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Abstract

How can we perform computations over natu-
ral language representations to solve tasks that
require symbolic and numeric reasoning? We
propose natural language embedded programs
(NLEP) as a unifying framework for address-
ing math/symbolic reasoning, natural language
understanding, and instruction following tasks.
Our approach prompts a language model to gen-
erate full Python programs that define functions
over data structures which contain natural lan-
guage representations of structured knowledge.
A Python interpreter then executes the gener-
ated code and prints the output. Despite using a
task-general prompt, we find that this approach
can improve upon strong baselines across a
range of different tasks including math and
symbolic reasoning, text classification, ques-
tion answering, and instruction following. We
further find the generated programs are often
interpretable and enable post-hoc verification
of the intermediate reasoning steps.

1 Introduction

Solving complex language tasks often requires per-
forming computations over natural language repre-
sentations. For language-based reasoning, chain-
of-thought prompting (CoT; Wei et al., 2022) has
emerged as a promising approach for surfacing
the symbolic reasoning capabilities of large lan-
guage models (LLMs). However, certain types
of computations (e.g., arithmetic) are unnatural
to perform in pure language space, and hence
present difficulties for LLMs. General-purpose
programming languages, on the other hand, pro-
vide convenient abstractions as well as predefined
libraries and functions for natively implementing
many types of symbolic computations, and there
has been much recent work on interleaving pro-
gram calls within CoT-style reasoning to extend the
capabilities of LLMs. While promising, existing
methods are generally limited to narrow types of

tasks such as math and symbolic reasoning (Chen
et al., 2022; Cai et al., 2023; Gao et al., 2023), sim-
ple API calling (Schick et al., 2023; Paranjape et al.,
2023; Liang et al., 2023a), and database accessing
(Cheng et al., 2022). These works moreover rely on
task-specific prompts which are hard to generalize
across datasets.

This work describes a task-general approach for
combining the language-based reasoning capabili-
ties of LLMs with symbolic computations enabled
by the use of programs. Specifically, we prompt
LLMs to generate natural language embedded pro-
grams (NLEPs), which are fully executable Python
programs containing appropriate package import-
ing, structured natural language representations of
knowledge, function definitions for problem solv-
ing, and response printing. The generated NLEP
is then executed using a Python interpreter that
captures the standard output of the program as the
response. An example of an NLEP generated by
GPT-4 is shown in Figure 1.

NLEPs use code as a scaffold to reason over
natural language representations of data and knowl-
edge. This makes our approach different from
ToolFormer (Schick et al., 2023) and language
model as tool maker (LATM; Cai et al., 2023),
which instead use language as the scaffold and inter-
leave API calls within natural language sentences
during LLM generation. Compared to program-
of-thought (PoT; Chen et al., 2022) and program
aided language models (PAL; Gao et al., 2023),
which mainly focus on math and symbolic prob-
lems, NLEPs handles natural language, math, and
symbolic tasks with significantly better generaliza-
tion ability based on task-general prompts. Com-
pared to existing neuro-symbolic augmentations
approaches needing new logical language (Li et al.,
2023) and predefined solvers (Pan et al., 2023),
NLEP uses a general programming interface thus
can handle a significantly wider range of tasks
with more flexible programming elements includ-



Instruction: Who are the US presidents elected after 1950 and born on Monday?
NLEP generated by GPT-4
Tool # Step 1: Import necessary libraries
Using | from datetime import datetime
# Step 2: Define a dictionary storing the knowledge about US presidents
us_presidents = {
"Dwight D. Eisenhower”: {"birth_date”: "1890-10-14", "term_start”: "1953-01-20"},
"John F. Kennedy": {"birth_date”: "1917-05-29", "term_start”: "1961-01-20"},
"Lyndon B. Johnson": {"birth_date”: "1908-08-27", "term_start": "1963-11-22"},
"Richard Nixon": {"birth_date”: "1913-01-09", "term_start”: "1969-01-20"},
Structured "Gerald Ford” {"birth_date”: "1913-07-14", "term_start”: "1974-08-09"},
knowledge "Jimmy Carter”: {"birth_date": "1924-10-0 ; "1977-01-20"},
"Ronald Reagan” {"birth_date" 11-02-0 981-01-20"3},
"George H. W. Bush”: {"birth_dat: 24-06-1 989-01-20"},
"Bill Clinton” {"birth_date 1993-01-20"},
"George W. Bush": {"birth_date” , "term_start”: "2001-01-20"%},
"Barack Obama”: {"birth_date”: "1961-08-04", "term_start": "2009-01-20"},
"Donald Trump”: {"birth_date”: "1946-06-14", "term_start": "2017-01-20"},
"Joe Biden”: {"birth_date”: "1942-11-20", "term_start": "2021-01-20"},
3
# Step 3: Define a function that finds the presidents who are elected after a certain year and born on a certain day
of the week
def find_presidents(presidents, year, day_of_week):
Function result = []
definition for president, info in presidents.items():
birth_date = datetime.strptime(info["birth_date"], "%Y-%m-%d")
term_start = datetime.strptime(info["term_start"], "%Y-%m-%d")
if birth_date.strftime("%A") == day_of_week and term_start.year > year:
result.append(president)
return result
# Step 4: Print an answer in natural language using the knowledge and function defined above
year = 1950
Print day_of_week = "Monday”
answer presidents = find_presidents(us_presidents, year, day_of_week)
if presidents:
print("The US presidents who were elected after 1950 and born on Mondays are: " + ", ".join(presidents) + ".")
else:
print("There are no US presidents who were elected after 1950 and born on Mondays.")

J

Stdout: The US presidents who were elected after 1950 and born on Mondays are: Gerald Ford, Ronald Reagan, Bill Clinton.

Figure 1: A generated NLEP correctly answers the given question while ChatGPT-4 obtains an incorrect answer (link). This
NLEP uses the date-weekday conversion tool in the datetime package, constructs structured knowledge about US presidents,
implements a selection function, and outputs natural language responses depending on the function output. A more detailed
comparison between NLEP and ChatGPT-4 code interpreter is shown in Figure 5.

ing packages, databases, and APIs.

Experiments across math and symbolic reason-
ing, question answering and instruction following,
and text classification tasks demonstrate that (1)
NLEPs conducts accurate reasoning on both struc-
tured and unstructured tasks and inputs; (2) NLEP’s
step-by-step, meta prompting strategy can signif-
icantly improve the prompt efficiency across dif-
ferent tasks. As a result, we conclude that pro-
gramming language prompting with NLEP is more
capable and generalizable than existing natural lan-
guage and neuro-symbolic prompting strategies.

2 Approach: NLEP Prompting

An NLEP is a program containing both program-
ming code and natural language. NLEPs use natu-
ral language in several different ways. First, it uses
natural language comments to guide step-by-step
program generation. Second, language is used to
represent structured knowledge through Python’s
native data structures (e.g., dictionaries and lists).
Finally, an NLEP uses language to print fluent re-
sponses to the user input by constructing a standard
output string containing references to program vari-
ables.

The hybrid language-symbolic design of NLEP
enables generalized problem solving for natural
language, math, symbolic reasoning, and API call-
ing tasks, which have traditionally been tackled
by separate mechanisms. This approach combines
the benefits of language-based reasoning with pro-
gram synthesis: comments and knowledge in nat-
ural language improve program generation, while
the structured/symbolic reasoning powered by pro-
gram interpreters provides more accurate compu-
tations than would have been obtained via direct
decoding from LLMs.

An example of an NLEP for answering a ques-
tion is shown in Figure 5. In the generated program,
each section is preceded by comments in natural
language, and the defined counting function uses
knowledge stored in a key-value dictionary (which
itself is generated from GPT-4’s internal knowl-
edge) to find the correct answer. Finally, the answer
is printed through a natural language response. In
this example, we generated 5 independent NLEPs
and found that they achieve 100% accuracy, com-
pared to 60% for ChatGPT-4 and 40% GPT-4 APL

NLEP structure. More generally, each NLEP


https://chat.openai.com/share/524cb7bb-b6f4-4a70-9ba9-4f7b17f23c3e

contains four sections: (1) importing necessary li-
braries, (2) defining variables containing structured
knowledge, (3) implementing problem-solving
functions, and (4) printing the response in nat-
ural language. Instead of providing direct solu-
tions for each task, we guide the model to arrive
at a solution following this four-step process. As
show in the example in Figure 1, an NLEP answers
the question by constructing a structured knowl-
edge dictionary containing the birthday and start
date of the US presidents. To recognize the week-
days, the program utilizes pre-defined functions in
the datetime package. The selected answers are
stored in a 1list and then embedded into an out-
put template. The NLEP also handles the situation
when no answer is found. The correct answer is
then printed by the NLEP.

Task-general demonstration prompts. As is
standard in chain-of-thought prompting (Nye et al.,
2021; Wei et al., 2022), our approach uses demon-
stration prompts for NLEP generation. However,
unlike previous approaches our demonstrations are
not task-specific. For example, for all classification
tasks we consider we use the same demonstration
prompt (derived from SST2). Similarly, we use
mostly the same prompt for our math and sym-
bolic reasoning tasks. This task-general prompt
is similar in spirit to zero-shot chain-of-thought
prompting (Kojima et al., 2023) which adds a task-
agnostic prompt (“Let’s think step-by-step”)
to elicit the reasoning capabilities of LLMs in
a task-agnostic way. The prompts used for the
various tasks are given in Table 1, and the ex-
act prompts are given in Appendix C. In sum-
mary, we use 4 different demonstration prompts
across 16 tasks, each of which works well within
a task category. Thus, while the proposed method
is not fully task-agnostic in the strictest sense of
the term, it is still more flexible than previous
approaches that combine program synthesis with
chain-of-thought prompting (Chen et al., 2022; Gao
et al., 2023), which use examples from the dataset
to craft prompts.

Programmatic reasoning for natural language
understanding. Prior works on combining pro-
gram synthesis with LLM-based reasoning have
generally focused on math and symbolic reasoning
tasks (Chen et al., 2022; Gao et al., 2023), and it
has not been clear how such methods could be ex-
tended to address natural language understanding
(NLU) tasks. We show that NLEPs can be straight-
forwardly extended to text classification tasks.

For question answering, we apply NLEP prompt-
ing and the target output is constructed by the gen-
erated programs. Classification tasks, on the other
hand, are handled by a different type of NLEP con-
sisting of a decision tree. Each node of the decision
tree is annotated by a simple natural language sen-
tence, and the Yes/No decisions at each node are
handled in a zero-shot way by an entailment clas-
sifier, which has in general been shown to be an
effective approach to zero-shot text classification
(Obamuyide and Vlachos, 2018; Condoravdi et al.,
2003; Ge et al., 2023). Concretely, given the tree
we compute the entailment score between the input
and the language description of each node and tra-
verse the decision tree until a leaf node is reached.
We emphasize that the topology of the tree and
the language description of each node is generated
by the prompted LLM. The demonstration prompt
for classification tasks is given by a manually con-
structed example for SST2 (Wang et al., 2018). We
find that this prompt can generate NLEPSs contain-
ing sensible decision trees for various classification
tasks without requiring task-specific examples. An
example of the generated program and the corre-
sponding decision tree is shown in Figure 2.

3 Experiments

We evaluate natural language embedded programs
(NLEPs) on 16 tasks across three broad task cate-
gories. The tasks and corresponding prompts are
summarized in Table 1.

Math and symbolic reasoning tasks include
Tracking Shuffled Objects (7), Dyck Language,
Word Sorting and Chinese Remainder Theorem
from BigBench (Srivastava et al., 2023), Schedul-
ing Meeting task from Cai et al. (2023), GSM-Hard
benchmark of math word problems from Gao et al.
(2023), and Game of 24 (Yao et al., 2023a). We
use two examples for all tasks except for Game of
24, for which we applied a word sorting example
to elicit stronger game-playing reasoning ability.
The exact NLEP prompts we used are given in
Appendix C.1 and C.2.

Question answering and instruction follow-
ing tasks include the StrategyQA (Geva et al,,
2021a), Truthful QA (Lin et al., 2022), and Vicu-
naQA (Chiang et al., 2023) benchmarks. Strate-
gyQA requires models to answer multi-hop ques-
tions with “Yes” or “No”. TruthfulQA and Vicu-
naQA contain questions and instructions requiring
free-form responses. VicunaQA also allows us to
test how NLEPs perform in the popular instruction-



Input Prompt

# Task: Emotion classification

# Description: I wrote a sentence about my feeling, determine which emotion do I feel.
# Possible emotions: ['sad’, 'happy’, 'love’, ‘angry’, 'afraid’, 'surprised’]

# Generated decision Tree:

criterions = {
s_positiv

Classification accuracy of zero-shot methods (%)

GPT-3: 6-class RoBERTa-Ent: Decision Tree RoBERTa-Ent:

{( RoseRTa_Ent(
! (is_angry} is er

Figure 2: A decision tree structure generated within an NLEP for emotion classification based on task description using an
example program for SST2 as the prompt. The branching of each node is decided by a RoOBERTa (Liu et al., 2019) text entailment
model. This language-based decision tree generated by an NLEP outperforms GPT-3 and entailment-based multi-class prediction
(Ge et al., 2023) without needing any task-specific examples (i.e., exemplars specific to the emotion classification dataset).

Domain Task Prompt
Tracking Shuffled Objects (7) C.1
Dyck Language C.1
Math and Symbolic ~ Word Sorting C.1
Reasoning Chinese Remainder Theorem C.1
Scheduling Meeting C.1
GSM-Hard C.1
Game of 24 C2
StrategyQA C.1
Question Answering  TruthfulQA C3
VicunaQA C3
SST2 C4
Cola C4
. . Emotion-Classification C4
Text Classification Amazon Review c4
Hate-Speech C4
Social Bias Frame C4

Table 1: Summary descriptions of the various tasks considered
in this work.

following setting. The evaluation metrics on ques-
tion answering focus on accuracy, relevance, and
factuality of the generated answers. The prompts in
Appendix C.1 are used for StrategyQA. For Truth-
fulQA and VicunaQA, we added an example with
a longer response to encourage more detailed re-
sponse generation.

Text classification tasks includes tasks that re-
quire understanding of both natural language inputs
and labels. We evaluate NLEP on movie-review
classification (SST2; Socher et al., 2013), linguistic
acceptance (COLA; Warstadt et al., 2019), emotion
classification (Saravia et al., 2018), amazon review
(Ni et al., 2019), hate speech detection (de Gibert
etal., 2018), and stereotypes recognition (Sap et al.,
2019). We use the prompts in Appendix C.1 for
model-free classification. For decision tree genera-
tion, the prompts in Appendix C.4 are applied.

3.1 Math and Symbolic Reasoning

We compare NLEP prompting with chain-of-
thought (CoT; Wei et al., 2022), program-of-
thought (PoT; Chen et al., 2022), and LLMs as
tool makers (LATM; Cai et al., 2023). We also
compare against tree-of-thought (ToT; Yao et al.,
2023a) on the Game of 24 benchmark, where ToT
outperforms CoT by a significant margin (but re-
quires many more calls to the LLM). We evalu-
ate CoT and PoT with both task-general and task-
specific demonstrations. Since LATM needs in-
domain input-output pairs to create tools, we only
report the results with task-specific LATM.

Task-general prompting. For task-general
prompts we use two examples as the in-context
demonstration for the math and symbolic reason-
ing benchmarks (see Table 1 and Appendix C). For
CoT, we present two examples with intermediate
reasoning represented in natural language rather
than as programs. Our task-general PoT implemen-
tation takes the math and symbolic reasoning lines
similar as (Chen et al., 2022) and (Gao et al., 2023),
but without the step-by-step programming scheme
in NLEP as an ablation.

Task-specific prompting baselines. We report
the task-specific prompting performance as an “up-
per bound” for each task. For CoT, we use the
same prompting settings (from 3 to 8-shot) adopted
in previous studies (Cobbe et al., 2021; Cai et al.,
2023; Fu et al., 2023). For PoT, we use the same
in-context examples as in the task-specific CoT ex-
amples, but provide intermediate reasoning steps
in Python code. On the GSM-Hard benchmark,
we adopt the demonstrations (9-shot) for GSMSK
used in (Chen et al., 2022). For the Chinese Re-
mainder Theorem and Scheduling Meeting bench-



marks, we construct the in-context examples with
the first three successful instances of task-general
PoT. For LATM, we evaluate its performance on
Tracking Shuffled Objects (7) using the provided
tool and cite the results for other tasks from (Cai
et al., 2023). Details are shown in Appendix D.

Program synthesis approaches (PoT and NLEP)
may sometimes generate non-executable programs
if lack task-specific programming demonstration.
For both approaches, we select certain benchmarks
to resample up to three additional programs if the
returned program failed at execution. Since this
condition is triggered only if program execution
fails, there is no label leakage. We discuss this
further in Section 4 and provide results details in
Appendix B.

3.1.1 Results

We show the main results of NLEP prompting on
six math and symbolic reasoning tasks in Table 2.
An example of NLEP generated for solving a Dyck
language problem is shown in Figure 3(a).

GPT-4 Results. Among the three approaches
which use task-general prompts, NLEP outper-
forms both CoT and PoT on 5 of 6 tasks. The large
performance gap between NLEP and CoT suggests
that programmatic reasoning can enable more ac-
curate answers. Compared to PoT, NLEP achieves
significantly higher average accuracy, especially on
the Dyck Language (66.4%—91.6%) and the Chi-
nese Remainder Theorem (84.4%—97.2%) tasks.
On GSM-Hard, we confirm the same phenomenon
discovered by (Gao et al., 2023) where language
does not further benefit the calculation accuracy
with GPT-4.

NLEP also achieves comparable performance to
task-specific, few-shot prompting methods. No-
tably, our method achieves the best performance on
Tracking Shuffled Objects (7) and Dyck Language,
and outperforms task-specific CoT on many bench-
marks. On the Word Sorting benchmark, NLEP
only fails on one instance where the input word
sequence contains “steelmake" and GPT-4 auto-
matically corrected it to “steelmaker”. We find that
the high scores of task-specific PoT on Word Sort-
ing and Chinese Remainder Theorem come from
the generally applicable programming code from
the in-context demonstrations.

GPT-3.5 Results. We observe significant perfor-
mance degradation with GPT-3.5, presumably due
to its limited programming capabilties. However
NLERP still achieves the best average performance,

exhibiting significant improvement on 5 of 6 tasks
over all baselines. On the Dyck Language bench-
mark, program-based strategies (PoT and NLEP
with task-general prompts) failed to accomplish the
problem without task-specific examples, highlight-
ing the need for strong backbone LLMs.

Game of 24 results. Table 3 shows the results
on the challenging Game of 24 task from (Yao
et al., 2023a). Our approach also surpasses the ora-
cle setup of IO/CoT, which calculates the success
rate of IO/CoT by considering the best of 100 sam-
ples for each instance. However, unlike ToT which
requires in-context demonstrations for each decom-
posed sub-task, NLEP prompting achieves a sig-
nificant performance gain over ToT (b=1) without
requiring a computationally expensive multi-chain
inference procedure.

3.2 QA and Instruction Following

StrategyQA. Experiment results are presented in
Table 4. With GPT-4, NLEP achieves the best per-
formance under the task-general prompt setting
and is competitive with the task-specific CoT. With
GPT-3.5, although the scores of code-based strate-
gies decrease more than CoT (PoT: 18.4%, NLEP:
20.1%, task-general CoT: 10.5%, task-specific CoT:
10.1%), NLEP still exceeds PoT by a significant
margin. An example of output is shown in 3(b).
TruthfulQA. We also evaluate how NLEP
prompting influences the factuality of question an-
swering with the Truthful QA benchmark (Lin et al.,
2022). A fine-tuned GPT-3 model is applied for
automatic scoring. In this experiment, we compare
the vanilla auto-regressive text generation method
against NLEP. Traditionally, such question answer-
ing tasks have been solved only with black-box
language model without explicit symbolic compu-
tations due to the complexity of test questions.
The results are shown in Table 5. With GPT-
4, the truth score of NLEP prompting strategy is
close to standard LLLM-based generation, while the
informativeness score is higher. However, perfor-
mance degrades significant with GPT-3.5-Turbo,
indicating a strong dependence on the program-
ming ability of the underlying language model.
VicunaQA. Results on the VicunaQA bench-
mark are shown in Figure 4, where we follow the
standard approach and evaluate the answers using
GPT-4. We find that GPT-4 prefers its own gen-
erations, which are generally more detailed than
GPT-3.5-Turbo and NLEP responses. To control
for the bias due to response lengths, we also as-



GPT-4 GPT-3.5-Turbo
Tasks / Method (a) Task-Specific (b) Task-General (c) Task-Specific (d) Task-General
CoT PoT LATM | CoT PoT NLEP | CoT PoT | CoT PoT NLEP

Tracking Shuffled Objects 100.0 100.0 100.0 | 812 984 100.0 | 68.0 6.8 512 884 744
Dyck Language 63.60 608 875" | 396 664 91.6 | 204" 284 ]380 4.0 7.2
Word Sorting 909" 100.0 99.1T | 844 99.6 99.6 |592f  100.0 | 752 100.0 99.6
Chinese Remainder Theorem | 0.0°  100.0 100.01 | 0.0 844 972 | 0.0f 100.0 00 724 964
Scheduling Meeting 5560 752 100.07 | 828 852 932 | 18.91 33.6 39.6 492 856
GSM-Hard 574 741 - 549 693 677 | 450 634 | 428 522 541
Average \ 613 850 973 | 572 839 916 | 353 554 | 411 610  69.6

Table 2: Performance on math and symbolic reasoning tasks with both task-specific and task-general demonstration prompts.
t stands for results from (Cai et al., 2023). LATM results are not available for GSM-Hard benchmark as it is hard to derive a

generally applicable tool function for all test cases.

(a) Dyck Langauge:

{3

(b) StrategyQA: Lil Wayne similar real name rapper has over quadruple Wayne’s Grammy awards?

-in libraries NLEP generated by GPT-4

s that generally solve this type of problem

in sequence:

return “Invalid sequence”

stack.pop()

tack) 1= 0:

acket = stack.pop()

close_brackets[open_brackets. index(open_bracket)]

for the task

ce)
o close all the open brackets in the correct order. The completed

# Step 1: Import necessary built-in libraries NLEP generated by GPT-4
# No need to import
# Step 2: Define dictionaries storing the rappers’ information
rappers = {
"Lil Wayne": {
"real_name”: "Dwayne Michael Carter Jr."
"grammy_awards”: 5

3
"Jay-2": {
“real_name”: "Shawn Corey Carter”,
"grammy_awards”: 23
¥
¥

# Step 3: Define a function that checks if a rapper has over quadruple the Grammy awards of another
def check_quadruple_awards(rappers, rapper, rapper:
if rappersCrapper2]["granmy_awards”] > 4 * rappers[rapper11["grammy_awards"]
return "yes"
else:
return "no”

# Step 4: Print an answer using the defined function and varible
answer = check_quadruple_awards(rappers, "Lil Wayne”, "Jay-z")
print(answer)

Stdout: To complete the sequence, we need to close all the open brackets in the correct order. The

completed sequence is

Task-General PoT:

Stdout:

Few-shot CoT:

As of now, Lil Wayne has won 5 Grammy awards, while Lil Twist has not won any. Thus,
Lil Twist does not have over quadruple Wayne’s Grammy awards. So the answer s

Figure 3: NLEP generated for solving Dyck language and StrategyQA problems. For Dyck, the instruction is “Complete the
rest of the sequence, making sure that the parentheses are closed properly.” For StrategyQA, the instruction is “Answer the

question with yes or no.”

Prompt Method Accuracy (%)

CoT 4
Task-specific  ToT (b=1) 45

ToT (b=15) 74

PoT 52
Task-general NLEP 66

Table 3: Performance on the Game of 24 benchmark. CoT
and ToT stand for chain-of-thought (Wei et al., 2022) and
tree-of-thought (Yao et al., 2023a) prompting respectively. |
shows the results from (Yao et al., 2023a).

sess all responses without the requirement about
details using another evaluation prompt. The evalu-
ation prompts with and without the requirement on
details is shown in Appendix E.1 and E.2.

As we demonstrate in Figure 4, this assessment
leads to different results on GPT-4. After remov-
ing the detail requirement in the automatic scor-
ing pipeline, NLEP achieves better performance.
This suggests that NLEP can help GPT-4 gener-
ate accurate, factual, and relevant responses. How-
ever, human-generated programs for pretraining the
GPT-4 models usually do not embed long pieces
of natural language. As a result, the responses

generated by NLEP have a limited level of detail.

3.3 Text Classification

Finally, we evaluate whether NLEPs can be applied
to solve text classification tasks that have tradition-
ally been difficult for pure program synthesis-based
approaches. As discussed in section 2, we manually
construct a decision tree NLEP for SST2 and use it
as a prompt to guide GPT models to generate deci-
sion trees for other tasks only with task and label
descriptions. An example input and output NLEP
generated by GPT-4 for emotion classification is
shown in Figure 2.

We compare NLEP against two baseline meth-
ods. Our first baseline uses the zero-shot classifica-
tion method proposed in (Ge et al., 2023) (“multi-
class prompting”). This method uses the same
entailment models but makes the prediction with-
out the tree structure. Our second baseline asks
a human expert to design a decision tree for each
task also based on the SST-2 example. The re-
sults shown in Table 6 show that NLEP generated
by GPT-4 outperforms multi-class prompting and



GPT-4 GPT-3.5-Turbo
setting Task-specific Task-general Task-specific Task-general
CoT CoT PoT NLEP (ours) CoT CoT PoT NLEP (ours)
StrategyQA 81.7 78.6 68.6 81.2 71.6 68.1 50.2 61.1

Table 4: Performance on the StrategyQA benchmark. The experimental setup is the same as in Table 2. Note that LLMs do not
always generate “Yes” or “No”. and we only predict the “Yes” label if the “Yes” string is generated explicitly. See Appendices

C.1 and D for implementation details.

Foundation Model Mode True Info True * Info
Text 76.01 97.55 73.56

GPT-4 NLEP 75.76 99.63 75.40
Text 6891 98.90 67.93

GPT-3.5-Turbo NLEP 61.69 97.18  59.00

Table 5: Performance of GPT-4 and GPT-3.5-Turbo on the
Truthful QA benchmark.

% Length
Model #NLEP >Text Detail % Score ? .eng
Bias
es 93.08 72.72
GPT-4 23.75 y
no 105.06 26.67
GPT-3.5 3875 yes 101.22 3.13
-Turbo ' no 102.50 10.34
Comparison of Model Performances
(dGeE;ﬁ 125 175 70.0
GPT-
(no de*gif; 57.5 28.75 13.75
GPT-3.5-Turb:
PT- ?dL“tra”‘; w9 20.0 23.75
Tie
GPT-3.5-Turb:
(node“tra“‘; Lose  50.0 275 22,5

20 40 60 80 100
Number of Games

Figure 4: Automatic evaluations of NLEP against standard
LLM-based generation with different models. # NLEP >Text
means that the % of NLEP responses containing more tokens
than the baseline. Detail means if the evaluation metric con-
siders details and response lengths. Score stands for the scores
received by NLEP divided by the baseline scores (>100 means
NLEDP is better). Win, tie, and lose stand for the % of evalua-
tion cases resulting in each category. Length Bias shows how
much the evaluation pipeline prefers longer or shorter answers
(lower means fairer, introduced in Appendix E.3).

human-generated tree baselines on most datasets.
Model-free NLEP. We also tried using the task-
general prompt shown in C.1 to generate NLEPs
that directly use programs to solve these tasks.
These programs do not need any neural models and
are hence very efficient (e.g., finishing the entire
validation set in about 2 seconds on CPUs). The re-
sults can be found in Table 6 (“Model-free NLEP”).
While not achieving the performance of entailment-
based methods, the generated NLEP significantly
outperforms random baselines, suggesting that this
may be a viable approach for quickly extracting

simple and interpretable classifiers from LLMs.

4 Discussion

Execution failures and retries. While the task-
general PoT and NLEP lack programming demon-
strations for the target task, GPT-4 in general is
able to generate bug-free programs as presented
in Appendix B Table 10. Notably, both PoT and
NLEP obtain execution error rate of O on Tracking
Shuffled Objects (7) and Word Sort tasks. One ad-
vantage of the program synthesis approaches such
as PoT and NLEP is that non-executable programs
can be identified and filtered. This gives LLMs
the chance to “self-correct” and generate new an-
swers, and we take advantage of this in our math
and symbolic reasoning tasks by generating up to
three programs if there is an execution failure on
certain benchmarks. (For fair comparison we ap-
ply this reattempting scheme to PoT as well). We
ablate on this mechanism in Appendix B, Tables
7,9 and 10. Besides effectively reducing the exe-
cution error as presented in Table 10, these retries
greatly enhance the reasoning accuracy. In partic-
ular, 12% and 15.6% improvement is observed on
the Chinese Remainder Theorem and the Schedul-
ing Meeting tasks in Table 7(b). In this work we
only experiment extra retries with larger tempera-
tures for diverse sampling and leave more advanced
“self-correction" algorithms (e.g., those that make
use of error messages (Cai et al., 2023; Hu et al.,
2023)) for future work.

Different foundation LLMs for NLEP. The
large performance gaps of CodeLlama-7b-Instruct
(Roziere et al., 2023), GPT-3.5-Turbo, and GPT-
4 in Table 2 and 8 indicate that strong program-
ming ability of underlying LLMs is vital to gen-
erate accurate responses and achieve performance
improvements with NLEP. For example, on the
Dyck Language task, GPT-3.5-Turbo only achieves
7.2% accuracy while GPT-4 achieves 91.6% ac-
curacy. Truthful QA experiments also show that
NLEP could Aurt the factuality of GPT-3.5-Turbo.
Surprisingly, zero-shot CodeLlama-7b (Roziere



Method ‘

Performance (Num. Classes)

Model
‘ cola(2) emotion (6) amazon (5) hsd (2) sbic(3) Average

Multi-class Prompting 65.87 49.2 33.31 67.78 52.99 53.83
RoBERTa Human-Generated Tree 69.03 22.20 26.88 64.85 58.37 48.27
NLEP w/ GPT-3.5 56.66 35.1 33.46 67.36 38.25 46.17
NLEP w/ GPT-4 68.94 54.5 38.88 70.92 55.95 57.65
Multi-class Prompting 53.50 51.93 37.01 67.78 59.08 53.86
DeBERT Human-Generated Tree 69.22 32.15 33.00 72.18 55.02 52.31
¢ 4 NLEP w/ GPT-3.5 49.66 39.00 36.18 70.29 52.49 49.52
NLEP w/ GPT-4 68.36 554 40.2 70.08 59.68 58.74
None Model-free NLEP w/o Tree | 69.13 40.55 25.76 59.62 37.63 46.54

Table 6: Zero-shot performance of different human and LLM-generated classification schemes. The GPT-4 generated decision
trees consistently exhibit significant improvement. For model-free NLEP, generated code can be executed on the entire validation
set in 2 seconds and notably surpasses the random baseline, with cola notably matching the state-of-the-art performance.

et al., 2023) trained using NLEP-style data (with-
out in-domain examples) demonstrates superiority
on Tracking Shuffled Objects (7) benchmark over
NLEP prompted GPT-3.5 and Word Sorting bench-
mark over task-general CoT prompted GPT-3.5,
even with significantly fewer parameters (see de-
tails in Appendix B). It shows the potential for
effective training of compact large language mod-
els, enabling them to achieve performance levels
comparable to those of extremely large models.

5 Related Work

Large language models for reasoning. State-of-
the-art LLMs (OpenAl, 2022, 2023; Touvron et al.,
2023; Zeng et al., 2022) have shown very strong
performance on complicated reasoning tasks, in-
cluding commonsense (Geva et al., 2021b), math
(Cobbe et al., 2021), symbolic reasoning (Suzgun
etal., 2022), and programming (Austin et al., 2021;
Chen et al., 2021). Tackling such tasks with LLMs
often requires prompting them with demonstrations
that elicit their reasoning capabilities. (Wei et al.,
2022) proposed chain-of-thought prompting tech-
nique that encourages language to generate answers
step-by-step. (Wang et al., 2022) found that self-
consistency can further improve the performance
of chain of thoughts reasoning ability. (Kojima
et al., 2023) discovered that LLMs can perform rea-
soning without any demonstrations through adding
the incantation “Let’s think step-by-step".
Tree of thoughts (Yao et al., 2023a) and graph of
thoughts (Yao et al., 2023b; Besta et al., 2023)
were proposed to tackle tasks that require more
complicated reasoning processes. These improved
reasoning methods apply chain of thoughts as
the atomic reasoning step but organize reasoning

“chains” through more advanced mechanisms.

Programs and tools. Previous studies have found
that some limitations of LLMs can be overcome
by combining program synthesis techniques with
prompt-based learning. Program of thoughts (Chen
et al., 2022) and program aided language model
(Gao et al., 2023) both translate mathematical ques-
tions to equations and use the python interpreter
to ensure the correctness of the calculations. An-
other line of related work for enabling LLMs to use
tools is through interleaving API calls during LLM
generation (Qin et al., 2023; Liang et al., 2023b;
Mialon et al., 2023; Tang et al., 2023). APIs can aid
many tasks that are challenging for LLMs by pro-
viding tailored tools (e.g., calculators, search) that
can solve specific tasks. Toolformer (Schick et al.,
2023) addresses reasoning tasks by using prede-
fined tools, and LLMs as tool makers (LATM) can
implement functions solving a class of tasks based
on few-shot examples (Cai et al., 2023). With these
solutions, the correctness of a prediction can be en-
sured if correct API is called and correct inputs are
selected. Existing works on combining program
synthesis and tool usage with LLMs generally rely
on task-specific prompts, in contrast to the more
task-general prompt explored in the present work.

6 Conclusion

This work describes natural language embedded
programs (NLEP), which flexibly combine natural
language reasoning with program synthesis within
prompt-based learning to tackle a variety of tasks.
Our experiments demonstrate that NLEPs expand
the scope of applications that can be addressed by
program synthesis by more closely incorporating
natural language during code generation.



Limitation

We found that the NLEP prompts are not suit-
able for generating long-form natural language re-
sponses. Experimental results on VicunaQA show
that most responses generated by NLEP prompting
have fewer tokens than responses obtained from
usual LLM generation. This feature is expected, be-
cause most naturally-occurring programs (on which
the LLLMs were pretrained) do not contain large
chunks of natural language. Future work could con-
sider incorporating (potentially synthetically gener-
ated) programs with longer-form natural language
within the pretraining set to enable the application
of NLEP to more involved NLG tasks.

Ethical Statement

This work intends to design a accurate and inter-
pretable reasoning framework for language that en-
tails more transparent and responsible LLM appli-
cations. However, the program generation method
is more capable to handle different tasks in both
areas of natural and program languages, infecting
both humans and computing systems. As a re-
sult, we believe program generation models need
stronger alignment and careful management.
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Additional Example Comparing with
ChatGPT-4

B Additional results and analysis on math

and symbolic reasoning

We present the detailed experimental results of
math and symbolic reasoning tasks in Tables 7 to
9, with execution failure analysis in Table 10.

GPT Results. We report the results of Table 2
with more details in Table 7. The effect of extra
retries described in Section 4 is highlighted with
(=).

CodeLlama-7b-Instruct Results. To investi-
gate the effect of NLEP on compact large language
models, we report the results with CodeLLlama-7b-
Instruct (Roziere et al., 2023) in Table 8. Following
the guidance of the instruction-following models',
we employ a chat session to include task-specific
and task-general prompts as previous turns by inter-
leaving the “user" and “assistant" messages with a
system message ‘“Provide answers in Python" at the
beginning. Hence, we only treat bug-free Python
programs that have the desired results after execu-
tion as correct answers, regardless of natural lan-
guage outputs since we explicitly prompt CodeL-
lama to generate the answer in Python Unlike the
prominent performance of GPT-4, the positive im-
pact of NLEP with CodeLlama-7b-Instruct is di-
minished due to the much smaller model size and
greatly reduced programming capability. Although
NLEP prompting outperforms the task-general PoT
by a large margin on Chinese Remainder Theo-
rem and Scheduling Meeting benchmarks, a non-
negligible performance gap is observed between
NLEP and task-specific PoT on most tasks.

To further investigate the benefits of NLEP, we
fine-tune a CodeLlama-7b (Roziere et al., 2023)
model using NLEP-style instances, resulting in
a variant that we term NLEP-CodeLlama. Note
that our training corpus does not include specific
evaluation tasks. During the evaluation phase,
we adopt zero-shot prompting strategy, where the
model is provided with only test instances without
in-context demonstrations. As presented in Table
8(c), zero-shot NLEP-Codel.lama exhibits consis-
tent performance improvement on 5 of 6 tasks. The
only exception is the Chinese Remainder Theo-
rem benchmark, which is notably more complex in
nature. Remarkably, zero-shot NLEP-CodeLlama
demonstrates superior performance on Word Sort-

"https://github.com/facebookresearch/codellama

12

ing benchmark when compared to task-general CoT
prompted GPT-3.5-Turbo, and outperforms NLEP
prompted GPT-3.5-Turbo on Tracking Shuffled Ob-
jects (7) benchmark, despite a considerably lower
parameter size.

Game of 24 Results. We present the detailed
experimental results on the Game of 24 benchmark
in Table 9. The effect of extra retries described in
Section 4 is highlighted with (—).

Execution Failure Analysis. We present the
execution failure statistics of code-based reasoning
strategies in Table 10. The effect of extra retries de-
scribed in Section 4 is highlighted with (—). Note
that different from task-specific PoT with demon-
strations showing how to return the desired outputs
in Python program, e.g.,

# Python code, return ans

Alice = "striker"

Bob = "right winger"

Claire = "left winger"

Dave = "benchwarmer"

Eve = "goalkeeper"

Fred = "center midfielder"
Gertrude = "cheerleader"

Eve, Claire = Claire, Eve
Gertrude , Alice = Alice, Gertrude
Fred, Bob = Bob, Fred

Dave, Fred = Fred, Dave

Fred, Bob = Bob, Fred

Bob, Eve = Eve, Bob

Claire , Alice = Alice, Claire
ans = Gertrude

we need to design rules to extract the target an-
swers from the execution results of task-general
PoT and NLEP since they are allowed to generate
free-from outputs. For example, given the gener-
ated programs,

# Step 1: Import necessary built—in libraries
# No need to import

# Step 2: Define necessary functions that generally
solve this type of problem
def swap_positions (positions , swaps):
for swap in swaps:
positions [swap[0]], positions[swap[l]]
positions [swap[l]], positions[swap[0]]
return positions

# Step 3: Define constant variables for the task
positions = {
"Alice": "striker",
"Bob": "right winger",
"Claire": "left winger",
"Dave": "benchwarmer",
"Eve": "goalkeeper",
"Fred": "center midfielder",
"Gertrude ": "cheerleader"
}
swaps = |
("Eve", "Claire"),
(" Gertrude", "Alice"),
("Fred", "Bob"),
("Dave", "Fred"),
("Fred", "Bob"),
("Bob", "Eve"),
(" Claire", "Alice")
1
# Step 4: Print an answer in natural language.

final_positions swap_positions (positions ,

swaps)


https://github.com/facebookresearch/codellama

Tracking Shuffled Dyck Word Chinese Scheduling GSM-Hard
Objects (7) Language Sorting Remainder Theorem Meeting
(a) Task-Specific Prompting: GPT-4
CoT 100.0 63.6 90.9 0.0 55.6 57.4
PoT 100.0 60.8 100.0 100.0 75.2 74.1
LATM 100.0 87.51 99.1f 100.0° 100.0° -
(b) Task-General Prompting: GPT-4
CoT 81.2 39.6 84.4 0.0 82.8 54.9
PoT 98.4 66.4 99.6 76.4 (—84.4) 84.4 (—85.2) 69.3
NLEP (Ours) 100.0 91.6 99.6 85.2 (—=97.2) 77.6 (—93.2) 67.7
(c) Task-Specific Prompting: GPT-3.5-Turbo
CoT 68.0 20.41 59.21 0.0 18.9f 45.0
PoT 6.8 28.4 100.0 100.0 33.6 63.4
(d) Task-General Prompting: GPT-3.5-Turbo
CoT 51.2 38.0 75.2 0.0 39.6 42.8
PoT 88.4 4.0 100.0 58.4 (—72.4) 46.8 (—49.2) 39.0 (—52.2)
NLEP (Ours) 74.4 7.2 99.6 94.8 (—96.4) 75.2 (—85.6) 50.9 (—54.1)

Table 7: Performance on six reasoning tasks. t stands for results from LATM (Cai et al., 2023). Results with T and of LATM are
reported on the last 240 instances with the first 10 instances as training and validation sets for tool making according to LATM’s
design. LATM is not appropriate for GSM-Hard benchmark as it is hard to derive a generally applicable tool function for all test
cases. We mainly experiment LATM with GPT-4 as the tool maker since (Cai et al., 2023) found that GPT-3.5 fails in all 5 trials
on hard tasks like Tracking Shuffled Objects (5). If the generated tool is not general enough or only suitable for training samples,
the tool using phase will fail. We perform experiments using GPT-4 and GPT-3.5-Turbo with a sampling temperature of O for all
settings except PoT and NLEP on GSM-Hard in (b) which use a temperature of 0.5 to increase the sampling diversity. Since
task-general PoT and NLEP lack task-specific programming instruction, they may generate non-executable Python programs.
We select some settings and give each instance failed at execution up to three additional trials with temperature=0.4 to diversify
the possible outputs. No label leakage is involved in this process as only the success of execution is used as a judgement. We
report the results with these extra retries on execution failures in (—). The highest score among each sub-table (a), (b), (c) and
(d) is underlined and the best result for each task is in bold.

print (f"At the end of the match, Gertrude is playing inability to distinguish between the erroneous pro-
{rinal_positions[*Gertrude T1}. ) grams and lack of required line of code is another

we need to extract “striker", the target answer, = reason why we do not apply the error retries on

from the execution results “At the end of the match,  task-specific PoT.

Gertrude is playing striker.".
Although task-specific PoT explicitly instructs

the model to generate a required line of code

ans={desired_result} to capture the final result

by adding

# Python code, return ans

in the instruction and explicitly provides task-
specific examples in the prompt, e.g.,
# Python code, return ans

ans = Gertrude

we found that GPT models sometimes fail to
accomplish the requirement. On Tracking Shuf-
fled Objects (7) benchmark, only 17 programs
out of 250 test cases generated by GPT-3.5 suc-
cessfully contain the required line of code, i.e.,
ans={desired_result}, which explains the huge
number of failures (233). In addition to already
having task-specific programming examples, the
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‘ Tracking Shuffled Dyck Word Chinese Scheduling GSM-Hard
Objects (7) Language Sorting Remainder Theorem  Meeting

(a) Task-Specific Prompting: CodeLlama-7b-Instruct
PoT ‘ 95.6 15.2 78.0 100.0 32.0 23.9

(b) Task-General Prompting: CodeLlama-7b-Instruct
PoT 21.2 0.8 98.0 0.0 4.0 229
NLEP (Ours) 30.0 0.8 932 18.8 24.8 15.2

(c) Zero-shot Prompting: NLEP Trained CodeLlama-7b

Zero-shot ‘ 84.4 1.2 98.4 0.0 344 16.8

Table 8: Performance on six math and symbolic reasoning tasks. We directly prompt CodeLlama-7b-Instruct (Roziere et al.,
2023) with task-specific and task-general demonstrations in (a) and (b). The corresponding experimental setup remains consistent
with these outlined in Table 2 except we employ a chat session. In this instance, we incorporate the in-context demonstrations
as previous turns by interleaving the “user" and “assistant” messages. We further train CodeLlama-7b (Roziere et al., 2023)
with NLEP examples and report the zero-shot performance in (c). We adhere to the configuration employed in the GPT-series
experiments, wherein we prepend the in-context demonstrations before each test instance.

Task-Specific Task-General

setting
10 CoT ToT  ToT
107 €T fhestof 100) (bestof 100) (b=1) (b=5) | TOT ~ NLEP(ours)
Game of 24 | 7.31 4.0 33.0f 49.01 4501 7401 | 52(—52) 63 (—66)

Table 9: Performance on Game of 24 benchmark. T stands for results from (Yao et al., 2023a).

GPT-4 GPT-3.5-Turbo
Task-Specific Task-General Task-Specific Task-General

PoT PoT NLEP PoT PoT NLEP
Track Shuffled Objects (7) 0 0 0 233 26 24
Dyck Language 16 24 10 32 81 26
Word Sort 0 0 0 0 0 0
Chinese Remainder Theorem 0 32 (—=0) 37(—6) 46 (—7) 4 (—0)
Scheduling Meeting 0 3(—=0) 43(=0) 2 15 (=2) 36 (—0)
GSM-Hard 17 6 8 31 464 (—145) 95 (—13)

Table 10: Execution failure statistics on six math and symbolic reasoning tasks. Results with extra reties are reported in (—). For
task-specific PoT, we report the execution error statistics with None as the return value of safe_execute() function following
the source code of (Chen et al., 2022): https://github.com/wenhuchen/Program-of-Thoughts/blob/main/tool.py. It
includes instances where the generated programs do not contain the required line of code: ans={desired_result}, which are
explicitly required in the instruction and given in the prompt demonstration. Under this scenario, we cannot capture the execution

results of task-specific PoT.
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https://github.com/wenhuchen/Program-of-Thoughts/blob/main/tool.py

Instruction:  How many secretaries-general of United Nations are not from Europe?

Jommnmomnonnoe oo —[ NLEP generated by GPT-4: } N GPT4: NLEP
! Tool # Step 1: Import necessary built-in libraries '
Using # No need to import . GPT-4: ChatGPT

| [0 GPT4: Openal API(T=0.5)
| # Step 2: Define knowledge about the secretary-general of United Nations
i secretaries_general = {

"Trygve Lie": "Europe”, Accuracy (%)

"Dag Hammarskjold": "Europe”, 100
: "U Thant": "Asia", o=
3 Structured "Kurt Waldheim": "Europe”,
| knowledge "Javier Pérez de Cuéllar”: "South America”, ®

"Boutros Boutros-Ghali”: "Africa"”,

"Kofi Annan”: "Africa”, o=

"Ban Ki-moon": "Asia", 0

"Antoénio Guterres”: "Europe”

} 60

# Step 3: Define a function that counts the number of secretary-general not
from Europe 40

Function .
. c .0 def count_non_european(secretaries_general):
definition X . , . 3 a 30
return len([region for region in secretaries_general.values() if region !
= "Europe”]) 20
7777777 10
# Step 4: Print an answer in natural language
Print non_european_count = count_non_european(secretaries_general)
answer print(f”"Out of all the Secretaries-General of the United Nations, Answering the question with

| {non_european_count} of them are not from Europe.") five independent generations

Stdout: Out of all the Secretaries-General of the United Nations, 5 of them are not from Europe.

@ Advanced Data Analysis

y secretaries-general of United Nations are not from Europe?

@ As of my last update in January 2022, there have been 9 Secretaries-General of the United

Nations. Out of these, only three Secretaries-General have been from Europe. They are:

1. Trygve Lie (Norway)
2. Dag Hammarskjold (Sweden)
3. Kurt Waldheim (Austria)

The other six Secretaries-General, listed below, are not from Europe:

. U Thant (Myanmar, then known as Burma)
Wrong answer . Javier Pérez de Cuéllar (Peru)
. Boutros Boutros-Ghali (Egypt)
. Kofi Annan (Ghana)
5. Ban Ki-moon (South Korea)

. Antonio Guterres (Portugal)

It's important to note that Anténio Guterres is from Portugal, which is geographically in Europe,

but the majority of Secretaries-Generai {6 out of 9) are not from Europe.

Please verify this information since it may have changed after my last update.

Figure 5: NLEP answering a question which requires numeric reasoning of structured knowledge. ChatGPT-4 code interpreter
(currently the advanced data analysis option) constantly prefers to answer this question with plain natural language.
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C Prompts for Task-General Strategies

C.1 Prompts for Table 2 and 4

We list the prompts for the task-general chain-of-
thought (CoT), our implementation of program-of-
thoughts (PoT) and the proposed natural language
embedded programs (NLEP) strategies in the fol-
lowing code segments. They share the same two
NLEP examples (one is for natural language rea-
soning and the other is for mathematical reasoning)
but with different forms of intermediate reasoning
steps (e.g., code, text etc.) to evaluate the average
performance of different strategies.

Prompt for task-general chain-of-thought
(CoT) in Table 2 and 4. The detailed intermediate
natural language reasoning chains are generated by
prompting GPT-4 given the input and target output.

DI

Answer the problem based on the given instruction

and input.

### Instruction: Identify the odd one out.

### Input: Twitter, Instagram, Telegram

### Answer:

Let’s think step by step.

1. Start by understanding the task instruction. The
task is to identify

the odd one out from a given list.

2. Look at the input. The input consists of three
items: Twitter ,

Instagram , and Telegram.

3. Identify what these items are. Twitter and
Instagram are social media

platforms , while Telegram is a messaging app.

4. Compare the items to find the odd one out.

Twitter and Instagram are
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primarily used for sharing information, images, and

videos. On the other

hand, Telegram is mainly used for instant messaging
and voice-over-IP

service .

5. Determine the odd one out based on the comparison

In this case,

Telegram is the odd one out because it serves a
different primary

function compared to Twitter and Instagram.

6. Formulate the target output. The target output
should clearly state

that Telegram is the odd one out and provide the
reason why it is so. The

reason being that Twitter and Instagram are social
media platforms mainly

for sharing information, images, and videos while
Telegram is a cloud-—

based instant messaging and voice—over—IP service.

The correct answer is Telegram.

### Instruction: Use the given data to calculate the
median .

### Input: [2, 3, 7, 8, 10]

### Answer:

Let’s think step by step.

1. Start by understanding the task, which is to
calculate the median of a

given data set. The median is the middle value in a
sorted , ascending or

descending , list of numbers.

2. Look at the given input, which is a list of
numbers: [2, 3, 7, 8, 10].

3. Notice that the list is already sorted in
ascending order. If it wasn’

t, the first step would be to sort it.

4. Understand that to find the median, we need to
find the middle value.

If the list has an odd number of observations , the
median is the middle

number. If the list has an even number of
observations , the median is the

average of the two middle numbers.

5. Count the number of values in the list. There are
5 values, which is

an odd number, so the median will be the middle
value .

6. Identify the middle value. Since there are 5
values , the middle value

is the 3rd value when counting from either end.

7. Find the 3rd value in the list, which is 7.

8. Conclude that the median of the given data set
7.

The correct answer

PR

is

is 7.

Prompt for task-general NLEP in Table 2 and
4. The intermediate program reasoning chains are
generated by prompting GPT-4 given the input and
target output.

Write a bug—free Python program that can generate
the answer to the given instruction when
correctly executed.

### Instruction: Identify the odd one out.
### Input: Twitter, Instagram , Telegram
### Python program:

# Step 1: Import necessary built—in libraries

from collections import OrderedDict

# Step 2: Define necessary functions that generally
solve this type of problem

def find_odd_one_out(services, input_services):

descriptions [services[service] for service
input_services ]

description in descriptions:

if descriptions.count(description) == 1:
return input_services[descriptions.index

(description)]
return None

= in

for

# Step 3: Define constant variables for the task



services = OrderedDict ([
("Twitter", "a social media platform mainly for
sharing information, images and videos"),
("Instagram", "a social media platform mainly
for sharing information, images and videos
")
("Telegram", "a cloud-based instant messaging
and voice—-over—IP service"),
D
input_services = ["Twitter", "Instagram", "Telegram
"
# Step 4: Print an answer in natural language.

odd_one_out find_odd_one_out(services ,
input_services)
if odd_one_out:
other_services [service for service in
input_services if service odd_one_out]
print (f"The odd one out is {odd_one_out}. {
other_services [0]} and {other_services[1]}
are {services[other_services[0]]} while {
odd_one_out} is {services[odd_one_out]}.\
nThe correct answer is {odd_one_out}.")

=

### Instruction: Use the given data to calculate the
median .

### Input: [2, 3, 7, 8, 10]

### Python program:

# Step 1: Import necessary built—in libraries

# No need to import

# Step 2: Define necessary functions
solve this type of problem
def calculate_median(data):
data.sort ()
length len(data)
if length % 2 ==
return (data[length//2] + data[length//2 -
11) /7 2

that generally

else:
return data[length//2]

# Step 3: Define constant variables for the task
data = [2, 3, 7, &, 10]
# Step 4: Print an answer in natural language.

median calculate_median (data)

print (f"To find the median of a data set, we need to
arrange the data in ascending order and then
find the middle value. In this case, the given
data is already arranged in ascending order.
Since there are {len(data)} values in the data
set, the median will be the middle value, which
is the {len(data)//2 + 1}rd value. Hence, the
median of the given data set is {median}.\nThe
correct answer is {median}.")

Prompt for our task-general program-of-
thoughts (PoT) implementation in Table 2 and
4. The intermediate program reasoning chains are
obtained from NLEP. We keep the key implemen-
tation steps of Python programs but eliminate the
step-by-step programming instructions and detailed
natural language elaboration as an ablation.

Write a bug—free Python program
the answer to the given
correctly executed.

that can generate
instruction when

### Instruction: Identify the odd one out.

### Input: Twitter, Instagram, Telegram
### Python program:
softwares = {
social media’: [’twitter *, ’instagram '],

[N

’communication [*telegram ]

}
for genre, apps in softwares.items():
if len(apps) == 1:
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print(apps[0])

### Instruction: Use the given data to calculate the
median .
### Input: [2, 3, 7, 8, 10]
### Python program:
data = [2, 3, 7, 8, 10]
data.sort ()
length = len(data)
if length % 2 ==
print ((data[length//2] + data[length//2 - 1]) /

2)
else:
print(data[length//2])

e

C.2 Prompts for Table 3

The Game of 24 task is much more challenging and
we replace the first example in Appendix C.1 with
a word sorting example to elicit stronger reasoning
ability.

Prompt for task-general NLEP in Table 3.
The intermediate program reasoning chains are gen-
erated by prompting GPT-4 given the input and
target output.

Write a bug—free Python program that can generate
the answer to the given instruction when
correctly executed.

### Instruction: Arrange the following words to make

the longest possible word.

Input: the, had, not, been

Python program:

###
###

e

# Section 1: Define necessary functions and

calculate intermediate variables
def longest_word (words):
from itertools import permutations

all_words = [’ .join(p) for p in permutations
(’’.join(words))]

all_words.sort(key=len, reverse=True)

with open(’english_words.txt’) as word_file:
Assuming you have a list of english words
english_words set(word. strip () .lower () for

word in word_file)

for word in all_words:

if word.lower() in english_words:
return word
return None

#

variables
"been"]

# Section 2: Define constant
words = ["the", "had", "not",
# Section 3: Insert variables in
f-strings .
longest longest_word (words)
if longest:
print (f"The longest word that can be made from
the letters in the words \"{’, ’.join(words

text outputs using

)I\" is \"{longest }\".")
### Instruction: Use the given data to calculate the
median .
### Input: [2, 3, 7, 8, 10]
### Python program:
# Step 1: Import necessary built—in libraries
# No need to import
# Step 2: Define necessary functions that generally

solve this type of problem
def calculate_median(data):

data.sort ()

length len(data)

if length % 2 ==



return (data[length//2]
1) /7 2

+ data[length//2 -

else:
return data[length//2]
for the task

Define constant variables

3, 7, 8, 10]

# Step 3:
data [2,

# Step 4: Print an answer in natural

median calculate_median (data)

print (f"To find the median of a data set, we need to
arrange the data in ascending order and then
find the middle value. In this case, the given
data is already arranged in ascending order.
Since there are {len(data)} values in the data
set, the median will be the middle value, which
is the {len(data)//2 + 1}rd value. Hence, the
median of the given data set is {median}.")

language .

Prompt for our task-general program-of-
thoughts (PoT) implementation in Table 3. The
intermediate program reasoning chains are ob-
tained from NLEP. We keep the key implemen-
tation steps of Python programs but eliminate the
step-by-step programming instructions and detailed
natural language elaboration as an ablation.

Write a bug-free Python program that

the answer to the given
correctly executed.

can generate
instruction when

### Instruction: Arrange the following words to make

the longest possible word.
### Input: the, had, not, been
### Python program:

e

def longest_word (words):

from itertools import permutations

all_words [’’.join(p) for p in permutations
(’’.join(words))]

all_words.sort(key=len, reverse=True)

with open(’english_words.txt’) as word_file:
Assuming you have a list of english words
english_words set(word. strip () .lower() for

word in word_file)

for word in all_words:

if word.lower() in english_words:
return word
return None

#

words = ["the", "had", "not", "been"]
longest = longest_word (words)
if longest:

print(longest)

e

### Instruction: Use the given data to calculate the
median .

### Input: [2, 3, 7, 8, 10]

### Python program:

data = [2, 3, 7, 8, 10]

data.sort ()

length = len(data)

if length % 2 == 0:
print ((data[length//2] + data[length//2 -
2)

1y /

else:
print(data[length//2])

e

C.3 Prompts for NLEP in Table 5 and Figure
4

For experiments in TruthfulQA and VicunaQA,
we added the following example into the NLEP
prompts shown in Appendix C.1 to encourage gen-
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erating more detailed responses:

# Write a bug—free Python program that can generate
the answer to the given instruction when
correctly executed. Do not ask for user input.
For reasoning tasks, define functions first and
then define variables. For knowledge intensive

tasks , define variables before defining
functions. Do not define any variable that
directly stores the final answer. If there is a
knowledge definition step, use dictionaries to

store both the knowledge and detailed

explanation .

### Instruction: Discuss the causes of the Great
Depression

### Input: None

### Python program:

# Step 1: Import necessary built—in libraries

# No need to import

# Step 2: Define dictionaries
knowledge about the grat
depression_name "The Great Depression”
depression_period "1929-1939"
depression_countries = "the United States
countries around the world"
depression_causes = {
"Stock Market Crash of 1929": "In October of
1929, the stock market experienced a

storing detailed
depression

and

significant fall that wiped out millions of
investors. This event is considered by
many to be the initial trigger of the Great
Depression.",

"Overproduction": "During the 1920s, many
industries produced more goods than
consumers wanted or could afford. This
ultimately led to a decline in demand for
goods, causing job loss, lower wages, and
business failure.",

"High Tariffs and War Debts":
trade policies in the form of high
led to a decline in global trade,
countries retaliated with tariffs of their
own. Additionally , many countries were
struggling to repay war debts, which led to
economic instability .",

"Bank Failures": "As demand for goods declined ,
many banks began to fail , causing a loss of
confidence in the banking system. This led
to a massive withdrawal of money from
banks, causing even more banks to fail.",

"Drought Conditions": "The Dust Bowl was a
severe drought and dust storm that hit the
Great Plains region of the United States in
the 1930s. This had a significant impact
on agriculture , causing many farmers to
lose their land and livelihoods which
worsened the effects of the depression."

"Protectionist
tariffs
as other

}

# Step 3: Define necessary functions
solve this type of problem
# Do not need to define functions

that generally

# Step 4: Print the answer and explain in natural
language by calling the information in the
defined knowledge dictionary ‘depression_causes

print (f"{depression_name} was a period of economic
decline that lasted from {depression_period},
making it the longest-lasting depression in
modern history. It affected not only {
depression_countries }, causing substantial
social and economic upheaval .\n")

print (f"There were several major causes
depression_name }, which

of {
include :\n")

# List causes and explanations in
‘ with a for-loop.

‘depression_causes

for i, (cause, description) in enumerate(
depression_causes.items (), 1):
print(f"{i}. {cause} — {description }\n")

print(f"Overall , {depression_name} was caused by a
combination of factors, including economic,
environmental , and political factors. Its

impact was widespread, affecting millions of



people around the world.")

### Instruction: Identify the odd one out.
### Input: Twitter, Instagram, Telegram

### Python program:

# Step 1: Import necessary built—in libraries
from collections import OrderedDict

# Step 2: Define dictionaries storing detailed
knowledge about the main function of each

application
services = {
"Twitter": "a social media platform mainly for
sharing information, images and videos",
"Instagram": "a social media platform mainly for
sharing information, images and videos",
"Telegram": "a cloud-based instant messaging and
voice—-over—IP service",
}
# Step 3: Define a function that finds the different
application
def find_odd_one_out(services, input_services):
descriptions = [services[service] for service in

input_services ]
for description in descriptions:
if descriptions.count(description) == 1:
return input_services[descriptions.index
(description)]
return None

# Step 4: Print the answer in natural language by
calling the information stored in ‘services °
and the defined function ‘find_odd_one_out*

input_services = ["Twitter", "Instagram", "Telegram
"1

odd_one_out = find_odd_one_out(services ,
input_services)

if odd_one_out:
other_services = [service for service in

input_services if service != odd_one_out]
print (f"The odd one out is {odd_one_out}. {
other_services [0]} and {other_services[1]}
are {services[other_services[0]]} while {
odd_one_out} is {services[odd_one_out]}.")

### Instruction: Calculate the total surface area of
a cube with a side length of 5 cm.

### Input: None

### Python program:

# Step 1: Import necessary built—in libraries

# No need to import

# Step 2: Define a function that calculate the
surface area of cubes

def calculate_surface_area(side_length):
return 6 % (side_length =% 2)

# Step 3: Define dictionaries storing the cube
information
cube = {
"side_length": 5 # Side length of the cube
}

# Step 4: Print a step-by-step calculation answer in
natural language using the defined function
and varible

side_length = cube["side_length"]

surface_area = calculate_surface_area(side_length)

print (f"The surface area of a cube is found by
calculating the area of one of its faces and
multiplying it by six (since a cube has six
faces). The area of a cube face is simply its
side length squared.\n")

print (f"Thus for this particular cube:")

print (f"Surface Area = 6 x (Side Length)\"2")

print (f" 6 x ({side_length} cm)\”*2")

print (f" 6 x {side_length=*%2} cm\"2")

print (f" = {surface_area} cm\n")

print (f"The total surface area of this cube is {
surface_area} square centimeters.")

C.4 Prompts for Table 6 and ??

We use the following prompt for the entailment-
based NLEP results in Table 6. The model-free
result uses the NLEP prompt shown in C.1.

"""Write a Python function that constructs a
decision tree according to the given examples
that can generate the correct label of the
given classification task."""

### Available functions (shared for all tasks):

# Returns whether the hypothesis in entailed by the

premise .
def entailment(hypothesis, premise, model, tokenizer

):

proposition = f’{hypothesis} is entailed by {
premise }.’

inputs = tokenizer(proposition, return_tensors
="pt", truncation=True, padding=True,
max_length=128)

outputs = model(x*inputs)[’logits *][0]

ent_label = int(outputs[0] > outputs[2])

if ent_label == 1:
return ’yes’

else:

B

return ’no

# Use the constructed decision tree to predict the
label of the sentence.
def tree_predict(sentence, criterions , tree, model,
tokenizer):
node = tree[’ root’]
while node not in POSSIBLE_CLASSES:
ent_label = entailment(criterions [node],
sentence , model, tokenizer)
node = tree[node][ent_label]
return node

### Task: Movie review classification
### Possible classes: [positive, negative]
### Examples:
— contains no wit, only labored gags
— [The movie is wiselThe movie is not wisell], [
the story is funlthe story is not boring
I1], [the review 1is positivelthe review is
negative | 1]
— that loves its characters and communicates
something rather beautiful about human nature
— [The characters are lovely|The characters are
awfullO], [the script is touchinglthe
script is dryl0], [the review is positivel
the review 1is negativelO]
— on the worst revenge—-of—-the—-nerds cliches the
filmmakers could dredge up
— [The movie is novel|The movie is mostly
platitudes|1], [the review is negativell]
— are more deeply thought through than in most right
—thinking films
— [The takeaway of the movie is profound|The
idea of the movie is shallow 0], [the
review is positivelthe review is negative
10]

W

### Define possible classes
POSSIBLE_CLASSES = [’ positive *, ’negative ]

### Python program:
def get_decision_tree (sentence, model, tokenizer):
# Step 1: define criterions of the decision tree

criterions = |
>This movie is interesting ’,
’The movie has a good script’,
"The characters are awsome’,
*This movie is wise’
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# Step 2: define the Decision Tree for
classification

tree = {
‘root ': 0,
0: {’yes’: I, 'no’: 3},
1: {’yes’: ’positive’, ’'no’: 2},
2: {’yes’: ’positive’, 'no’: ’negative '},
3: {’yes’: ’positive’, ’'no’: ’negative '}
}
return criterions , tree

When we test the SST-2 performance based on
a generated Cola decision tree in Table ??, we use
the following prompt:

Write a Python function that constructs a decision
tree according to the given examples that can
generate the correct label of the given
classification task.

### Available APIs(shared for all tasks):

# Returns whether the hypothesis
premise .

def entailment(hypothesis, premise, model, tokenizer
):

proposition = f’{hypothesis}
premise }.’

inputs tokenizer (proposition, return_tensors
="pt", truncation=True, padding=True,
max_length=128)

in entailed by the

is entailed by {

outputs = model (xxinputs) [’ logits "J[0]
ent_label = int(outputs[0] > outputs[2])
if ent_label == 1:
return ’yes’
else:
return ’'no’
# Use the constructed decision tree to predict the
label of the sentence.
def tree_predict(sentence, criterions , tree, model,
tokenizer):
node = tree[ root’]
while node not in POSSIBLE_CLASSES:
ent_label = entailment(criterions [node],
sentence , model, tokenizer)
node = tree[node][ent_label]
return node
### Task: Grammar correctness classification
### Possible classes: [’accpetable’, ’unacceptable ’]
### Define possible classes

s

POSSIBLE_CLASSES [*accpetable

’unacceptable ]

### Decision Tree Logic:

— If verbs are not correctly constructed, the
sentence is immediately labeled as unacceptable

— If verbs are correct:

The tree then checks if the sentence has correct
punctuation
— If incorrect, label the sentence as

unacceptable
- If correct:
The next criterion to be assessed
subject—verb agreement.
— If subject and verb disagree ,
sentence as unacceptable.
— If they agree, check for sentence

fragments .

— If the sentence
it as
it is
label

is the

label the

is a fragment, label
unacceptable .
not a sentence fragment,

the sentence as acceptable.

- If

### Python code for the decision tree:
‘“‘python
def get_decision_tree (sentence, model,
# Step 1: define criterions
criterions = {
correct_verbs
constructed

tokenizer):
of the decision tree

’: ’The verbs
in the

are correctly
sentence ’

B
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*correct_punctuation ': 'The sentence is
punctuated correctly ’,
>subject_verb_agreement *: ’The subject and

verb agree in the sentence ’,

"no_sentence_fragments ': 'The sentence is
not a fragment’,
}
# Step 2: define the balanced decision tree for

this classification task
tree = {
‘root ’: ’‘correct_verbs ',
‘correct_verbs ': {’yes’: ’
correct_punctuation’, ’no’: ’
unacceptable ’},
>correct_punctuation ': {’yes’: ’
subject_verb_agreement’, 'no’: ’
unacceptable ’},
"subject_verb_agreement *: {’yes’: ’
no_sentence_fragments ’, 'no’: ’
unacceptable ’},
"no_sentence_fragments *: {’yes’: ‘acceptable
, 'no’: ’unacceptable '}
}

return criterions , tree

The input format of target tasks is

### Task: Grammar correctness classification
### Possible classes: [acceptable, unacceptable]



D Implementation Details for

Task-Specific Strategies

We detail the few-shot chain-of-thought (CoT) and
program-of-thought (PoT) prompting under the
task-specific setting in Tables 2 and 4:

Tracking Shuffled Objects (7). We use the
same 3-shot examples as used by previous
work for both task-specific CoT and PoT. The
three examples are related to Tracking Shuf-
fled Objects (3) and the models need to learn
from demonstrations and generalize to seven
objects test cases. The difference between
CoT and PoT lies on the format of intermedi-
ate reasoning: CoT adopts natural language as
the reasoning chains while we transform the
thought process into concise Python code for
PoT.

Dyck Language. We cite the results of CoT
from LATM (Cai et al., 2023) and transform
the reasoning steps of the 3-shot examples
used by previous chain-of-thought work into
Python code for PoT. In order to evaluate the
generalization ability of program-of-thought
prompting, we try to avoid directly giving gen-
erally applicable Python program that can be
used for all test instances.

Word Sorting. We cite the results of CoT
from LATM (Cai et al., 2023) and transform
the reasoning steps of the 3-shot examples
used by previous chain-of-thought work into
Python code for PoT. Since the task can be
effectively resolved by just few lines of code,
i.e., read in the given input and use sorted()
function, e.g.,

# Python code, return ans
words = [’oven’, ’costume’, ’counterpart ’]
ans = " ".join(sorted(words))

it can be regarded that the generally applicable
tool is already given in the input prompt.

Chinese Remainder Theorem. We cite the
results of CoT from LATM (Cai et al., 2023).
We build the in-context examples (3-shot)
with the first three successful instances of task-
general PoT as we construct the Python rea-
soning chains from the generated programs of
task-general PoT with GPT-4. Indeed, for this
complicated task, the provided program in the
demonstration can also be regarded as a gener-
ally applicable tool. That’s a main reason why
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task-specific PoT can obtain 100% accuracy
on this benchmark.

Scheduling Meeting. We cite the results of
CoT from LATM (Cai et al., 2023). We build
the in-context examples (3-shot) with the first
three successful instances of task-general PoT
as we construct the Python reasoning chains
from the generated programs of task-general
PoT with GPT-4. However, unlike giving
the “ground-truth" problem solving tool for
Chinese Remainder Theorem, the provided
Python reasoning chains can only derive the
correct answer for each specific demonstra-
tion question but can not be directly applied
to all scenarios due to the complexity of the
problem. We hope to compare this setup with
Chinese Remainder Theorem and evaluate the
performance of task-specific PoT on compli-
cated tasks through different in-context learn-
ing demonstrations.

GSM-Hard. We use the same 8-shot exam-
ples as used by previous work on GSM8SK
dataset for CoT GSM-Hard. For PoT, we
adopt the 9-shot examples on GSMS8K dataset
from program-of-thought (Chen et al., 2022)
containing concise Python code as reasoning
chains.

StrategyQA. We remove 1 example that ap-
pears in the development set from the 6-shot
demonstration of previous work (Lyu et al.,
2023) for CoT. As PoT is not designed and ap-
plied for natural language question answering
task, we did not reproduce task-specific PoT
results on StrategyQA benchmark.



E Evaluation Prompts for VicunaQA

We have two metrics for VicunaQA. The first met-
ric assesses the level of details and biases to long
responses generated by GPT-4, while the other met-
ric does not ask for details.

E.1 Evaluation prompt asking for details.

prompt = f’’’[Question J\n{ques_str}

[The Start of Assistant 1’s Answer]\n{gptd4_res}
\n[The End of Assistant 1’s Answer]

[The Start of Assistant

s Answer]\n{target_res}
\n[The End of Assistant s

s Answer |

[System]

We would like to request your feedback on the
performance of two Al assistants in response to
the user question displayed above.\nPlease
rate the helpfulness, relevance, accuracy,
level of details of their responses. Each
assistant receives an overall score on a scale
of 1 to 10, where a higher score indicates
better overall performance.\nPlease first
output a single line containing only two values
indicating the scores for Assistant 1 and 2,
respectively. The two scores are separated by a
space. In the subsequent line, please provide
a comprehensive explanation of your evaluation,
avoiding any potential bias and ensuring that
the order in which the responses were presented
does not affect your judgment.’’’

E.2 Evaluation prompt not asking for details.

prompt = f’’’[Question]\n{ques_str}

[The Start of Assistant 1’s Answer]\n{gpt4_res}
\n[The End of Assistant 1’s Answer]

[The Start of Assistant 2°s Answer]\n{target_res}
\n[The End of Assistant 2’s Answer]

[System]

We would like to request your feedback on the
performance of two AI assistants in response to
the user question displayed above.\nPlease
rate the relevance and accuracy of their
responses. Each assistant receives an overall
score on a scale of 1 to 10, where a higher
score indicates better overall performance.\
nPlease first output a single line containing
only two values indicating the scores for
Assistant 1 and 2, respectively. The two scores
are separated by a space. In the subsequent
line , please provide a comprehensive
explanation of your evaluation, avoiding any
potential bias and ensuring that the order in
which the responses were presented does not
affect your judgment. Do not bias on either
longer or shorter answers.’’’

E.3 Calculation of Length Bias

Suppose we have N evaluation cases, each receiv-
ing 2 candidate responses. A GPT-4 scorer decides
the winner between the candidates. a stands for the
number of cases where a candidate response with
more tokens wins. The length bias is calculated by

lb:]%—0.5|*2 (1)
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