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Abstract

Automated Theorem Proving (ATP) in formal languages is a foundational challenge
for AI. While Large Language Models (LLMs) have driven remarkable progress,
a significant gap remains between their powerful informal reasoning capabilities
and their weak formal proving performance. Recent studies show that the informal
accuracy exceeds 80% while formal success remains below 8% on benchmarks
like PutnamBench. We argue this gap persists because current state-of-the-art
provers, by tightly coupling reasoning and proving, are trained with paradigms that
inadvertently punish deep reasoning in favor of shallow, tactic-based strategies.
To bridge this fundamental gap, we propose a novel framework that decouples
high-level reasoning from low-level proof generation. Our approach utilizes two
distinct, specialized models: a powerful, general-purpose Reasoner to generate
diverse, strategic subgoal lemmas, and an efficient Prover to rigorously verify them.
This modular design liberates the model’s full reasoning potential and bypasses
the pitfalls of end-to-end training. We evaluate our method on a challenging
set of post-2000 IMO problems, a problem set on which no prior open-source
prover has reported success. Our decoupled framework successfully solves 5 of
these problems, demonstrating a significant step towards automated reasoning on
exceptionally difficult mathematical challenges. To foster future research, we will
release our full dataset of generated and verified lemmas for a wide range of IMO
problems, after the paper acceptance.

1 Introduction

Automated Theorem Proving (ATP) aims to automatically generate machine-verified proofs for
mathematical statements. Recent progress, driven by Large Language Models (LLMs), has been
substantial. However, a critical gap has emerged: top-tier LLMs can achieve over 80% accuracy
in generating informal, natural-language solutions to complex math problems, but state-of-the-art
formal provers struggle to solve even 8% of the same problems on benchmarks like PutnamBench
[Dekoninck et al.l 2025]). This highlights that while LLMs possess powerful mathematical reasoning
abilities, current ATP systems fail to harness them for formal verification.

We argue this failure stems from a fundamental design flaw in modern provers like DeepSeek-Prover-
v2 [Ren et al.,|2025]] and Kimina [Wang et al., 2025]]. These models tightly couple high-level reasoning
(planning or sketching) and low-level proof generation within a single, monolithic architecture. They
are typically trained using Reinforcement Learning with Verifiable Rewards (RLVR), a paradigm
that rewards only the final binary success of the generated code. This training objective inadvertently
incentivizes models to suppress deep, human-like reasoning in favor of shallow, brittle strategies,
such as brute-forcing automated tactics (ring, omega, etc.). This "reasoning degradation" explains
their failure on exceptionally difficult problems, like International Mathematical Olympiad (IMO).
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We identify the root cause of this failure in the prevailing training paradigm: reinforcement learning
with verifiable rewards (RLVR). This methodology, used to train models like DeepSeek-Prover-v2 and
Kimina, rewards only the final binary success or failure of the generated Lean code. This paradigm is
fundamentally misaligned with the goal of bridging the reasoning-proving gap. Instead of rewarding
hard-to-define, human-like strategies (the kind that achieve >80% informal success), RLVR teaches
a degenerated policy to maximize reward by any means necessary. It is incentivized to suppress
its powerful, latent reasoning abilities in favor of heuristically decomposing goals into trivial sub-
problems that can be solved by brute-forcing automatic tactics like ring or omega. This over-reliance
is not merely a shortcut, but a symptom of a training-induced degradation of its reasoning capabilities.

To bridge this gap, we propose a new framework built on the principle of decoupling reasoning from
proving. Our approach uses two distinct, specialized models: A powerful, general-purpose LLM
as a dedicated Reasoner, tasked with generating high-level, strategic subgoal lemmas. An efficient,
specialized ATP model as a Prover, tasked with formally verifying these lemmas and constructing the
final proof. This architectural separation liberates the Reasoner to leverage its full reasoning capacity
without being constrained by the immediate demands of formal proof generation. We evaluate our
framework on a challenging set of post-2000 IMO problems and successfully solve 5 problems, a
first for any open-source prover. To support future research, we release our dataset of verified lemmas
for a wide range of IMO problems.

Subgoal generation and verification
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theorem step6_zero_function_is_solution (f : Z — Z) (h_zero : ¥
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cases h_split with
| inl hO =>
exact Or.inl h0
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-- < direction
- intro h_sol
cases h_sol with
| inl hO =>
exact step6_zero_function_is_solution f hO
| inr h_exists =>
rcases h_exists with (c, h_lin)
exact step7_linear_function_is_solution f ¢ h_lin
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Figure 1: The overall pipeline of our framework, taking IMO 2019 P1 as an example. The Reasoner
first generates strategic subgoals (lemmas). These are then verified by the Prover. Finally, the main
theorem is proven using the verified lemmas as building blocks.

2 A Framework for Decoupled Reasoning and Proving

Our framework, illustrated in Figure [T} consists of a three-stage pipeline designed to leverage the
distinct strengths of reasoning and proving models.

Stage 1: Strategic Subgoal Generation. The first stage uses a powerful, general-purpose LLM
as a Reasoner (we found Gemini 2.5 Pro to be most effective) to decompose the main theorem
into strategic subgoals. The quality of these subgoals is paramount, so we guide the Reasoner
with a carefully designed prompt. The prompt instructs the model to first "think step-by-step to
devise a feasible and complete proof strategy" in natural language *before* outputting any formal
code. This forces it to engage in high-level planning. Crucially, it is also explicitly instructed
to "avoid trivial splits" and ensure that each proposed subgoal represents a "meaningful proof
milestone." This prevents the generation of shallow, unhelpful decompositions. Only after formulating
a coherent plan is the model asked to translate these milestones into a list of formal Lean statements
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(e.g., ‘theoremlemmay ... := bysorry®). This focuses the model on its core strength—strategic
thinking—while constraining the output to a machine-parsable format, which we reliably extract
using a simple regular expression.

Stage 2: Subgoal Verification and Filtering. Each candidate lemma from Stage 1 is passed to a
dedicated Prover (we use DeepSeek-Prover-v2 7B) for verification. The Prover attempts to find a
formal proof for each lemma. Only the lemmas that can be successfully proven are retained. This
stage acts as a critical filter, grounding the Reasoner’s creative and sometimes speculative ideas in
formal logic.

Stage 3: Final Proof Construction. In the final stage, the prover attempts to solve the main
theorem using the set of verified lemmas from Stage 2. A crucial challenge we identified here was
domain shift. We initially hypothesized that the same Prover from Stage 2 (DeepSeek-Prover-v2)
would be optimal. However, we observed that this model, when presented with auxiliary lemmas,
often struggled to effectively utilize them, likely because its training data did not emphasize this
specific pattern of formal proving. It tended to ignore the provided lemmas and attempt to prove
the theorem from scratch, defeating the purpose of our pipeline. This led to a key insight: the
ability to leverage existing lemmas is a distinct skill. After experimentation, we found that powerful
general LLMs, such as OpenAl-03 and Gemini 2.5 Pro, are significantly more adept at integrating
and applying provided lemmas. This highlights the importance of selecting the right tool for each
sub-task in a decoupled system.

3 Experiments and Analysis

We evaluated our framework on non-geometry problems from the International Mathematical
Olympiad (IMO) from 2000 to 2024, a benchmark known for its extreme difficulty. Our method
successfully solved 5 of these problems, for which no prior open-source prover had reported success:
IMO 2000 Problem 2 ,IMO 2005 Problem 3, IMO 2011 Problem 3, IMO 2019 Problem 1, IMO 2020
Problem 2. We will release all the sub-theorems and full solutions upon paper acceptance.

3.1 Qualitative Analysis: Strategic vs. Brittle Reasoning

To illustrate the benefit of our approach, we compare the reasoning strategy generated by our
framework for IMO 2019 Problem 1 against that of the state-of-the-art DeepSeek-Prover-v2 671B.

Our Reasoner produced a structured, insightful decomposition that mirrors a human mathematician’s
approach. It began by identifying fundamental algebraic properties of the function (e.g., f(f(z)) =
2f(x)+ f(0)), then used these to derive a crucial Cauchy-like additive identity. This identity logically
led to the conclusion that the function must have a linear form (f(z) = cz + d), which it then used
to constrain the parameters and find the two valid solutions. This is a hierarchical, property-driven
strategy where each lemma builds logically on the last.

In stark contrast, DeepSeek-Prover-v2 exhibited degenerate, brittle strategies shaped by its training
objective. Its attempts were not strategic but tactical. One common failure mode was brute-
force instantiation: generating a flat, unstructured list of dozens of ad-hoc algebraic identities by
substituting various integers into the original equation (e.g., f(0), f(1), f(z + 1)), and then hoping
powerful automated tactics like 1inarith or ring could mechanically find a solution in the resulting
morass of equations. Another typical strategy was unjustified guessing: asserting the final linear
form of the solution as a hypothesis without any preceding logical derivation, and then attempting
to work backward. These strategies lack mathematical insight and fail to scale, revealing a core
weakness of models trained with end-to-end RLVR which rewards any path to a proof, no matter how
unprincipled.

theorem amc12b_2002_p7 (abc : N) (hg : 0 <a AO<bAOC<c)

(hy : b=a+1) (hg : c =b + 1)

(h3 : a*b*c=8%(a+b+c)) :a2+Db2+c"2=77:=by
have hb : b =a + 1 := h;

have hc : ¢ = a + 2 := by omega

rw [hb, hc] at hj
have h4 : a = 4 := by



have h_pos : 0 < a := hg.left
have : a < 6 := by
nlinarith

interval_cases a <;> omega
have ha : a =4 := hd

have hb' : b = 5 := by omega
have hc' : ¢ = 6 := by omega
rw [ha, hb', hc']

norm_num

3.2 Quantitative Evidence of Reasoning Degradation

Our central hypothesis is that RLVR-based fine-tuning for formal proving degrades a model’s general
mathematical reasoning ability. To test this, we compared the performance of a specialized prover
(Kimina-Prover) with its general-purpose base model (Qwen2.5-Math-7B-Instruct) on standard
math reasoning benchmarks (MATH and AIME) that do not require formal proof generation. The

Table 1: Performance comparison on general mathematical reasoning benchmarks.

MATH AIME24
Model pass@1 pass@1l pass@4 pass@8 pass@16
Qwen2.5-Math-7B-Instruct (base model) 83.6% 16.7% 33.3% 43.3% 46.7 %
Kimina-Prover-Preview-Distill-7B (prover) 78.7% 11.0% 24.1% 32.0% 40.9%
Performance Drop (pts) -4.9 -5.7 -9.2 -11.3 -5.8

results in Table[T| provide clear evidence for our hypothesis. The prover model shows a significant
and consistent performance drop across all metrics compared to its base model. This confirms that
the specialization process for formal theorem proving, driven by verifiable rewards, comes at the cost
of the model’s intrinsic reasoning skills. This finding strongly motivates our decoupled approach,
which preserves the full power of a dedicated reasoning model.

3.3 Discussion

On the Utilization of External Knowledge. A key challenge we identified is that state-of-the-art
provers, when presented with verified subgoals as standalone lemmas, often ignore them and attempt
to re-prove everything from scratch. This "contextual blindness" suggests their training biases them
against leveraging modular, pre-proven knowledge. In contrast, in-proof have statements force local
fact usage but lack the flexibility of reusable lemmas. Our finding that general LLMs are better at
utilizing external lemmas highlights a crucial gap: provers must be trained not just to prove, but to
effectively continue proofs using existing results.

Limitations and Failure Analysis. Our framework’s primary bottleneck is the Prover’s inability to
verify highly complex lemmas generated by the Reasoner. In an oracle setting where we manually
proved these key lemmas, our framework could solve many more problems. This shows our pipeline
is currently bounded by the raw power of the Prover component. A second, deeper challenge is the
"ingenuity gap": our Reasoner excels at systematic, logical decomposition but struggles to produce
the single, non-obvious "magical" insight that often characterizes elegant human solutions to the
hardest problems.

4 Conclusion

In conclusion, we introduced a novel framework that decouples strategic reasoning from formal proof
generation. By delegating high-level thinking to a powerful Reasoner and verification to a specialized
Prover, our method successfully solves 5 post-2000 IMO problems, a new milestone for open-source
ATP. Our analysis shows this separation is crucial for overcoming the reasoning degradation induced
by current training paradigms. Future work will focus on improving the Prover’s ability to handle
complex lemmas and fine-tuning models to utilize pre-proven results.
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A Data Release

To foster further research and collaboration within both the mathematics and ATP communities, we
are releasing a comprehensive dataset and a project website. While our framework successfully
solved 5 IMO problems, our efforts in subgoal generation and verification have yielded a much larger
collection of high-quality, formally verified lemmas for a broad range of post-2000 IMO problem:s.
We believe this resource serves a dual purpose:

 For mathematicians and IMO researchers, this collection of machine-generated lemmas may
offer novel perspectives or reveal non-obvious decompositions, potentially inspiring new
human-led proof strategies.

* For the ATP community, our dataset acts as a new, challenging benchmark. By providing
verified intermediate steps, it allows researchers to focus on solving the remaining difficult
lemmas or on the final, complex proof-synthesis stage for problems currently beyond reach.

The dataset will be publicly available on HuggingFace, and we are committed to its active maintenance
and expansion. We welcome community contributions, such as new proofs for existing lemmas
or alternative strategic decompositions. The project website, which provides access to the data
repository, tracks our ongoing progress, and presents detailed case studies, will be released after
paper acceptance.
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B Comparing Reasoning Quality in IMO 2019 Problem 1

To evaluate the qualitative difference between reasoning strategies, we analyze how our frame-
work’s Reasoner compares against existing prover-driven approaches when applied to a challenging
benchmark: IMO 2019 Problem 1. This problem asks to find all functions f : Z — Z satisfying
f(2a) +2f(b) = f(f(a+ b)) for all integers a, b.

Our goal is to demonstrate that the reasoning path generated by our decoupled Reasoner-Prover
framework leads to a principled, structured solution strategy, in stark contrast to prover-only models,
which often exhibit brittle or degenerate behavior.

B.1 Our Reasoner’s Strategic Decomposition

In our framework, the Reasoner is responsible for identifying high-level mathematical structure and
generating a roadmap of lemmas. On this problem, the Reasoner produces the following structured
decomposition:

1. Identify fundamental properties: By strategic instantiation of the functional equation, the
Reasoner isolates key identities:

e prop_f_f_x: f(f(x)) =2f(z)+ f(0) forall x
e prop_f_2x: f(2x) =2f(x) — f(0) for all x
2. Uncover additive structure: Combining the above, the Reasoner deduces:

» prop_cauchy_like: f(z +y) = f(z) + f(y) — f(0)
3. Characterize the function form: Using the Cauchy-like identity, the Reasoner infers:
* cauchy_implies_linear_form: There exists ¢ € Z such that f(z) = cz + f(0)

4. Constrain the parameters: Plugging this linear form into prop_f_f_x, the Reasoner
derives:

e linear_form_plus_f_f_x_implies_solutions: ¢ must be either O or 2

5. Verify candidate solutions: Both resulting forms, f(x) = 0 and f(z) = 2z + ¢, are verified
to satisfy the original equation.

This decomposition exhibits genuine mathematical insight: it identifies the functional equation’s
additive structure, abstracts useful intermediate results, and uses them to constrain the solution space
efficiently and interpretably.

B.2 The Decomposition Strategy by DeepSeek-Prover-v2 671B

We contrast this with the behavior of current state-of-the-art prover models. Specifically, we sampled
three solution attempts from the strongest publicly available model, DeepSeek Prover v2 671B [Ren
et al.| 2025]]. These are representative of the general behavior we observed. For brevity, we include
only partial code excerpts.

The first attempt relies on a brute-force enumeration of equations. The model instantiates the
functional equation on dozens of inputs, creating a large flat pool of algebraic identities, and then
invokes tactics such as ring_nf and linarith in hopes of simplification. There is no effort to
identify structure or extract reusable intermediate results. The tactic application is purely local and
mechanical:

have hy := hf 0 O
have hg := hf 0 x
have hy := hf x O
have hs := hf x (-x)

have hog := hf (x + x) (-x)
ring_nf at ho hy3 hy ... hgg

In the second attempt, the prover tries to assert the final form of the solution—namely f(x) =
2x + f(0)—without having established why f must be linear or what motivates such a guess.



It implicitly assumes the desired conclusion and attempts to work backward through aggressive
simplification. This reveals a logical gap: the model never proves the Cauchy-like identity nor
justifies why a linear form should even be expected.

have hag : £ x =2 *xx +£f 0 := by
have hag; := hf x O

ring_nf at hogy hogs ...
<;> linarith

The third attempt generates an even larger collection of equation instances, trying all possible
combinations of inputs into the original functional equation, and then offloads the burden of reasoning
onto a generic decision procedure like omega. Again, no insight is gained; the solution depends
entirely on the capacity of low-level tactics to blindly traverse the search space.

have hz; : f x =
have h3zs := hf

* x+ (£0-2%0) := Dby
0
have hyo := hf 1 (x - 1)

ring_nf at hss hzs ... hyo
omega

These degenerate strategies are a direct consequence of the reward signals guiding the training of
prover models. When models are rewarded solely for producing verifiable proofs, they learn to exploit
patterns that maximize verification success, not reasoning quality. Brute-force instantiation followed
by tactic chains often suffices on simple benchmarks, so models internalize that behavior—even
when such strategies fail to scale to Olympiad-level problems. In these more complex settings, the
search space is too vast, and the necessary structural insights (such as recognizing the shifted Cauchy
identity) cannot be discovered by purely local manipulations.

In contrast, our framework deliberately separates the high-level reasoning process from low-level
proof verification. The Reasoner is not constrained by the demands of tactic execution or code
generation; it operates at the level of abstraction and mathematical insight. By generating a chain of
semantically meaningful lemmas, it defines a proof skeleton that guides the Prover and drastically
reduces the search space. This separation enables the kind of reasoning that mirrors how human
mathematicians approach challenging problems: by detecting invariants, proposing transformations,
and narrowing the solution space through conceptual understanding. As this case study illustrates,
this leads to reasoning that is not only verifiable, but also interpretable, reusable, and robust.

C Related Work

The application of Large Language Models (LLMs) to Automated Theorem Proving has evolved
rapidly. Early and some recent approaches leverage the powerful sequence modeling capabilities
of LLMs to generate entire formal proofs in a single, end-to-end pass. For instance, Baldur [First
et al., [2023]] generates proofs for Isabelle and incorporates a repair mechanism that learns from
compiler feedback to correct flawed proofs. Other works, while still operating within a largely
monolithic framework, introduce internal structure. POETRY [Wang et al. [2024a] employs a
recursive decomposition strategy to break down complex theorems, and LEGO-Prover [Wang et al.,
2024b] hierarchically proves and reuses lemmas to manage intermediate results within its generation
process. These methods treat proof generation as a sophisticated, structured sequence generation task.
In contrast, our work argues that coupling high-level reasoning and low-level proof formalization
within a single model limits their potential, and we instead advocate for their explicit separation.

Recognizing the limitations of direct generation, a significant line of research has focused on
integrating high-level planning or sketching, mimicking human problem-solving strategies. These
methods often generate a natural language plan or a structured sketch before producing the final
proof. Kimina-Prover [Wang et al., 2025] achieves strong results by generating structured reasoning
patterns prior to the formal proof. Similarly, DeepSeek-Prover-V2 [Ren et al., [2025]], the current
state-of-the-art, integrates Chain-of-Thought (CoT) style reasoning to guide its recursive subgoal
decomposition pipeline. While these methods represent a conceptual step towards our approach by
acknowledging the importance of planning, they still tightly couple the planning and proving phases



within a single model and a fixed workflow. Our method fundamentally differs by decoupling these
two stages into distinct, specialized models, allowing for more flexible and powerful interaction, such
as iterative refinement of lemmas before the final proof attempt.

Our work builds upon the high-level philosophy of hierarchical proof generation, sharing conceptual
similarities with prior efforts like Draft, Sketch, Prove [Jiang et al.; 2023|], LEGO-Prover [Wang et al.,
2024b], POETRY [Wang et al.,2024a], and Subgoal-XL [Zhao et al.,|2024]]. The most closely related
is Draft, Sketch, Prove [Jiang et al., [2023]], which also employs a multi-stage pipeline: an LLM first
drafts an informal proof, an autoformalizer then translates this draft into a formal sketch, and finally,
an external prover completes the proof.

Despite this architectural resemblance, our approach makes a critical design choice that diverges
significantly. Instead of attempting to autoformalize an entire unstructured natural language proof—a
process that is itself a major research challenge and prone to semantic errors—we task our specialized
Reasoner model with a more constrained and impactful objective: generating a diverse set of formal
subgoal statements (lemmas). This design offers two key advantages. First, by focusing on generating
strategic lemmas rather than full proof steps, we directly leverage the abstract reasoning strength
of powerful LLMs to perform creative and non-trivial problem decomposition, which is essential
for solving complex problems like those in the IMO competition. Second, by generating formal
statements directly and leaving the proof generation to a dedicated Prover, we entirely bypass the
fragile and error-prone autoformalization step. This ensures that the bridge between high-level
reasoning and formal proving is both robust and precise.

D Case Studies on IMO 2024 Problems

This section provides a detailed analysis of our framework’s progress on two problems from the IMO
2024. For each problem, we present the main theorem, summarize the key sub-theorems (lemmas)
that our framework successfully generated and proved, and identify the critical remaining steps
required to complete the full proof.

D.1 Analysis of IMO 2024, Problem 1
D.1.1 Main Theorem

The problem asks to prove the equivalence between a real number a being an even integer and a
specific divisibility property holding for all positive integers n.

theorem imo2024_pl (a : R) :
(3m:Z,a=2%m <Vn:N,0<n— (n:2Z)] ) iin Finset.Icc 1 n, |[i
— * a| := by

The proof naturally splits into two directions:

* Forward Direction (1) — (2): If a = 2m for some integer m, then the divisibility property
holds.

* Reverse Direction (2) — (1): If the divisibility property holds, then a must be of the form
2m.

D.1.2 Progress Summary and Key Proven Lemmas

Our framework has made substantial progress on this problem, most notably by completely proving
the forward direction and establishing the crucial strategic lemmas for the reverse direction.

Forward Direction: Complete. The framework successfully proved that if a is an even integer, the
divisibility property holds. This was accomplished through several lemmas, culminating in a direct
proof of the implication.

-- Proved: The forward implication of the main theorem.

theorem imo2024_pl_forward_implication (a : R) :
(m:Z,a=2%m — (Wn:N,0<n— (n:2Z |> iin Finset.Icc 1 n, [i *
— al) := by



Reverse Direction: Key Strategic Lemmas Proven. For the more challenging reverse direction,
our system proved two cornerstone lemmas that are essential to the standard human solution strategy.

1. Periodicity of the Condition: The framework proved that the divisibility property is
periodic with a period of any even integer. This is a powerful strategic result, as it allows
reducing the problem for any real number a to an equivalent problem for a number in a
bounded interval (e.g., [0, 2]).

-- Proved: The divisibility property is periodic by any even integer.

theorem divisibility_is_periodic_by_even_integers (a : R) (m : Z) :
(Wn:N,0<n— (a:2)]|> iin Finset.Icc 1 n, |i * a])
(Wn:N,0<n— (@m:2Z)|> iin Finset.Icc 1 n, [i * (a - 2 *
— m)j) := by

2. Special Case for Integers: The system proved that if a is an integer satisfying the divisibility
property, it must be an even integer. This fully resolves the reverse direction for the specific
case where a € Z.

-- Proved: An integer satisfying the property must be even.

theorem integer_must_be_even (a :
(h_div_int : Vn : N, 0<n — (n : Z) | > i in Finset.Icc 1 n, [(i
o R x (a: R))])
Even a := by

D.1.3 Analysis of the Remaining Proof Goal

With the forward direction complete and the key periodicity lemma established, the entire proof now
hinges on a single, final sub-problem.

The Final Step: Proving the Base Case for the Periodicity. The established lemmas allow us to
reason as follows: Assume a real number a satisfies the divisibility property. We can find an integer
m such that «’ = a — 2m lies in the interval [—1, 1]. Due to the proven periodicity, ¢’ must also
satisfy the divisibility property. If we can prove that the only number in [—1, 1] satisfying the property
is 0, it would imply a’ = 0, which means a = 2m, completing the proof.

Therefore, the critical missing lemma is to show that for any number a € [—1, 1] (or a similar interval
like (—1, 1)), if it satisfies the property, it must be zero.

Critical Missing Lemma

Goal: To prove that if a real number « in the interval [—1, 1] satisfies the universal divisibility
condition, then a must be 0.
theorem univ_divisibility_in_interval_implies_zero (a : R) (ha_bound : a €
— Set.Icc (-1) 1)
(hoprop : Vn : N, 0<n — (n : Z) | > i in Finset.Icc 1 n, |i * a])
a =0 :=by

Successfully proving this final lemma would allow us to connect all the previously established results
and formally complete the entire proof for IMO 2024, Problem 1. Our framework has successfully
navigated the problem to its final, decisive step.

D.2 Analysis of IMO 2024, Problem 2
D.2.1 Main Theorem

This problem concerns a property of the greatest common divisor (GCD) of two exponential sequences.
It asks to prove that the GCD becoming constant for all sufficiently large n is equivalent to a and b
both being 1.

theorem imo2024_p2 (a b : N+)
(a, b) = (1, 1) <> dgN : N+, Vn : N, N<n — Nat.gcd (a™n + b) (b°n + a) =
— g := by



The proof structure involves a straightforward forward direction and a more complex reverse direction,
which is typically solved by considering cases.

D.2.2 Progress Summary and Key Proven Lemmas

Our framework successfully proved the simple forward direction and made significant headway on
the reverse direction by proving the special case where a = b.

Forward Direction: Complete. The framework easily proved thatif = 1 and b = 1, the GCD
sequence is constant. In this case, gcd(1™ 4+ 1,1™ + 1) = ged(2, 2) = 2 for all n, so one can choose
g=2and N = 1.

-- Proved: The forward implication of the main theorem.

theorem imo2024_p2_forward_implication (a b : N+) :
(a, ) = (1, 1) - 3 gN: N+, Vn : N, N<n — Nat.gcd (an + b) (b°n + a) = g
— := by

Reverse Direction: Special Case a = b Proven. For the reverse direction, the framework identified
and fully proved the crucial sub-case where a = b. It correctly deduced that if o = b and the GCD
property holds, then @ must be 1. The reasoning relies on the fact that if a = b, the GCD is
ged(a™ 4 a, a™ + a) = a™ + a. For this sequence to be constant for n > N, a cannot be greater than
1.

-- Proved: If a=b and the GCD property holds, then a=1 and b=1.

theorem imo2024_p2_bwd_a_eq_b (a b : N+) (h_ab : a = b)
(h_gcd_const : 3 gN : N+, Vn : N, N <n — Nat.gcd (an + b) (b™n + a) = g)
o g

(a, B) = (1, 1) := by

This lemma is supported by another proven sub-theorem stating that an exponential sequence like
a™ + a cannot be eventually constant if ¢ > 1.

-- Proved: An exponential sequence is not eventually constant for a > 1.
theorem exponential_not_eventually_constant (a : N+) :
a>1 > -dgN:N+, Vn: N, N<n—+amn+a=g :=by

D.2.3 Analysis of the Remaining Proof Goal

With the forward direction and the a = b case of the reverse direction complete, the entire proof now
rests on resolving the case where a # b.

The Final Step: Proving the Case a # b Leads to a Contradiction. The standard human approach
for the case a # b (without loss of generality, assume a > b) is to show that the GCD sequence,
dp, = ged(a™ + b, b™ + a), cannot be eventually constant if ¢ > 1. A common technique involves
using properties of the GCD, such as ged(X,Y) = ged(X,Y — kX). Applying this here:

d, = ged(a™ 4 b,b" + a) = ged(a”™ + b, 0" + a — b" " (a™ + b))
which simplifies the second term. The key is to show that if a > b > 1, this sequence cannot be

constant for large n.

Therefore, the critical missing lemma is to prove by contradiction that if the GCD property holds, the
case a # b is impossible unless a = b = 1 (which is already covered).

10
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Critical Missing Lemma

Goal: To prove that if a # b, the GCD property cannot hold. A common way is to show that
if a > b, the GCD sequence is not constant.

-- This lemma ts stated to lead to a contradiction with the main hypothesis.
theorem gcd_is_not_eventually_constant_if_unequal (a b : N+) (h_neq : a # b)
= .
~(3gN: N+, Vn: N, N<n — Nat.gcd (a™n + b) (bn + a) = g) := by
-- 4 more direct approach to prove is:

-- 2f a > b >= 1, then the sequence %s not constant.

Or, framing it to directly complete the main proof:

-- This lemma, combined with the a=b case, would complete the proof.

theorem p2_bwd_dir_a_neq_b (a b : N+)
(3 gN : N+, Vn: N, N<n — Nat.ged (an +b) (b'n +a) =g) - a # b
— — False := by

By proving that the GCD property cannot hold for distinct positive integers a and b, our framework
would successfully eliminate the only remaining case, thereby completing the proof for IMO 2024,
Problem 2.

E Solved IMO problems

E.1 IMO 2020 P2

-- Solution to IMO 2020 P2 by DRP-IMO

import Mathlib
import Aesop

set_option maxHeartbeats O
open BigOperators Real Nat Topology Rat

/--Consider four real numbers \( a, b, ¢, |) and \( d \) such that \( 0 < d \leq c
— \leqg b \leq a \) and their sum is equal to 1, i.e., \(a +b +c+d=11).
— Prove that the product of the weighted sum \( a + 2b + 3c + 4d \|) and the sum of
— their squares \( a2 + b2 + ¢™2 + d°2 |) ts less than 1.-/
theorem weighted_sum_times_sum_sq_lt_one (a b ¢ d : R) (hd_pos : 0 < d) (hdc : d <
— ¢) (heb : ¢ < b) (hba : b < a) (h_sumeq. 1 : a+b+c+d=1) :
(a + 2%b + 3%c + 4%d) * (a”2 + b™2 + ¢c”2 + d°2) < 1 := by
have h_a_lt_one : a < 1 := by
have hy : a+ b+ c+d=1 := h_sum_eq_1
have hy : 0 < b := by linarith
have h3 : 0 < ¢ := by linarith
have hy : 0 < d := hd_pos
nlinarith

have h_b_lt_one : b < 1 := by
have h; : a > b := by linarith
have ho : a < 1 := h_a_lt_one
nlinarith

have h_c_lt_one : ¢ < 1 := by
have h;y : b > ¢ := by linarith
have ho : b < 1 := h_b_1lt_one
nlinarith

have h_d_lt_one : d < 1 := by

have h;y : ¢ > d := by linarith
have hy : ¢ < 1 := h_c_1lt_one

11



33 nlinarith
34

35 have h_a2_1lt_a : a2 < a := by
36 have hy : a < 1 := h_a_lt_one
37 have hy : a > 0 := by linarith
38 nlinarith [sq_pos_of_pos hs]
39 <;> nlinarith

40

41 have h_b2_1t_b : b"2 < b := by
42 have hy : b < 1 := h_b_lt_one
43 have hp : b > 0 := by linarith
44 nlinarith [sq_pos_of_pos hs]
45 <;> nlinarith

46

47 have h_c2_1t_c : c”2 < ¢ := by
48 have hy : ¢ < 1 := h_c_1lt_one
49 have hy : ¢ > 0 := by linarith
50 nlinarith [sq_pos_of_pos hs]

51 <;> nlinarith

52

53 have h_d2_1t_d : d°2 < d := by
54 have hy : d < 1 := h_d_1lt_one
55 have hy : d > 0 := hd_pos

56 nlinarith [sq_pos_of_pos hs]
57 <;> nlinarith

58

59 have h_sum_sq_lt_one : a”2 + b”2 + ¢c”2 + d°2 < 1 := by
60 nlinarith [h_a2_1t_a, h_b2_1t_b, h_c2_1lt_c, h_d2_1t_d]
61 <;> linarith

62
63 have h_main : (a + 2*%b + 3%c + 4xd) * (a”2 + b"2 + ¢c”2 + d°2) < 1 := by

64 have hy : 0 <a+2 *b + 3 *xc+ 4 *xd :=by

65 nlinarith [hd_pos, hcb, hba, hdc, h_sum_eq_1]

66 have hp : a =2+ b~ 2+c”~2+d~ 2<1 :=h_sum_sq_lt_one
67 nlinarith [h;, hs]

68 <;> nlinarith

69

70 exact h_main

71

7

73 theorem vars_are_in_0_1 (abcd : R) (hd0 : 0 < d) (hdc : d < ¢) (hecb : ¢ < b)
< (hba : < a) (b1 : a+b+c+d=1) :

N

74 (0O<aAa<i1) AN(O<bADbK<I1) (0<cAc<1) AN(O<dAd<1) :=by
75 have h_a_pos : 0 < a := by

76 nlinarith [hdc, hcb, hba, hdO, hi]

77 <;> nlinarith

79 have h_a_1t_1 : a < 1 := by

80 have h2 : a < 1 := by
81 nlinarith [hl, h_a_pos, hba, hcb, hdc, hdO]
82 exact h2

84 have h_b_pos : 0 < b := by
85 nlinarith [hdc, hcb, hba, hdO, hi]

87 have h_b_1t_1 : b < 1 := by

88 have h2 : b < 1 := by

89 nlinarith [hl, h_a_pos, h_a_1t_1, hba, hcb, hdc, hdO]
90 exact h2

91

92 have h_c_pos : 0 < ¢ := by

93 nlinarith [hdc, hcb, hba, hdO, hi]
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94
95
96
97
98
99
100
101
102
103
104
105

106
107
108

109
110
111

112
113
114

115

116
117
118
119
120
121
122
123
124

125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143

144

145

146

147

have h_c_1t_1 : ¢ < 1 := by
have h2 : ¢ < 1 := by
nlinarith [hl, h_a_pos, h_a_1t_1, h_b_pos, h_b_1t_1, hba, hcb, hdc, hdO]
exact h2

have h_d_pos : 0 < d := by
exact hdO

have h_d_1t_1 : d < 1 := by
have h2 : d < 1 := by
nlinarith [hi, h_a_pos, h_a_1t_1, h_b_pos, h_ b_1t_1, h_c_pos, h_c_1lt_1, hdc,
< hcb, hba, hdoO]
exact h2

refine' (<h_a_pos, h_a_1t_1), <h_b_pos, h_b_1t_1), ¢h_c_pos, h_c_1t_1), <h_d_pos,
— h_d_1t_1))

theorem im02020_gq2 (a b cd : R) (hd0 : 0 < d) (hdc : d < ¢) (hcb : ¢ < b) (hba :
— b<a) (hl1:a+b+c+d=1)

(a+2*b+3xc+4x*xd) x (a~"a*xb~"bx*xc~cxd“"~d <1 :=hby
-- strategy:
-- 1. apply weighted AM-GM inequality to prove aa * b"b * c°c *# d°d < a"2 + b"2
— + c"2 + d°2
-- 2. ues subgoal 'wetghted_sum_times_sum_sq_lt_one' to get (a + 2%b + ...) * (a2
- +b2+ ...) <1
-- 3. combine both results to reach final conclusion

-- define S
let S := a"2 + b2 + c”2 + d°2

-- step 1: apply weighted AM-GM inequality
-- we need to prove a“a * b"b * c’c ¥ d°d < §
have h_geom_mean_le_sum_sq : a ~a *b " b*c ~c*xd~d < S :=by
-- 2n order to use the subgoal 'geom_mean_le_arith_mean_weighted', we use Fin 4
— as an index type
let w : Fin 4 — R := ![a, b, c, dl]
let z : Fin 4 — R := ![a, b, c, dl]

-- check AM-GM prerequisite

have h_pos_conds : (0 <a) A (0 <b) A (0 <c) A (0<d) :=by
have h_all := vars_are_in_0_1 a b ¢ d hd0 hdc hcb hba hil
exact ¢(h_all.1.1, h_all.2.1.1, h_all.2.2.1.1, h_all.2.2.2.1)

-- 1. non-negative weights

have h_weights_nonneg : V i, 0 < w i := by
intro i; fin_cases i <;> simp [w] <;> linarith [h_pos_conds.1,
— h_pos_conds.2.1, h_pos_conds.2.2.1, h_pos_conds.2.2.2]

-- 2. weights sum-up to 1
have h_weights_sum_1 : > i, w i =1 := by
simp [w, Fin.sum_univ_four, hi]

-- 3. non-negative wvalues

have h_values_nonneg : V i, 0 < z i := by
intro i; fin_cases i <;> simp [z] <;> linarith [h_pos_conds.1,
— h_pos_conds.2.1, h_pos_conds.2.2.1, h_pos_conds.2.2.2]

-- use the subgoal based on AM-GNM
have h_am_gm := geom_mean_le_arith_mean_weighted (Finset.univ) w z (fun i _ —
< h_weights_nonneg i) h_weights_sum_1 (fun i — h_values_nonneg i)
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148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165

166
167
168
169

170
171

N T - Y N T

-- transform AM-GM results to the form we want
-- ‘stmp” will handle a*a -> a~2
simp only [Fin.prod_univ_four, Fin.sum_univ_four, w, z, ¢+ pow_two] at h_am_gm

-- 2t will replace 'S' to 'a™2 + b2 + c"2 + d°2'
unfold S

-- now the target fully matchs 'h_am_gm'

exact h_am_gm

-- step 2: get results from key lemmas
have h_main_ineq : (a + 2 * b+ 3 * c + 4 *d) * S <1 :=by
exact weighted_sum_times_sum_sq_lt_one a b ¢ d hd0 hdc hcb hba hi

-- step 3 4 & 5: assumble final proof

calc
(a + 2%b + 3%c + 4xd) * (a”a * b"b * c~c * d~d)
-- first, use the results from step 1, we need to prove (a + 2¥b + ...) 1is
— positive
-- lemma 'vars_are_in_0_1' guarantees a,b,c,d > 0, thus their weighted sum also
- >0

< (a + 2%b + 3%c + 4xd) * S := by
apply mul_le_mul_of_nonneg_left h_geom_mean_le_sum_sq
have h_pos_conds := vars_are_in_0_1 a b ¢ d hd0O hdc hcb hba hil
linarith [h_pos_conds.1.1, h_pos_conds.2.1.1, h_pos_conds.2.2.1.1,
— h_pos_conds.2.2.2.1]

-- then, use the results from step 2 to finish proving

_ <1 := h_main_ineq

E.2 IMO 2019 P1
-- Solution to IMO 2019 P1 by DRP-INO

import Mathlib
import Aesop

set_option maxHeartbeats O
open BigOperators Real Nat Topology Rat

def solution_set (f : Z — Z) : Prop :=
~Vx :%Z,fx=0)Vdc:Z,Vx :7Z, fx=2x%3x+c

theorem linear_form_plus_f_f_x_implies_solutions (f : Z — Z) (c : Z)
(h_f _form : Vx, fx=c*xx+f0) (hFf fx:Vx, f (Ffx)=2xxfFfx+£f0)

~VMzx, £fx=0 V (Vx, £fx=2%x+£f0) :=by

have h_c_squared : c”2 = 2 * ¢ := by
have hl := h_f_ f_x 1
have h2 := h_f f_x O
have h3 := h_f_f_x (-1)
have h4 := h_f_form 1
have hb := h_f_form O
have h6 := h_f_form (-1)
have h7 := h_f_form (f 1)
have h8 := h_f_form (f 0)
have h9 := h_f_form (f (-1))
have h10 := h_f_f x (f 1)
have h11l := h_f_f_x (f 0)
have h12 := h_f_f_x (f (-1))
have h13 := h_f_form (¢ * 1 + £ 0)
have hi14 := h_f_form (c * 0 + £ 0)
have h15 := h_f_form (c * (-1) + £ 0)
have h16 := h_f_form (c * (f 1) + f 0)
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33
34
35
36

37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7

7
73
74
75
76
77

78
79
80
81
82
83
84

86
87
88
89
90
91
92

have h17 :=
have hi18 :=

h_f_form (c *x (£ 0) + £ 0)
h_f_form (¢ *x (£ (-1)) + £ 0)

ring nf at hl h2 h3 h4 h5 h6 h7 h8 h9 h10 hil hi2 hi3 hi4 hi5 h16 h17 hi8 F
- 2), sq_nonneg (c + 2), sq_nonneg (c - 1), sq_nonneg (c

nlinarith [sq_nonneg (c
= + 1]

have h_c_cases : ¢ =0 V ¢ =

have h; : ¢ 2 =2 % c :
have h : ¢ =0V c =2
have hy : ¢ * (c - 2)
linarith
have hy =0Vc -

apply eq_zero_or_eq_
cases hy with
| inl hy =>
exact Or.inl hy
| inr hy =>
have hs
omega
exact Or.inr hs
exact ho

have h_main : (V x, f x =
cases h_c_cases with
| inl h_c_zero =>
-- Case ¢ = 0

2 := by
= h_c_squared
:by
=0 := by
28=R0N:=Rb;

zero_of_mul_eq_zero hj

y

0) V. Vx, fx=2x*xx+£f 0) :=by

have h_f_zero : V x, £f x = f 0 := by
intro x
have h; := h_f_form x

simp [h_c_zero] at h; +

<;> linarith
have h_f_zero_zero : £
have h; := h_f_f_x O

have hy := h_f_form
have hs := h_f_form

0 =0 :=by

0
(£ 0)

have hy := h_f_f_ x (f 0)

simp [h f _zero] at h
<;>
(try omega) <;>
(try
{
nlinarith [h_f_f
B <>
(try
{
cases'
— <;>
(try omega) <;>
(try nlinarith)
(try linarith)

h_c_cases

B <>
(try

{

aesop
1)
have h_f_zero_all : V

intro x
have h; := h_f_zero x
have hy := h_f_zero 0
have hy := h_f_zero (-
have hgy := h_f_zero 1
simp [h_ f _zero_zero]

1 ho hz hy

orm O, h_f_form 1, h_f_form (-1),

with h_c_zero h_c_two <;> simp_all [h_c_zero, h_c_twol

<;>

D)

at h; hy hy hy
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93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145

146

147

148

149

150

<;>
(try omega) <;>
(try nlinarith) <;>
(try aesop)
<;>
(try
{
simp_all [h_f_form, h_c_zero]
<;>
(try omega) <;>
(try nlinarith) <;>
(try aesop)
1))
exact Or.inl h_f_zero_all
| inr h_c_two =>
-- Case ¢ = 2
have h_f_form_two :
intro x
have h; := h_f_form x
simp [h_c_two] at h; F
<;> linarith
exact Or.inr h_f_form_two

exact h_main

theorem prop_cauchy_like (£
(f (a + b)))
(h.f fx : Vx, f(fzx) =
- 0 (xy: 7
fx+y)=fx+fy-£0

—

:= by

Vx, fx=2x*xx+f0 :=

: Z — 7Z) (h_f_all :

2% f x+ £f0) (h_f_2x

have homain : £ (x +y) =fx+fy-£f0
have hl := h_f_all (x + y) O
have h2 := h_f_all x y
have h3 := h_f_all (x + y) y
have h4 := h_f_all x (x + y)
have h5 := h_f_2x (x + y)
have h6 := h_f_2x x
have h7 := h_f 2x y
have h8 := h_f_all 0 (x + y)
have h9 := h_f_all 0 x
have h10 := h_f_all O y
have h1l := h_f_f x (x + y)
have h12 := h_f_f_x x
have h13 := h_ f f x y
have h14 := h_f_all (2 * (x + y)) O
have h15 := h_f_all (2 * x) O
have h16 := h_f_all (2 * y) O
have h17 := h_f_all x O
have hi8 := h_f_all y O
have h19 := h_f_all (x +y) (x + y)
have h20 := h_f_all x x
have h21 := h_f_all y y
-- Simplify

by

Vab, £f(2*a +2=x* (fb) =1

:Vx, f(@2x*xx)=2x%xfx-f

:= by

the expressions using the given conditions

simp [h_f_2x, mul_add, add_mul, mul_comm, mul_left_comm, mul_assoc] at hl h2 h3
< h4 h5 h6 h7 h8 h9 h10 hil hi2 hi3 hil4 h15 h16 h17 hi18 h19 h20 h21
<;> ring_nf at hl h2 h3 h4 h5 h6 h7 h8 h9 hi0 hil hi12 hi13 hi14 h15 h16 hi7 hi18

< h19 h20 h21 +
<;> omega
exact h_main

theorem prop_f_f_x (f
= b)) (x: Z)

f (fx)=2xfx+f 0 :=hby

: Z — 7Z) (h_f_all :
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152
153
154
155
156
157
158
159
160
161
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164
165
166
167
168
169
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172
173
174
175
176
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178
179
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183
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have h_main :

have hl := h_f_all x O

have h2 := h_f_all 0 x

have h3 := h_f_all x x

have h4 := h_f_all (-x) x
have h5 := h_f_all x (-x)
have h6 := h_f_all 0 O

have h7 := h_f_all x (-2 * x)
have h8 := h_f_all (-x) (-x)
have h9 := h_f_all x 1

have h10 := h_f_all x (-1)
have hi1l := h_f_all 1 x

have h12 := h_f_all (-1) x
have h13 := h_f_all 1 0

have hi14 := h_f_all (-1) O
have h15 := h_f_all 0 1

have h16 := h_f_all 0 (-1)
have h17 := h_f_all 1 1

have h18 := h_f_all (-1) (-1)
-- Simplafy

f (fx) =2xfx+f0 :=by

the equations to find a relationship between f(0) and f(f(0))

simp at hl h2 h3 h4 h5 h6é h7 h8 h9 h10 hi1l hi12 hi13 hi14 hi15 h16 h17 hi18
ring_nf at hl h2 h3 h4 h5 h6 h7 h8 h9 h10 hil hi12 hi13 hi4 hi5 h16 h17 hi8
-- Use linear arithmetic to solve for the desired result
omega
exact h_main

theorem prop_f_2x (f

< b)))
(h_f_

f (2 %
have hil
have

-- Simplify the expression using the given condition h_f_f_z

f_x
x)

hi

: Z — 7Z) (h_f_all :

:Vx, f(fx)=2xfx+f0) (x: 2

*fx-£f0 :=by

2
(f (2*x)) =2x*f (2*x)+£f0 :=by

= h_f_f_x (2 * x)

simp at hl
<;> linarith

have h2 :

have

h2

f(2x*xx)+2xxfx-=
:= h_f_all x x
-- Simplify the expression using the given condition h_f_all

ring nf at h2 ~
<;> linarith

£

N

Hh

(f (2 * x)) := by

* f (2 *x) +£f 0 :=by
f (f (2 * x)) := h2

(2 *x) +£f0 :=hi

0 := by
2*xf (2 *x)+£f0 :=h3

to isolate f(2 * z)

-- Solve for f(2 * z) using linear arithmetic

have h3 : f (2 *x x) + 2 * f x =
have h3 : £ (2 * x) + 2 * f
rw [h3]
have h4 : £ (f (2 * x)) = 2 *
rw [h4]
<;> ring
<;> omega

have h4 : £ (2 * x) = 2 *x f x -
have h5 : f (2 * x) + 2 * f x
-- Rearrange the equation
have h6 : £ (2 * x) =2 x f x - £ 0 := by

linarith

exact h6

apply h4

theorem cauchy_implies_linear_form (f : Z — Z) (h_cauchy_like
— fx+fy-£f0)

17
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268
269

dc:Z,Vzx, fx=cxx+£fO0 :=by

have h_mai
use f 1
intro x
have hil
intro

n: 3 (
-f0

: Vo
n

c:7Z),V (x:

Z), fx=c*x+f0 :=by

Z, £fn=(f1-£0) *n+f0 :=by

induction n using Int.induction_on with

| hz =

>

-- Base case: n = 0
simp [h_cauchy_like]

g
<;>
| hp n

ring_nf
omega
ih =>

-- Inductive step: n = p + 1

have
have
have
have
have
simp
simp

<;>
| hn n

h2 :=
h3 :=
h4d :
hb
h6é :=
at h2

h_cauchy_like
h_cauchy_like
h_cauchy_like
h_cauchy_like
h_cauchy_like
h3 h4 h5 h6

n 1l

0 (n+ 1)
(n+1)0
10
01

[ih, add_mul, mul_add, mul_one, mul_neg, mul_zero, sub_eq_add_neg] at
< h2 h3 h4 h5 h6
<;> ring_nf at *

omega
ih =>

-- Inductive step: n = -

have
have
have
have
have
simp
simp

<;>

have h2
have h3
have h4
simp at
<;> lina
exact h_ma

h2 :=
h3 :=
hd :=
h5 :=
h6 :=
at h2

h_cauchy_like
h_cauchy_like
h_cauchy_like
h_cauchy_like
h_cauchy_like
h3 h4 h5 h6

(n + 1)
(-n - 1) 1
0 (-n - 1)
(-n-1) 0
10

01

[ih, add_mul, mul_add, mul_one, mul_neg, mul_zero, sub_eq_add_neg] at
< h2 h3 h4 h5 h6
<;> ring_nf at *

omega
:= hl x
:= hl 1
:=h1 0
h2 h3 h
rith

in

4

theorem step6_zero_function_is_solution (f : Z — Z) (h_zero : V x, f x
— b, £ (2xa)+2x* (fb) =£f (f (a+ b)) :=by

have h_main :

intro a b

have hl1 : £ (2 * a) = 0 := by
rw [h_zero]
<;> simp [h_zero]

have h2 : £ b = 0 := by
rw [h_zero]
<;> simp [h_zero]

have h3 : £ (a + b) = 0 := by
rw [h_zero]
<;> simp [h_zero]

have h4 : £ (f (a + b)) =0 :=
rw [h_zero]

<;> simp [h_zero]
-- Stmplify the LHS and RHS using the above equalities
simp [h1, h2, h3, h4, h_zero]

<;> linari

th

Vab, £f(2x*xa +2x (fb) =f (f (a+ b)) :=by

by

18
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exact h_main

theorem step7_linear_function_is_solution (f : Z — Z) (c : Z) (h_lin : V x, f x
— 2*x+c): Wab, f(@2*a)+2x* (fb)=1£f(( (a+ b)) :=by
have h_main : Vab, f (2 *xa) +2* (f£fb) =f (f (a+ b)) :=by
intro a b
have h1 : £ (2 *x a) = 2 x (2 * a) + ¢ := by
rw [h_lin]
<;> ring
have h2 : £ b =2 *xb + c := by
rw [h_lin]
<;> ring
have h3 : f (f (a+ b)) =£f (2 * (a+b) +c) := by
have h4 : £ (a + b) =2 * (a + b) + ¢ := by
rw [h_lin]
<;> ring
rw [h4]
<;> ring
have h4 : £ (f (a + b))
rw [h3]
rw [h_lin]
<;> ring
have h6 : £ (2 * a) + 2 x (f b)
rw [h1, h2]
<;> ring
have h6 : £ (2 *x a) + 2 * (£ b)
linarith
have h7 : £ (f (a + b))
linarith
linarith
exact h_main

2% (2% (a+Db) +c)+c :=hby

(2% (2*a)+c) +2% (2*b+c) :=by

4 xa+4*xb+ 3 x*c :=by

1]
N
*
)

+

4 b+ 3 * c :=by

theorem imo2019_p1
(£ :Z — 7Z)
(Wab:Z, £f(2x*xa +2x*fb=1£f( (a+ b))) < solution_set £ := by
constructor
intro h_fe
have h_ff : Vx, £f (£ x) =2 x f x + f 0 :=
prop_f_f_x f h_fe
have h_f2 : V x, £ (2 *x) =2 x f x - f 0 :=
prop_f_2x f h_fe h_ff
have h_add : Vxy, f x+y)=fx+fy-£f0:=
prop_cauchy_like f h_fe h_ff h_£f2
rcases cauchy_implies_linear_form f h_add with {(c, h_1in0)
have h_split
Vzx, fx=0V (Vx, fx=2x*xx+£f0) :=
linear_form_plus_f_f_x_implies_solutions f ¢ h_1in0 h_ff
cases h_split with

| inl hO =>
exact Or.inl hO
| inr h2 =>

exact Or.inr (f 0, h2)
intro h_sol
cases h_sol with
| inl hO =>
exact step6_zero_function_is_solution f hO
| inr h_exists =>
rcases h_exists with {(c, h_lin)
exact step7_linear_function_is_solution f ¢ h_lin

19



E.3 IMO 2011 P3
-- Solution to IMO 2011 P3 by DRP-IMO

import Mathlib
import Aesop

set_option maxHeartbeats O

open BigOperators Real Nat Topology Rat

o - N N

12 theorem imo2011_p3_lemmal_ f _neg le_self (f : R — R) (hf : Vxy, £ (x +y) <y *
— fx+ f (f x))

13 Vx, £fx<0—=fx<x:=hby

14 have h_main : V (x : R), £f x <0 = £ x < x := by

15 intro x hx

16 have hl1 : £ x ~ 2 - x *x £ x > 0 := by

17 have h2 := hf x (f x - x)

18 have h3 := hf (f x) (x - £ x)

19 have h4 := hf x O

20 have h5 := hf 0 x

21 have h6 := hf x x

2 have h7 := hf x (-x)

23 have h8 := hf (-x) x

24 have h9 := hf 0 O

25 have h10 := hf x 1

26 have hi1l := hf 1 x

27 have hi12 := hf x (-1)

28 have h13 := hf (-1) x

29 have h14 := hf x (f x)

30 have h15 := hf (f x) x

31 have h16 := hf x (-f x)

32 have h17 := hf (-f x) x

33 have h18 := hf x (x + £ x)

34 have h19 := hf (x + f x) x

35 have h20 := hf x (-x)

36 have h21 := hf (-x) x

37 have h22 := hf x (x - f x)

38 have h23 := hf (x - f x) x

39 have h24 := hf x (f x + x)

40 have h25 := hf (f x + x) x

41 have h26 := hf x (2 * f x)

42 have h27 := hf (2 * f x) x

43 have h28 := hf x (-2 * f x)

44 have h29 := hf (-2 * f x) x

45 -- Normalize the exzpressions to simplify the inequalities

46 ring_nf at h2 h3 h4 h5 h6 h7 h8 h9 hl10 hil hi12 hi3 hi14 hi5 h16 hi7 h18 hi19 h20
< h21 h22 h23 h24 h25 h26 h27 h28 h29 H

47 -- Use linear arithmetic to prove the inequality

48 nlinarith [sq_nonneg (f x - x), sq_nonneg (f x + x), sq_nonneg (f x - 2 * x),
— sq_nonneg (f x + 2 * x),

49 sq_nonneg (2 * £ x - x), sq_nonneg (2 * £ x + x)]

50 have h3 : £ x < x := by

51 by_contra h

52 have h4 : £ x > x := by linarith

53 have h5 : £ x - 2 - x * £ x < 0 := by

54 nlinarith [hx, h4]

55 nlinarith

56 exact h3

57 exact h_main

58
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/--Let \( f : \mathbb{R} \to \mathbb{R} \) be a function such that for all real
— numbers \(z \) and \( y \), the inequality \( f(z + y) \leq y \cdot f(
z) + f(f(z)) \) holds. Prove that for all real numbers \( = \), the inequality \(
— f(z) \leq f(f(z)) \) is true.-/
theorem imo2011_p3_stl (f : R — R) (hf : Vxy, £f (x+y) <y x*xf x+ £ (f x))
Vx, fx<f£f (fx):=hby
have h_main : V (x : R), £ x < f (f x) := by
intro x
have h; := hf x 0
-- Simplify the inequality by substituting y = 0
simp at h;
-- Use the simplified inequality to conclude the proof
linarith
exact h_main

/--Consider a function \( f : \mathbb{R} \to \mathbb{R} \) that satisfies the

— condition: for all real numbers \( =z \) and \(y \), \( f(z + y) \leq y |\

cdot f(z) + f(f(z)) \). Prove that for all real numbers \( z \), \( f(z) \leq 0

- \).-/

theorem aux_f_nonpositive (f : R -+ R) (hf : Vxy, £f (x+y) <yx*x£fx+£f (fx))

— :Vzx, fx <0 :=hby

have h_main : V x, £ x < 0 := by
intro x
by_contra h
have h;y : £ x > 0
have hy := hf x (
have hs := hf 0 (f x)
have hy := hf x 0
have hs := hf (-x) x
have hg := hf (-x) (-x)
have h; := hf x (f x)
have hg := hf (f x) (-f x)
have hg := hf (f x) 0
have hig := hf 0 (-f x)
have hi; := hf x (2 * x)
have his := hf x (-2 * x)
have hyz := hf (2 * x) (-x)
have hi4 := hf (2 * x) x
have his := hf (-2 * x) x
have hjg := hf (-2 * x) (-x)
have hi7 := hf (f x) x
have hyg := hf (f x) (-x)
have hig := hf x (f x)
have hyg := hf (-x) (f x)
have hy; := hf x (-f x)
have has := hf (-x) (-f x)
have ho3 := hf (2 * £ x) (-f %)
have hoy := hf (-2 * £ x) (-f x)
have hgs := hf (2 * £ x) (f x)
have hag := hf (-2 * £ x) (f x)
have hy7 := hf (f x) (2 * f x)
have hag := hf (f x) (-2 * £ x)
have hsg := hf x (x)
have h3g := hf x (-x)
have h3z; := hf 0 (2 * £ x)
have h3zs := hf 0 (-2 * f x)
have h3zs := hf (2 * £ x) O
have h3zs := hf (-2 * £ x) O
have hss := hf (f x) (f x)
have hszg := hf (-f x) (f x)
have hs7 := hf (f x) (-f x)
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=Y
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167

168

have hzg := hf (-f x) (-f x)
norm_num at

<;>

(try nlinarith) <;>
(try linarith) <;>
(try nlinarith [hy, hs, hs, hs, hs, hg, h7, hs, hg, hig, hi1, hiz, hiz, hia, his,
— hie, hi7, his, hig, hao, h21, ha2, hos, has, has, hoe, har, hag, ho
9, h3o, h31, hs2, hzz, hzs, hzs, hze, hz7, hzgl) <;>

(try

nlinarith [hf 0 O, hf x O, hf 0 x, hf x (-x), hf (-x) x, hf (x + x) (-x), hf

—

(try

(-x) (x +x), hf (x - x) (x + x), hf (x + x) (x - x)]) <;>

nlinarith [hf O O, hf x 0, hf 0 x, hf x (-x), hf (-x) x, hf (x + x) (-x), hf

—

(try

(-x) (x+x), hf (x - x) (x +x), hf (x + x) (x - x)]) <;>

nlinarith [hf O O, hf x 0, hf 0 x, hf x (-x), hf (-x) x, hf (x + x) (-x), hf

[
<;>

(-x) (x+x), hf (x - x) (x + x), hf (x + x) (x - x)])

nlinarith

exact h_main

theorem lemma_final_implication (f : R — R) (hf : Vxy, £f (x+y) <y =*£fx+f

- (f x))
(h_f_at_0_is_0 : £ 0 = 0) (h_f_non_positive : V x, £ x < 0) : Vx <0, f x=

—

=by

have h_main : V (x : R), x < 0 — f x =0 := by
intro x hx
have hl : £ x = 0 := by
by_cases hx0 : x = 0

-- If © = 0, then f(0) = 0 by hypothesis
simp [hxO, h_f_at_0_is_0]
-- If ¢ # 0, then = < 0
have hxl : x < 0 := by

cases' lt_or_gt_of_ne hx0 with h h

- linarith

- exfalso

linarith

-- Use the given inequality with y =  and y = -z to derive the desired
— result

have h2 := hf x x
have h3 := hf (-x) x
have h4 := hf x (-x)
have hb := hf 0 x
have h6 := hf x 0
have h7 := hf 0 (-x)

have h8 := hf (-x) 0
-- Simplify the inequalities using the given conditions
norm_num [h_f_at_0_is_0] at h2 h3 h4 h5 h6 h7 h8
nlinarith [h_f_non_positive x, h_f_non_positive (-x), h_f_non_positive (f
- X),
h_f_non_positive (x + x), h_f_non_positive (x - x), h_f_non_positive 0]

exact hil
exact h_main

/==lhEk

\( f : \mathbb{R} \to \mathbb{R} \) be a function satisfying the inequality

— \( f(z + y) \leq y \cdot f(z) + f(f(x)) \) for all real numbers \( z
\) and \( y \). Suppose that \( f(0) = c \) and there exists some \( z_0 \|) such
— that \( f(z_0) = 0 \). Prove that \( c \geq 0 \), \( f(c) = c \), \(

f(y) \leq ¢ \) for all real numbers \( y \), and \( f(y) \leq c \cdot y + c \) for

— all real numbers \(y \).-/
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theorem lemma_properties_if_f_has_zero (f

- x + f (f x))

:R—-R) (hf : Vxy, £f(x+y) <y=x*f

cANVy, fy<c) AWy, fy<cx*xy+c):=hby

(h_fO_eq_c : £ 0 =¢) (hxo : d %0, £ %0 = 0)
c>0Afc-=
have h_c_ge_zero : ¢ > 0 := by
obtain {(xg, hxo) := hxgo
have hl := hf xg (-xq)
have h2 := hf 0 (-xqg)
have h3 := hf x9 O
have h4 := hf 0 O
have h5 := hf xo (f x¢)
have h6 := hf 0 (f 0)
have h7 := hf xo (-f xg)
have h8 := hf 0 (-f 0)

norm_num

<;>

[h_fO_eq_c, hxp] at *

(try linarith) <;>

(try nlinarith) <;>

(try simp_all [h_fO_eq_c, hxol) <;>
(try linarith) <;>

(try nlinarith)

<;>
(try

nlinarith [sq_nonneg (£
(xo - 0), sq_nonneg

=
<;>
(try

nlinarith [sq_nonneg (£
(20 - 0), sq_nonneg

—

have h_f_c_eq_c

LR cR=Nch:=Rby;

Xo9), sq_nonneg (f 0), sq_nonneg (%9 + 0), sq_nonneg
(f xo + £ 0), sq_nonneg (f xo - £ 0)])

X0), sq_nonneg (f 0), sq_nonneg (x9 + 0), sq_nonneg
(f o + £ 0), sq_nonneg (f %o - £ 0)1)

nlinarith [sq_nonneg (f x¢), sq_nonneg (c - xXg), sq_nonneg (c + xg)]

nlinarith [sq_nonneg (f xo), sq_nonneg (c - xg), sq_nonneg (c + xq),

nlinarith [sq_nonneg (f xo), sq_nonneg (c - xg), sq_nonneg (c + xq),

obtain (xg, hxo) := hxo
have hy := hf x¢ (¢ - xq)
have hy := hf 0 (c)
have hy := hf ¢ (-c)
have hy := hf x9 O
have hs := hf 0 O
have hg := hf xo (f xo)
have hy := hf 0 (f 0)
have hg := hf xo (-xq)
have hg := hf 0 (-xq)
simp [h_f —_eq_c, hXo] at h1 h2 h3 h4 h5 hﬁ h7 hg hg =
<;>
(try ring_nf at * <;> nlinarith) <;>
(try
{
P <>
(try
{
< sq_nonneg (f c)]
1)
<;>
(try
{
< sq_nonneg (f c), sq_nonneg (f 0)]
1))
<;>
(try
{
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226 nlinarith [sq_nonneg (f xo), sq_nonneg (c - xg), sq_nonneg (c + xq),
< sq_nonneg (f c), sq_nonneg (f 0), sq_nonneg (c - f xg)]

27 1))

228 <>

229 (try

230 {

231 nlinarith [sq_nonneg (f xo), sq_nonneg (c - xo), sq_nonneg (c + xqg),
— sq_nonneg (f c), sq_nonneg (f 0), sq_nonneg (c - f x¢), sq_nonneg (f xo
an o

232 c)l

233 b

234

235 have h_f le.c : Vy, £y < c :=by

236 intro y

237 have hl := hf y (-y)

238 have h2 := hf y (c - y)

239 have h3 := hf 0 (y)

240 have h4 := hf c (-c)

241 have h5 := hf y O

242 have h6 := hf 0 0

243 have h7 := hf ¢ 0

244 have h8 := hf 0 c

245 have h9 := hf y (£ y)

246 have h10 := hf 0 (f 0)

247 have hil := hf y (-f y)

248 have h12 := hf 0 (-f 0)

249 have h13 := hf ¢ (y - c)

250 have hi14 := hf 0 (y - c)

251 have h15 := hf (y - ¢) ¢

252 have h16 := hf (y - ¢c) O

253 have h17 := hf (y - c) (f (y - ¢))

254 have h18 := hf (y - c) (-f (y - c))

255 norm_num [h_fO_eq_c, h_f_c_eq_c] at *

256 <>

257 (try linarith) <;>

258 (try nlinarith) <;>

259 (try

260 {

261 nlinarith [sq_nonneg (f y - c¢), sq_nonneg (f 0), sqg_nonneg (c), sg_nonneg
— (y), sq_nonneg (f ¢ - ¢), sq_nonneg (f y)]

262 P <>

263 (try

264 {

265 nlinarith [sq_nonneg (f y - c), sq_nonneg (f 0), sq_nonneg (c), sq_nonneg

— (y), sq_nonneg (f c - c), sq_nonneg (f y), h_c_ge_zero]
266 b <>

267 (try

268 {

269 nlinarith [sq_nonneg (f y - c), sq_nonneg (f 0), sq_nonneg (c), sq_nonneg
— (y), sq_nonneg (f c - c), sq_nonneg (f y), h_c_ge_zero, sq_nonneg (f

270yl

271 b <>

272 (try

273 {

274 nlinarith [sq_nonneg (f y - c), sq_nonneg (f 0), sq_nonneg (c), sq_nonneg
— (y), sq_nonneg (f ¢ - c), sq_nonneg (f y), h_c_ge_zero, sq_nonneg (f

275y - c)l

276 b

277

278 have h_f_le cy_add_c : Vy, £y <cx*y+c :=by

279 intro y

280 have h; := h_f_le_c y

281 have hy := h_f_le_c O
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have hy := hf 0
have hy := hf y
have hs := hf y
have hg := hf 0 (
have h7 := hf y
have hg := hf O
have hg := hf c
have hip := hf y
have hiy; := hf O
have his := hf y
have hy3 := hf O
have hi4 := hf y
have hy5 := hf O
have hjg := hf c
have h;j7 := hf 0
have hig := hf (y
have hig := hf (y
have hyg := hf (y
have hoy := hf (y

(f y)
(£ 0)
(-f y)
(-f 0)
(y - ©
(y - ©
-c)c
-¢c) o0

-c) (f (y - )

-¢c) (

norm_num [h_fO_eq_c, h_f

<;>
(try linarith) <;

>

(try nlinarith) <;>

(try
{

nlinarith [h_c_ge_zero, sq_nonneg (f

-f (y - ¢))

_c_eq_c] at *

— y), sq_nonneg (f y + c - c * y)]

P <>
(try
{

nlinarith [h_c_ge_zero, sq_nonneg (f
— y), sq_nonneg (f y + c - ¢c * y),

b <>
(try
{

nlinarith [h_c_ge_zero, sq_nonneg (f
< y), sq_nonneg (f y + ¢c - ¢c * y),

(fy - ol
b
g
(try
{

cases' le_total O y with hy hy <;>
cases' le_total O (f y - ¢) with h h <;>
cases' le_total O (c - y) with h' h' <;>

nlinarith [h_c_ge_zero, sq_nonneg (f
< y), sq_nonneg (f y + c - ¢c * y),

1))
<;>
nlinarith

exact <(h_c_ge_zero,

theorem imo2011_p3 (£

h_f_c

: R — R) (bf

- < 0, fx=0 :=hby

-- Step 1: Prove that f is non-positive everywhere.

eq_c, h_f_le_c, h_f_le_cy_add_c)

have h_nonpos : Vx, £fx<O0 := aux_f_nonpositive f hf

-- Step 2: Prove that there must exist some zy such that f(zp) = 0.
-- We prove this by contradiction. Assume f(z) is never zero.

have h_exists_zero :

3 X0,

by_contra h_no_zero

-- The hypothests

from

f xo =0 := by

‘by_contra® s “h_mo_zero :

25

2(3d o, f zo

cVxy, £f (x+y) <yxfx+ £ (fx)

0)"

y - ¢), sq_nonneg (y), sq_nonneg (c -

y - ¢), sq_nonneg (y), sq_nonneg (c -
sq_nonneg (f y - c * y)]

y - c¢), sq_nonneg (y), sq_nonneg (c -
sq_nonneg (f y - ¢ * y), sq_nonneg

y - c¢), sq_nonneg (y), sq_nonneg (c -
sq_nonneg (f y - ¢ * y)]

:Vox
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-- We use “push_neg’ to convert it into a more usable form.

push_neg at h_no_zero
-- Now, “h_mo_zero : V (z : R), fz+# 0.

-- This, combined with “h_nonpos”, implies f(z) < 0 for all z.
have h_always_neg : V x, £ x < 0 := fun x + (h_nonpos x).lt_of_ne (h_no_zero x)

-- From this, we can deduce f(0) = f(f(0)).
have h_f0O_eq_ff0 : £ 0 = £ (£ 0) := by
have h_ffO_neg : £ (f 0) < O := h_always_neg (f 0)
have hle : £ (£ 0) < f 0 :=
— h_ffO_neg

have hge : £ 0 < f (£ 0) := imo2011_p3_stl f hf O

linarith

-- Now, we use the main inequality to derive a contradiction.

-- Let © = f(0) and y = -f(0).
specialize hf (f 0) (-f 0)

-- Define a local lemma for “a + -a = 0 to ensure it's available.
have add_neg_self_local : £ 0 + -f 0 = 0 := by ring

-- Rewrite the inequality step-by-step to derive the contradiction.

rw [add_neg_self_local] at hf
rw [+ h_fO_eq_ff0] at hf
rw [+ h_fO_eq_ff0] at hf

-- The inequality s now f 0 < -(f 0)2 + f 0, which implies 0 < -(f 0)=.

have h_contr : 0 < -(f 0) ~ 2 := by linarith [hf]

-- This s a contradiction because f(0) < 0, so -(f 0)2 < 0.

have h_fO_neg : £ 0 < 0 := h_always_neg O

have h_sq_pos : 0 < (£ 0) = 2 := sq_pos_of_ne_zero (ne_of_1t h_fO_neg)

linarith

-- Step 3: Use the ezistence of a zero to prove f(0) = 0.

obtain {(xg, hxg) := h_exists_zero
have h_fO_eq 0 : £ 0 = 0 := by

-- 4 lemma gives properties of f if it has a zero. One is f(0) > 0.
have h_props := lemma_properties_if_f_has_zero f hf rfl {x0, hxo)

have h_fO_nonneg : £ 0 > 0 := h_props.1

-- Combining f(0) > 0 with f(0) < 0 (from h_nonpos) gives f(0)

linarith [h_nonpos 0]

-- Step 4: Now that we have f(z) < 0 and f(0) = 0, apply the final lemma.
exact lemma_final_implication f hf h_fO_eq_0 h_nonpos

E.4 IMO 2005 P3
-- Solution to IMO 2005 P3 by DRP-INO

import Mathlib
import Aesop

set_option maxHeartbeats O
open BigOperators Real Nat Topology Rat

theorem inequality_partl_nonnegative (x y z : R) (hx :
- >0) (h:x*xy*xz>1):

(x¥x - 1/x + yxy - 1/y + zxz - 1/z) / (x*xx + y*y + zxz) > 0

26
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have h_main
have h; :
have ho
have hs
have hy
have hj
have hg
have hy :

O OO O OO O .-

ol

NN NN ANNA
E I T o T I I

<
field_simp [hx.ne',
rw [le_div_iff, (by

*X

*

LR SR I I
<S<< NNYS

<

Z xy @
Z *x 2z :
hy.ne', hz
positivity)]

*
* z kX =
*
*

y*y + zxz - (1/x + 1/y + 1/2) > 0
:= by positivity

= by positivity

by positivity

z := by positivity

by positivity
by positivity
by positivity
.ne']

-- Use nlinarith to prove the inequality

nlinarith [sq_nonneg (x - y), sq_nonneg (x - z), sq_nonneg (y - z),

sq_nonneg (x * y - 1), sq_nonneg (x * z - 1), sq_nonneg (y * z - 1),

mul_nonneg
mul_nonneg
mul_nonneg
mul_nonneg
mul_nonneg
mul_nonneg

have h_final :
have h;
have ho
have hj
-~ z) >0
have hy

(sub_nonneg.mpr
(sub_nonneg.mpr
(sub_nonneg.mpr
(sub_nonneg.mpr
(sub_nonneg.mpr
(sub_nonneg.mpr

h
h
h
h
h
h

)
)
)
)
)
)

(x*x - 1/x + y*y -

- z) - Q1 /x+1/y+1

ring
rw [hyl]
have hs

(x*xx+y*xy+zx*xz) -1 /x+1/y+1/2)/ xx*x+

— + 2z % 2) >0 := by
apply div_nonneg
- linarith
- linarith

exact hj
exact hs

exact h_final

:x*x+y*y+z*z

x*xx-1/x+y*xy-1/y+zxz-1/2)/ E*xx+yx*xy
:= by
txxx-1/x+y

*
/

(sq_nonneg
(sq_nonneg
(sq_nonneg
(sq_nonneg
(sq_nonneg
(sq_nonneg

1/y + zxz - 1/z) / (x*x +

:= by

(x - y)),
(x - 2)),
(y - 2)),
(x xy-x*2)),
(x*xy-3*2)),

*

(x

z -y * z))]

-Q/x+1/y+1/2) >0
> 0 := by positivity

y-1/y+zx*xz-1/z
z =b

) := by

theorem inequality_part2_nonnegative (x y z :

— > 0)

R) (hx :

x > 0) (hy :

y*xy + z*xz) > 0 :

:= h_main

((x75 - x72)/(x"5 + y72 + 272) - (xxx - 1/x)/(x*x + y*y + z*z)) +
((y75 - y72)/(y~56 + 272 + x72) - (y*xy - 1/y)/(y*xy + 272 + x*x))
((z75 - 272)/(z"5 + 372 + y~2) - (zxz - 1/2z)/(z*z + x*x + y*y))
((x75 - x72)/(x75 + y72 + 272) - (x*x - 1/x)/(x*x + y*y + z*z)) +

— ((yo5 - y72)/(y~5 + 272 + x72) - (yxy - 1/y)/(y*xy + 272 + x*xx)) + ((z
~5 - 272)/(z°5 + x°2 + y°2) - (zxz - 1/2)/(z*z + x*x + y*y)) > 0O
x72)/(x75 + y~2 + z72) - (x*x - 1/x)/(x*x + yxy + z*z) > 0 :=

have h_main :

have h; : (x°5

— by
have hjo
have hi1
have hio
have hps
have hy4 :
have h;5 :
field_simp

rw [le_div_iffg (by

ring_nf

nlinarith [sq_nonneg (x~3 - x), sq_nonneg (x°2 - 1), sq_nonneg (x - 1),

O O O O OO

AN NN A NN

x"5 + y72 + z72 :=
X*xX + y*y + z*z

x"5 := by positivity
x~3 := by positivity
X2 := by positivity
X := by positivity

by positivity
:= by positivity

positivity), « sub_nonneg]

+
>0

:= by

(x*x+y*y

y > 0) (hz :

:= by

by

+ Z %

y*y

z

mul_nonneg hx.le (sq_nonneg (x~2 - 1)), mul_nonneg hx.le (sq_nonneg (x~3 -

— X)),

27



68 mul_nonneg hx.le (sq_nonneg (x°2 - x)), mul_nonneg hx.le (sq_nonneg (x73 -

- 1)),

69 mul_nonneg (sq_nonneg (x - 1)) (sqg_nonneg (x + 1)), mul_nonneg hx.le
— (sq_nonneg (x72 - 2 * x + 1))]

70 have hy : (y°5 - y72)/(y™5 + 272 + x72) - (y*xy - 1/y)/(yxy + 2°2 + x*x) > 0 :=

— by

71 have hag : 0 < y°5 + z72 + x72 := by positivity

72 have ha; : 0 < y*y + z72 + x*x := by positivity

73 have haz : 0 < y°5 := by positivity

74 have hog : 0 < y°3 := by positivity

75 have hay : 0 < y°2 := by positivity

76 have has : 0 < y := by positivity

77 field_simp

78 rw [le_div_iffy (by positivity), ¢ sub_nonneg]

79 ring_nf

80 nlinarith [sq_nonneg (y~3 - y), sq_nonneg (y"2 - 1), sq_nonneg (y - 1),

81 mul_nonneg hy.le (sq_nonneg (y~2 - 1)), mul_nonneg hy.le (sq_nonneg (y~3 -
— y)),

82 mul_nonneg hy.le (sq_nonneg (y°2 - y)), mul_nonneg hy.le (sq_nonneg (y~3 -
— 1)),

83 mul_nonneg (sq_nonneg (y - 1)) (sq_nonneg (y + 1)), mul_nonneg hy.le
— (sq_nonneg (y°2 - 2 * y + 1))]

84 have hg : (2756 - 272)/(275 + x72 + y°2) - (zxz - 1/2)/(z*z + x*x + y*y) > 0 :=

— by

85 have h3p : 0 < 275 + x72 + y~2 := by positivity

86 have h3z; : 0 < zxz + x*x + y*y := by positivity

87 have h3zs : 0 < z75 := by positivity

88 have h3zz : 0 < z73 := by positivity

89 have h3zy : 0 < z72 := by positivity

90 have h3zs : 0 < z := by positivity

91 field_simp

9 v [le_div_iffo (by positivity), + sub_nonneg]

93 ring_nf

94 nlinarith [sq_nonneg (z°3 - z), sq_nonneg (z°2 - 1), sq_nonneg (z - 1),

95 mul_nonneg hz.le (sq_nonneg (z"2 - 1)), mul_nonneg hz.le (sq_nonneg (z"3 -
— 2)),

9 mul_nonneg hz.le (sq_nonneg (z"2 - z)), mul_nonneg hz.le (sq_nonneg (z"3 -
- 1)),

97 mul_nonneg (sq_nonneg (z - 1)) (sq_nonneg (z + 1)), mul_nonneg hz.le
< (sq_nonneg (z"2 - 2 * z + 1))]

98 linarith

99 exact h_main

100

101

102 -- The main theorem

103 theorem imo2005_p3 (x y z : R) (hx : x > 0) (hy : y > 0) (hz : z > 0) (h_prod_ge_1 :
— x *ky*xz>1)
104 x~5-x"2)/(x"5+y~2+z"-2)+(y~5-y°~2)/(y~5+z"2+x"
— 2)+(z°"5-2"2)/(z"5+x~2+y°~2) >0 :=hby
105 -- Define S_partl (LHS of inequality_partl_nonnegative)
106 let S_partl := (x°2 - 1/x + y°2 - 1/y + 272 - 1/z) / (x°2 + y°2 + z°2)
107

108 -- Define S_part2 (LHS of inequality_part2_nonnegative)

109 let S_part2 :=

110 (x5 - x72)/(x"5 + y72 + 272) - (x72 - 1/x)/(x"2 + y~2 + z72)) +
111 ((y75 - y72)/(y75 + 272 + x72) - (y°2 - 1/y)/(y~2 + 272 + x72)) +
112 ((z75 - 272)/(2z75 + x72 + y72) - (272 - 1/2)/(272 + 72 + y~2))
113

114 -- Prove S_partl > 0 using inequality_partl_nonnegative

115 have h_S_partl_nonneg : S_partl > 0 := by

116 apply inequality_partl_nonnegative <;> assumption

117

118 -- Prove S_part2 > 0 using inequality_part2_nonnegative
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E.

have h_S_part2_nonneg : S_part2 > 0 := by
apply inequality_part2_nonnegative <;> assumption

-- Prove that the original LHS is equal to S_partl + S_part2
-- We'll prove it as a separate fact (have) and then use it.

have h_LHS_eq_sum :

(x5 - x72)/(x"5 + y2+272) + (yob - y2)/(y°5 + 272 + x72) + (275 - 272) /(2”5

- + x72 + y°2) =

S_part2 + S_partl := by

-- Ezpand the definitions of S_partl and S_part2
unfold S_partl S_part2

-- Normalize denominators which are permutations of each other
by ac_rfl
by ac_rfl

have h_denom_y : y™2 + 272 + x72 = x72 + y~2 + 272 :=
have h_denom_z : 272 + x72 + y°2 = x72 + y°2 + 272 :=
rw [h_denom_y, h_denom_z]

-- The rest ©s a pure algebraic identity, which ‘ring’
-- It correctly rearranges terms like (a-b)+(c-d)+(e-f) + (b+d+f)/k = atcte

-- after combining the fractions for S_partl
ring

-- Rewrite the goal using the equality we just proved
rw [h_LHS_eq_sum]

can solve.

-- The goal is mow S_part2 + S_partl > 0, which follows from the two parts being

— non-negative.
exact add_nonneg h_S_part2_nonneg h_S_partl_nonneg

5 IMO 2000 P2

Solution to IMO 2000 P2 by DRP-IMO

import Mathlib
import Aesop

se

t_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/=

\

-Given positive real numbers \( a \), \( b \), and \( ¢ \) such that \( a \times b
\times ¢ = 1 \), prove that there exist positive real numbers \( z

), \(y \), and \( z \) such that \( a = \frac{z}{y} \),

— and \( ¢ = \frac{z}{z} \).-/

theorem imo2000_p2_existence_of_xyz (a b ¢ : R) (ha : 0 < a) (hb :

—

c) (habc : a * b *x ¢ = 1)

dxyz: R, 0<xAN0O<yAO<zAa=zx/yAb-=y/z
have hmain : 3 (xyz : R), 0<x AO0O<yAO0O<zAa
— = by
refine' <a, 1, 1 / b, _, _, _, _, _,

-- Prove that a > 0

linarith

-- Prove that 1 > 0

norm_num

-- Prove that 1 /b > 0

exact div_pos zero_lt_one hb

-- Prove that a = a / 1

field_simp

-- Prove that b

field_simp

<;>

nlinarith

-- Prove that ¢ = (1 / b) / a

have hy : ¢ =1/ (a * b) := by
have ho : a * b * ¢ = 1 := habc

1/ (1/bd)

29

\( b = \frac{y}{z} \),

A

c
x/

= z/x := by
yAb=y/zAc

0 <b) (he : 0 <

z/x
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have hg3 : ¢ =1/ (a * b) := by
have hy : a * b # 0 := by positivity
field_simp [hs4] at hy
nlinarith
exact hs
have ho : (1 /b : R) /a=1/ (a*b) := by
field_simp
<;> ring
<;> field_simp [ha.ne', hb.ne']
<;> nlinarith
rw [hi] at *
<;> linarith
exact h_main

/--Consider three positive real numbers \(z \), \(y \), and \( z \) such that \( z
- >0\), \(y>01\), and \( z > 0 \). Prove that the product of th
e expressions \( (¢ -y +2) \), \( (y - 2z +2)\), and \( (2 - = + y) |) is less
— than or equal to the product \( z \cdot y \cdot 2z \).-/
theorem schur_like_ineq (x y z : R) (hx : 0 < x) (hy : 0 <y) (hz : 0 < z)
(x-y+2) x(y-2z+x *x(z-x+y) <xx*xy*z:=by
have h_main : (x -y +2) *x (y -z +x) * (z-x+y) <x*xyx*xz :=hby
nlinarith [sq_nonneg (x - y), sq_nonneg (y - z), sq_nonneg (z - x),
mul_nonneg hx.le hy.le, mul_nonneg hy.le hz.le, mul_nonneg hz.le hx.le,
mul_nonneg (sq_nonneg (x - y)) (sq_nonneg (y - 2z)),
mul_nonneg (sq_nonneg (y - z)) (sq_nonneg (z - x)),
mul_nonneg (sq_nonneg (z - x)) (sq_nonneg (x - y)),

mul_nonneg (sq_nonneg (x - y + z)) (sq_nonneg (y - z + x)),
mul_nonneg (sq_nonneg (y - z + x)) (sqg_nonneg (z - x + y)),
mul_nonneg (sq_nonneg (z - x + y)) (sq_nomneg (x - y + 2)),
mul_nonneg (sq_nonneg (x + y - z)) (sq_nomneg (y + z - x)),
mul_nonneg (sq_nonneg (y + z - x)) (sqg_nonneg (z + x - y)),
mul_nonneg (sq_nonneg (z + x - y)) (sq_nonneg (x +y - 2z))]

exact h_main

/--Consider positive real numbers \( a, b, ¢, z, y, 2 \) such that \( a \cdot b
— \edot ¢ =1 \) and \( a = \frac{z}{y} \), \( b = \frac{y}{z} \), \( c =
\frac{z}{z} \). Prove that the inequality \((a - 1 + \frac{1}{b}) \cdot (b - 1 +
—  \frac{1}{c}) \cdot (c - 1 + \frac{i}{a}) \leq 1\) is equivalent to th
e inequality \((z - y + z) \edot (y - z + z) \cdot (z - = + y) \leq =z \cdot y \cdot
- 2z\).-/
theorem inequality_equivalence_under_parametrization (a b c x y z : R)
(ha : 0 <a) (b : 0 <Db) (hc : 0 < c) (habc : a * b * ¢ = 1)
(hx : 0<x) (hy : 0 <y) (hz : O < 2)
(hax : a=x/y) (hby : b=y / z) (hecz : ¢ =z / x)
(@a-1+1/b)*x (d-1+1/¢c)*(c-1+1/a)<1<+
(x-y+2)x(y-2z+x) *x(z2-x+y) <x*xyx*xz:=hby
have homain : (a -1 +1/b) * (b-1+1/¢c)*(c-1+1/a)=Ux+z-73)/
- y) x (x+y-2)/2)*x ((y+z-2x)/x) :=Dby
have hy : a-1+1/b=(x+2-y) /y:=by
have hy : a = x / y := by linarith
have hy : b =y z := by linarith
rv [h;, ho]
field_simp [ha.ne', hb.ne', hx.ne', hy.ne', hz.ne']
<;> ring_nf
<;> field_simp [ha.ne', hb.ne', hx.ne', hy.ne', hz.ne'l]
<;> nlinarith
have ho : b-1+1/c=(x+y-2)/ 2z :=by
have h; : b =y / z := by linarith
have hp : ¢ = 2z / x := by linarith
rw [h;, hyl
field_simp [ha.ne', hb.ne', hc.ne', hx.ne', hy.ne', hz.ne']
<;> ring_nf
<;> field_simp [ha.ne', hb.ne', hc.ne', hx.ne', hy.ne', hz.ne']

)
1
/
/
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88 <;> nlinarith

89 have h3 : c -1 +1/a=(y+2z-2x)/x:=hby

90 have hy : ¢ = z / x := by linarith

91 have hy : a = x / y := by linarith

92 rw [hi, hs]

93 field_simp [ha.ne', hb.ne', hc.ne', hx.ne', hy.ne', hz.ne']
94 <;> ring_nf

95 <;> field_simp [ha.ne', hb.ne', hc.ne', hx.ne', hy.ne', hz.ne']
96 <;> nlinarith

97 rw [hy, hs, hs]

98 <;> field_simp [ha.ne', hb.ne', hc.ne', hx.ne', hy.ne', hz.ne']
99 <;> ring_nf

100 <;> field_simp [ha.ne', hb.ne', hc.ne', hx.ne', hy.ne', hz.ne']
101 <;> nlinarith

102
103 have h_equiv : ((x+z -y) /y) * (x+y-2)/2) x (y+z-%x) /3 <1

- (x-y+2z)*x (y-z+x) *x(z-x+y) <x*y*z:=hby
104 have h;y : 0 < x * y := by positivity
105 have hy : 0 <y * z := by positivity
106 have hy3 : 0 < z * x := by positivity
107 have hy : 0 < x * y * z := by positivity
108 constructor
109 - intro h
110 have hs : ((x+z -y) /y) * (x+y-2)/2z)x ((y+2z-x) /%) <1:=hby

— linarith
111 have hg : (x -y +2) * (y -2 +x) *x (z-x+y) <x*yx*xz :=Dby

112 field_simp at hsj
113 rw [div_le_one (by positivity)] at hs
14 nlinarith [sq_nonneg (x - y), sq_nonneg (y - z), sq_nonneg (z - x),
115 mul_nonneg hx.le hy.le, mul_nonneg hy.le hz.le, mul_nonneg hz.le hx.le,
116 mul_nonneg (sq_nonneg (x - y)) hz.le, mul_nonneg (sq_nonneg (y - z))
— hx.le,
117 mul_nonneg (sq_nonneg (z - x)) hy.lel
118 linarith
119 - intro h
120 have hs : (x -y +2) * (y -z +x) * (z-x+y) <x*yx*xz :=Dby linarith
121 have hg : ((x+z -y) /y) * (x+y-2)/2)x ((y+z-x)/x) <1:=hby
122 field_simp
123 rw [div_le_one (by positivity)]
124 nlinarith [sq_nonneg (x - y), sq_nonneg (y - z), sq_nonneg (z - x),
125 mul_nonneg hx.le hy.le, mul_nonneg hy.le hz.le, mul_nonneg hz.le hx.le,
126 mul_nonneg (sq_nonneg (x - y)) hz.le, mul_nonneg (sq_nonneg (y - z))
— hx.le,
127 mul_nonneg (sq_nonneg (z - x)) hy.le]
128 linarith

129
130 have h_final : (a-1+1/b) * (b-1+1/¢c)*x(c-1+1/a) <1+ (x-3

- +2z) x (y-z+x) % (z-x+y) <x*xy*z :=by
131 rw [h_main]
132 rw [h_equiv]
133 <>
134 simp_all
135 <>
136 field_simp
137 <>
138 ring_nf
139 <>
140 nlinarith
141
142 exact h_final

143
144  theorem imo2000_p2
145 (abc:R) (ha: 0<a) (b : 0 <b) (hc : 0 < c)
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146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

(habc : a * b *x ¢ = 1)
(a-1+1/b)*x (b-1+1/¢c)*(c-1+1/2a <1:=hby
-- 1. Parametrize T y z using positive numbers
obtain (x, y, z, hx, hy, hz, ha_eq, hb_eq, hc_eq) :=
imo2000_p2_existence_of_xyz a b ¢ ha hb hc habc
-- 2. Use an equivalent lemma to transform the goal into the form involving = y 2z
have h_equiv :=
(inequality_equivalence_under_parametrization
(a :=a) (b :=b) (c :=¢c) (x :=x) (y :=y) (z := 2)
ha hb hc habc hx hy hz ha_eq hb_eq hc_eq)
-- 3. The Schur-type inequality yields the conclusion on the right-hand side.
have hxyz : (x -y +2) * (y -2z +x) * (z-x+y) <x*xyx*xz:=
schur_like_ineq x y z hx hy hz
-- 4. Derive the original conclusion by reversing the equivalent proposition.
exact h_equiv.mpr hxyz

F Prompts Used for Step3

Prompt for Final Proof Generation (Step3)

This is a very challenging Lean 4 proof problem that is difficult to solve directly.

To assist with the proof, I have provided several already-proven sub-theorems.

Please plan how to use these sub-theorems to construct a complete proof of the main theorem.
Use the provided sub-theorems freely (their proofs are marked with ‘sorry ‘), but **you must
not use ‘sorry‘ anywhere else** in your final proof.

Finally, output the complete Lean 4 code for the proof.

**Main theorem:**
{problem}
**Proved Sub-theorems:**

{sub-theorems}
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