ f(0)

4. Constrain the parameters: Plugging this linear form into prop_f_f_x, the Reasoner
derives:

• linear_form_plus_f_f_x_implies_solutions: c must be either 0 or 2
5. Verify candidate solutions: Both resulting forms, f(x) = 0 and f(x) = 2x+c, are verified

to satisfy the original equation.

This decomposition exhibits genuine mathematical insight: it identifies the functional equation’s
additive structure, abstracts useful intermediate results, and uses them to constrain the solution space
efficiently and interpretably.

B.2 The Decomposition Strategy by DeepSeek-Prover-v2 671B

We contrast this with the behavior of current state-of-the-art prover models. Specifically, we sampled
three solution attempts from the strongest publicly available model, DeepSeek Prover v2 671B [Ren
et al., 2025]. These are representative of the general behavior we observed. For brevity, we include
only partial code excerpts.

The first attempt relies on a brute-force enumeration of equations. The model instantiates the
functional equation on dozens of inputs, creating a large flat pool of algebraic identities, and then
invokes tactics such as ring_nf and linarith in hopes of simplification. There is no effort to
identify structure or extract reusable intermediate results. The tactic application is purely local and
mechanical:

have h2 := hf 0 0
have h3 := hf 0 x
have h4 := hf x 0
have h5 := hf x (-x)
...
have h26 := hf (x + x) (-x)
ring_nf at h2 h3 h4 ... h26 ⊢

In the second attempt, the prover tries to assert the final form of the solution—namely f(x) =
2x + f(0)—without having established why f must be linear or what motivates such a guess.
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It implicitly assumes the desired conclusion and attempts to work backward through aggressive
simplification. This reveals a logical gap: the model never proves the Cauchy-like identity nor
justifies why a linear form should even be expected.

have h29 : f x = 2 * x + f 0 := by
have h291 := hf x 0
...
ring_nf at h291 h292 ... ⊢
<;> linarith

The third attempt generates an even larger collection of equation instances, trying all possible
combinations of inputs into the original functional equation, and then offloads the burden of reasoning
onto a generic decision procedure like omega. Again, no insight is gained; the solution depends
entirely on the capacity of low-level tactics to blindly traverse the search space.

have h31 : f x = 2 * x + (f 0 - 2 * 0) := by
have h32 := hf 0 0
...
have h42 := hf 1 (x - 1)
ring_nf at h32 h33 ... h42 ⊢
omega

These degenerate strategies are a direct consequence of the reward signals guiding the training of
prover models. When models are rewarded solely for producing verifiable proofs, they learn to exploit
patterns that maximize verification success, not reasoning quality. Brute-force instantiation followed
by tactic chains often suffices on simple benchmarks, so models internalize that behavior—even
when such strategies fail to scale to Olympiad-level problems. In these more complex settings, the
search space is too vast, and the necessary structural insights (such as recognizing the shifted Cauchy
identity) cannot be discovered by purely local manipulations.

In contrast, our framework deliberately separates the high-level reasoning process from low-level
proof verification. The Reasoner is not constrained by the demands of tactic execution or code
generation; it operates at the level of abstraction and mathematical insight. By generating a chain of
semantically meaningful lemmas, it defines a proof skeleton that guides the Prover and drastically
reduces the search space. This separation enables the kind of reasoning that mirrors how human
mathematicians approach challenging problems: by detecting invariants, proposing transformations,
and narrowing the solution space through conceptual understanding. As this case study illustrates,
this leads to reasoning that is not only verifiable, but also interpretable, reusable, and robust.

C Related Work

The application of Large Language Models (LLMs) to Automated Theorem Proving has evolved
rapidly. Early and some recent approaches leverage the powerful sequence modeling capabilities
of LLMs to generate entire formal proofs in a single, end-to-end pass. For instance, Baldur [First
et al., 2023] generates proofs for Isabelle and incorporates a repair mechanism that learns from
compiler feedback to correct flawed proofs. Other works, while still operating within a largely
monolithic framework, introduce internal structure. POETRY [Wang et al., 2024a] employs a
recursive decomposition strategy to break down complex theorems, and LEGO-Prover [Wang et al.,
2024b] hierarchically proves and reuses lemmas to manage intermediate results within its generation
process. These methods treat proof generation as a sophisticated, structured sequence generation task.
In contrast, our work argues that coupling high-level reasoning and low-level proof formalization
within a single model limits their potential, and we instead advocate for their explicit separation.

Recognizing the limitations of direct generation, a significant line of research has focused on
integrating high-level planning or sketching, mimicking human problem-solving strategies. These
methods often generate a natural language plan or a structured sketch before producing the final
proof. Kimina-Prover [Wang et al., 2025] achieves strong results by generating structured reasoning
patterns prior to the formal proof. Similarly, DeepSeek-Prover-V2 [Ren et al., 2025], the current
state-of-the-art, integrates Chain-of-Thought (CoT) style reasoning to guide its recursive subgoal
decomposition pipeline. While these methods represent a conceptual step towards our approach by
acknowledging the importance of planning, they still tightly couple the planning and proving phases
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within a single model and a fixed workflow. Our method fundamentally differs by decoupling these
two stages into distinct, specialized models, allowing for more flexible and powerful interaction, such
as iterative refinement of lemmas before the final proof attempt.

Our work builds upon the high-level philosophy of hierarchical proof generation, sharing conceptual
similarities with prior efforts like Draft, Sketch, Prove [Jiang et al., 2023], LEGO-Prover [Wang et al.,
2024b], POETRY [Wang et al., 2024a], and Subgoal-XL [Zhao et al., 2024]. The most closely related
is Draft, Sketch, Prove [Jiang et al., 2023], which also employs a multi-stage pipeline: an LLM first
drafts an informal proof, an autoformalizer then translates this draft into a formal sketch, and finally,
an external prover completes the proof.

Despite this architectural resemblance, our approach makes a critical design choice that diverges
significantly. Instead of attempting to autoformalize an entire unstructured natural language proof—a
process that is itself a major research challenge and prone to semantic errors—we task our specialized
Reasoner model with a more constrained and impactful objective: generating a diverse set of formal
subgoal statements (lemmas). This design offers two key advantages. First, by focusing on generating
strategic lemmas rather than full proof steps, we directly leverage the abstract reasoning strength
of powerful LLMs to perform creative and non-trivial problem decomposition, which is essential
for solving complex problems like those in the IMO competition. Second, by generating formal
statements directly and leaving the proof generation to a dedicated Prover, we entirely bypass the
fragile and error-prone autoformalization step. This ensures that the bridge between high-level
reasoning and formal proving is both robust and precise.

D Case Studies on IMO 2024 Problems

This section provides a detailed analysis of our framework’s progress on two problems from the IMO
2024. For each problem, we present the main theorem, summarize the key sub-theorems (lemmas)
that our framework successfully generated and proved, and identify the critical remaining steps
required to complete the full proof.

D.1 Analysis of IMO 2024, Problem 1

D.1.1 Main Theorem

The problem asks to prove the equivalence between a real number a being an even integer and a
specific divisibility property holding for all positive integers n.

theorem imo2024_p1 (a : R) :
(∃ m : Z, a = 2 * m) ↔ ∀ n : N, 0 < n → (n : Z) |

∑
i in Finset.Icc 1 n, ⌊i

* a⌋ := by↪→

The proof naturally splits into two directions:

• Forward Direction (1) → (2): If a = 2m for some integer m, then the divisibility property
holds.

• Reverse Direction (2) → (1): If the divisibility property holds, then a must be of the form
2m.

D.1.2 Progress Summary and Key Proven Lemmas

Our framework has made substantial progress on this problem, most notably by completely proving
the forward direction and establishing the crucial strategic lemmas for the reverse direction.

Forward Direction: Complete. The framework successfully proved that if a is an even integer, the
divisibility property holds. This was accomplished through several lemmas, culminating in a direct
proof of the implication.

-- Proved: The forward implication of the main theorem.
theorem imo2024_p1_forward_implication (a : R) :

(∃ m : Z, a = 2 * m) → (∀ n : N, 0 < n → (n : Z) |
∑

i in Finset.Icc 1 n, ⌊i *
a⌋) := by↪→
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Reverse Direction: Key Strategic Lemmas Proven. For the more challenging reverse direction,
our system proved two cornerstone lemmas that are essential to the standard human solution strategy.

1. Periodicity of the Condition: The framework proved that the divisibility property is
periodic with a period of any even integer. This is a powerful strategic result, as it allows
reducing the problem for any real number a to an equivalent problem for a number in a
bounded interval (e.g., [0, 2]).

-- Proved: The divisibility property is periodic by any even integer.
theorem divisibility_is_periodic_by_even_integers (a : R) (m : Z) :

(∀ n : N, 0 < n → (n : Z) |
∑

i in Finset.Icc 1 n, ⌊i * a⌋) ↔
(∀ n : N, 0 < n → (n : Z) |

∑
i in Finset.Icc 1 n, ⌊i * (a - 2 *

m)⌋) := by↪→

2. Special Case for Integers: The system proved that if a is an integer satisfying the divisibility
property, it must be an even integer. This fully resolves the reverse direction for the specific
case where a ∈ Z.

-- Proved: An integer satisfying the property must be even.
theorem integer_must_be_even (a : Z)

(h_div_int : ∀ n : N, 0 < n → (n : Z) |
∑

i in Finset.Icc 1 n, ⌊(i
: R) * (a : R)⌋) :↪→

Even a := by

D.1.3 Analysis of the Remaining Proof Goal

With the forward direction complete and the key periodicity lemma established, the entire proof now
hinges on a single, final sub-problem.

The Final Step: Proving the Base Case for the Periodicity. The established lemmas allow us to
reason as follows: Assume a real number a satisfies the divisibility property. We can find an integer
m such that a′ = a − 2m lies in the interval [−1, 1]. Due to the proven periodicity, a′ must also
satisfy the divisibility property. If we can prove that the only number in [−1, 1] satisfying the property
is 0, it would imply a′ = 0, which means a = 2m, completing the proof.

Therefore, the critical missing lemma is to show that for any number a ∈ [−1, 1] (or a similar interval
like (−1, 1]), if it satisfies the property, it must be zero.

Critical Missing Lemma

Goal: To prove that if a real number a in the interval [−1, 1] satisfies the universal divisibility
condition, then a must be 0.
theorem univ_divisibility_in_interval_implies_zero (a : R) (ha_bound : a ∈

Set.Icc (-1) 1)↪→
(h_prop : ∀ n : N, 0 < n → (n : Z) |

∑
i in Finset.Icc 1 n, ⌊i * a⌋) :

a = 0 := by

Successfully proving this final lemma would allow us to connect all the previously established results
and formally complete the entire proof for IMO 2024, Problem 1. Our framework has successfully
navigated the problem to its final, decisive step.

D.2 Analysis of IMO 2024, Problem 2

D.2.1 Main Theorem

This problem concerns a property of the greatest common divisor (GCD) of two exponential sequences.
It asks to prove that the GCD becoming constant for all sufficiently large n is equivalent to a and b
both being 1.

theorem imo2024_p2 (a b : N+) :
(a, b) = (1, 1) ↔ ∃ g N : N+, ∀ n : N, N ≤ n → Nat.gcd (a^n + b) (b^n + a) =

g := by↪→

9



The proof structure involves a straightforward forward direction and a more complex reverse direction,
which is typically solved by considering cases.

D.2.2 Progress Summary and Key Proven Lemmas

Our framework successfully proved the simple forward direction and made significant headway on
the reverse direction by proving the special case where a = b.

Forward Direction: Complete. The framework easily proved that if a = 1 and b = 1, the GCD
sequence is constant. In this case, gcd(1n + 1, 1n + 1) = gcd(2, 2) = 2 for all n, so one can choose
g = 2 and N = 1.

-- Proved: The forward implication of the main theorem.
theorem imo2024_p2_forward_implication (a b : N+) :

(a, b) = (1, 1) → ∃ g N : N+, ∀ n : N, N ≤ n → Nat.gcd (a^n + b) (b^n + a) = g
:= by↪→

Reverse Direction: Special Case a = b Proven. For the reverse direction, the framework identified
and fully proved the crucial sub-case where a = b. It correctly deduced that if a = b and the GCD
property holds, then a must be 1. The reasoning relies on the fact that if a = b, the GCD is
gcd(an + a, an + a) = an + a. For this sequence to be constant for n ≥ N , a cannot be greater than
1.

-- Proved: If a=b and the GCD property holds, then a=1 and b=1.
theorem imo2024_p2_bwd_a_eq_b (a b : N+) (h_ab : a = b)

(h_gcd_const : ∃ g N : N+, ∀ n : N, N ≤ n → Nat.gcd (a^n + b) (b^n + a) = g)
:↪→

(a, b) = (1, 1) := by

This lemma is supported by another proven sub-theorem stating that an exponential sequence like
an + a cannot be eventually constant if a > 1.

-- Proved: An exponential sequence is not eventually constant for a > 1.
theorem exponential_not_eventually_constant (a : N+) :

a > 1 → ¬∃ g N : N+, ∀ n : N, N ≤ n → a^n + a = g := by

D.2.3 Analysis of the Remaining Proof Goal

With the forward direction and the a = b case of the reverse direction complete, the entire proof now
rests on resolving the case where a ̸= b.

The Final Step: Proving the Case a ̸= b Leads to a Contradiction. The standard human approach
for the case a ̸= b (without loss of generality, assume a > b) is to show that the GCD sequence,
dn = gcd(an + b, bn + a), cannot be eventually constant if a > 1. A common technique involves
using properties of the GCD, such as gcd(X,Y ) = gcd(X,Y − kX). Applying this here:

dn = gcd(an + b, bn + a) = gcd(an + b, bn + a− bn−1(an + b))

which simplifies the second term. The key is to show that if a > b ≥ 1, this sequence cannot be
constant for large n.

Therefore, the critical missing lemma is to prove by contradiction that if the GCD property holds, the
case a ̸= b is impossible unless a = b = 1 (which is already covered).
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Critical Missing Lemma

Goal: To prove that if a ̸= b, the GCD property cannot hold. A common way is to show that
if a > b, the GCD sequence is not constant.
-- This lemma is stated to lead to a contradiction with the main hypothesis.
theorem gcd_is_not_eventually_constant_if_unequal (a b : N+) (h_neq : a ̸= b)

:↪→
¬(∃ g N : N+, ∀ n : N, N ≤ n → Nat.gcd (a^n + b) (b^n + a) = g) := by

-- A more direct approach to prove is:
-- if a > b >= 1, then the sequence is not constant.

Or, framing it to directly complete the main proof:
-- This lemma, combined with the a=b case, would complete the proof.
theorem p2_bwd_dir_a_neq_b (a b : N+) :

(∃ g N : N+, ∀ n : N, N ≤ n → Nat.gcd (a^n + b) (b^n + a) = g) → a ̸= b
→ False := by↪→

By proving that the GCD property cannot hold for distinct positive integers a and b, our framework
would successfully eliminate the only remaining case, thereby completing the proof for IMO 2024,
Problem 2.

E Solved IMO problems

E.1 IMO 2020 P2

1 -- Solution to IMO 2020 P2 by DRP-IMO
2

3 import Mathlib
4 import Aesop
5

6 set_option maxHeartbeats 0
7

8 open BigOperators Real Nat Topology Rat
9

10 /--Consider four real numbers \( a, b, c, \) and \( d \) such that \( 0 < d \leq c
\leq b \leq a \) and their sum is equal to 1, i.e., \( a + b + c + d = 1 \).
Prove that the product of the weighted sum \( a + 2b + 3c + 4d \) and the sum of
their squares \( a^2 + b^2 + c^2 + d^2 \) is less than 1.-/

↪→
↪→
↪→

11 theorem weighted_sum_times_sum_sq_lt_one (a b c d : R) (hd_pos : 0 < d) (hdc : d ≤
c) (hcb : c ≤ b) (hba : b ≤ a) (h_sum_eq_1 : a + b + c + d = 1) :↪→

12 (a + 2*b + 3*c + 4*d) * (a^2 + b^2 + c^2 + d^2) < 1 := by
13 have h_a_lt_one : a < 1 := by
14 have h1 : a + b + c + d = 1 := h_sum_eq_1
15 have h2 : 0 < b := by linarith
16 have h3 : 0 < c := by linarith
17 have h4 : 0 < d := hd_pos
18 nlinarith
19

20 have h_b_lt_one : b < 1 := by
21 have h1 : a ≥ b := by linarith
22 have h2 : a < 1 := h_a_lt_one
23 nlinarith
24

25 have h_c_lt_one : c < 1 := by
26 have h1 : b ≥ c := by linarith
27 have h2 : b < 1 := h_b_lt_one
28 nlinarith
29

30 have h_d_lt_one : d < 1 := by
31 have h1 : c ≥ d := by linarith
32 have h2 : c < 1 := h_c_lt_one
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33 nlinarith
34

35 have h_a2_lt_a : a^2 < a := by
36 have h1 : a < 1 := h_a_lt_one
37 have h2 : a > 0 := by linarith
38 nlinarith [sq_pos_of_pos h2]
39 <;> nlinarith
40

41 have h_b2_lt_b : b^2 < b := by
42 have h1 : b < 1 := h_b_lt_one
43 have h2 : b > 0 := by linarith
44 nlinarith [sq_pos_of_pos h2]
45 <;> nlinarith
46

47 have h_c2_lt_c : c^2 < c := by
48 have h1 : c < 1 := h_c_lt_one
49 have h2 : c > 0 := by linarith
50 nlinarith [sq_pos_of_pos h2]
51 <;> nlinarith
52

53 have h_d2_lt_d : d^2 < d := by
54 have h1 : d < 1 := h_d_lt_one
55 have h2 : d > 0 := hd_pos
56 nlinarith [sq_pos_of_pos h2]
57 <;> nlinarith
58

59 have h_sum_sq_lt_one : a^2 + b^2 + c^2 + d^2 < 1 := by
60 nlinarith [h_a2_lt_a, h_b2_lt_b, h_c2_lt_c, h_d2_lt_d]
61 <;> linarith
62

63 have h_main : (a + 2*b + 3*c + 4*d) * (a^2 + b^2 + c^2 + d^2) < 1 := by
64 have h1 : 0 < a + 2 * b + 3 * c + 4 * d := by
65 nlinarith [hd_pos, hcb, hba, hdc, h_sum_eq_1]
66 have h2 : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 < 1 := h_sum_sq_lt_one
67 nlinarith [h1, h2]
68 <;> nlinarith
69

70 exact h_main
71

72

73 theorem vars_are_in_0_1 (a b c d : R) (hd0 : 0 < d) (hdc : d ≤ c) (hcb : c ≤ b)
(hba : b ≤ a) (h1 : a + b + c + d = 1) :↪→

74 (0 < a ∧ a < 1) ∧ (0 < b ∧ b < 1) ∧ (0 < c ∧ c < 1) ∧ (0 < d ∧ d < 1) := by
75 have h_a_pos : 0 < a := by
76 nlinarith [hdc, hcb, hba, hd0, h1]
77 <;> nlinarith
78

79 have h_a_lt_1 : a < 1 := by
80 have h2 : a < 1 := by
81 nlinarith [h1, h_a_pos, hba, hcb, hdc, hd0]
82 exact h2
83

84 have h_b_pos : 0 < b := by
85 nlinarith [hdc, hcb, hba, hd0, h1]
86

87 have h_b_lt_1 : b < 1 := by
88 have h2 : b < 1 := by
89 nlinarith [h1, h_a_pos, h_a_lt_1, hba, hcb, hdc, hd0]
90 exact h2
91

92 have h_c_pos : 0 < c := by
93 nlinarith [hdc, hcb, hba, hd0, h1]
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94

95 have h_c_lt_1 : c < 1 := by
96 have h2 : c < 1 := by
97 nlinarith [h1, h_a_pos, h_a_lt_1, h_b_pos, h_b_lt_1, hba, hcb, hdc, hd0]
98 exact h2
99

100 have h_d_pos : 0 < d := by
101 exact hd0
102

103 have h_d_lt_1 : d < 1 := by
104 have h2 : d < 1 := by
105 nlinarith [h1, h_a_pos, h_a_lt_1, h_b_pos, h_b_lt_1, h_c_pos, h_c_lt_1, hdc,

hcb, hba, hd0]↪→
106 exact h2
107

108 refine' 〈〈h_a_pos, h_a_lt_1〉, 〈h_b_pos, h_b_lt_1〉, 〈h_c_pos, h_c_lt_1〉, 〈h_d_pos,
h_d_lt_1〉〉↪→

109

110

111 theorem imo2020_q2 (a b c d : R) (hd0 : 0 < d) (hdc : d ≤ c) (hcb : c ≤ b) (hba :
b ≤ a) (h1 : a + b + c + d = 1) :↪→

112 (a + 2 * b + 3 * c + 4 * d) * (a ^ a * b ^ b * c ^ c * d ^ d) < 1 := by
113 -- strategy:
114 -- 1. apply weighted AM-GM inequality to prove a^a * b^b * c^c * d^d ≤ a^2 + b^2

+ c^2 + d^2↪→
115 -- 2. ues subgoal 'weighted_sum_times_sum_sq_lt_one' to get (a + 2*b + ...) * (a^2

+ b^2 + ...) < 1↪→
116 -- 3. combine both results to reach final conclusion
117

118 -- define S
119 let S := a^2 + b^2 + c^2 + d^2
120

121 -- step 1: apply weighted AM-GM inequality
122 -- we need to prove a^a * b^b * c^c * d^d ≤ S
123 have h_geom_mean_le_sum_sq : a ^ a * b ^ b * c ^ c * d ^ d ≤ S := by
124 -- in order to use the subgoal 'geom_mean_le_arith_mean_weighted', we use Fin 4

as an index type↪→
125 let w : Fin 4 → R := ![a, b, c, d]
126 let z : Fin 4 → R := ![a, b, c, d]
127

128 -- check AM-GM prerequisite
129 have h_pos_conds : (0 < a) ∧ (0 < b) ∧ (0 < c) ∧ (0 < d) := by
130 have h_all := vars_are_in_0_1 a b c d hd0 hdc hcb hba h1
131 exact 〈h_all.1.1, h_all.2.1.1, h_all.2.2.1.1, h_all.2.2.2.1〉
132

133 -- 1. non-negative weights
134 have h_weights_nonneg : ∀ i, 0 ≤ w i := by
135 intro i; fin_cases i <;> simp [w] <;> linarith [h_pos_conds.1,

h_pos_conds.2.1, h_pos_conds.2.2.1, h_pos_conds.2.2.2]↪→
136

137 -- 2. weights sum-up to 1
138 have h_weights_sum_1 :

∑
i, w i = 1 := by

139 simp [w, Fin.sum_univ_four, h1]
140

141 -- 3. non-negative values
142 have h_values_nonneg : ∀ i, 0 ≤ z i := by
143 intro i; fin_cases i <;> simp [z] <;> linarith [h_pos_conds.1,

h_pos_conds.2.1, h_pos_conds.2.2.1, h_pos_conds.2.2.2]↪→
144

145 -- use the subgoal based on AM-GM
146 have h_am_gm := geom_mean_le_arith_mean_weighted (Finset.univ) w z (fun i _ 7→

h_weights_nonneg i) h_weights_sum_1 (fun i _ 7→ h_values_nonneg i)↪→
147
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148 -- transform AM-GM results to the form we want
149 -- `simp` will handle a*a -> a^2
150 simp only [Fin.prod_univ_four, Fin.sum_univ_four, w, z, ← pow_two] at h_am_gm
151

152 -- it will replace 'S' to 'a^2 + b^2 + c^2 + d^2'
153 unfold S
154 -- now the target fully matchs 'h_am_gm'
155 exact h_am_gm
156

157 -- step 2: get results from key lemmas
158 have h_main_ineq : (a + 2 * b + 3 * c + 4 * d) * S < 1 := by
159 exact weighted_sum_times_sum_sq_lt_one a b c d hd0 hdc hcb hba h1
160

161 -- step 3 & 4 & 5: assumble final proof
162 calc
163 (a + 2*b + 3*c + 4*d) * (a^a * b^b * c^c * d^d)
164 -- first, use the results from step 1, we need to prove (a + 2*b + ...) is

positive↪→
165 -- lemma 'vars_are_in_0_1' guarantees a,b,c,d > 0, thus their weighted sum also

> 0↪→
166 _ ≤ (a + 2*b + 3*c + 4*d) * S := by
167 apply mul_le_mul_of_nonneg_left h_geom_mean_le_sum_sq
168 have h_pos_conds := vars_are_in_0_1 a b c d hd0 hdc hcb hba h1
169 linarith [h_pos_conds.1.1, h_pos_conds.2.1.1, h_pos_conds.2.2.1.1,

h_pos_conds.2.2.2.1]↪→
170 -- then, use the results from step 2 to finish proving
171 _ < 1 := h_main_ineq

E.2 IMO 2019 P1

1 -- Solution to IMO 2019 P1 by DRP-IMO
2

3 import Mathlib
4 import Aesop
5

6 set_option maxHeartbeats 0
7

8 open BigOperators Real Nat Topology Rat
9

10 def solution_set (f : Z → Z) : Prop :=
11 (∀ x : Z, f x = 0) ∨ ∃ c : Z, ∀ x : Z, f x = 2 * x + c
12

13 theorem linear_form_plus_f_f_x_implies_solutions (f : Z → Z) (c : Z)
14 (h_f_form : ∀ x, f x = c * x + f 0) (h_f_f_x : ∀ x, f (f x) = 2 * f x + f 0) :
15 (∀ x, f x = 0) ∨ (∀ x, f x = 2 * x + f 0) := by
16 have h_c_squared : c^2 = 2 * c := by
17 have h1 := h_f_f_x 1
18 have h2 := h_f_f_x 0
19 have h3 := h_f_f_x (-1)
20 have h4 := h_f_form 1
21 have h5 := h_f_form 0
22 have h6 := h_f_form (-1)
23 have h7 := h_f_form (f 1)
24 have h8 := h_f_form (f 0)
25 have h9 := h_f_form (f (-1))
26 have h10 := h_f_f_x (f 1)
27 have h11 := h_f_f_x (f 0)
28 have h12 := h_f_f_x (f (-1))
29 have h13 := h_f_form (c * 1 + f 0)
30 have h14 := h_f_form (c * 0 + f 0)
31 have h15 := h_f_form (c * (-1) + f 0)
32 have h16 := h_f_form (c * (f 1) + f 0)
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33 have h17 := h_f_form (c * (f 0) + f 0)
34 have h18 := h_f_form (c * (f (-1)) + f 0)
35 ring_nf at h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18 ⊢
36 nlinarith [sq_nonneg (c - 2), sq_nonneg (c + 2), sq_nonneg (c - 1), sq_nonneg (c

+ 1)]↪→
37

38 have h_c_cases : c = 0 ∨ c = 2 := by
39 have h1 : c ^ 2 = 2 * c := h_c_squared
40 have h2 : c = 0 ∨ c = 2 := by
41 have h3 : c * (c - 2) = 0 := by
42 linarith
43 have h4 : c = 0 ∨ c - 2 = 0 := by
44 apply eq_zero_or_eq_zero_of_mul_eq_zero h3
45 cases h4 with
46 | inl h4 =>
47 exact Or.inl h4
48 | inr h4 =>
49 have h5 : c = 2 := by
50 omega
51 exact Or.inr h5
52 exact h2
53

54 have h_main : (∀ x, f x = 0) ∨ (∀ x, f x = 2 * x + f 0) := by
55 cases h_c_cases with
56 | inl h_c_zero =>
57 -- Case c = 0
58 have h_f_zero : ∀ x, f x = f 0 := by
59 intro x
60 have h1 := h_f_form x
61 simp [h_c_zero] at h1 ⊢
62 <;> linarith
63 have h_f_zero_zero : f 0 = 0 := by
64 have h1 := h_f_f_x 0
65 have h2 := h_f_form 0
66 have h3 := h_f_form (f 0)
67 have h4 := h_f_f_x (f 0)
68 simp [h_f_zero] at h1 h2 h3 h4 ⊢
69 <;>
70 (try omega) <;>
71 (try
72 {
73 nlinarith [h_f_form 0, h_f_form 1, h_f_form (-1), h_f_form (f 0)]
74 }) <;>
75 (try
76 {
77 cases' h_c_cases with h_c_zero h_c_two <;> simp_all [h_c_zero, h_c_two]

<;>↪→
78 (try omega) <;>
79 (try nlinarith) <;>
80 (try linarith)
81 }) <;>
82 (try
83 {
84 aesop
85 })
86 have h_f_zero_all : ∀ x, f x = 0 := by
87 intro x
88 have h1 := h_f_zero x
89 have h2 := h_f_zero 0
90 have h3 := h_f_zero (-1)
91 have h4 := h_f_zero 1
92 simp [h_f_zero_zero] at h1 h2 h3 h4 ⊢
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93 <;>
94 (try omega) <;>
95 (try nlinarith) <;>
96 (try aesop)
97 <;>
98 (try
99 {

100 simp_all [h_f_form, h_c_zero]
101 <;>
102 (try omega) <;>
103 (try nlinarith) <;>
104 (try aesop)
105 })
106 exact Or.inl h_f_zero_all
107 | inr h_c_two =>
108 -- Case c = 2
109 have h_f_form_two : ∀ x, f x = 2 * x + f 0 := by
110 intro x
111 have h1 := h_f_form x
112 simp [h_c_two] at h1 ⊢
113 <;> linarith
114 exact Or.inr h_f_form_two
115

116 exact h_main
117

118 theorem prop_cauchy_like (f : Z → Z) (h_f_all : ∀ a b, f (2 * a) + 2 * (f b) = f
(f (a + b)))↪→

119 (h_f_f_x : ∀ x, f (f x) = 2 * f x + f 0) (h_f_2x : ∀ x, f (2 * x) = 2 * f x - f
0) (x y : Z) :↪→

120 f (x + y) = f x + f y - f 0 := by
121 have h_main : f (x + y) = f x + f y - f 0 := by
122 have h1 := h_f_all (x + y) 0
123 have h2 := h_f_all x y
124 have h3 := h_f_all (x + y) y
125 have h4 := h_f_all x (x + y)
126 have h5 := h_f_2x (x + y)
127 have h6 := h_f_2x x
128 have h7 := h_f_2x y
129 have h8 := h_f_all 0 (x + y)
130 have h9 := h_f_all 0 x
131 have h10 := h_f_all 0 y
132 have h11 := h_f_f_x (x + y)
133 have h12 := h_f_f_x x
134 have h13 := h_f_f_x y
135 have h14 := h_f_all (2 * (x + y)) 0
136 have h15 := h_f_all (2 * x) 0
137 have h16 := h_f_all (2 * y) 0
138 have h17 := h_f_all x 0
139 have h18 := h_f_all y 0
140 have h19 := h_f_all (x + y) (x + y)
141 have h20 := h_f_all x x
142 have h21 := h_f_all y y
143 -- Simplify the expressions using the given conditions
144 simp [h_f_2x, mul_add, add_mul, mul_comm, mul_left_comm, mul_assoc] at h1 h2 h3

h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20 h21 ⊢↪→
145 <;> ring_nf at h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18

h19 h20 h21 ⊢↪→
146 <;> omega
147 exact h_main
148

149 theorem prop_f_f_x (f : Z → Z) (h_f_all : ∀ a b, f (2 * a) + 2 * (f b) = f (f (a +
b))) (x : Z) :↪→

150 f (f x) = 2 * f x + f 0 := by
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151 have h_main : f (f x) = 2 * f x + f 0 := by
152 have h1 := h_f_all x 0
153 have h2 := h_f_all 0 x
154 have h3 := h_f_all x x
155 have h4 := h_f_all (-x) x
156 have h5 := h_f_all x (-x)
157 have h6 := h_f_all 0 0
158 have h7 := h_f_all x (-2 * x)
159 have h8 := h_f_all (-x) (-x)
160 have h9 := h_f_all x 1
161 have h10 := h_f_all x (-1)
162 have h11 := h_f_all 1 x
163 have h12 := h_f_all (-1) x
164 have h13 := h_f_all 1 0
165 have h14 := h_f_all (-1) 0
166 have h15 := h_f_all 0 1
167 have h16 := h_f_all 0 (-1)
168 have h17 := h_f_all 1 1
169 have h18 := h_f_all (-1) (-1)
170 -- Simplify the equations to find a relationship between f(0) and f(f(0))
171 simp at h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18
172 ring_nf at h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18 ⊢
173 -- Use linear arithmetic to solve for the desired result
174 omega
175 exact h_main
176

177 theorem prop_f_2x (f : Z → Z) (h_f_all : ∀ a b, f (2 * a) + 2 * (f b) = f (f (a +
b)))↪→

178 (h_f_f_x : ∀ x, f (f x) = 2 * f x + f 0) (x : Z) :
179 f (2 * x) = 2 * f x - f 0 := by
180 have h1 : f (f (2 * x)) = 2 * f (2 * x) + f 0 := by
181 have h1 := h_f_f_x (2 * x)
182 -- Simplify the expression using the given condition h_f_f_x
183 simp at h1 ⊢
184 <;> linarith
185

186 have h2 : f (2 * x) + 2 * f x = f (f (2 * x)) := by
187 have h2 := h_f_all x x
188 -- Simplify the expression using the given condition h_f_all
189 ring_nf at h2 ⊢
190 <;> linarith
191

192 have h3 : f (2 * x) + 2 * f x = 2 * f (2 * x) + f 0 := by
193 have h3 : f (2 * x) + 2 * f x = f (f (2 * x)) := h2
194 rw [h3]
195 have h4 : f (f (2 * x)) = 2 * f (2 * x) + f 0 := h1
196 rw [h4]
197 <;> ring
198 <;> omega
199

200 have h4 : f (2 * x) = 2 * f x - f 0 := by
201 have h5 : f (2 * x) + 2 * f x = 2 * f (2 * x) + f 0 := h3
202 -- Rearrange the equation to isolate f(2 * x)
203 have h6 : f (2 * x) = 2 * f x - f 0 := by
204 -- Solve for f(2 * x) using linear arithmetic
205 linarith
206 exact h6
207

208 apply h4
209

210

211 theorem cauchy_implies_linear_form (f : Z → Z) (h_cauchy_like : ∀ x y, f (x + y) =
f x + f y - f 0) :↪→
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212 ∃ c : Z, ∀ x, f x = c * x + f 0 := by
213 have h_main : ∃ (c : Z), ∀ (x : Z), f x = c * x + f 0 := by
214 use f 1 - f 0
215 intro x
216 have h1 : ∀ n : Z, f n = (f 1 - f 0) * n + f 0 := by
217 intro n
218 induction n using Int.induction_on with
219 | hz =>
220 -- Base case: n = 0
221 simp [h_cauchy_like]
222 <;> ring_nf
223 <;> omega
224 | hp n ih =>
225 -- Inductive step: n = p + 1
226 have h2 := h_cauchy_like n 1
227 have h3 := h_cauchy_like 0 (n + 1)
228 have h4 := h_cauchy_like (n + 1) 0
229 have h5 := h_cauchy_like 1 0
230 have h6 := h_cauchy_like 0 1
231 simp at h2 h3 h4 h5 h6
232 simp [ih, add_mul, mul_add, mul_one, mul_neg, mul_zero, sub_eq_add_neg] at

h2 h3 h4 h5 h6 ⊢↪→
233 <;> ring_nf at *
234 <;> omega
235 | hn n ih =>
236 -- Inductive step: n = - (n + 1)
237 have h2 := h_cauchy_like (-n - 1) 1
238 have h3 := h_cauchy_like 0 (-n - 1)
239 have h4 := h_cauchy_like (-n - 1) 0
240 have h5 := h_cauchy_like 1 0
241 have h6 := h_cauchy_like 0 1
242 simp at h2 h3 h4 h5 h6
243 simp [ih, add_mul, mul_add, mul_one, mul_neg, mul_zero, sub_eq_add_neg] at

h2 h3 h4 h5 h6 ⊢↪→
244 <;> ring_nf at *
245 <;> omega
246 have h2 := h1 x
247 have h3 := h1 1
248 have h4 := h1 0
249 simp at h2 h3 h4 ⊢
250 <;> linarith
251 exact h_main
252

253 theorem step6_zero_function_is_solution (f : Z → Z) (h_zero : ∀ x, f x = 0) : (∀ a
b, f (2 * a) + 2 * (f b) = f (f (a + b))) := by↪→

254 have h_main : ∀ a b, f (2 * a) + 2 * (f b) = f (f (a + b)) := by
255 intro a b
256 have h1 : f (2 * a) = 0 := by
257 rw [h_zero]
258 <;> simp [h_zero]
259 have h2 : f b = 0 := by
260 rw [h_zero]
261 <;> simp [h_zero]
262 have h3 : f (a + b) = 0 := by
263 rw [h_zero]
264 <;> simp [h_zero]
265 have h4 : f (f (a + b)) = 0 := by
266 rw [h_zero]
267 <;> simp [h_zero]
268 -- Simplify the LHS and RHS using the above equalities
269 simp [h1, h2, h3, h4, h_zero]
270 <;> linarith
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271 exact h_main
272

273 theorem step7_linear_function_is_solution (f : Z → Z) (c : Z) (h_lin : ∀ x, f x =
2 * x + c) : (∀ a b, f (2 * a) + 2 * (f b) = f (f (a + b))) := by↪→

274 have h_main : ∀ a b, f (2 * a) + 2 * (f b) = f (f (a + b)) := by
275 intro a b
276 have h1 : f (2 * a) = 2 * (2 * a) + c := by
277 rw [h_lin]
278 <;> ring
279 have h2 : f b = 2 * b + c := by
280 rw [h_lin]
281 <;> ring
282 have h3 : f (f (a + b)) = f (2 * (a + b) + c) := by
283 have h4 : f (a + b) = 2 * (a + b) + c := by
284 rw [h_lin]
285 <;> ring
286 rw [h4]
287 <;> ring
288 have h4 : f (f (a + b)) = 2 * (2 * (a + b) + c) + c := by
289 rw [h3]
290 rw [h_lin]
291 <;> ring
292 have h5 : f (2 * a) + 2 * (f b) = (2 * (2 * a) + c) + 2 * (2 * b + c) := by
293 rw [h1, h2]
294 <;> ring
295 have h6 : f (2 * a) + 2 * (f b) = 4 * a + 4 * b + 3 * c := by
296 linarith
297 have h7 : f (f (a + b)) = 4 * a + 4 * b + 3 * c := by
298 linarith
299 linarith
300 exact h_main
301

302 theorem imo2019_p1
303 (f : Z → Z) :
304 (∀ a b : Z, f (2 * a) + 2 * f b = f (f (a + b))) ↔ solution_set f := by
305 constructor
306 · intro h_fe
307 have h_ff : ∀ x, f (f x) = 2 * f x + f 0 :=
308 prop_f_f_x f h_fe
309 have h_f2 : ∀ x, f (2 * x) = 2 * f x - f 0 :=
310 prop_f_2x f h_fe h_ff
311 have h_add : ∀ x y, f (x + y) = f x + f y - f 0 :=
312 prop_cauchy_like f h_fe h_ff h_f2
313 rcases cauchy_implies_linear_form f h_add with 〈c, h_lin0〉
314 have h_split :
315 (∀ x, f x = 0) ∨ (∀ x, f x = 2 * x + f 0) :=
316 linear_form_plus_f_f_x_implies_solutions f c h_lin0 h_ff
317 cases h_split with
318 | inl h0 =>
319 exact Or.inl h0
320 | inr h2 =>
321 exact Or.inr 〈f 0, h2〉
322 · intro h_sol
323 cases h_sol with
324 | inl h0 =>
325 exact step6_zero_function_is_solution f h0
326 | inr h_exists =>
327 rcases h_exists with 〈c, h_lin〉
328 exact step7_linear_function_is_solution f c h_lin
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E.3 IMO 2011 P3

1 -- Solution to IMO 2011 P3 by DRP-IMO
2

3 import Mathlib
4 import Aesop
5

6 set_option maxHeartbeats 0
7

8 open BigOperators Real Nat Topology Rat
9

10

11

12 theorem imo2011_p3_lemma1_f_neg_le_self (f : R → R) (hf : ∀ x y, f (x + y) ≤ y *
f x + f (f x)) :↪→

13 ∀ x, f x < 0 → f x ≤ x := by
14 have h_main : ∀ (x : R), f x < 0 → f x ≤ x := by
15 intro x hx
16 have h1 : f x ^ 2 - x * f x ≥ 0 := by
17 have h2 := hf x (f x - x)
18 have h3 := hf (f x) (x - f x)
19 have h4 := hf x 0
20 have h5 := hf 0 x
21 have h6 := hf x x
22 have h7 := hf x (-x)
23 have h8 := hf (-x) x
24 have h9 := hf 0 0
25 have h10 := hf x 1
26 have h11 := hf 1 x
27 have h12 := hf x (-1)
28 have h13 := hf (-1) x
29 have h14 := hf x (f x)
30 have h15 := hf (f x) x
31 have h16 := hf x (-f x)
32 have h17 := hf (-f x) x
33 have h18 := hf x (x + f x)
34 have h19 := hf (x + f x) x
35 have h20 := hf x (-x)
36 have h21 := hf (-x) x
37 have h22 := hf x (x - f x)
38 have h23 := hf (x - f x) x
39 have h24 := hf x (f x + x)
40 have h25 := hf (f x + x) x
41 have h26 := hf x (2 * f x)
42 have h27 := hf (2 * f x) x
43 have h28 := hf x (-2 * f x)
44 have h29 := hf (-2 * f x) x
45 -- Normalize the expressions to simplify the inequalities
46 ring_nf at h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20

h21 h22 h23 h24 h25 h26 h27 h28 h29 ⊢↪→
47 -- Use linear arithmetic to prove the inequality
48 nlinarith [sq_nonneg (f x - x), sq_nonneg (f x + x), sq_nonneg (f x - 2 * x),

sq_nonneg (f x + 2 * x),↪→
49 sq_nonneg (2 * f x - x), sq_nonneg (2 * f x + x)]
50 have h3 : f x ≤ x := by
51 by_contra h
52 have h4 : f x > x := by linarith
53 have h5 : f x ^ 2 - x * f x < 0 := by
54 nlinarith [hx, h4]
55 nlinarith
56 exact h3
57 exact h_main
58
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59 /--Let \( f : \mathbb{R} \to \mathbb{R} \) be a function such that for all real
numbers \( x \) and \( y \), the inequality \( f(x + y) \leq y \cdot f(↪→

60 x) + f(f(x)) \) holds. Prove that for all real numbers \( x \), the inequality \(
f(x) \leq f(f(x)) \) is true.-/↪→

61 theorem imo2011_p3_st1 (f : R → R) (hf : ∀ x y, f (x + y) ≤ y * f x + f (f x)) :
62 ∀ x, f x ≤ f (f x) := by
63 have h_main : ∀ (x : R), f x ≤ f (f x) := by
64 intro x
65 have h1 := hf x 0
66 -- Simplify the inequality by substituting y = 0
67 simp at h1
68 -- Use the simplified inequality to conclude the proof
69 linarith
70 exact h_main
71

72

73

74 /--Consider a function \( f : \mathbb{R} \to \mathbb{R} \) that satisfies the
condition: for all real numbers \( x \) and \( y \), \( f(x + y) \leq y \↪→

75 cdot f(x) + f(f(x)) \). Prove that for all real numbers \( x \), \( f(x) \leq 0
\).-/↪→

76 theorem aux_f_nonpositive (f : R → R) (hf : ∀ x y, f (x + y) ≤ y * f x + f (f x))
: ∀ x, f x ≤ 0 := by↪→

77 have h_main : ∀ x, f x ≤ 0 := by
78 intro x
79 by_contra h
80 have h1 : f x > 0 := by linarith
81 have h2 := hf x (-x)
82 have h3 := hf 0 (f x)
83 have h4 := hf x 0
84 have h5 := hf (-x) x
85 have h6 := hf (-x) (-x)
86 have h7 := hf x (f x)
87 have h8 := hf (f x) (-f x)
88 have h9 := hf (f x) 0
89 have h10 := hf 0 (-f x)
90 have h11 := hf x (2 * x)
91 have h12 := hf x (-2 * x)
92 have h13 := hf (2 * x) (-x)
93 have h14 := hf (2 * x) x
94 have h15 := hf (-2 * x) x
95 have h16 := hf (-2 * x) (-x)
96 have h17 := hf (f x) x
97 have h18 := hf (f x) (-x)
98 have h19 := hf x (f x)
99 have h20 := hf (-x) (f x)

100 have h21 := hf x (-f x)
101 have h22 := hf (-x) (-f x)
102 have h23 := hf (2 * f x) (-f x)
103 have h24 := hf (-2 * f x) (-f x)
104 have h25 := hf (2 * f x) (f x)
105 have h26 := hf (-2 * f x) (f x)
106 have h27 := hf (f x) (2 * f x)
107 have h28 := hf (f x) (-2 * f x)
108 have h29 := hf x (x)
109 have h30 := hf x (-x)
110 have h31 := hf 0 (2 * f x)
111 have h32 := hf 0 (-2 * f x)
112 have h33 := hf (2 * f x) 0
113 have h34 := hf (-2 * f x) 0
114 have h35 := hf (f x) (f x)
115 have h36 := hf (-f x) (f x)
116 have h37 := hf (f x) (-f x)
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117 have h38 := hf (-f x) (-f x)
118 norm_num at *
119 <;>
120 (try nlinarith) <;>
121 (try linarith) <;>
122 (try nlinarith [h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11, h12, h13, h14, h15,

h16, h17, h18, h19, h20, h21, h22, h23, h24, h25, h26, h27, h28, h2↪→
123 9, h30, h31, h32, h33, h34, h35, h36, h37, h38]) <;>
124 (try
125 nlinarith [hf 0 0, hf x 0, hf 0 x, hf x (-x), hf (-x) x, hf (x + x) (-x), hf

(-x) (x + x), hf (x - x) (x + x), hf (x + x) (x - x)]) <;>↪→
126 (try
127 nlinarith [hf 0 0, hf x 0, hf 0 x, hf x (-x), hf (-x) x, hf (x + x) (-x), hf

(-x) (x + x), hf (x - x) (x + x), hf (x + x) (x - x)]) <;>↪→
128 (try
129 nlinarith [hf 0 0, hf x 0, hf 0 x, hf x (-x), hf (-x) x, hf (x + x) (-x), hf

(-x) (x + x), hf (x - x) (x + x), hf (x + x) (x - x)])↪→
130 <;>
131 nlinarith
132

133 exact h_main
134

135

136

137 theorem lemma_final_implication (f : R → R) (hf : ∀ x y, f (x + y) ≤ y * f x + f
(f x))↪→

138 (h_f_at_0_is_0 : f 0 = 0) (h_f_non_positive : ∀ x, f x ≤ 0) : ∀ x ≤ 0, f x = 0
:= by↪→

139 have h_main : ∀ (x : R), x ≤ 0 → f x = 0 := by
140 intro x hx
141 have h1 : f x = 0 := by
142 by_cases hx0 : x = 0
143 · -- If x = 0, then f(0) = 0 by hypothesis
144 simp [hx0, h_f_at_0_is_0]
145 · -- If x ̸= 0, then x < 0
146 have hx1 : x < 0 := by
147 cases' lt_or_gt_of_ne hx0 with h h
148 · linarith
149 · exfalso
150 linarith
151 -- Use the given inequality with y = x and y = -x to derive the desired

result↪→
152 have h2 := hf x x
153 have h3 := hf (-x) x
154 have h4 := hf x (-x)
155 have h5 := hf 0 x
156 have h6 := hf x 0
157 have h7 := hf 0 (-x)
158 have h8 := hf (-x) 0
159 -- Simplify the inequalities using the given conditions
160 norm_num [h_f_at_0_is_0] at h2 h3 h4 h5 h6 h7 h8 ⊢
161 nlinarith [h_f_non_positive x, h_f_non_positive (-x), h_f_non_positive (f

x),↪→
162 h_f_non_positive (x + x), h_f_non_positive (x - x), h_f_non_positive 0]
163 exact h1
164 exact h_main
165

166 /--Let \( f : \mathbb{R} \to \mathbb{R} \) be a function satisfying the inequality
\( f(x + y) \leq y \cdot f(x) + f(f(x)) \) for all real numbers \( x↪→

167 \) and \( y \). Suppose that \( f(0) = c \) and there exists some \( x_0 \) such
that \( f(x_0) = 0 \). Prove that \( c \geq 0 \), \( f(c) = c \), \(↪→

168 f(y) \leq c \) for all real numbers \( y \), and \( f(y) \leq c \cdot y + c \) for
all real numbers \( y \).-/↪→
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169 theorem lemma_properties_if_f_has_zero (f : R → R) (hf : ∀ x y, f (x + y) ≤ y * f
x + f (f x))↪→

170 (h_f0_eq_c : f 0 = c) (hx0 : ∃ x0, f x0 = 0) :
171 c ≥ 0 ∧ f c = c ∧ (∀ y, f y ≤ c) ∧ (∀ y, f y ≤ c * y + c) := by
172 have h_c_ge_zero : c ≥ 0 := by
173 obtain 〈x0, hx0〉 := hx0
174 have h1 := hf x0 (-x0)
175 have h2 := hf 0 (-x0)
176 have h3 := hf x0 0
177 have h4 := hf 0 0
178 have h5 := hf x0 (f x0)
179 have h6 := hf 0 (f 0)
180 have h7 := hf x0 (-f x0)
181 have h8 := hf 0 (-f 0)
182 norm_num [h_f0_eq_c, hx0] at *
183 <;>
184 (try linarith) <;>
185 (try nlinarith) <;>
186 (try simp_all [h_f0_eq_c, hx0]) <;>
187 (try linarith) <;>
188 (try nlinarith)
189 <;>
190 (try
191 nlinarith [sq_nonneg (f x0), sq_nonneg (f 0), sq_nonneg (x0 + 0), sq_nonneg

(x0 - 0), sq_nonneg (f x0 + f 0), sq_nonneg (f x0 - f 0)])↪→
192 <;>
193 (try
194 nlinarith [sq_nonneg (f x0), sq_nonneg (f 0), sq_nonneg (x0 + 0), sq_nonneg

(x0 - 0), sq_nonneg (f x0 + f 0), sq_nonneg (f x0 - f 0)])↪→
195

196 have h_f_c_eq_c : f c = c := by
197 obtain 〈x0, hx0〉 := hx0
198 have h1 := hf x0 (c - x0)
199 have h2 := hf 0 (c)
200 have h3 := hf c (-c)
201 have h4 := hf x0 0
202 have h5 := hf 0 0
203 have h6 := hf x0 (f x0)
204 have h7 := hf 0 (f 0)
205 have h8 := hf x0 (-x0)
206 have h9 := hf 0 (-x0)
207 simp [h_f0_eq_c, hx0] at h1 h2 h3 h4 h5 h6 h7 h8 h9 ⊢
208 <;>
209 (try ring_nf at * <;> nlinarith) <;>
210 (try
211 {
212 nlinarith [sq_nonneg (f x0), sq_nonneg (c - x0), sq_nonneg (c + x0)]
213 }) <;>
214 (try
215 {
216 nlinarith [sq_nonneg (f x0), sq_nonneg (c - x0), sq_nonneg (c + x0),

sq_nonneg (f c)]↪→
217 })
218 <;>
219 (try
220 {
221 nlinarith [sq_nonneg (f x0), sq_nonneg (c - x0), sq_nonneg (c + x0),

sq_nonneg (f c), sq_nonneg (f 0)]↪→
222 })
223 <;>
224 (try
225 {
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226 nlinarith [sq_nonneg (f x0), sq_nonneg (c - x0), sq_nonneg (c + x0),
sq_nonneg (f c), sq_nonneg (f 0), sq_nonneg (c - f x0)]↪→

227 })
228 <;>
229 (try
230 {
231 nlinarith [sq_nonneg (f x0), sq_nonneg (c - x0), sq_nonneg (c + x0),

sq_nonneg (f c), sq_nonneg (f 0), sq_nonneg (c - f x0), sq_nonneg (f x0
-

↪→
↪→

232 c)]
233 })
234

235 have h_f_le_c : ∀ y, f y ≤ c := by
236 intro y
237 have h1 := hf y (-y)
238 have h2 := hf y (c - y)
239 have h3 := hf 0 (y)
240 have h4 := hf c (-c)
241 have h5 := hf y 0
242 have h6 := hf 0 0
243 have h7 := hf c 0
244 have h8 := hf 0 c
245 have h9 := hf y (f y)
246 have h10 := hf 0 (f 0)
247 have h11 := hf y (-f y)
248 have h12 := hf 0 (-f 0)
249 have h13 := hf c (y - c)
250 have h14 := hf 0 (y - c)
251 have h15 := hf (y - c) c
252 have h16 := hf (y - c) 0
253 have h17 := hf (y - c) (f (y - c))
254 have h18 := hf (y - c) (-f (y - c))
255 norm_num [h_f0_eq_c, h_f_c_eq_c] at *
256 <;>
257 (try linarith) <;>
258 (try nlinarith) <;>
259 (try
260 {
261 nlinarith [sq_nonneg (f y - c), sq_nonneg (f 0), sq_nonneg (c), sq_nonneg

(y), sq_nonneg (f c - c), sq_nonneg (f y)]↪→
262 }) <;>
263 (try
264 {
265 nlinarith [sq_nonneg (f y - c), sq_nonneg (f 0), sq_nonneg (c), sq_nonneg

(y), sq_nonneg (f c - c), sq_nonneg (f y), h_c_ge_zero]↪→
266 }) <;>
267 (try
268 {
269 nlinarith [sq_nonneg (f y - c), sq_nonneg (f 0), sq_nonneg (c), sq_nonneg

(y), sq_nonneg (f c - c), sq_nonneg (f y), h_c_ge_zero, sq_nonneg (f↪→
270 y)]
271 }) <;>
272 (try
273 {
274 nlinarith [sq_nonneg (f y - c), sq_nonneg (f 0), sq_nonneg (c), sq_nonneg

(y), sq_nonneg (f c - c), sq_nonneg (f y), h_c_ge_zero, sq_nonneg (f↪→
275 y - c)]
276 })
277

278 have h_f_le_cy_add_c : ∀ y, f y ≤ c * y + c := by
279 intro y
280 have h1 := h_f_le_c y
281 have h2 := h_f_le_c 0

24



282 have h3 := hf 0 y
283 have h4 := hf y 0
284 have h5 := hf y (-y)
285 have h6 := hf 0 (-y)
286 have h7 := hf y (c - y)
287 have h8 := hf 0 (c)
288 have h9 := hf c (-c)
289 have h10 := hf y 0
290 have h11 := hf 0 0
291 have h12 := hf y (f y)
292 have h13 := hf 0 (f 0)
293 have h14 := hf y (-f y)
294 have h15 := hf 0 (-f 0)
295 have h16 := hf c (y - c)
296 have h17 := hf 0 (y - c)
297 have h18 := hf (y - c) c
298 have h19 := hf (y - c) 0
299 have h20 := hf (y - c) (f (y - c))
300 have h21 := hf (y - c) (-f (y - c))
301 norm_num [h_f0_eq_c, h_f_c_eq_c] at *
302 <;>
303 (try linarith) <;>
304 (try nlinarith) <;>
305 (try
306 {
307 nlinarith [h_c_ge_zero, sq_nonneg (f y - c), sq_nonneg (y), sq_nonneg (c -

y), sq_nonneg (f y + c - c * y)]↪→
308 }) <;>
309 (try
310 {
311 nlinarith [h_c_ge_zero, sq_nonneg (f y - c), sq_nonneg (y), sq_nonneg (c -

y), sq_nonneg (f y + c - c * y), sq_nonneg (f y - c * y)]↪→
312 }) <;>
313 (try
314 {
315 nlinarith [h_c_ge_zero, sq_nonneg (f y - c), sq_nonneg (y), sq_nonneg (c -

y), sq_nonneg (f y + c - c * y), sq_nonneg (f y - c * y), sq_nonneg↪→
316 (f y - c)]
317 })
318 <;>
319 (try
320 {
321 cases' le_total 0 y with hy hy <;>
322 cases' le_total 0 (f y - c) with h h <;>
323 cases' le_total 0 (c - y) with h' h' <;>
324 nlinarith [h_c_ge_zero, sq_nonneg (f y - c), sq_nonneg (y), sq_nonneg (c -

y), sq_nonneg (f y + c - c * y), sq_nonneg (f y - c * y)]↪→
325 })
326 <;>
327 nlinarith
328

329 exact 〈h_c_ge_zero, h_f_c_eq_c, h_f_le_c, h_f_le_cy_add_c〉
330

331 theorem imo2011_p3 (f : R → R) (hf : ∀ x y, f (x + y) ≤ y * f x + f (f x)) : ∀ x
≤ 0, f x = 0 := by↪→

332 -- Step 1: Prove that f is non-positive everywhere.
333 have h_nonpos : ∀ x, f x ≤ 0 := aux_f_nonpositive f hf
334

335 -- Step 2: Prove that there must exist some x0 such that f(x0) = 0.
336 -- We prove this by contradiction. Assume f(x) is never zero.
337 have h_exists_zero : ∃ x0, f x0 = 0 := by
338 by_contra h_no_zero
339 -- The hypothesis from `by_contra` is `h_no_zero : ¬(∃ x0, f x0 = 0)`.
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340 -- We use `push_neg` to convert it into a more usable form.
341 push_neg at h_no_zero
342 -- Now, `h_no_zero : ∀ (x : R), f x ̸= 0`.
343

344 -- This, combined with `h_nonpos`, implies f(x) < 0 for all x.
345 have h_always_neg : ∀ x, f x < 0 := fun x 7→ (h_nonpos x).lt_of_ne (h_no_zero x)
346

347 -- From this, we can deduce f(0) = f(f(0)).
348 have h_f0_eq_ff0 : f 0 = f (f 0) := by
349 have h_ff0_neg : f (f 0) < 0 := h_always_neg (f 0)
350 have hle : f (f 0) ≤ f 0 := imo2011_p3_lemma1_f_neg_le_self f hf (f 0)

h_ff0_neg↪→
351 have hge : f 0 ≤ f (f 0) := imo2011_p3_st1 f hf 0
352 linarith
353

354 -- Now, we use the main inequality to derive a contradiction.
355 -- Let x = f(0) and y = -f(0).
356 specialize hf (f 0) (-f 0)
357

358 -- Define a local lemma for `a + -a = 0` to ensure it's available.
359 have add_neg_self_local : f 0 + -f 0 = 0 := by ring
360

361 -- Rewrite the inequality step-by-step to derive the contradiction.
362 rw [add_neg_self_local] at hf
363 rw [← h_f0_eq_ff0] at hf
364 rw [← h_f0_eq_ff0] at hf
365

366 -- The inequality is now f 0 ≤ -(f 0)² + f 0, which implies 0 ≤ -(f 0)².
367 have h_contr : 0 ≤ -(f 0) ^ 2 := by linarith [hf]
368

369 -- This is a contradiction because f(0) < 0, so -(f 0)² < 0.
370 have h_f0_neg : f 0 < 0 := h_always_neg 0
371 have h_sq_pos : 0 < (f 0) ^ 2 := sq_pos_of_ne_zero (ne_of_lt h_f0_neg)
372 linarith
373

374 -- Step 3: Use the existence of a zero to prove f(0) = 0.
375 obtain 〈x0, hx0〉 := h_exists_zero
376 have h_f0_eq_0 : f 0 = 0 := by
377 -- A lemma gives properties of f if it has a zero. One is f(0) ≥ 0.
378 have h_props := lemma_properties_if_f_has_zero f hf rfl 〈x0, hx0〉
379 have h_f0_nonneg : f 0 ≥ 0 := h_props.1
380 -- Combining f(0) ≥ 0 with f(0) ≤ 0 (from h_nonpos) gives f(0) = 0.
381 linarith [h_nonpos 0]
382

383 -- Step 4: Now that we have f(x) ≤ 0 and f(0) = 0, apply the final lemma.
384 exact lemma_final_implication f hf h_f0_eq_0 h_nonpos

E.4 IMO 2005 P3

1 -- Solution to IMO 2005 P3 by DRP-IMO
2

3 import Mathlib
4 import Aesop
5

6 set_option maxHeartbeats 0
7

8 open BigOperators Real Nat Topology Rat
9

10

11 theorem inequality_part1_nonnegative (x y z : R) (hx : x > 0) (hy : y > 0) (hz : z
> 0) (h : x * y * z ≥ 1) :↪→

12 (x*x - 1/x + y*y - 1/y + z*z - 1/z) / (x*x + y*y + z*z) ≥ 0 := by
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13 have h_main : x*x + y*y + z*z - (1/x + 1/y + 1/z) ≥ 0 := by
14 have h1 : 0 < x * y := by positivity
15 have h2 : 0 < x * z := by positivity
16 have h3 : 0 < y * z := by positivity
17 have h4 : 0 < x * y * z := by positivity
18 have h5 : 0 < x * y * z * x := by positivity
19 have h6 : 0 < x * y * z * y := by positivity
20 have h7 : 0 < x * y * z * z := by positivity
21 field_simp [hx.ne', hy.ne', hz.ne']
22 rw [le_div_iff0 (by positivity)]
23 -- Use nlinarith to prove the inequality
24 nlinarith [sq_nonneg (x - y), sq_nonneg (x - z), sq_nonneg (y - z),
25 sq_nonneg (x * y - 1), sq_nonneg (x * z - 1), sq_nonneg (y * z - 1),
26 mul_nonneg (sub_nonneg.mpr h) (sq_nonneg (x - y)),
27 mul_nonneg (sub_nonneg.mpr h) (sq_nonneg (x - z)),
28 mul_nonneg (sub_nonneg.mpr h) (sq_nonneg (y - z)),
29 mul_nonneg (sub_nonneg.mpr h) (sq_nonneg (x * y - x * z)),
30 mul_nonneg (sub_nonneg.mpr h) (sq_nonneg (x * y - y * z)),
31 mul_nonneg (sub_nonneg.mpr h) (sq_nonneg (x * z - y * z))]
32

33 have h_final : (x*x - 1/x + y*y - 1/y + z*z - 1/z) / (x*x + y*y + z*z) ≥ 0 := by
34 have h1 : x * x + y * y + z * z - (1 / x + 1 / y + 1 / z) ≥ 0 := h_main
35 have h2 : x * x + y * y + z * z > 0 := by positivity
36 have h3 : (x * x - 1 / x + y * y - 1 / y + z * z - 1 / z) / (x * x + y * y + z *

z) ≥ 0 := by↪→
37 have h4 : x * x - 1 / x + y * y - 1 / y + z * z - 1 / z = (x * x + y * y + z *

z) - (1 / x + 1 / y + 1 / z) := by↪→
38 ring
39 rw [h4]
40 have h5 : ((x * x + y * y + z * z) - (1 / x + 1 / y + 1 / z)) / (x * x + y * y

+ z * z) ≥ 0 := by↪→
41 apply div_nonneg
42 · linarith
43 · linarith
44 exact h5
45 exact h3
46

47 exact h_final
48

49

50 theorem inequality_part2_nonnegative (x y z : R) (hx : x > 0) (hy : y > 0) (hz : z
> 0) :↪→

51 ((x^5 - x^2)/(x^5 + y^2 + z^2) - (x*x - 1/x)/(x*x + y*y + z*z)) +
52 ((y^5 - y^2)/(y^5 + z^2 + x^2) - (y*y - 1/y)/(y*y + z^2 + x*x)) +
53 ((z^5 - z^2)/(z^5 + x^2 + y^2) - (z*z - 1/z)/(z*z + x*x + y*y)) ≥ 0 := by
54 have h_main : ((x^5 - x^2)/(x^5 + y^2 + z^2) - (x*x - 1/x)/(x*x + y*y + z*z)) +

((y^5 - y^2)/(y^5 + z^2 + x^2) - (y*y - 1/y)/(y*y + z^2 + x*x)) + ((z↪→
55 ^5 - z^2)/(z^5 + x^2 + y^2) - (z*z - 1/z)/(z*z + x*x + y*y)) ≥ 0 := by
56 have h1 : (x^5 - x^2)/(x^5 + y^2 + z^2) - (x*x - 1/x)/(x*x + y*y + z*z) ≥ 0 :=

by↪→
57 have h10 : 0 < x^5 + y^2 + z^2 := by positivity
58 have h11 : 0 < x*x + y*y + z*z := by positivity
59 have h12 : 0 < x^5 := by positivity
60 have h13 : 0 < x^3 := by positivity
61 have h14 : 0 < x^2 := by positivity
62 have h15 : 0 < x := by positivity
63 field_simp
64 rw [le_div_iff0 (by positivity), ← sub_nonneg]
65 ring_nf
66 nlinarith [sq_nonneg (x^3 - x), sq_nonneg (x^2 - 1), sq_nonneg (x - 1),
67 mul_nonneg hx.le (sq_nonneg (x^2 - 1)), mul_nonneg hx.le (sq_nonneg (x^3 -

x)),↪→
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68 mul_nonneg hx.le (sq_nonneg (x^2 - x)), mul_nonneg hx.le (sq_nonneg (x^3 -
1)),↪→

69 mul_nonneg (sq_nonneg (x - 1)) (sq_nonneg (x + 1)), mul_nonneg hx.le
(sq_nonneg (x^2 - 2 * x + 1))]↪→

70 have h2 : (y^5 - y^2)/(y^5 + z^2 + x^2) - (y*y - 1/y)/(y*y + z^2 + x*x) ≥ 0 :=
by↪→

71 have h20 : 0 < y^5 + z^2 + x^2 := by positivity
72 have h21 : 0 < y*y + z^2 + x*x := by positivity
73 have h22 : 0 < y^5 := by positivity
74 have h23 : 0 < y^3 := by positivity
75 have h24 : 0 < y^2 := by positivity
76 have h25 : 0 < y := by positivity
77 field_simp
78 rw [le_div_iff0 (by positivity), ← sub_nonneg]
79 ring_nf
80 nlinarith [sq_nonneg (y^3 - y), sq_nonneg (y^2 - 1), sq_nonneg (y - 1),
81 mul_nonneg hy.le (sq_nonneg (y^2 - 1)), mul_nonneg hy.le (sq_nonneg (y^3 -

y)),↪→
82 mul_nonneg hy.le (sq_nonneg (y^2 - y)), mul_nonneg hy.le (sq_nonneg (y^3 -

1)),↪→
83 mul_nonneg (sq_nonneg (y - 1)) (sq_nonneg (y + 1)), mul_nonneg hy.le

(sq_nonneg (y^2 - 2 * y + 1))]↪→
84 have h3 : (z^5 - z^2)/(z^5 + x^2 + y^2) - (z*z - 1/z)/(z*z + x*x + y*y) ≥ 0 :=

by↪→
85 have h30 : 0 < z^5 + x^2 + y^2 := by positivity
86 have h31 : 0 < z*z + x*x + y*y := by positivity
87 have h32 : 0 < z^5 := by positivity
88 have h33 : 0 < z^3 := by positivity
89 have h34 : 0 < z^2 := by positivity
90 have h35 : 0 < z := by positivity
91 field_simp
92 rw [le_div_iff0 (by positivity), ← sub_nonneg]
93 ring_nf
94 nlinarith [sq_nonneg (z^3 - z), sq_nonneg (z^2 - 1), sq_nonneg (z - 1),
95 mul_nonneg hz.le (sq_nonneg (z^2 - 1)), mul_nonneg hz.le (sq_nonneg (z^3 -

z)),↪→
96 mul_nonneg hz.le (sq_nonneg (z^2 - z)), mul_nonneg hz.le (sq_nonneg (z^3 -

1)),↪→
97 mul_nonneg (sq_nonneg (z - 1)) (sq_nonneg (z + 1)), mul_nonneg hz.le

(sq_nonneg (z^2 - 2 * z + 1))]↪→
98 linarith
99 exact h_main

100

101

102 -- The main theorem
103 theorem imo2005_p3 (x y z : R) (hx : x > 0) (hy : y > 0) (hz : z > 0) (h_prod_ge_1 :

x * y * z ≥ 1) :↪→
104 (x ^ 5 - x ^ 2) / (x ^ 5 + y ^ 2 + z ^ 2) + (y ^ 5 - y ^ 2) / (y ^ 5 + z ^ 2 + x ^

2) + (z ^ 5 - z ^ 2) / (z ^ 5 + x ^ 2 + y ^ 2) ≥ 0 := by↪→
105 -- Define S_part1 (LHS of inequality_part1_nonnegative)
106 let S_part1 := (x^2 - 1/x + y^2 - 1/y + z^2 - 1/z) / (x^2 + y^2 + z^2)
107

108 -- Define S_part2 (LHS of inequality_part2_nonnegative)
109 let S_part2 :=
110 ((x^5 - x^2)/(x^5 + y^2 + z^2) - (x^2 - 1/x)/(x^2 + y^2 + z^2)) +
111 ((y^5 - y^2)/(y^5 + z^2 + x^2) - (y^2 - 1/y)/(y^2 + z^2 + x^2)) +
112 ((z^5 - z^2)/(z^5 + x^2 + y^2) - (z^2 - 1/z)/(z^2 + x^2 + y^2))
113

114 -- Prove S_part1 ≥ 0 using inequality_part1_nonnegative
115 have h_S_part1_nonneg : S_part1 ≥ 0 := by
116 apply inequality_part1_nonnegative <;> assumption
117

118 -- Prove S_part2 ≥ 0 using inequality_part2_nonnegative
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119 have h_S_part2_nonneg : S_part2 ≥ 0 := by
120 apply inequality_part2_nonnegative <;> assumption
121

122 -- Prove that the original LHS is equal to S_part1 + S_part2
123 -- We'll prove it as a separate fact (have) and then use it.
124 have h_LHS_eq_sum :
125 (x^5 - x^2)/(x^5 + y^2 + z^2) + (y^5 - y^2)/(y^5 + z^2 + x^2) + (z^5 - z^2)/(z^5

+ x^2 + y^2) =↪→
126 S_part2 + S_part1 := by
127 -- Expand the definitions of S_part1 and S_part2
128 unfold S_part1 S_part2
129 -- Normalize denominators which are permutations of each other
130 have h_denom_y : y^2 + z^2 + x^2 = x^2 + y^2 + z^2 := by ac_rfl
131 have h_denom_z : z^2 + x^2 + y^2 = x^2 + y^2 + z^2 := by ac_rfl
132 rw [h_denom_y, h_denom_z]
133 -- The rest is a pure algebraic identity, which `ring` can solve.
134 -- It correctly rearranges terms like (a-b)+(c-d)+(e-f) + (b+d+f)/k = a+c+e
135 -- after combining the fractions for S_part1
136 ring
137

138 -- Rewrite the goal using the equality we just proved
139 rw [h_LHS_eq_sum]
140

141 -- The goal is now S_part2 + S_part1 ≥ 0, which follows from the two parts being
non-negative.↪→

142 exact add_nonneg h_S_part2_nonneg h_S_part1_nonneg

E.5 IMO 2000 P2

1 -- Solution to IMO 2000 P2 by DRP-IMO
2

3 import Mathlib
4 import Aesop
5

6 set_option maxHeartbeats 0
7

8 open BigOperators Real Nat Topology Rat
9

10 /--Given positive real numbers \( a \), \( b \), and \( c \) such that \( a \times b
\times c = 1 \), prove that there exist positive real numbers \( x↪→

11 \), \( y \), and \( z \) such that \( a = \frac{x}{y} \), \( b = \frac{y}{z} \),
and \( c = \frac{z}{x} \).-/↪→

12 theorem imo2000_p2_existence_of_xyz (a b c : R) (ha : 0 < a) (hb : 0 < b) (hc : 0 <
c) (habc : a * b * c = 1) :↪→

13 ∃ x y z : R, 0 < x ∧ 0 < y ∧ 0 < z ∧ a = x/y ∧ b = y/z ∧ c = z/x := by
14 have h_main : ∃ (x y z : R), 0 < x ∧ 0 < y ∧ 0 < z ∧ a = x/y ∧ b = y/z ∧ c = z/x

:= by↪→
15 refine' 〈a, 1, 1 / b, _, _, _, _, _, _〉
16 · -- Prove that a > 0
17 linarith
18 · -- Prove that 1 > 0
19 norm_num
20 · -- Prove that 1 / b > 0
21 exact div_pos zero_lt_one hb
22 · -- Prove that a = a / 1
23 field_simp
24 · -- Prove that b = 1 / (1 / b)
25 field_simp
26 <;>
27 nlinarith
28 · -- Prove that c = (1 / b) / a
29 have h1 : c = 1 / (a * b) := by
30 have h2 : a * b * c = 1 := habc
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31 have h3 : c = 1 / (a * b) := by
32 have h4 : a * b ̸= 0 := by positivity
33 field_simp [h4] at h2 ⊢
34 nlinarith
35 exact h3
36 have h2 : (1 / b : R) / a = 1 / (a * b) := by
37 field_simp
38 <;> ring
39 <;> field_simp [ha.ne', hb.ne']
40 <;> nlinarith
41 rw [h1] at *
42 <;> linarith
43 exact h_main
44

45 /--Consider three positive real numbers \( x \), \( y \), and \( z \) such that \( x
> 0 \), \( y > 0 \), and \( z > 0 \). Prove that the product of th↪→

46 e expressions \( (x - y + z) \), \( (y - z + x) \), and \( (z - x + y) \) is less
than or equal to the product \( x \cdot y \cdot z \).-/↪→

47 theorem schur_like_ineq (x y z : R) (hx : 0 < x) (hy : 0 < y) (hz : 0 < z) :
48 (x - y + z) * (y - z + x) * (z - x + y) ≤ x * y * z := by
49 have h_main : (x - y + z) * (y - z + x) * (z - x + y) ≤ x * y * z := by
50 nlinarith [sq_nonneg (x - y), sq_nonneg (y - z), sq_nonneg (z - x),
51 mul_nonneg hx.le hy.le, mul_nonneg hy.le hz.le, mul_nonneg hz.le hx.le,
52 mul_nonneg (sq_nonneg (x - y)) (sq_nonneg (y - z)),
53 mul_nonneg (sq_nonneg (y - z)) (sq_nonneg (z - x)),
54 mul_nonneg (sq_nonneg (z - x)) (sq_nonneg (x - y)),
55 mul_nonneg (sq_nonneg (x - y + z)) (sq_nonneg (y - z + x)),
56 mul_nonneg (sq_nonneg (y - z + x)) (sq_nonneg (z - x + y)),
57 mul_nonneg (sq_nonneg (z - x + y)) (sq_nonneg (x - y + z)),
58 mul_nonneg (sq_nonneg (x + y - z)) (sq_nonneg (y + z - x)),
59 mul_nonneg (sq_nonneg (y + z - x)) (sq_nonneg (z + x - y)),
60 mul_nonneg (sq_nonneg (z + x - y)) (sq_nonneg (x + y - z))]
61 exact h_main
62

63 /--Consider positive real numbers \( a, b, c, x, y, z \) such that \( a \cdot b
\cdot c = 1 \) and \( a = \frac{x}{y} \), \( b = \frac{y}{z} \), \( c =↪→

64 \frac{z}{x} \). Prove that the inequality \((a - 1 + \frac{1}{b}) \cdot (b - 1 +
\frac{1}{c}) \cdot (c - 1 + \frac{1}{a}) \leq 1\) is equivalent to th↪→

65 e inequality \((x - y + z) \cdot (y - z + x) \cdot (z - x + y) \leq x \cdot y \cdot
z\).-/↪→

66 theorem inequality_equivalence_under_parametrization (a b c x y z : R)
67 (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) (habc : a * b * c = 1)
68 (hx : 0 < x) (hy : 0 < y) (hz : 0 < z)
69 (hax : a = x / y) (hby : b = y / z) (hcz : c = z / x) :
70 (a - 1 + 1 / b) * (b - 1 + 1 / c) * (c - 1 + 1 / a) ≤ 1 ↔
71 (x - y + z) * (y - z + x) * (z - x + y) ≤ x * y * z := by
72 have h_main : (a - 1 + 1 / b) * (b - 1 + 1 / c) * (c - 1 + 1 / a) = ((x + z - y) /

y) * ((x + y - z) / z) * ((y + z - x) / x) := by↪→
73 have h1 : a - 1 + 1 / b = (x + z - y) / y := by
74 have h1 : a = x / y := by linarith
75 have h2 : b = y / z := by linarith
76 rw [h1, h2]
77 field_simp [ha.ne', hb.ne', hx.ne', hy.ne', hz.ne']
78 <;> ring_nf
79 <;> field_simp [ha.ne', hb.ne', hx.ne', hy.ne', hz.ne']
80 <;> nlinarith
81 have h2 : b - 1 + 1 / c = (x + y - z) / z := by
82 have h1 : b = y / z := by linarith
83 have h2 : c = z / x := by linarith
84 rw [h1, h2]
85 field_simp [ha.ne', hb.ne', hc.ne', hx.ne', hy.ne', hz.ne']
86 <;> ring_nf
87 <;> field_simp [ha.ne', hb.ne', hc.ne', hx.ne', hy.ne', hz.ne']
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88 <;> nlinarith
89 have h3 : c - 1 + 1 / a = (y + z - x) / x := by
90 have h1 : c = z / x := by linarith
91 have h2 : a = x / y := by linarith
92 rw [h1, h2]
93 field_simp [ha.ne', hb.ne', hc.ne', hx.ne', hy.ne', hz.ne']
94 <;> ring_nf
95 <;> field_simp [ha.ne', hb.ne', hc.ne', hx.ne', hy.ne', hz.ne']
96 <;> nlinarith
97 rw [h1, h2, h3]
98 <;> field_simp [ha.ne', hb.ne', hc.ne', hx.ne', hy.ne', hz.ne']
99 <;> ring_nf

100 <;> field_simp [ha.ne', hb.ne', hc.ne', hx.ne', hy.ne', hz.ne']
101 <;> nlinarith
102

103 have h_equiv : ((x + z - y) / y) * ((x + y - z) / z) * ((y + z - x) / x) ≤ 1 ↔
(x - y + z) * (y - z + x) * (z - x + y) ≤ x * y * z := by↪→

104 have h1 : 0 < x * y := by positivity
105 have h2 : 0 < y * z := by positivity
106 have h3 : 0 < z * x := by positivity
107 have h4 : 0 < x * y * z := by positivity
108 constructor
109 · intro h
110 have h5 : ((x + z - y) / y) * ((x + y - z) / z) * ((y + z - x) / x) ≤ 1 := by

linarith↪→
111 have h6 : (x - y + z) * (y - z + x) * (z - x + y) ≤ x * y * z := by
112 field_simp at h5
113 rw [div_le_one (by positivity)] at h5
114 nlinarith [sq_nonneg (x - y), sq_nonneg (y - z), sq_nonneg (z - x),
115 mul_nonneg hx.le hy.le, mul_nonneg hy.le hz.le, mul_nonneg hz.le hx.le,
116 mul_nonneg (sq_nonneg (x - y)) hz.le, mul_nonneg (sq_nonneg (y - z))

hx.le,↪→
117 mul_nonneg (sq_nonneg (z - x)) hy.le]
118 linarith
119 · intro h
120 have h5 : (x - y + z) * (y - z + x) * (z - x + y) ≤ x * y * z := by linarith
121 have h6 : ((x + z - y) / y) * ((x + y - z) / z) * ((y + z - x) / x) ≤ 1 := by
122 field_simp
123 rw [div_le_one (by positivity)]
124 nlinarith [sq_nonneg (x - y), sq_nonneg (y - z), sq_nonneg (z - x),
125 mul_nonneg hx.le hy.le, mul_nonneg hy.le hz.le, mul_nonneg hz.le hx.le,
126 mul_nonneg (sq_nonneg (x - y)) hz.le, mul_nonneg (sq_nonneg (y - z))

hx.le,↪→
127 mul_nonneg (sq_nonneg (z - x)) hy.le]
128 linarith
129

130 have h_final : (a - 1 + 1 / b) * (b - 1 + 1 / c) * (c - 1 + 1 / a) ≤ 1 ↔ (x - y
+ z) * (y - z + x) * (z - x + y) ≤ x * y * z := by↪→

131 rw [h_main]
132 rw [h_equiv]
133 <;>
134 simp_all
135 <;>
136 field_simp
137 <;>
138 ring_nf
139 <;>
140 nlinarith
141

142 exact h_final
143

144 theorem imo2000_p2
145 (a b c : R) (ha : 0 < a) (hb : 0 < b) (hc : 0 < c)
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146 (habc : a * b * c = 1) :
147 (a - 1 + 1 / b) * (b - 1 + 1 / c) * (c - 1 + 1 / a) ≤ 1 := by
148 -- 1. Parametrize x y z using positive numbers
149 obtain 〈x, y, z, hx, hy, hz, ha_eq, hb_eq, hc_eq〉 :=
150 imo2000_p2_existence_of_xyz a b c ha hb hc habc
151 -- 2. Use an equivalent lemma to transform the goal into the form involving x y z
152 have h_equiv :=
153 (inequality_equivalence_under_parametrization
154 (a := a) (b := b) (c := c) (x := x) (y := y) (z := z)
155 ha hb hc habc hx hy hz ha_eq hb_eq hc_eq)
156 -- 3. The Schur-type inequality yields the conclusion on the right-hand side.
157 have hxyz : (x - y + z) * (y - z + x) * (z - x + y) ≤ x * y * z :=
158 schur_like_ineq x y z hx hy hz
159 -- 4. Derive the original conclusion by reversing the equivalent proposition.
160 exact h_equiv.mpr hxyz

F Prompts Used for Step3

Prompt for Final Proof Generation (Step3)

This is a very challenging Lean 4 proof problem that is difficult to solve directly.
To assist with the proof, I have provided several already-proven sub-theorems.
Please plan how to use these sub-theorems to construct a complete proof of the main theorem.
Use the provided sub-theorems freely (their proofs are marked with ‘sorry‘), but **you must
not use ‘sorry‘ anywhere else** in your final proof.
Finally, output the complete Lean 4 code for the proof.

**Main theorem:**

{problem}

**Proved Sub-theorems:**

{sub-theorems}
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