
Masked Gated Linear Unit

Yukito Tajima1 Nakamasa Inoue1 Yusuke Sekikawa2 Ikuro Sato1,2 Rio Yokota1

1Institute of Science Tokyo, Japan 2Denso IT Laboratory, Japan

yukito@rio.scrc.iir.isct.ac.jp

Abstract

Gated Linear Units (GLUs) have become essential components in the feed-forward
networks of state-of-the-art Large Language Models (LLMs). However, they re-
quire twice as many memory reads compared to feed-forward layers without gating,
due to the use of separate weight matrices for the gate and value streams. To address
this bottleneck, we introduce Masked Gated Linear Units (MGLUs), a novel family
of GLUs with an efficient kernel implementation. The core contribution of MGLUs
include: (1) the Mixture of Element-wise Gating (MoEG) architecture that learns
multiple binary masks, each determining gate or value assignments at the element
level on a single shared weight matrix resulting in reduced memory transfer, and (2)
FlashMGLU, a hardware-friendly kernel that yields up to a 19.7× inference-time
speed-up over a naïve PyTorch MGLU and is 47% more memory-efficient and 34%
faster than standard GLUs despite added architectural complexity on an RTX5090
GPU. In LLM experiments, the Swish-activated variant SwiMGLU preserves
its memory advantages while matching—or even surpassing—the downstream
accuracy of the SwiGLU baseline.

1 Introduction

Transformers (Vaswani et al., 2017) have revolutionized deep learning and given rise to large-
scale language models (LLMs) that achieve remarkable results across a wide spectrum of natural
language processing tasks (Brown et al., 2020; Wei et al., 2022; Ouyang et al., 2022; Grattafiori
et al., 2024; OpenAI, 2024; Gemma Team, 2025). Yet the explosive growth in parameter count and
inference scaling translates directly into substantial inference cost and latency. The decode latency is
fundamentally dominated by communication between high-bandwidth memory (HBM) and SRAM
due to transferring model weights for computation, therefore memory reduction being crucial in
real-world applications (Gholami et al., 2024).

Modern LLMs predominantly adopt a decoder-only architecture (Radford et al., 2018), with each
decoder layer typically consisting of two modules: a self-attention module and a feed-forward network
(FFN). Recent successful optimizations for attention mechanisms, such as FlashAttention (Dao et al.,
2022; Dao, 2024; Shah et al., 2024) and alternative approaches like the Mamba (Gu and Dao,
2025; Dao and Gu, 2024), have significantly improved the computational efficiency by reducing
glboal memory reads/writes. Nevertheless, kernel-level optimization of the FFN remains particularly
challenging, as its simple architecture provides fewer opportunities for efficiency improvements
compared to attention.

The activation function within the FFN plays a crucial role in determining the decoder output.
Traditional nonlinearities such as ReLU (Nair and Hinton, 2010) and GELU (Hendrycks and Gimpel,
2016) laid the groundwork for deep learning, but the Gated Linear Unit (GLU) variants (Dauphin
et al., 2017a; Shazeer, 2020) introduce multiplicative interactions that markedly boost expressivity.
For example, SwiGLU, which swaps the sigmoid gate in the original GLU for the smoother Swish
function (Ramachandran et al., 2017), has become a primary choice in modern LLMs because it
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Figure 1: Comparison of FFNs. (a) Two-layer FFN using GELU. (b) SwiGLU FFN with a gating
mechanism that requires two separate weights: Wg and Wv. (c) Single-mask variant of SwiMGLU
FFN (ours), which introduces a learnable binary mask M to decompose a single weight W into two
complementary projections, reducing the required memory load during inference.

further enhances convergence and downstream accuracy. However, the explicit gating operations
involving two separate projections and their and associated memory overhead at inference time can
erode throughput gains, especially in latency-sensitive scenarios.

In this paper, we propose Masked Gated Linear Units (MGLUs), a novel family of GLUs, along
with an efficient CUDA kernel implementation. Rather than maintaining two separate projections
Wg,Wv for the gate and value streams, our MGLUs adopt the Mixture of Element-wise Gating
(MoEG) architecture, which applies learnable binary masks Mi to a single projection W , reproducing
GLU’s hallmark gating interactions. In Figure 1, we illustrate a single-mask variant, where a single
weight W performs both gate and value projections via a mask M .

The core mechanism enabling efficient kernel implementation, which we call FlashMGLU, lies in
using complementary masks M i = 1−Mi. Given an input vector x, FlashMGLU simultaneously
computes the gate x(Mi ⊙W ) and the value x(M i ⊙W ) by leveraging their complementarity. With
four masks and a Swish activation applied, our SwiMGLU variant achieves downstream performance
comparable to or even better than the widely adopted SwiGLU, while reducing computational cost
of the projection layers by 29.1% and memory usage by 37.5% during inference. It is worth noting
that FlashMGLU is 12.51× faster than a naïve PyTorch implementation of MGLU, opening new
opportunities for more efficient and effective implementations of FFNs.

Our primary contributions are summarized as follows:
• We propose MGLUs, a novel family of GLUs with the MoEG architecture. We effectively

mimic and enhance gating mechanism without incurring the computational and memory overhead
associated with two separate full-rank projections.

• We introduce FlashMGLU, an efficient CUDA kernel implementation of MGLUs, reducing
memory bandwidth requirements and enabling faster inference with minimal code modification.

• We conduct extensive experiments on a variety of downstream NLP tasks, demonstrating that
SwiMGLU achieves comparable or superior downstream accuracy to SwiGLU while notably
improving inference throughput and memory efficiency, validating its practical effectiveness for
resource-constrained LLM deployments.

2 Related Work

Efficeint Inference via Sparse Masks. Model pruning methods seek to reduce the inference memory
load by eliminating redundant weights. Early unstructured pruning methods removes individual
parameters to achieve high sparsity (Frankle and Carbin, 2019; Xia et al., 2022). While unstructured
pruning yields irregular patterns that impede efficient execution, structured pruning excises entire
components for straightforward speedups at the cost of coarse-grained weight removal (Hou et al.,
2025; Sandri et al., 2025; Ashkboos et al., 2024). Semi-structured approaches blend these two
extremes by enforcing regular N:M sparsity blocks, combining fine-grained flexibility with hardware-
friendly patterns (Fang et al., 2024; Sun et al., 2024; Frantar and Alistarh, 2023). Learnable N:M
domain specific specialized masks optimized on calibration data to attain up to 50% sparsity with
minimal perplexity degradation and marked improvements in inference throughput. However, the
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weights that are masked out still occupy storage but take no part in computation, leaving a reservoir
of unused capacity. If we can reactivate or repurpose these dormant parameters in a controlled way,
we may further boost accuracy without increasing the deployed model’s memory footprint.

Efficeint Inference via Activation Sparsity. Whereas weight sparsity reduces model size, activation
sparsity directly lowers runtime FLOPs at inference (Zhang et al., 2025; HAZIZA et al., 2025;
Mirzadeh et al., 2024). DejaVu shows that, for each input, only a small, input-dependent subset of
heads and MLP channels is required; a lightweight predictor selects them on-the-fly, halving latency
without pre-training or quality loss (Liu et al., 2023). Complementary to this contextual approach,
TEAL applies magnitude-based pruning to the hidden states themselves, achieving 40–50% uniform
sparsity without any retraining and realizing decoding speed-ups on modern architectures (Liu et al.,
2025). Activation sparsity methods reduce computation and memory load by skipping unneeded
activations during inference. In contrast we compress weight matrices directly by adding arithmetic
complexity in order to generate multiple streams of outputs.

Choices of Activation Functions in Large Language Models. Transformer (Vaswani et al., 2017)
MLP/FFN layers initially adopted simple piecewise-linear rectifiers such as ReLU (Nair and Hinton,
2010), and Gaussian Error Linear Units (GELUs) (Hendrycks and Gimpel, 2016) which weight inputs
by the Gaussian CDF to produce smooth, non-saturating transitions. Later, non-monotonic self-gating
activations like Swish (x·sigmoid(x)) were discovered via automated search, offering improved deep
network performance through enhanced gradient propagation (Ramachandran et al., 2017). More
expressive gated linear units (GLUs) introduce multiplicative interactions by splitting a projection
into value and gate streams modulated via sigmoid (Dauphin et al., 2017b; Shazeer, 2020); variants
such as GEGLU (using GELU) and SwiGLU (using Swish) have been incorporated into Llama series
(Grattafiori et al., 2024) to boost convergence and downstream accuracy (Shazeer, 2020).

3 Method

This section presents the Masked Gated Linear Units (MGLUs), a novel family of GLUs that
reduces memory access by emulating the gate and value streams using a single shared weight matrix.
We first review the GLU variants and discuss the challenges associated with sharing their two separate
projections. We then introduce MGLUs, which replace explicit gating with a mixture of element-wise
gating (MoEG), sculpting distinct subspaces from the single weight matrix through learnable binary
masks. Although our MoEG increases the architectural complexity, it is designed to enable efficient
CUDA kernel implementation, eliminating extra matrix multiplies and memory accesses.

3.1 Preliminary

GLU Variants. The GLU variants for FFNs (Dauphin et al., 2017a; Shazeer, 2020) augment a
standard two-layer FFN by splitting the intermediate projection into the gate and value streams.
Specifically, given an input vector x ∈ Rh and two learnable weight matrices Wg,Wv ∈ Rh×d, the
generalized GLU layer1 is defined as:

GLU(x) = g
(
xWg

)
⊙

(
xWv

)
, (1)

where g is a gating function, ⊙ denotes Hadamard product, h is the hidden size, and d is the
intermediate size. The resulting intermediate representation is then mapped back to the hidden size
by an output projection Wo ∈ Rd×h. Figures 1(a) and 1(b) illustrate the architectures of the standard
two-layer Linear Unit (LU) FFN using GELU (Hendrycks and Gimpel, 2016) and the SwiGLU FFN
using Swish (Ramachandran et al., 2017) for g, respectively.

FFN Parameters PPL

GELU W 25.6
SwiGLU {Wg,Wv} 23.6
SwiGLU (shared) Wg = Wv 27.0

Table 1: Perplexity comparison.

Can two matrices be shared in SwiGLU? While SwiGLU
is a primary choice in state-of-the-art LLMs (Grattafiori et al.,
2024), the separate value and gate projection matrices incur 2×
the memory reads compared to a single linear layer. One might
ask whether a single shared weight W can serve both streams,
for example by using distinct channel-wise transformations
or learned offsets. However, naively sharing W typically col-
lapses the expressivity of the multiplicative interaction: independent full-rank projections are required

1Throughout this paper, we refer to the generalized GLU layer simply as the GLU layer unless ambiguity
arises. Following recent practice in LLMs, we omit bias vectors, but incorporating them is straightforward.
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Figure 2: Mixture of Element-wise Gating (MoEG). (a) All gate and value projection matrices are
computed from the shared weight matrix W . (b) The MoEG-based SwiMGLU architecture with m
routes, each of which leverages element-wise gating.

to learn disentangled feature gating and value transformations as shown in Table 1. This could be a
limitation of explicit gating, motivating us to propose MGLUs with element-wise gating.

3.2 MGLU Layer

Our goal is to retain the expressive multiplicative effect of the GLU layer while reducing the number
of its full-rank projections. Instead of the two separate projection matrices {Wg,Wv}, our MGLU
layer introduces a small set of binary masks M = {Mi}nm

i=1, each of which sculpts different subspaces
of a single weight matrix W .

Single-Mask Variant. We start by describing the single-mask variant of the MGLU layer. Let
W ∈ Rh×d be a shared weight matrix and M ∈ {0, 1}h×d be a binary mask matrix. We define the
MGLU layer as

MGLU1(x) = g
(
x(M ⊙W )

)
⊙
(
x(M ⊙W )

)
, (2)

where x is an input vector, g is a gating function, and M = 1−M is the complementary mask. As
shown in Figure 1(c), the MGLU layer recovers the multiplicative gate-value interaction using only
one full-rank weight matrix W . Through element-wise gating with two binary matrices {M,M}, W
is effectively partitioned into two complementary subspaces, resulting in greater parameter efficiency
compared to the GLU layer. During training, M is optimized jointly with W via the straight-through
estimator (Bengio et al., 2013) on the binarization.

We utilize the complementary mask rather than two separate masks because it enables a more efficient
CUDA kernel implementation. FlashMGLU in Section 4 computes the gate projection x(M ⊙W )
and the value projection x(M ⊙W ) simultaneously by leveraging their complementarity.

MoEG Variant. To capture diverse gating patterns across channels, the MoEG architecture allows
multiple complementary masks and lets the model learn which subspace of W serves as gate versus
value. Specifically, we define the MoEG-based MGLU as follows:

MGLUnm(x) =

nm∑
i=1

[
g
(
x(Mi ⊙W )

)
⊙

(
x(Mi ⊙W )

)]
, (3)

where nm is the number of mixtures, and M = {Mi}nm
i=1 is a set of binary mask matrices.

Figure 2 shows the overall architecture. As shown, all gate projection matrices Mi ⊙W and value
projection matrices Mi⊙W are derived from the shared full-rank weight matrix W (Figure 2(a)), and
their resulting representations are subsequently aggregated (Figure 2(b)). This architecture, featuring
m parallel routes, can be interpreted as a variant of the mixture of expert architecture (Jacobs et al.,
1991; Jordan and Jacobs, 1994), thereby improving representational capacity. During training, the
masks {Mi}nm

i=1 are optimized jointly with W . At inference, all masks are fixed, and the fused
masked projections execute with a single kernel.
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Figure 3: Diagram of how FlashMGLU forward pass is performed during generative inference.
When the weight W is split into two blocks in the K dimension (splitk = 2), the input vector x is
also partitioned into two. We pre-compute the unmasked matrix-vector operation, than selectively
add-up the sum according to the mask values avoiding excessive memory reads of weight matrices.

Algorithm 1 FlashMGLU forward pass: Split-K Matrix Vector Product with Packed nm Masks.

Require: A ∈ RM×N , x ∈ RN , mask ∈ {0, . . . , 2nm − 1}M×N on HBM, splitk
1: Initialize accumulators z ∈ R2nm×M ← 0
2: for row = 0 to M − 1 do
3: for chunk = 0 to splitk − 1 do
4: s← ⌈(N + splitk − 1)/splitk⌉, start← chunk× s, end← min(start + s,N)
5: Each thread sets t← 0 and si ← 0 for i = 1, . . . , nm

6: for each k = start, . . . , end− 1 (stride =blockDim.x) do
7: Load A[row, k], x[k],mask[row, k] from HBM to register.
8: On chip, compute v = A[row, k]× x[k]
9: On chip, compute t = t+ v

10: for i = 1, . . . , nm do
11: On chip, compute if mask[row, k] ∧ (1≪ (i− 1)) ̸= 0 then si = si + v
12: end for
13: end for
14: Reduce t and all si across threads on SRAM.
15: for i = 1, . . . , nm do
16: atomicAdd

(
z[i, row], si

)
, atomicAdd

(
z[nm + i, row], t− si

)
to HBM.

17: end for
18: end for
19: end for
20: return z

4 FlashMGLU: Efficient Kernel Implementation of MGLUs

Hardware-friendly functions such as attention has widespread application. Here we aim to make
MGLUs efficient on modern hardware accelerators (GPUs) as well. In general, low batch size
settings (for simplicity, we consider batch size 1) of LLMs’ generative inference require matrix-vector
products. Such operations are almost always memory-bound, as the cost of reading the weight
matrix dominates the compute time. A naïve PyTorch implementation of MGLUs would issue nm

separate matrix-vector multiplies (and corresponding element-wise Swish and multiplies), resulting
in nm × 2 + 1 full-precision weight memory reads per token—an extremely inefficient pattern.

To address this, we implement a fused CUDA kernel and a simple triton (Tillet et al., 2019) kernel
that:

• Packs mask bits: Combine the nm binary masks Mi for each weight entry into a single 8-bit
integer, so that one load fetches all mask information for a block of weights.

• Shared loading: For each thread block, load a tile of the shared weight matrix W and the
corresponding packed mask words in one coalesced transaction for all nm × 2 output vectors.

This design reduces the number of global memory reads from nm×2 to 1 (W load)+1 (mask load)
per tile, while performing all Swish and element-wise multiplications in fast on-chip memory. As a
result, our kernel achieves up to 19.66× speedup over naïve PyTorch implementation on RTX5090
with nm = 8. Algorithm 1 presents the detailed procedure, and Figure 3 illustrates the forward
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pass. The core idea is to fetch all necessary weight and packed-mask blocks for each output element
in a single coalesced read and complete every arithmetic operation entirely in registers, thereby
eliminating redundant global-memory traffic.

4.1 Discussion

Memory Load During Inference. Table 2 represents the parameter count and required memory load
at inference time. Inference in modern transformer FFNs is typically bound by memory bandwidth
rather than raw compute. In SwiGLU, the gating and value projections each require reading an
FP16 weight matrix of size h× d for a total of two matrices per token (memory load 16× 2hd bits),
whereas a normal GELU activation only requires one up-projection. SwiMGLU instead folds the
two intermediate projections into a single FP16 matrix W ∈ Rh×d and applies nm binary masks
Mi ∈ {0, 1}h×d at inference to recover gating. The resulting per-token memory load is one FP16
matrix (16× 2hd bits for up-projection) plus nm mask bits (nm hd bits). For nm = 1, the relative

Table 2: Parameter count and memory-access
cost per token for the intermediate layers of FFN
variants during FP16 inference. h and d denote
the hidden and intermediate sizes, respectively.

Layer type #Params #Params Memory Load
(FP16) (Binary) (bits)

LU hd 0 16hd
GLU 2hd 0 32hd
MGLU hd nmhd (16 + nm)hd

reduction is
16 · 2hd−

(
16 · hd+ hd

)
16 · 2hd

= 0.46875 ,

i.e., up to 47% fewer bits transferred, directly
translating to faster inference on memory-bound
hardware. Mixtures with nm ≤ 16 therefore
still reduces the parameter count of a standard
SwiGLU FFN at 16bit inference time, yet retain
SwiGLU-level expressivity during optimization.2

Number of Parameters. SwiMGLU replaces
two full-rank SwiGLU weight matrices (2hd FP16 values) with one matrix plus nm masks, yielding
a footprint of 16hd+ nm hd bits at inference (masks stored in 1-bit form). During training, masks
are kept as FP16 logits, adding nm hd FP16 parameters.

Computational Cost. At inference time (next token prediction), only the forward pass is exe-
cuted. SwiMGLU incurs 2(1 + nm)hd multiply–add operations per token, versus 6hd for SwiGLU.
On memory-bound hardware the extra FLOPs are negligible: memory bandwidth dominates, and
SwiMGLU’s reduction in FP16 reads directly lowers inference latency. Training on the other hand is
compute bound with the backward costing roughly twice the FLOPs of the forward. Masks are stored
as FP16 logits and use straight-through estimation, adding nm hd FP16 parameters and one extra
element-wise multiply–add per mask in each pass. Consequently, the total training cost becomes
(6 + 8nm)hd, compared to 18hd per token in SwiGLU, introducing a runtime overhead according
to the mask size.

5 Experiments

We demonstrate the effectiveness and efficiency of SwiMGLU. We selected the Llama 3 architecture
(Grattafiori et al., 2024) with SwiGLU as the baseline and compare the different FFN layers.

5.1 Setup

Model Configuration. Our baseline model follows the Llama family design (Grattafiori et al.,
2024). We train models at two scales: a 159M small (12 layers, h = 768, d = 3072) and a 1.08B
large (16 layers, h = 2048, d = 8192. For SwiMGLU, we substitute each SwiGLU layer with
the SwiMGLU layer, keeping all other architectural components (e.g. attention, normalization,
embeddings) identical. Note that SwiMGLU would have a smaller model size as the number of
projection weights are reduced.

Hyperparameters. All model are trained using the AdamW optimizer (β1 = 0.9, β2 = 0.99, ϵ =
1× 10−8) with a learning rate of 3× 10−4 and 1× 10−4 for small and large models respectively,
weight decay of 0.1, linear warmup for the first 10% steps, followed by cosine decay. A full list of
hyperparameters and training settings are listed in Appendix A.

2For Llama-1B (h=2048, d=8192) the FFN weights per layer shrink from 96MB to 64MB, while the
binary mask costs only 2MB in boolean form.
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Table 3: Zero-shot accuracy (%) on downstream tasks and validation perplexity. #weights represent
the number of weight parameters excluding masks bits.

nm #weights PPL↓ ArcE↑ ArcC↑ HS↑ PiQA↑ SciQ↑ WG↑ Avg ↑
GELU – 113M 25.8 47.47 19.45 28.09 60.61 64.80 52.41 45.47
SwiGLU – 141M 23.7 48.15 20.05 28.53 61.43 67.90 51.14 46.20
SwiMGLU 1 113M 25.0 48.91 19.28 28.25 60.72 69.00 50.20 46.06
SwiMGLU 2 113M 24.5 49.12 19.97 28.49 60.01 70.60 51.53 46.62
SwiMGLU 4 113M 23.9 48.99 20.56 28.49 61.70 69.10 50.04 46.48
SwiMGLU 8 113M 23.5 48.65 20.56 28.63 61.53 68.00 51.54 46.49

SwiGLU – 1.08B 12.3 64.94 28.92 37.20 69.15 84.50 51.30 56.00
SwiMGLU 1 808M 13.0 63.72 27.73 36.20 68.61 83.00 54.30 55.59
SwiMGLU 2 808M 12.7 62.08 26.71 36.52 68.44 84.20 51.85 54.97
SwiMGLU 4 808M 12.4 65.78 28.92 37.69 69.26 84.20 55.25 56.85

Table 4: Two-shot accuracy (%) on downstream tasks and validation perplexity. #weights represent
the number of weight parameters excluding masks bits.

nm #weights PPL↓ ArcE↑ ArcC↑ HS↑ PiQA↑ SciQ↑ WG↑ Avg ↑
GELU – 113M 25.8 48.57 19.45 27.87 60.77 61.10 52.88 45.11
SwiGLU – 141M 23.7 48.65 20.14 28.64 61.70 62.30 51.70 45.52
SwiMGLU 1 113M 25.0 48.48 19.03 28.16 60.45 61.40 50.75 44.71
SwiMGLU 2 113M 24.5 49.62 21.42 28.55 60.39 62.50 51.14 45.60
SwiMGLU 4 113M 23.9 49.41 21.16 28.61 62.51 66.10 50.59 46.40
SwiMGLU 8 113M 23.5 52.02 19.62 28.54 62.08 66.80 51.38 46.74

SwiGLU – 1.08B 12.3 66.16 31.48 37.25 69.21 88.30 51.78 57.36
SwiMGLU 1 808M 13.0 65.57 30.20 36.25 69.59 88.50 53.83 57.32
SwiMGLU 2 808M 12.7 65.07 31.66 36.32 68.77 88.70 52.17 57.11
SwiMGLU 4 808M 12.4 67.13 30.55 37.53 69.48 88.60 53.91 57.87

Datasets and Metrics. We pre-train both baseline and SwiMGLU models on the FineWeb-Edu 100B
dataset (Penedo et al., 2024) with small models being trained on a 10B token subset. For downstream
evaluation, we report zero-shot and two-shot accuracy on six standard benchmarks: ARC Easy
(ArcE) (Clark et al., 2018), ARC Challenge (ArcC) (Clark et al., 2018), HellaSwag (HS) (Zellers
et al., 2019), PiQA Bisk et al. (2020), SciQ (Welbl et al., 2017), and Winogrande (WG) (Sakaguchi
et al., 2021). We utilize the LM Evaluation Harness (Gao et al., 2024) for standardized performance
evaluation.

5.2 Downstream Performance

Downstream Accuracy. Tables 3 and 4 present the zero-shot and two-shot performance respectively.
We observe that SwiMGLU generally matches or outperforms SwiGLU when 4 or more masks are
employed. For example m = 4 showcases an average of 56.85% compared to SwiGLU’s 56.00%.
These results highlight the superior performance of model using the SwiMGLU activation function.
Increasing the mask count generally improves the model performance.

Figure 4: Latency comparison

Latency. Figure 4 shows the wall-clock la-
tency of a single projection layer in a single
batch setting measured on an RTX 5090 at
FP16 precision. We evaluate three imple-
mentations: our fused CUDA kernel (Flash-
MGLU), a Triton re-implementation, and the
naïve PyTorch GLU nn.Linear baseline.

For the large setting (h=2048, d=8192)
with nm = 8, FlashMGLU cuts the ma-
trix–vector time from 0.5210 ms to 0.0834
ms, delivering a 19.66× speed-up over the
PyTorch baseline and a 6.25× acceleration
even on our triton prototype. Importantly,
these gains persist at much larger scales: with
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Figure 5: Comparison of learning curves for different FFN architectures. The top and bottom
rows illustrate the changes in training loss / training perplexity of small and large models respectively.
The left columns compare existing methods against SwiMGLU, and the right columns compare the
number of masks.

Figure 6: Comparison of downstream task scores across different FFN architectures of large
models. In all metrics, the proposed method, SwiMGLU nm = 4 achieves the best performance.

larger intermediate sizes (h = 4096, d = 14336) used in larger Llama-3.2 8B models, our optimized
CUDA kernel still outpaces the PyTorch baseline by an impressive 18.0×, and a 11.1× speed-up in
our triton prototype.

While the standard GLU implementation must fetch two full-precision weight matrices from global
memory, FlashMGLU accesses each weight exactly once and performs all mask operations directly
within on-chip registers. By fusing weight loading with mask evaluation, FlashMGLU significantly
increases arithmetic intensity, effectively saturating the GPU’s Streaming Multiprocessor pipeline
and reducing latency by up to 1.51× under the single-mask variant. As a result, our native CUDA
implementation of FlashMGLU consistently outperforms both the naïve MGLU and the standard
GLU baselines. Although Triton incurs slightly higher overhead on very small matrices, this gap
narrows as the hidden dimensions increase. Moreover, since CUDA allows developers to explicitly
control memory access patterns, native CUDA code achieves higher performance overall. A full
head-to-head comparison between FlashMGLU and a highly tuned standard GLU kernel is presented
in Appendix E.

Scaling with the number of masks. Under a naïve PyTorch MGLU kernel, runtime scales nearly
linearly for nm ≤ 8, doubling the number of mask mixtures almost doubles the latency, driven
by proportional increases in memory-traffic. In contrast, FlashMGLU’s unified weight-and-mask
loading strategy decouples execution time from mask count, yielding only marginal slowdowns as
nm increases. Even under a computationally intense eight mask variant, we still observe a 1.15×
speed-up on small models and a 1.24× acceleration on larger variants. Once nm = 8, register-file
pressure begins to spill into local memory, and the performance advantage over the standard GLU
kernel gradually erodes, which is an effect that is especially noticeable in our Triton prototype.
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5.3 Ablations and Analysis

Training Dynamics. Figure 5 plots token-level cross-entropy (left axis) and perplexity (right axis)
over the first 150k optimization steps for both small and large models trained with GELU, SwiGLU,
and our SwiMGLU variants. Models using SwiMGLU with nm = 4 consistently show comparable
or lower losses compared to those using SwiGLU. Figure 6 illustrates the downstream performance
on ARC-Easy, HellaSwag, PiQA, and the average accuracy across all downstream tasks. SwiMGLU
with nm = 4 outperforms SwiGLU on all tasks, with notable improvements, demonstrating strong
generalization capabilities of MoGE despite its reduced parameter count.

Training Cost. While SwiMGLU significantly reduces inference-time memory access and latency,
it incurs a higher computational cost during pretraining. As shown in Appendix A (Table 6),
achieving comparable downstream performance to SwiGLU requires approximately twice the wall-
clock training time due to the additional optimization of mask parameters. This trade-off reflects a
deliberate design choice: we prioritize lower inference cost and memory footprint at the expense
of moderately higher training time. We believe this is a reasonable compromise, as real-world
deployments of LLMs are typically dominated by inference workloads rather than pretraining.

Training Stability. At default learning rates, both MGLU and SwiGLU converge with comparable
smoothness. However, under higher learning rates, where SwiGLU experiences pronounced loss
spikes, the masked variants effectively dampen these excursions and recover more rapidly. The
four-mask configuration, in particular, proves exceptionally robust. Detailed loss curves for all
learning-rate settings are provided in Appendix B.

Figure 7: Training loss and perplexity of learned vs.
fixed masks in small configuration and nm = 2.

Number of Masks nm. For the small model
size, increasing the number of masks from
nm = 1 to nm = 8 results in a strictly mono-
tonic reduction in training loss. Concurrently,
this also improves the two-shot average ac-
curacy, which rises from 44.71% to 46.74%.
Nevertheless, the marginal benefit diminishes
once nm = 8, while memory and compute
overhead continue to increase. Empirically,
the nm = 4 setting achieves the optimal
balance between quality and resource usage.
These findings suggest that a compact col-
lection of complementary masks can fully
recover, and occasionally surpass, the expressive power of a dense SwiGLU gating mechanism.

Learned vs. Fixed Masks. Figure 7 contrasts models in which the masks are co-optimized with the
network parameters against models that rely on randomly sampled but fixed masks. Allowing the
masks to learn consistently tracks a lower training loss throughout and improves the final perplexity
by roughly 0.5. By comparison, freezing the masks essentially collapses the learning curve to that of
the single-mask (nm = 1) baseline, underlining that it is mask-combination learning—not sparsity
alone—that drives the gain in expressivity. Complete results are provided in Appendix B.

Mask Distribution. Inspection of the learned binary masks shows that their activation ratio is not
forcibly balanced: depending on the layer, the proportion of ones can skew either above or below
50% (typically ranging from roughly 45% to 55%). Full statistics for every layer and model size
are provided in Appendix C. This flexibility lets the network learn how much capacity to devote to
the gate versus the value pathway, effectively tuning the gate-value trade-off on a per-layer basis.
Because a dense SwiGLU block lacks such adaptive capacity allocation, this mechanism offers a
plausible explanation for the cases in which MGLU surpasses SwiGLU in accuracy.

6 Conclusion and Future Work

In this work, we introduced Masked Gated Linear Units (MGLUs), a novel family of feed-forward
activations that recover the expressivity of traditional GLUs using a single shared weight matrix
sculpted by learnable binary masks. Our Mixture of Element-wise Gating (MoEG) design not only
matches or exceeds the performance of the commonly used SwiGLU activation on a variety of
language-understanding benchmarks, but also delivers substantial efficiency gains at inference time.
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In terms of limitations, MGLUs are more computationally expensive than other GLU variants, since
they increase arithmetic complexity in exchange for a reduced memory footprint. However, by
developing FlashMGLU, an optimized kernel that fuses mask unpacking with the core matrix-vector
operations, we achieve up to a 19.66× speedup over a naïve PyTorch MGLU implementation on
modern GPUs, while reducing memory-bandwidth requirements and latency compared to standard
GLU variants. These advances pave the way for richer gating mechanisms to be deployed in latency-
and memory-constrained settings without compromising model quality.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This submission introduces a novel MGLU FFN architecture in Large Lan-
guage Models, including a fast FlashMGLU kernel for inference.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Section 6 explicitly discusses limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: No theoretical results in this submission.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All training settings and hyperparameters necessary for reproducing the main
results are available in Appendix A.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code will be released with a permissive license in the near future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discuss datasets and hyper-parameters used for training and testing in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not available in this submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the number of GPUs and GPU hours in appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This submission follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This submission discusses potential societal impacts in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not include publicly released models nor datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not include new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs do not involve in core method development in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experimental Details

Here we provide more details about the model architecture, training configurations and resources
used in our experiments.

A.1 Model Architecture and Training Configuration

Table 5 summarizes the architectural configurations shared across all experiments. Table 6 lists the
number of weight and mask parameters, along with the corresponding estimated storage sizes at
inference time for each model variant.

All experiments reported in this paper are implemented based on the llm-recipes framework (Fujii
et al., 2024). All models are trained on TSUBAME supercomputer with NVIDIA H100 GPUs (94GB),
with small models trained on 4GPUs and large models trained on 16GPUs with Fully Sharded Data
Parallel (FSDP). Training GPU hours are shown in Table 6.

Table 5: Model architecture of small and large variants.
Model Size h d Context Length #Heads #Layers
small 768 3072 1024 24 12
large 2048 8192 4096 32 16

Table 6: Number of weight and mask parameters, estimated storage size, and training GPU hours for
each model configuration.

Scale Model nm #Weights #Masks Size (MB) GPU Hours

small

GELU – 113M 0 215 18
SwiGLU – 141M 0 269 22
SwiMGLU 1 113M 28.3M 219 20
SwiMGLU 2 113M 56.6M 222 24
SwiMGLU 4 113M 113M 229 33
SwiMGLU 8 113M 226M 242 52

large

SwiGLU – 1.08B 0 2052 768
SwiMGLU 1 808M 268M 1573 752
SwiMGLU 2 808M 537M 1605 1008
SwiMGLU 4 808M 1.07B 1669 1376

A.2 Hyperparameters

Table 7 lists the hyperparameters that we use by default at training time for all our experiments.

Table 7: Pretraining hyperparameters for small and large models.
small large

Optimizer AdamW AdamW
Learning Rate (LR) 3E-4 1E-4
Minimum LR 3E-5 1E-5
LR Schedule cosine cosine
Weight Decay 0.1 0.1
β1 0.9 0.9
β2 0.99 0.99
ϵ 1E-8 1E-8
Gradient Clipping 1 1
Global Batch Size 512 512
Warmup Steps 1000 4800
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Figure 8: Trainig Curves of small MGLU variants with different activation functions. Left:
training loss; right: validation perplexity.

Table 8: Zero-shot accuracy (%) on downstream tasks and validation perplexity across different
activation functions. #weights represent the number of weight parameters excluding masks bits.

nm #weights PPL↓ ArcE↑ ArcC↑ HS↑ PiQA↑ SciQ↑ WG↑ Avg ↑
SwiGLU – 141M 23.7 48.15 20.05 28.53 61.43 67.90 51.14 46.20
ReMGLU 4 113M 24.3 49.66 19.71 28.45 61.53 69.10 49.80 46.38
GeMGLU 4 113M 24.0 48.65 19.54 28.50 62.30 69.30 52.17 46.74
SwiMGLU 4 113M 23.9 48.99 20.56 28.49 61.70 69.10 50.04 46.48

Table 9: Two-shot accuracy (%) on downstream tasks and validation perplexity across different
activation functions. #weights represent the number of weight parameters excluding masks bits.

nm #weights PPL↓ ArcE↑ ArcC↑ HS↑ PiQA↑ SciQ↑ WG↑ Avg ↑
SwiGLU – 141M 23.7 48.65 20.14 28.64 61.70 62.30 51.70 45.52
ReMGLU 4 113M 24.3 49.28 19.71 28.25 61.32 61.80 51.22 45.26
GeMGLU 4 113M 24.0 49.28 20.56 28.74 62.13 66.40 52.25 46.56
SwiMGLU 4 113M 23.9 49.41 21.16 28.61 62.51 66.10 50.59 46.40

B Additional Experiments

B.1 Other Activation Functions.

In the main paper we concentrated on SwiMGLU, whose gating function relies on the Swish non-
linearity used in standard SwiGLU. To verify that the advantages of our mask-based design are not
tied to a single activation, this appendix evaluates several alternatives that are widely adopted in
large-scale language models—GELU, ReLU, and SiLU. For each activation we replace the gating
function g(·) in Eq. (3) while keeping all other architectural choices and training hyper-parameters
identical to the baseline. We report both pre-training perplexity and downstream accuracy of small
models so that we can directly compare the impact of each non-linearity under the same experimental
conditions.

Training Curve. Figure 8 plots training loss and perplexity for the various activations. ReMGLU
converges more slowly than both GeMGLU and SwiMGLU, with SwiMGLU achieving the fastest
convergence and slightly outperforming GeMGLU.

Downstream Evaluation. Table 8 and Table 9 show the downstream evaluation scores on different
activation functions in MGLU. The masked design improves or matches the SwiGLU baseline across
all activations while using fewer trained weights, confirming that the capacity unlocked by mask
pairs is activation-agnostic. Smoother nonlinearities (GELU and SiLU) benefit most: GeMGLU
achieves the best average zero-shot accuracy (46.74%) and ties for the best two-shot average (46.56%),
whereas SwiMGLU attains the lowest validation perplexity (23.9). ReMGLU, though slightly weaker
than its smoother counterparts, and comparable to the SwiGLU baseline on average accuracy.
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Figure 9: Diagram of a Top-1 SwiMGLU block. We illustrate one token being routed across four
mask experts, where the router independently routes each token. The Top-1 SwiMGLU layer returns
the output of the selected experts multiplied by the router gate value.

B.2 Top-K Routing

Summation over every masking route maximizes capacity but may be wasteful for tokens that require
only a subset of specialized subspaces. Inspired by routing techniques in switch transformers (Fedus
et al., 2021), we therefore explore a Top-K routing variant of MGLU that, at inference time, activates
only the K masks whose logits yield the highest gate magnitudes. The subsection first details the
routing algorithm and its lightweight implementation—requiring a single additional linear router over
the input features, then evaluates downstream scores as K varies from 1 (fully sparse) to nm (fully
dense). We show that, on small configuration, routing with K = 2 retains most of the accuracy gains
of full MGLU with nm = 4, while reducing computational FLOPs by 2×, offering a practical knob
for deployments with stringent latency budgets.

Top-K routed MGLU. Given an input token representation x ∈ Rh, a lightweight “router” computes
a vector of logits

ℓ = xWr ∈ Rnm , (4)

where Wr is a learned h× nm matrix. Following Fedus et al. (2021), we retain only the K largest
logits. Applying a softmax over this truncated vector yields sparse gating weights

G(x) = Softmax
(
TopK(ℓ)

)
∈ Rnm , (5)

The Top-K routed MGLU is denoted by

MGLUTop-K(x) =

nm∑
i=1

G(x)i g
(
x(Mi⊙W )

)
⊙ x

(
Mi⊙W

)
. (6)

Because G(x) contains at most K non-zero terms, only those K masked projections need be
evaluated—reducing memory traffic and latency compared with summing over all nm routes while
preserving most of the accuracy gains of full MGLU. Figure 9 illustrates the overall architecture.

Training Curves. Figure 10 presents the training loss and perplexity across different routing configu-
rations. We observe that both Top-4 and Top-2 routed SwiMGLU closely track the loss trajectory of
the non-routed SwiMGLU, indicating that sparse routing with multiple active masks retains most
of the model’s learning capacity. In contrast, Top-1 routing introduces a noticeable performance
degradation, suggesting that activating only a single expert per token limits representational power.

Downstream Evaluation. Table 10 and Table 11 summarize validation perplexity and task perfor-
mance for each routing strategy. The Top-4 router (K = 4) consistently dominates, delivering the
lowest perplexity in both settings, and the highest average accuracy. The Top-2 variant (K = 2)
offers a favorable trade-off: it matches or surpasses the unrouted SwiMGLU (nm=4) on most metrics,
boosts average zero-shot accuracy to 46.64 %, and retains a competitive two-shot score of 45.79 %.
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Figure 10: Learning curves of small SwiMGLU models under different Top-K routing strategies.
Left: training loss and validation perplexity for K∈{1, 2, 4}; right: Top-2 routing compared with the
non-routed SwiMGLU baseline.

Table 10: Zero-shot accuracy (%) on downstream tasks and validation perplexity across different
routing coefficient K. #weights represent the number of weight and router parameters excluding
masks bits. The boldface and underline indicate, respectively, the best and second-best value per
column.

nm K #weights PPL↓ ArcE↑ ArcC↑ HS↑ PiQA↑ SciQ↑ WG↑ Avg ↑
SwiGLU – – 141M 23.7 48.15 20.05 28.53 61.43 67.90 51.14 46.20
SwiMGLU 4 – 113M 23.9 48.99 20.56 28.49 61.70 69.10 50.04 46.48
SwiMGLU 4 1 113M 25.2 48.11 19.80 27.89 61.04 68.90 50.67 46.07
SwiMGLU 4 2 113M 24.0 48.86 20.56 28.29 60.55 69.50 52.09 46.64
SwiMGLU 4 4 113M 23.8 49.20 21.84 28.70 61.37 71.80 53.43 47.72

Table 11: Two-shot accuracy (%) on downstream tasks and validation perplexity across different
routing coefficient K. #weights represent the number of weight and router parameters excluding mask
bits. The boldface and underline indicate, respectively, the best and second-best value per column.

nm K #weights PPL↓ ArcE↑ ArcC↑ HS↑ PiQA↑ SciQ↑ WG↑ Avg ↑
SwiGLU – – 141M 23.7 48.65 20.14 28.64 61.70 62.30 51.70 45.52
SwiMGLU 4 – 113M 23.9 49.41 21.16 28.61 62.51 66.10 50.59 46.40
SwiMGLU 4 1 113M 25.2 49.03 20.31 27.95 60.50 59.90 52.17 44.98
SwiMGLU 4 2 113M 24.0 51.39 20.65 28.71 62.08 60.40 51.54 45.79
SwiMGLU 4 4 113M 23.8 49.79 22.27 28.82 62.13 63.00 52.57 46.43

In contrast, Top-1 routing (K = 1) shows a significant drop in both perplexity and average accuracy,
suggesting that allocating at least two experts per token is critical for maintaining representation
power. Overall, these results indicate that K = 2 not only reduces compute but also enhances
generalization across a diverse suite of downstream tasks.
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Figure 11: Training curves of learned vs. fixed masks in small SwiMGLU models. Lef: nm = 1;
Right: nm = 2.

Table 12: Zero-shot accuracy (%) on downstream tasks and validation perplexity on small models.
nm Mask Type PPL↓ ArcE↑ ArcC↑ HS↑ PiQA↑ SciQ↑ WG↑ Avg ↑

SwiMGLU 1 Learned 25.0 48.91 19.28 28.25 60.72 69.00 50.20 46.06
SwiMGLU 1 Fixed 25.1 47.60 21.08 28.19 61.10 68.30 51.54 46.30
SwiMGLU 2 Learned 24.5 49.12 19.97 28.49 60.01 70.60 51.53 46.62
SwiMGLU 2 Fixed 25.1 48.32 19.03 28.23 61.81 67.30 50.36 45.84

Table 13: Two-shot accuracy (%) on downstream tasks and validation perplexity on small models.
nm Mask Type PPL↓ ArcE↑ ArcC↑ HS↑ PiQA↑ SciQ↑ WG↑ Avg ↑

SwiMGLU 1 Learned 25.0 48.48 19.03 28.16 60.45 61.40 50.75 44.71
SwiMGLU 1 Fixed 25.1 48.11 20.14 28.02 61.21 60.30 51.78 44.92
SwiMGLU 2 Learned 24.5 49.62 21.42 28.55 60.39 62.50 51.14 45.60
SwiMGLU 2 Fixed 25.1 47.14 20.31 28.24 61.43 61.40 51.93 45.07

B.3 Learned vs. Fixed Masks.

This section compares learned and fixed masks in small SwiMGLU models. While previous sections
focus on the number and structure of masks, here we investigate the benefit of co-optimizing masks
alongside model weights.

Training Curve. Figure 11 shows the training loss and perplexity when using learned versus fixed
masks. While with nm = 2, learned masks consistently outperform fixed ones, with nm = 1 the
difference is subtle.

Downstream Evaluation. Table 12 and Table 13 shows the downstream task scores across different
mask configurations. The learned mask configuration with nm = 2 also improves downstream
accuracy compared to fixed masks, highlighting the importance of mask combination adaptation.
These results suggest that expressivity is not solely due to sparsity, but also driven by mask learning
with multiple masks.
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Figure 12: Training curves of small SwiMGLU models across different mask count.

Table 14: Zero-shot accuracy (%) on downstream tasks and validation perplexity. #weights represent
the number of weight parameters excluding masks bits. The boldface and underline indicate, respec-
tively, the best and second-best value per column.

nm #weights PPL↓ ArcE↑ ArcC↑ HS↑ PiQA↑ SciQ↑ WG↑ Avg ↑
SwiMGLU 1 113M 25.0 48.91 19.28 28.25 60.72 69.00 50.20 46.06
SwiMGLU 2 113M 24.5 49.12 19.97 28.49 60.01 70.60 51.53 46.62
SwiMGLU 4 113M 23.9 48.99 20.56 28.49 61.70 69.10 50.04 46.48
SwiMGLU 8 113M 23.5 48.65 20.56 28.63 61.53 68.00 51.54 46.49
SwiMGLU 16 113M 23.3 48.15 21.08 28.63 61.59 68.50 50.91 46.47

Table 15: Two-shot accuracy (%) on downstream tasks and validation perplexity. #weights represent
the number of weight parameters excluding masks bits. The boldface and underline indicate, respec-
tively, the best and second-best value per column.

nm #weights PPL↓ ArcE↑ ArcC↑ HS↑ PiQA↑ SciQ↑ WG↑ Avg ↑
SwiMGLU 1 113M 25.0 48.48 19.03 28.16 60.45 61.40 50.75 44.71
SwiMGLU 2 113M 24.5 49.62 21.42 28.55 60.39 62.50 51.14 45.60
SwiMGLU 4 113M 23.9 49.41 21.16 28.61 62.51 66.10 50.59 46.40
SwiMGLU 8 113M 23.5 52.02 19.62 28.54 62.08 66.80 51.38 46.74
SwiMGLU 16 113M 23.3 50.76 21.08 28.66 61.70 66.90 52.25 46.89

B.4 Scaling nm to 16

We investigate the impact of increasing the number of masks nm up to 16. As shown in Figure 12,
scaling nm leads to steady improvements in both training loss and perplexity. However, the benefit
diminishes beyond nm = 4, and the gains from nm = 8 to nm = 16 are marginal.

Downstream Evaluation. Tables 14 and 15 report zero-shot and two-shot accuracy across different
values of nm. The nm = 16 setting achieves the best average accuracy, but the improvements over
nm = 4 and nm = 8 are small. These results suggest that increasing the number of complementary
masks helps, but overly large mask sets yield diminishing returns.

B.5 Partial Mask Ablation

In the standard single-mask MGLU layer (Eq. 2), the gate and value streams are computed from
complementary subspaces of a shared weight matrix W defined by binary masks M and M . To
assess the necessity of these masks, we introduce three ablation variants that remove the masks from
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Figure 13: Training loss and perplexity for mask-ablation variants. All ablation variants—No
Gate Mask, No Value Mask, and No Masks—converge to higher loss and perplexity compared to
the fully masked MGLU baseline, highlighting the necessity of maintaining complementary mask-
defined subspaces.

gate, value, or both streams:

No Gate Mask (Dense Gate) : hNG(x) = g
(
xW

)
⊙

(
x(M ⊙W )

)
, (7)

No Value Mask (Dense Value) : hNV(x) = g
(
x(M ⊙W )

)
⊙
(
xW

)
, (8)

No Masks (Fully Shared) : hNM(x) = g
(
xW

)
⊙

(
xW

)
. (9)

These variants maintain the multiplicative gate-value interaction characteristic of the MGLU architec-
ture while systematically testing the significance of the mask-defined complementary subspaces.

Training Curves. Figure 13 compares training loss and validation perplexity for these mask-ablation
variants in the small model setting. All ablation variants (No Gate Mask, No Value Mask, and No
Masks) show slower convergence and higher final loss compared to the fully masked baseline. These
results highlight the importance of distinct, complementary subspaces defined by masks for optimal
MGLU performance.

C Mask Distribution

To understand how the model allocates capacity when multiple masks are learned, we measure the
fraction of rows in the shared projection matrix W that each mask devotes to the gate pathway (higher
values indicate more gate parameters; the remainder are routed to the value pathway). Figure 14 plots
this layer-wise gate ratio for models trained with nm = 1, 2, and 4.

All configurations exhibit a shallow U-shape: gate capacity is largest in the first layer, reaches a
minimum around the middle of the network, and rises again toward the top. Because all masks
share the same underlying weight matrix, their ability to partition rows adaptively provides a weight-
efficient means of balancing gate and value capacity across depth—one that would be impractical
with independently parameterized experts.

D PyTorch Implementation of MGLU

PyTorch implementations of the MGLU layer used for training are provided in Algorithm 2.
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Figure 14: Layer-wise gate allocation for learned masks.

Algorithm 2 PyTorch-Style Implementation of MGLU (nm = 1).

class MGLU(nn.Linear):
def __init__(self, in_features, out_features):

super(MGLU, self).__init__(in_features, out_features, False)
self.register_parameter(

"mask", nn.Parameter(0.01 * torch.randn(out_features, in_features), requires_grad=True)
)

# convert mask to binary by straight-through estimator
def ste_mask(self, soft_mask):

hard_mask = (soft_mask > 0).to(soft_mask.dtype)
hard_mask = (hard_mask - soft_mask).detach() + soft_mask
return hard_mask

def forward(self, x):
hard_mask = self.ste_mask(self.mask)
# compute complementary output: e1, e2
e1 = F.linear(x, self.weight * hard_mask)
e2 = F.linear(x, self.weight * (1.0 - hard_mask))
return e1, e2

E Efficient Kernel Implementation

A straightforward PyTorch implementation of a masked-GLU (MGLU) layer must (i) load the
weight matrix from HBM multiple times—once for every mask bit—and (ii) launch several sepa-
rate matmul + activation operations. Because each extra load traverses the bandwidth-limited
HBM↔SRAM link, such code quickly becomes memory-bound. By fusing the entire computation
into a single CUDA kernel we touch each weight exactly once, keep partial results in registers, and
remove almost all redundant global-memory traffic.

Implementation Details. Algorithm 3 shows the memory-access pattern and compute loop for the
simplest MGLU case, nm = N_MASKS. Each thread block is launched with coordinates (row, chunk)
so that it processes one output row and one K-slice at a time. Two FP16 weights and activations are
fetched together as a single __half2 load, converted once to float2, and kept in registers for the
entire multiply–accumulate step. The binary masks are packed eight bits per int8; testing the active
bit yields a 0/1 scalar that is multiplied into the product. Both the ungated sum and each gated sum
accumulate only in registers; after the loop a warp-level shuffle reduces these partials and a single
atomic write per row sends the result to HBM.

Head-room on Hopper. Although the kernel already eliminates almost all redundant global-memory
traffic, it deliberately avoids Hopper-specific optimisations such as cp.async and Tensor Memory
Accelerator (TMA). Incorporating those features could conservatively deliver an additional 1.2–1.3×
speed-up on server-grade H100 GPUs—an avenue we leave to future work.

Latency Comparison. In Tables 16 and 17, we report the execution latency of our kernel versus
a naïve Torch implementation on RTX 5090 and H100 GPUs, respectively; Tables 18 and 19 then
compare our kernel against the standard GLU implementation on the same devices.
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Algorithm 3 Simplified CUDA Implementation of MGLU (nm = N_MASKS).

__global__ void mv_splitk_masks_kernel(
const __half* __restrict__ A, // [M x N], row-major
const __half* __restrict__ x, // [N]
const int8_t* __restrict__ mask, // [M x N],
float* __restrict__ y, // masked outputs
int M, int N, int split_k

) {
int row = blockIdx.x; int chunk = blockIdx.y;
if (row >= M || chunk >= split_k) return;

// compute [start,end) of this K-chunk
int chunk_size = (N + split_k - 1) / split_k;
int start = chunk * chunk_size; int end = min(start + chunk_size, N);
int row_off = row * N;
int idx = start + threadIdx.x * 2; int stride = blockDim.x * 2;

float total = 0.0f; float msum[N_MASKS * 2] = {0.0f, 0.0f, ...};
for (; idx + 1 < end; idx += stride) {

__half2 a2 = *reinterpret_cast<const __half2*>(&A[row_off + idx]);
__half2 x2 = *reinterpret_cast<const __half2*>(&x[idx]);
float2 af = __half22float2(a2);
float2 xf = __half22float2(x2);
float2 prod = { af.x*xf.x, af.y*xf.y };
total += prod.x + prod.y;

int8_t m0 = __ldg(&mask[row_off + idx]);
int8_t m1 = __ldg(&mask[row_off + idx+1]);
unsigned int b0 = (unsigned int)m0;
unsigned int b1 = (unsigned int)m1;
#pragma unroll
for (int b = 0; b < N_MASKS; ++b) {

float mb0 = float((b0 >> b) & 1u); float mb1 = float((b1 >> b) & 1u);
if (b0 & (1u << b)) msum[b] += prod.x; if (b1 & (1u << b)) msum[b] += prod.y;

}
}
// reduce and write to HBM.

Table 16: MGLU latency and speed-ups. Torch MGLU is the naïve nn.Linear implementation on
an RTX 5090 GPU; higher ratios mean faster custom kernels.

nm h d CUDA (ms) Triton (ms) Torch (ms) Torch/CUDA Torch/Triton

1 8192 2048 0.0202 0.0516 0.0715 3.54× 1.39×
2 8192 2048 0.0210 0.0533 0.1358 6.47× 2.55×
4 8192 2048 0.0217 0.0606 0.2715 12.51× 4.48×
8 8192 2048 0.0265 0.0834 0.5210 19.66× 6.25×
1 14336 4096 0.1166 0.1342 0.3289 2.82× 2.45×
2 14336 4096 0.1169 0.1381 0.6001 5.13× 4.35×
4 14336 4096 0.1186 0.1454 1.1426 9.63× 7.86×
8 14336 4096 0.1229 0.1990 2.2172 18.04× 11.14×

Table 17: MGLU latency and speed-ups. Torch MGLU is the naïve nn.Linear implementation on a
H100 GPU; higher ratios mean faster custom kernels.

nm h d CUDA (ms) Triton (ms) Torch (ms) Torch/CUDA Torch/Triton

1 8192 2048 0.0395 0.0639 0.1296 3.28× 2.03×
2 8192 2048 0.0409 0.0679 0.2213 5.41× 3.26×
4 8192 2048 0.0428 0.0810 0.4117 9.62× 5.08×
8 8192 2048 0.0483 0.1294 0.7910 16.38× 6.11×
1 14336 4096 0.1044 0.1191 0.3896 3.73× 3.27×
2 14336 4096 0.1067 0.1239 0.7080 6.64× 5.71×
4 14336 4096 0.1110 0.1608 1.3454 12.12× 8.37×
8 14336 4096 0.1215 0.3202 2.6354 21.68× 8.23×
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Table 18: CUDA MGLU latency and speed-ups against the standard PyTorch GLU baseline (no
masking) on an RTX 5090 GPU. Lower latency and higher speed-up are better.

nm h d CUDA MGLU (ms) Torch GLU GLU/CUDA

1 8192 2048 0.0202 0.0306 1.51×
2 8192 2048 0.0210 0.0306 1.46×
4 8192 2048 0.0217 0.0306 1.41×
8 8192 2048 0.0265 0.0306 1.15×
1 14336 4096 0.1166 0.1530 1.31×
2 14336 4096 0.1169 0.1530 1.31×
4 14336 4096 0.1186 0.1530 1.29×
8 14336 4096 0.1229 0.1530 1.24×

Table 19: CUDA MGLU latency and speed-ups against the standard PyTorch GLU baseline (no
masking) on a H100 GPU. Lower latency and higher speed-up are better.

nm h d CUDA MGLU (ms) Torch GLU GLU/CUDA

1 8192 2048 0.0395 0.0485 1.23×
2 8192 2048 0.0409 0.0485 1.19×
4 8192 2048 0.0428 0.0485 1.13×
8 8192 2048 0.0483 0.0485 1.00×
1 14336 4096 0.1044 0.1215 1.16×
2 14336 4096 0.1067 0.1215 1.14×
4 14336 4096 0.1110 0.1215 1.09×
8 14336 4096 0.1215 0.1215 1.00×

F Broader Impacts

The method proposed in this paper will not lead to negative societal impact. By reducing memory-
bandwidth pressure and per-token latency, it cuts the energy consumption of large-language-model
inference and therefore lowers carbon emissions. These efficiency gains also make advanced language
capabilities viable on commodity and edge hardware, broadening access while trimming operational
costs.
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