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Abstract

Deep learning models offer unprecedented opportunities for diagnosis, prognosis, and treat-
ment planning. However, conventional deep learning pipelines often encounter challenges
in learning unbiased classifiers within imbalanced data settings, frequently exhibiting bias
towards minority classes. In this study, we aim to improve medical image classification by
effectively addressing class imbalance. To this end, we employ differentiable loss functions
derived from classification metrics commonly used in imbalanced data settings: Matthews
correlation coefficient (MCC) and the F1 score. We explore the efficacy of these loss func-
tions both independently and in combination with cross-entropy loss and various batch
sampling strategies on diverse medical datasets of 2D fundoscopy and 3D magnetic reso-
nance images. Our findings demonstrate that, compared to conventional loss functions, we
achieve notable improvements in overall classification performance, with increases of up to
+12% in balanced accuracy and up to +51% in class-wise F1 score for minority classes
when utilizing cross-entropy coupled with metrics-derived loss. Additionally, we conduct
feature visualization to gain insights into the behavior of these features during training with
imbalance-aware loss functions. Our visualization reveals a more pronounced clustering of
minority classes in the feature space, consistent with our classification results. Our results
underscore the effectiveness of combining cross-entropy loss with class-imbalance-aware loss
functions in training more accurate classifiers, particularly for minority classes.
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1. Introduction

Deep learning techniques have revolutionized medical image analysis by providing powerful
tools for tasks such as diagnosis, prognosis, and treatment planning (Litjens et al., 2017;
Oren et al., 2020; Pinto-Coelho, 2023). However, one significant challenge that persists
in training deep learning models for medical image analysis is the presence of imbalanced
data (Mazurowski et al., 2008; Buda et al., 2018; Johnson and Khoshgoftaar, 2019). In many
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medical datasets, the distribution of classes is often skewed, with certain classes represent-
ing the minority while others dominate. This class imbalance poses a substantial hurdle
for conventional deep learning pipelines, as they tend to prioritize learning the majority
classes at the expense of the minority ones. Consequently, models trained on imbalanced
data may exhibit biased predictions, leading to suboptimal performance, particularly for
the underrepresented classes critical for accurate diagnosis or prognosis. (Cluceru et al.,
2022; Foltyn-Dumitru et al., 2023). The resulting bias against minority classes can have
potentially grave consequences for patients when utilizing detection and diagnosis systems
based on such biased deep-learning classifiers. This problem is further aggravated since
commonly used metrics, such as unbalanced accuracy, convey overly optimistic results in
imbalanced classification settings (Haixiang et al., 2017). More appropriate metrics for
evaluating classification performance in imbalanced data settings, such as the Matthews
correlation coefficient (MCC)(Matthews, 1975; Gorodkin, 2004) and F1 score, have been
proposed.

Addressing class imbalance is crucial for developing robust and reliable deep learning
models that can generalize well across diverse medical imaging datasets and yield clinically
relevant insights. In this study, we focus on mitigating the effects of class imbalance in
medical image classification tasks using novel approaches derived from imbalance-aware
loss functions, aiming to improve the overall performance and equity across all classes. To
this end, we comprehensively compare and analyze class-imbalance-aware loss functions in
combination with and against established loss functions in two challenging datasets with
imbalanced class distributions. In summary, our contributions are as follows:

1. We investigate different loss formulations and introduce new combinations of class-
imbalance-aware losses by integrating the MCC and F1 score with a cross-entropy
loss.

2. To this end, we comprehensively compare different strategies to address class
imbalance, namely, class-imbalance-aware loss functions in combination with over-
sampling and per-sample weighting, and established loss functions.

3. We experimentally show that class-imbalance-aware loss functions increase the
performance of challenging classification tasks on diverse medical imaging datasets,
as well as the discernability of class representations.

2. Related Work

2.1. Overcoming class imbalance

Considering how relevant a challenge class imbalance is for training clinically applicable deep
learning models, several strategies have been developed to overcome this challenge. These
can be broadly grouped into (i) sampling-based, (ii) loss-based, and (iii) synthesis-based
approaches.

Sampling-based approaches typically aim to oversample the minority class(es) or adjust
loss weights. While easy to implement and computationally cheap, this can lead to the
model severely overfitting the few samples available in the minority classes (Zheng et al.,
2015).
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Alternatively, specific loss functions such as focal loss (Lin et al., 2017) may be used.
Focal loss over-proportionally decreases the loss of an easy sample compared to difficult ones.
Since the samples in the minority class are potentially more challenging to classify due to
their low prevalence, the model is penalized strongly for misclassifying them. However, the
focal formulation does not directly address the class imbalance but rather its ”side effect”
that minority samples are typically more challenging to classify.

Another strategy to tackle class imbalance is creating synthetic examples. Earlier exam-
ples of such techniques include the Synthetic Minority Over-sampling Technique (SMOTE)
(Chawla et al., 2002). In SMOTE, the minority class is over-sampled by taking each sample
and introducing synthetic examples along the line segments joining any/all of the k mi-
nority class nearest neighbors. Linear interpolation in image space, however, rarely gives
sensible synthetic samples. Hence, generative models, such as generative adversarial net-
works (GANs) (Goodfellow et al., 2014; Qasim et al., 2020; Li et al., 2023) or diffusion
models (Qin et al., 2023; Dhariwal and Nichol, 2021) have been developed to create realistic
examples to supplement the minority classes. While these are powerful approaches, they
are also computationally expensive and require considerable effort to develop generative
models that produce realistic, helpful minority class examples, which is again challenging.
Extending them to different tasks and classes usually requires extensive re-training.

3. Method

3.1. Class-imbalance-aware loss functions

To mitigate the imbalanced data issue in medical imaging datasets, imbalance-aware loss
functions emerge to enhance the performance of minority classes. These loss functions
generally assign larger loss values to misclassified instances of these less prevalent classes.
This adaptation serves to rectify the disparity in their impact on the overall loss calculation.
We compare the focal loss with two loss functions derived from the MCC and the F1 score.

3.1.1. Focal Loss

Focal Loss (Lin et al., 2017) is an often-used loss function for imbalanced deep-learning clas-
sification problems. Difficult-to-classify examples often stem from minority classes. These
examples are often predicted with low confidence, yielding higher loss values. Hence, the
deep learning model is incentivized to optimize for all classes equally. The loss function is
given as

Lfocal(pt) = −(1− pt)
γ log(pt) (1)

where the exponent γ determines the strength of penalization for samples of class t with
predicted probability pt.

3.1.2. Soft F1 Loss

The F1 score is a valuable metric for assessing classification performance since it summarizes
precision and recall into a single number through the harmonic mean. By macro-averaging
the F1 score for all classes, we obtain a balanced assessment of the classifier. We leverage
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this property by deriving a negative differentiable F1 score as a loss function. To this end,
we use differentiable true positives (TP ), false positives (FP ), and false negatives (FN):

TP =
∑
i∈I

yi · ŷi; FP =
∑
i∈I

(1− yi) · ŷi; FN =
∑
i∈I

yi · (1− ŷi) (2)

where yi is the label and ŷi is the prediction for index i. The precision, recall, and F1
score are defined as:

precision =
TP

TP + FP
; recall =

TP

TP + FN

F1 =
2 · precision · recall
precision + recall

(3)

We define the corresponding loss function as LF1 = 1−F1soft, where F1soft is the macro
average of the F1 score for each class using differentiable (soft) TP , FP , and FN .

3.1.3. Soft MCC Loss

Matthew’s correlation coefficient (MCC) (Matthews, 1975) is a metric that encompasses all
four entries of the confusion matrix, namely TP , TN , FP , and FN , into a single value
in the binary classification case. It has been argued that the MCC is superior to many
other metrics, such as accuracy, F1 score, and the receiver operating characteristic (ROC)
area under the curve (AUC) (Chicco and Jurman, 2020; Chicco et al., 2021b,a; Chicco and
Jurman, 2023), because of the normalization term accounting for class imbalance. We define
(soft) TP , FP , and FN as above and additionally calculate true negative (TN):

TN =
∑
i∈I

(1− yi) · ŷi (4)

From these definitions, MCCsoft is defined as:

MCCsoft =
(TP · TN)− (FP · FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5)

The loss formulation is given as: LMCC = 1−MCCsoft (Abhishek and Hamarneh, 2021).

3.1.4. Combined loss functions

The established cross-entropy loss has desirable theoretical properties. The imbalance-aware
losses presented might focus too heavily on the minority class, leading to an unwanted
decrease in performance for the majority class. Hence, we also evaluate weighted sums of
the F1 and the MCC loss with the cross-entropy loss with equal weights for each loss term.

3.2. Addressing class imbalance with sampling and weighting

In balanced data scenarios, the samples in a batch are drawn uniformly, i.e., with the same
probability, to obtain an equal uniform distribution of each class in a batch.
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Figure 1: Overview of our study design. We systematically investigate combinations of
different sampling strategies, sample weightings, and loss functions (including
class-imbalance-aware loss functions).

Oversampling One measure to combat class imbalance in deep learning is oversampling
the minority class(es) to obtain a more uniform distribution than the original distribution
in the dataset. We implement a stratified oversampling technique, i.e., we allocate equal
portions of a batch to each class corresponding to equal clinical relevance of each type.

Sample weighting Instead of oversampling the minority classes, we can assign higher
importance to minority class samples by scaling the influence of a sample according to the
prevalence of its class c ∈ C in the loss calculation:

L =
1

n

∑
i

w(i)
c L(i) (6)

We choose a normalized inverse frequency (Sparck Jones, 1972) scaling for each sample.

4. Experiment Setup

4.1. Experiment pipeline

An overview of our experimental design is shown in Figure 1. We conduct our experiments
on two diverse and imbalanced datasets. We apply standard preprocessing and augmenta-
tion techniques. Two sampling strategies are used to train a ResNet classifier (He et al.,
2016). We compare six loss functions, cross-entropy (CE), focal loss, soft F1, soft MCC, and
CE with MCC and F1. For all experiments using the cross-entropy-loss we also compare
sample weighting while sampling uniformly.

We share our dataset configurations and the code used for our study at https://

github.com/daniel-scholz/address-class-imbalance. For further details of our ex-
periments implementation, refer to Appendix B.

4.2. Datasets

To allow the reproduction of our results, our study only uses publicly available datasets.

5

https://github.com/daniel-scholz/address-class-imbalance
https://github.com/daniel-scholz/address-class-imbalance


Scholz Erdur Buchner Peeken Rueckert Wiestler

Glioma The first dataset comprises 3D MR images (T1w -/+ contrast, T2w, FLAIR)
from large public datasets of adult patients with newly diagnosed gliomas, namely UCSF-
PDGM (Calabrese et al., 2022), EGD (van der Voort et al., 2021), and TCGA (Bakas
et al., 2017). Besides having all four imaging sequences outlined above available, we re-
quire biomarker testing for IDH mutation and 1p/19q status in order to classify samples
according to the 2021 WHO classification of brain tumors into (a) IDH wildtype glioblas-
toma, (b) IDH mutant and 1p/19q intact astrocytoma and (c) IDH mutant and 1p/19q
codeleted oligodendroglioma (Wen and Packer, 2021). In total, our dataset contains pre-
operative MRIs of 1174 patients. The prevalence of glioblastoma (∼80%) in comparison to
oligodendroglioma (∼8%) and astrocytoma (∼12%) is striking and consistent throughout
all the available datasets, mirroring the real-world distribution. A visualization of the class
distributions is shown in the Appendix C, Figure 5. We hold the TCGA dataset out for
testing and use the remaining data for training. For additional robustness analysis, we run
each experiment with four different network initializations.

Glaucoma The second dataset consists of 1542 individual 2D RGB fundus photographs,
of which 786 are healthy controls, 289 photographs show early glaucoma, and 467 are from
advanced glaucoma patients (Ahn et al., 2018). We randomly split the dataset into training
(34) and testing (14) data, stratified by class: {no, early, advanced} glaucoma.

5. Results

5.1. Global classification results

Our main results on the test sets are shown in Table 1 (and Appendix A, Table 3, 4, and 5).
The baseline model (CE loss, uniform sampling) shows reasonable performance, which im-
proves when adding sample weights or oversampling the minority classes for both datasets.
The most considerable improvement over the baseline qua balanced accuracy is achieved
when using the CE + soft F1 loss combination and oversampling, with a relative improve-
ment of 12.7% on the glioma dataset. We also observe smaller standard deviations for the
loss combinations compared to the single class-imbalance-aware losses, F1 and MCC, indi-
cating better training stability for the combination. We explore this further in an ablation
study (Appendix A, Table 6) for small batch size regimes. The performance on the glaucoma
dataset also improves most with the CE + F1 loss combination and oversampling (+10.5%).

5.2. Per-class analysis

In addition, we perform a per-class analysis of our methods using the class-wise F1 score,
which balances precision and recall (Table 2). The baseline training setup yields a classifier
biased towards the majority class (glioblastoma / no glaucoma) while performing poorly on
the minority classes. The overall improvements in classification performance can be directly
traced to improved minority class performance, since majority class performance stays con-
stant across almost all experiments. The CE + F1 loss tremendously improves classification
performance on the astrocytoma minority class (+20.3%). The largest improvement when
using CE + F1 with oversampling loss is observed on the least prevalent early glaucoma
(+51.3%). However, we also observe that using only a class imbalance-aware loss sometimes
yields classifiers entirely ignoring one class (e.g., F1 loss in the glaucoma).
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Table 1: Multi-class classification results for six different loss functions, two sampling meth-
ods, and two different medical imaging datasets in terms of balanced accu-
racy(↑). Results for the glioma dataset are mean±std.

Dataset Sampling CE CE + F1 CE + MCC F1 Focal MCC

Glioma
Uniform 0.55±0.03 0.57±0.02 0.59±0.03 0.51±0.12 0.57±0.04 0.39±0.10

+ Weights 0.59±0.03 0.60±0.02 0.62±0.03 - - -
Oversampling 0.61±0.01 0.62±0.01 0.59±0.04 0.60±0.03 0.61±0.04 0.59±0.03

Glaucoma
Uniform 0.69 0.70 0.72 0.59 0.70 0.59
+ Weights 0.74 0.76 0.75 - - -
Oversampling 0.75 0.77 0.76 0.58 0.74 0.50

Table 2: Comparison for different class performances in terms of F1 score (↑). The ma-
jority class performance has little variance while the minority class performance
improves tremendously for class imbalance aware losses and cross-entropy with
oversampling (Astro: astrocytoma, GB: glioblastoma, Oligo: oligodendroglioma).

Loss Sampling
Glaucoma Glioma

No Early Advanced GB Astro Oligo

CE
Uniform 0.85 0.37 0.83 0.87±0.00 0.54±0.06 0.30±0.06

+ Weights 0.80 0.54 0.81 0.88±0.01 0.63±0.02 0.30±0.06

Oversampling 0.79 0.55 0.79 0.88±0.01 0.63±0.01 0.34±0.04

CE
+ F1

Uniform 0.85 0.42 0.81 0.87±0.01 0.60±0.04 0.30±0.05

+ Weights 0.80 0.56 0.84 0.88±0.01 0.60±0.02 0.34±0.03

Oversampling 0.81 0.54 0.85 0.89±0.00 0.65±0.03 0.34±0.00

CE
+ MCC

Uniform 0.85 0.44 0.83 0.87±0.01 0.60±0.03 0.38±0.11

+ Weights 0.78 0.55 0.83 0.89±0.01 0.62±0.06 0.38±0.04

Oversampling 0.82 0.53 0.83 0.88±0.01 0.59±0.06 0.32±0.07

F1
Uniform 0.81 0.00 0.74 0.85±0.04 0.52±0.35 0.07±0.15

Oversampling 0.81 0.00 0.70 0.89±0.00 0.66±0.02 0.25±0.07

Focal
Uniform 0.84 0.44 0.83 0.87±0.02 0.63±0.03 0.25±0.11

Oversampling 0.80 0.52 0.81 0.87±0.02 0.62±0.08 0.35±0.04

MCC
Uniform 0.82 0.05 0.73 0.81±0.04 0.17±0.33 0.00±0.00

Oversampling 0.00 0.32 0.72 0.88±0.01 0.70±0.01 0.15±0.14

5.3. Visual feature space analysis

To investigate the learned representations, we plot the features of the last ResNet layer
for the glioma dataset. We use the popular t-distributed stochastic neighbor embedding
(tSNE) (Van der Maaten and Hinton, 2008) to project the 256-dimensional feature vectors
to 2D for visualization purposes (see Figure 2). We observe that representations of the
oligodendroglioma are often poorly clustered in this feature space, corresponding to the in-
ferior performance in this class observed in Table 2. CE + MCC loss with uniform sampling
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Figure 2: tSNE visualization of the feature representations before the last layer of the best
and worst models (1st run) according to the F1 score (↑) with class-wise F1 scores.

shows a better clustering of the oligodendroglioma features compared to the baseline or the
MCC-only loss.

6. Discussion and Conclusion

Class imbalance-aware loss functions relevantly enhance classification performance, pri-
marily by improving recognition of minority classes. Notably, the most substantial en-
hancements are observed when combining F1 or MCC loss with standard cross-entropy
loss. In particular, this combination seems to stabilize training. This points to similari-
ties between classification and segmentation methodologies, exemplified in frameworks like
nnUNet (Isensee et al., 2021), where the combination of Dice (which essentially is the
F1 score) and cross-entropy is found to perform best, and underscores the effectiveness
of such hybrid approaches. Further, it’s worth noting that when employing only class
imbalance-aware loss functions, there can be instances where certain classes may be some-
what neglected, a scenario not encountered in the combined approach. In summary, the
demonstrated efficacy of class imbalance-aware loss functions, alongside their ease of imple-
mentation, computational efficiency, and adaptability across various medical imaging tasks,
highlights their potential impact on advancing clinical applications and enhancing the ac-
curacy and reliability of deep learning-based diagnostics in real-world healthcare settings.
These properties call for future studies exploring more scenarios in medical image classifi-
cation with class-imbalance-aware loss functions such as different network architectures or
time-series data. Ultimately, we show that integrating loss functions derived from popu-
lar metrics such as the F1 score and the MCC with standard cross-entropy loss results in
more robust classifiers, with particular benefits for the minority class, thus underscoring its
clinical relevance.
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Appendix A. Further results

A.1. Additional metrics

Table 3: Multi-class classification results for two different medical imaging datasets in terms
of F1 score(↑). Results for the glioma dataset are mean±std.

Dataset Sampling CE CE + F1 CE + MCC F1 Focal MCC

Glioma
Uniform 0.57±0.03 0.59±0.02 0.62±0.04 0.48±0.16 0.59±0.05 0.32±0.12

+ Weights 0.60±0.03 0.61±0.02 0.63±0.02 - - -
Oversampling 0.62±0.01 0.62±0.01 0.59±0.04 0.60±0.03 0.61±0.04 0.58±0.05

Glaucoma
Uniform 0.71 0.73 0.73 0.52 0.70 0.53
+ Weights 0.68 0.69 0.71 - - -
Oversampling 0.72 0.73 0.72 0.50 0.71 0.35

Table 4: Multi-class classification results in terms of macro-averaged Area under the
ROC Curve(↑). Results for the glioma dataset are mean±std.

Dataset Sampling CE CE + F1 CE + MCC F1 Focal MCC

Glioma
Uniform 0.80±0.02 0.81±0.01 0.81±0.02 0.74±0.12 0.79±0.03 0.57±0.13

+ Weights 0.80±0.01 0.81±0.02 0.82±0.01 - - -
Oversampling 0.81±0.01 0.82±0.02 0.81±0.02 0.77±0.03 0.79±0.02 0.76±0.01

Glaucoma
Uniform 0.90 0.89 0.90 0.75 0.89 0.78
+ Weights 0.90 0.90 0.90 - - -
Oversampling 0.90 0.90 0.89 0.79 0.88 0.57

Table 5: Multi-class classification results for different medical imaging datasets in terms of
Matthews correlation coefficient (MCC)(↑). Results for the glioma dataset
are mean±std.

Dataset Sampling CE CE + F1 CE + MCC F1 Focal MCC

Glioma
Uniform 0.47±0.03 0.51±0.03 0.52±0.02 0.41±0.27 0.51±0.05 0.13±0.25

+ Weights 0.52±0.03 0.52±0.02 0.54±0.05 - - -
Oversampling 0.53±0.02 0.55±0.01 0.50±0.04 0.54±0.02 0.52±0.05 0.56±0.03

Glaucoma
Uniform 0.63 0.64 0.65 0.53 0.63 0.53
+ Weights 0.62 0.64 0.63 - - -
Oversampling 0.61 0.64 0.64 0.52 0.61 0.27
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A.2. Ablation: Small batch size regimes

To better understand the benefits of combining a class-imbalance aware loss function with
cross-entropy loss, we performed an experiment in a small batch size regime, which is
commonly found in 3D medical image analysis. The results from three independent runs
are shown in Table 6. Noteworthy, we observe clearly lower standard deviations when
combining soft MCC with cross-entropy loss, indicating a stabilizing effect of combining
both losses.

Table 6: Comparison of soft MCC loss with and without additional cross-entropy loss in
small batch size regimes (batch size = 10).

Loss Sampling Balanced Accuracy MCC AUC

MCC
Uniform 0.33±0.00 0.00±0.00 0.50±0.00

Oversampling 0.51±0.12 0.39±0.28 0.66±0.12

CE + MCC
Uniform 0.60±0.01 0.53±0.01 0.81±0.01

Oversampling 0.60±0.03 0.51±0.03 0.81±0.01

Appendix B. Implementation details

B.1. Glioma dataset

B.1.1. Image preprocessing and segmentation

All images were preprocessed and segmented using the publicly available BraTS Toolkit (Kofler
et al., 2020). After tumor segmentation, images are [0;1] normalized within the brainmask.
A 963 patch, centered around the center of mass of the tumor mask, is cropped from the
image.

B.1.2. Data augmentation

We incorporate a range of randomized image intensity and geometry augmentations with
a probability of 0.5. The set of intensity-changing augmentations consists of randomly ad-
justing gamma values within the range of 0.5 to 1.5 and Gaussian blur, with a standard
deviation varying randomly between 0 and 1.5. In our geometric augmentations, we ran-
domly flip along the sagittal, coronal, or axial planes and randomly crop with a randomized
center, selecting a 643 cube within an already cropped tumor region to introduce more
variability in the tumor’s positioning.

B.2. Glaucoma dataset

B.2.1. Image preprocessing

All images were resized to 240× 240 px and [0;1] normalized.
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Figure 3: Visualization of the four input sequences available in our dataset. The top row
shows entire slices (with the tumor segmentation overlaid in red), and the bottom
row shows the crops used for model training.

Figure 4: Visualization of the data augmentations used to train our classifier.

B.2.2. Data augmentation

For the glaucoma dataset, we also include a range of randomized image intensity and ge-
ometry augmentations with a probability of 0.5 each: The set of intensity-changing aug-
mentations consists of randomly adjusting gamma values within the range of 0.5 to 1.5
and contrast adjustment with a gain randomly selected between [5.,10.]. In our geometric
augmentations, we randomly flip along the horizontal or vertical axis.

B.3. Model training

Our classifier is a ResNet34 (He et al., 2016) architecture composed of [3;4;6;3] residual
blocks, adapted to 3D. We implement the neural network and training using TensorFlow
2.14 (Mart́ın Abadi et al., 2015), the gamma augmentations with Scikit-image 0.22.0 (van
der Walt et al., 2014), and the Gaussian filtering with Scipy 1.11.3 (Virtanen et al., 2020).
We use Adam optimizer (Kingma and Ba, 2015), with parameters β1 = 0.9, β2 = 0.999, a
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learning rate of 1e-3, and a batch size of 50. We also employ a cosine annealing learning rate
scheduler (Loshchilov and Hutter, 2016), with a maximum of 250 epochs without warm-up.

Appendix C. Dataset Distributions

For improved visualization of the class imbalance present in the datasets used, we show the
class distributions of all datasets in Figure 5. The distribution over the whole Glioma dataset
is very similar to the individual sub-datasets, pointing to a skewed real-world distribution
of Gliomas.
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Figure 5: Class distributions for the Glioma and Glaucoma dataset.
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