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ABSTRACT

Instruction tuning has been demonstrated that could significantly improve the
zero-shot generalization capability to unseen tasks by an apparent margin. By
incorporating additional context (e.g., task definition, examples) during the fine-
tuning process, Large Language Models (LLMs) achieved much higher perfor-
mance than before. However, recent work reported that delusive task examples
can achieve almost the same performance as correct task examples, indicating the
input-label correspondence is less important than previously thought. Intrigued
by this counter-intuitive observation, we suspect models have the same illusion of
competence as humans. Therefore, we propose a novel method called TADIS that
steers LLMs for Deep-Thinking about demonstration examples instead of merely
seeing. To alleviate the illusion of competence of models, we first ask the model
to verify the correctness of shown examples. Then, using the verification results
as conditions to elicit models for a better answer. Our experimental results show
that TADIS consistently outperforms competitive baselines on in-domain and out-
domain tasks (improving 2.79 and 4.03 average ROUGLE-L on out-domain and
in-domain datasets, respectively). Despite the presence of generated examples
(not all of the thinking labels are accurate), TADIS can notably enhance perfor-
mance in zero-shot and few-shot settings. This also suggests that our approach
can be adopted on a large scale to improve the instruction following capabilities
of models without any manual labor. Moreover, we construct three types of think-
ing labels with different model sizes and find that small models learn from the
format of TADIS but larger models can be steered for Deep-Thinking.

1 INTRODUCTION

Recently, instruction tuning (IT) has attracted much attention in the NLP community, which has
shown effectiveness in improving the zero-shot generalization capability and gradually boosting
performance on unseen tasks as the number of training tasks increases (Chung et al., 2022; Ouyang
et al., 2022; Sanh et al., 2022; Taori et al., 2023). Researchers have explored efficient approaches
to generate instructions (Wang et al., 2022; 2023; Xu et al., 2023), resulting in dozens of powerful
large language models (LLMs) (Ouyang et al., 2022; Sanh et al., 2022; Chung et al., 2022; Taori
et al., 2023). However, LLMs still struggle to follow the instruction precisely in some scenarios (Li
et al., 2023; AlShikh et al., 2023), which hinders the applications and alignment of LLMs.

When applying instruction tuning with examples on LLMs, previous work provides either all pos-
itive examples (Ouyang et al., 2022) or specified positive/negative examples (Wang et al., 2022).
SuperNI (Wang et al., 2022) adopted task definition + positive examples + negative examples for-
mat to facilitate the instruction understanding, which achieves significant improvement compared
with the zero-shot setting. However, Kung & Peng (2023) found that delusive task examples (i.e.,
have correct input-output formats but incorrect input-output mappings) could also achieve almost
the same performance as correct task examples. This conclusion reminds us of a well-known cogni-
tive bias in psychology, called illusion of competence (Kruger & Dunning, 1999): an illusion of
competence occurs when someone believes they have learned something, but they have not. For
example, a student understands the solution for one problem when the teacher explains. However,
he may fail to solve the same problem after a few days. We suspect models have the same illusion
of competence as humans that they tend to merely learn the format instead of thinking when the cor-
rectness of examples is explicitly presented. Motivated by this, we introduce TADIS (Think About
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Demonstrations Instead of merely Seeing), a novel method to steer models for thinking with clas-
sifying rather than just seeing. In this way, models are encouraged to learn the difference between
positive and negative examples but not only the surface format. The schematic of our proposed
method is illustrated in Figure 1. Specifically, we first replace the correctness of examples with
only ordinal numbers (i.e., example 1 and example 2) and then the model is expected to predict
the correctness of provided examples. Ultimately the model uses previous thinking and actions as
conditions to elicit a better answer.

Extensive experiments show the effectiveness of TADIS in zero-shot and few-shot settings, outper-
forming baselines with 2.79 and 4.02 average ROUGLE-L on out-domain and in-domain datasets
respectively. When positive or negative examples are unavailable for datasets other than SuperNI,
we evaluate the performance with generated examples by Self-instruct (Wang et al., 2023). In this
case, we observe that TADIS still consistently surpasses traditional methods in zero-shot and few-
shot settings, which indicates the potential of TADIS as a better instruction tuning strategy even on
a large scale without any manual labor. Moreover, we also analyze the performance of TADIS with
different model sizes (770M and 3B). The results indicate that small models learn from the format
of provided examples, while large models can be steered for careful thinking.

Our contributions are summarized as follows

• We propose a novel method called TADIS to steer models for thinking about demonstration
examples instead of merely seeing. TADIS outperforms competitive baseline consistently
across in-domain and out-domain datasets.

• TADIS can be combined with other methods of generating instruction-tuning data to fur-
ther improve the model’s instruction-following capabilities without any manual labor. The
effectiveness of TADIS with generated examples shows that our method can be adopted on
a large scale scenario. 1

2 RELATED WORK

2.1 INSTRUCTION-TUNING

Instruction-tuning, a method fine-tuning large language models on multi-tasks with meta-instruction
ahead (Wei et al., 2022). The effectiveness of instruction tuning has been proved in many prior
works, which significantly improves the zero-shot generalization capability by a huge margin and
gradually improves on unseen tasks as the number of training tasks increases. (Chung et al., 2022;
Ouyang et al., 2022; Sanh et al., 2022; Taori et al., 2023) Most existing work focuses on data gen-
eration, data mixing and data format of instruction tuning. Self-instruct (Wang et al., 2023), a
semi-automated process for instruction-tuning the pretrained LM using instructional signals from
the model itself. Evol-Instruct (Xu et al., 2023) creates large amounts of instruction data with vary-
ing levels of complexity, which starts with an initial set of instructions and then asks LLMs to
rewrite them step by step into more complex instructions. Mukherjee et al. (2023) develop Orca
model, which captures not only surface-level responses from LLMs but also complex reasoning sig-
nals. Specifically, they guided LLMs to respond to reasoning intensive FLAN instructions with a
series of predefined system prompts (e.g., “think step-by-step and justify your response”), spurring
LLMs (e.g., GPT4). Wang et al. (2022) introduce SuperNI, a benchmark that covers 76 distinct
task types of 1616 diverse NLP tasks, including but not limited to classification, extraction, infill-
ing, sequence tagging, text rewriting, and text composition. Each task contains a task definition
(a high-level description of the input and output of the task) and demonstration examples (some
input-output examples for the task. e.g., positive and negative examples.). Cao et al. (2023) propose
Instruct Mining, a linear rule for evaluating instruction-following data quality. Wu et al. (2023) pro-
pose a step-by-step instructions training method, which can help language models decompose the
tasks and provide specific procedures for completing the target tasks. Chen et al. (2023b) finetuned
the LLaMA on only 9k high-quality data filtered from the 52k Alpaca data by ChatGPT judging,
which significantly outperforms the original Alpaca. Yin et al. (2023) conducted a detailed ablation
analysis to understand which parts of a task definition are most important and found that output con-
tent is more important than input content, especially label information. However, these works don’t

1Our code and models will be made public.
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pay attention to demonstration examples in the instruction and even ignore the example information
directly. We regard this tactic as an information loss. Probably the most relevant work is Kung &
Peng (2023), they found that models trained with delusive task examples can achieve almost the
same performance as correct task examples, which indicates the model learns the input-output for-
mat instead of input-output mapping. This conclusion is counter-intuitive for humans. We suppose
that is because the model tends to merely see instead of thinking when the correctness of examples
is explicitly presented. Therefore, we propose TADIS method to steer the model for Deep-Thinking
about provided examples. Our experiments have proved our previous surmise (see Section 4.2).

2.2 IN-CONTEXT LEARNING

In-context learning (ICL), a prompt method without training, encourages the language models to
learn from a few input-output examples (Liu et al., 2022; Rubin et al., 2022; Min et al., 2022a).
Inspired by the promising performance of ICL, many studies have explored how to further improve
standard ICL. Min et al. (2022b) and Chen et al. (2022) introduce meta-learning to better adapt LMs
to ICL. Zhao et al. (2021) estimate models’ bias towards each answer and then develop contextual
calibration to adjust the model’s output probabilities which not only improves accuracy but also
reduces variance. Kim et al. (2022) propose SG-ICL that generates demonstration examples for
in-context learning from LM itself instead of manual labeling. Active Prompting (Diao et al., 2023)
selects the most uncertain questions as demonstration examples to further improve performance.
Min et al. (2022c) find that replacing gold labels with random labels only marginally hurts perfor-
mance, which indicates models learn the format rather than input label pairs. Yoo et al. (2022) revisit
previous findings of Min et al. (2022c) and introduce novel metrics to prove that the input-label cor-
respondence plays a more significant role in contextual demonstration than previously considered.
However, most of these methods focus on the inference stage and explicitly show the correctness
of the demonstration examples, which may result in mere seeing rather than learning. Our work
focuses on the training stage. Inspired by Yoo et al. (2022), we conjecture that facilitating the model
to learn the input-output mapping in the training stage is also important.

3 METHOD

The proposed TADIS method aims to encourage the model to generate answers based on the
thoughts about few-shot examples instead of the mere observation. Specifically, the model is spurred
to think about the correctness of the provided examples (i.e., positive or negative) first and then
elicited for answering with the thinking as conditions. The model is expected to better digest the
provided examples through a simpler classification task, which in turn helps for a better answer.

For each given task, we denote the task definition as ST . Following SuperNI, each task has a
training dataset D = {(X,Y )} and an example pool consisting of positive and negative examples
SE = {(Xe, Y e, Le)}. For each input-output instance pair (X,Y ) in D, we randomly select k
examples from the example pool as Sk

E = {(Xe
i , Y

e
i , L

e
i ), i ∈ [1, k]}. The i-th example consists of

the input Xe
i , the output Y e

i and its correctness label Le
i (i.e., positive or negative). Unlike SuperNI,

we replace the correctness label of examples with ordinal numbers in the prompt and split Sk
E into

two parts Mk
E and Rk

E . Here, we call Mk
E as masked examples and Mk

E = {(Xe
i , Y

e
i ), i ∈ [1, k]}.

Rk
e is the corresponding correctness thinking results which are created from the correctness labels

{Le
i , i ∈ [1, k]} using a sentence template (as shown in Figure 1).

TADIS consists of two stages: Thinking and Answering.

Thinking During the thinking stage, the model will predict the correctness of each provided ex-
ample based on the task description. We use the next token prediction as the training objective to
facilitate the learning from provided examples. Formally, the loss can be represented as:

Lthink = −
∑

(X,Y )∈D

log(P (Rk
E , AE |ST , X,Mk

E ; θ)). (1)

Besides the correctness prediction, the model is also expected to generate the corresponding actions
AE after thinking (e.g., “I should learn from correct examples and avoid mistakes in the wrong
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Answering ……

Thinking ……
Definition: In this task, you need to output 

“Yes” if the given number is a prime number 

otherwise output “No” ……

Example 1:

Input: 7 ; Output: Yes

Example 2:

Input: 12 ; Output: Yes

Task A

Definition: This task is about reading the given 

passage and construct a question about the 

information present in the passage ……

Example 1: …   ;  Example 2: …

Task B

Definition: In this task you are given a list of 

numbers and you need to find the average of 

each two consecutive values ……

Example 1: …   ;  Example 2: …

Task C

…
…

Input: 8  

Output: No

Input: The French and Indian War 

was the North American ……

Output: Who fought in the French 

and Indian war?

Input: [-10, 7]

Output: [-1.5]

Example 1 is correct and example 2 is wrong.

I should learn from correct examples and 

avoid these wrong examples.

Figure 1: The overview of TADIS. TADIS consists of two stages: Thinking and Answering. (1)
Thinking: Encouraging the model to judge the correctness of the examples to steer it for Deep-
Thinking. (2) Answering: Using the thinking as conditions to elicit the model for a better answer.
Two stages are executed sequentially rather than separately.

examples.”). The action generation encourages the model to take the corresponding actions for
better answers. We conduct further exploration and analysis in Section 4.3.

Answering Based on the thinking result Rk
E and the corresponding action AE , the model contin-

ues to generate the answer Y for instance input X . Similar with the thinking stage, the training loss
of the next token prediction task is calculated as

Lanswer = −
∑

(X,Y )∈D

log(P (Y |ST , X,Mk
E , R

k
E , AE ; θ)). (2)

The overall training loss is the sum of these two losses L = Lthink + Lanswer.

During inference, the model generates the answer after its thinking on the provided examples:

P (Y |ST , X,Mk
E) =

∑
Rk

E ,AE

P (Rk
E , AE |ST , X,Mk

E)︸ ︷︷ ︸
Thinking

×P (Y |ST , X,Mk
E , R

k
E , AE)︸ ︷︷ ︸

Answering

, (3)

It is prohibitively expensive to compute the sums due to the exponential search space of the thinking.
In practice, we use the best thinking predicted by the model for approximation.

4 EXPERIMENTS AND ANALYSES

4.1 EXPERIMENT SETTING

Table 1: Statistics of our training, held-in, and
held-out datasets.

Statistics Training datasets Held-In Held-Out

# Total Tasks 756 756 119

# Total instances 45360 11340 11900

# Avg examples 1.83 1.79 1.75

Dataset We conduct experiments on the
SuperNI-V2 (Wang et al., 2022), the largest
open-source instruction dataset, including over
800+ English tasks with diverse task types. For
each task, it contains Task Definition, Posi-
tive Examples, Negative Examples and Expla-
nations. We use the same split of the dataset
as that of SuperNI: training set has 756 di-
verse tasks and test set contains 119 unseen out-
domain tasks as held-out. Meanwhile, we also
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In this task you will be given a list of numbers. 

You should remove any number that is not an 

integer (whole number). If every number is 

not an whole number then an empty list ("[]") 

should be returned. Otherwise, answer with 

the list of whole numbers separated by comma 

inside brackets.

Definition:

Input: [73.059, 7, 10.659, 18.459, 11]

Output: [7, 11]

Positive Example

Input: [2, 0, 3.667, 9, -0.527]

Output: [3.667, -0.527]

Negative Example

⚫ Input: [-37, -37.948, 15]

⚫ Output:[-37, -37.948, 15]        

Evaluation Instance

Traditional Method

SuperNI

In this task you will be given a list of numbers. 

You should remove any number that is not an 

integer (whole number). If every number is 

not an whole number then an empty list ("[]") 

should be returned. Otherwise, answer with 

the list of whole numbers separated by comma 

inside brackets.

Definition:

Input: [73.059, 7, 10.659, 18.459, 11]

Output: [7, 11]

Example 1

Input: [2, 0, 3.667, 9, -0.527]

Output: [3.667, -0.527]

Example 2

⚫ Input: [-37, -37.948, 15]

⚫ Output:[-37, 15]

Evaluation Instance

EoT

Example 1 is correct and example 2 is wrong.

I should learn from correct examples and 

avoid these wrong examples.

Thinking… 

 ✓

T5

Figure 2: An example of comparing TADIS and traditional methods from T5-xl-LM-Adapt.
Thinking before answering can elicit the model to the correct answer. However, the model cannot
follow the instruction without Deep-Thinking.

construct a held-in dataset that contains the same tasks as the training set but with different evalu-
ation instances to prevent leaking. As the performance saturates when the number of instances per
task increases (Wang et al., 2022), we randomly select 60 instances for each task in the training set
and 100 instances for each out-domain task in the held-out test set. For held-in dataset, we randomly
select 15 instances for each in-domain task to maintain a similar number to the held-out dataset. The
statistics of our training, held-in and held-out datasets are presented in Table 1.

Baseline and Metrics We utilize T5-LM-Adapt as our backbone model following Kung &
Peng (2023). Specifically, we explore TADIS on two different sizes of T5-LM-Adapt, i.e.,
T5-Large-lm-adapt (770M parameters) and T5-XL-lm-adapt (3B parameters). During
the inference phase, we follow Wang et al. (2022) to sample from model outputs via greedy decod-
ing (i.e., set temperature to 0) to obtain the most confident answers. We consider both zero-shot and
few-shot settings in the training and inference phases. For the zero-shot setting, we use Definition
+ evaluation instance as a sample. For the few-shot setting, we use Definition + Positive examples
+ Negative examples + evaluation instance as a sample. Both settings remain the same as that of
SuperNI and we also employ this traditional training format as our baseline. TADIS only has few-
shot setting in the training phase. Due to the diversity of tasks and the open-ended generation nature
of formulation, we adopt ROUGE-L metric for reporting aggregated performance results, which are
observed to correlate well with accuracy for classification tasks and human evaluation (Wang et al.,
2022).

4.2 EXPERIMENTAL RESULTS

To prove the effectiveness of TADIS, we compare the performance of TADIS with SuperNI (zero-
shot) and SuperNI (few-shot) methods on the held-in and held-out datasets, respectively. SuperNI
(zero-shot or few-shot) means the model is trained with zero-shot or few-shot settings. The training
set was kept constant for all three methods except the format. However, we restricted the maxi-
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Table 2: The performance (ROUGE-L) under zero-shot and few-shot settings for three methods on
hold-in and hold-out datasets. Avg RougeL: We calculate the average of ROUGE-L under zero-shot
and few-shot settings. Bold denotes the best result.

Model #Params
Testing Setting →

Training Setting ↓

Held-Out Held-In

Zero-Shot Few-Shot Avg RougeL Zero-Shot Few-Shot Avg RougeL

T5-Large-LM-Adapt 770M

SuperNI(Zero-Shot) 38.016 40.59 39.30 46.22 42.59 44.40

SuperNI(Few-Shot) 33.30 45.08 39.19 43.59 52.96 48.27

TADIS 33.59 46.67 40.13 44.67 53.31 48.99

T5-XL-LM-Adapt 3B

SuperNI(Zero-Shot) 42.89 45.73 44.31 49.95 47.59 48.77

SuperNI(Few-Shot) 38.54 51.08 44.81 41.49 52.96 47.23

TADIS 43.09 52.11 47.60 47.29 55.21 51.25

mum number of provided examples to two for both SuperNI (few-shot) and TADIS. The results are
represented in Table 2. TADIS consistently outperforms SuperNI (zero-shot) and SuperNI (few-
shot) methods on the held-in and held-out datasets. Moreover, the larger the model, the greater the
benefit is. Specifically, for a larger T5-XL-LM-Adapt (3B) model, the performance combined
with TADIS improves by 2.79 and 4.02 average ROUGEL-L in zero-shot and few-shot settings
on held-out and held-in datasets, respectively. The smaller model(T5-Large-LM-Adapt) only
demonstrated a marginal increase of 0.94 and 0.72 average ROUGEL-L improvement. We suppose
that is because larger models have stronger learning capabilities and can benefit more from TADIS
methods. It is also worth noting that TADIS can improve more on held-in than held-out datasets
(4.02 vs 2.79), which shows TADIS can also significantly benefit seen tasks. The model performs
better with TADIS on in-domain tasks since it has learned from the held-in dataset tasks in the
training phase. In the zero-shot inference setting, SuperNI (zero-shot) method achieves the high-
est performance. Nevertheless, the performance drops sharply in the few-shot setting. This occurs
because training and inference are harmoniously aligned, improving performance with consistent
formats. In conclusion, TADIS benefits the performance in both zero-shot and few-shot settings and
achieves the highest average ROUGE-L compared with baselines.

4.3 ANALYSES

Does TADIS steer models for Deep-Thinking or just format learning? To explore whether
TADIS steers the model for Deep-Thinking, we set up three different thinking labels in training:
Ground Truth, Random and Flip.

• Ground-Truth: A standard TADIS that we train the model with true thinking labels.
• Random: We randomly select thinking labels to replace true thinking labels.
• Flip: We flip all thinking labels. For example, thinking: Example 1 is correct and ex-

ample 2 is wrong, we flip it to Example 1 is wrong and example 2 is correct. And the
corresponding actions also need to be flipped.

Table 3 shows the results. In addition to the standard TADIS inference setup that generates thinking
from the model (Generated), we also add these three types of thinking for comparison. We can
observe that the small model achieves almost the same performance on Ground-Truth, Random and
Flip training settings, which suggests TADIS steers model for format learning instead of thinking.
However, for the larger model, the performance consistency decreases when we replace true thinking
labels with random thinking labels. The phenomenon introduces an interesting conclusion: small
model learns the format of TADIS, but TADIS can steer larger model for real Deep-Thinking
and both model sizes benefit from TADIS method. We suppose that the Deep-Thinking may be an
emergent ability for a large model. Meanwhile, for the flip training format, the performance doesn’t
drastically drop as the random training format. We suspect that we actually show the model with
true thinking labels when we flip the labels, as only two thinking labels (i.e., positive and negative)
are used in this case. Furthermore, we notice that the performance doesn’t increase or decrease even
if giving the model ground-truth, flip or random thinking labels for both small and large models
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Table 3: The Performance (ROUGE-L) of TADIS with different thinking labels in the training and
inference stages. We compare four different thinking labels for few-shot examples during inference,
namely, Generated thinking results from the model, Ground-Truth thinking results, Flip thinking
results and Random thinking results.

Model #Params
Testing Setting →

Zero-Shot
Few-Shot

Training Setting ↓ Generated Ground-Truth Flip Random

T5-Large-LM-Adapt 770M

TADIS (Ground-Truth) 33.58 46.66 46.67 46.68 46.72

TADIS (Random) 34.23 46.17 46.10 46.02 46.11

TADIS (Flip) 34.47 46.10 46.07 46.09 46.05

T5-XL-LM-Adapt 3B

TADIS (Ground-Truth) 43.09 52.11 52.17 52.14 52.07

TADIS (Random) 33.52 45.76 46.14 46.02 46.11

TADIS (Flip) 38.95 51.25 51.31 51.29 51.30

in the inference stage, which indicates that TADIS steers the model for Deep-Thinking and format
learning in the training stage rather than the inference stage.

What’s the relationship between judgment accuracy and performance in the training
phase? To further validate that the example verification process could steer model for Deep-
Thinking, we calculate the correctness of judgment and ROUGE-L during the training phase with
T5-XL-LM-Adapt for five epochs. The results are shown in Figure 3. We observe that judgment
accuracy is extremely related to ROUGE-L through the slope. The Pearson correlation coefficient
achieves a high value of 0.98, suggesting judgment accuracy and ROUGE-L are significantly corre-
lated. Overall, the detailed statistics further demonstrate that forcing models to judge the correctness
of provided examples could steer them toward Deep-Thinking.

Figure 3: The linear regression between judgment
accuracy and ROUGE-L. Acc: The correctness
of judgment. ROUGE-L: The performance of
downstream tasks.

Can TADIS still benefit the performance
with generated examples? Considering the
scarcity of negative examples in real ap-
plication scenarios, we explored the per-
formance of TADIS with generated exam-
ples. Specifically, we use Self-instruct (Wang
et al., 2023), a framework for improving the
instruction-following capabilities of pretrained
language models by bootstrapping off their
own generations. We choose the ChatGPT
(gpt-3.5-turbo-0613) as our backbone
LLM to generate new positive and negative ex-
amples for each task. We randomly selected
eight pairs of positive and negative examples
from different tasks to form our few-shot pool.
For each generation, we construct the prompt
with task definition and few-shot to generate
new pairs of positive and negative examples.
To generate diverse examples, we randomly se-
lect four (Chen et al., 2023a) pairs of positive
and negative examples from the pool and shuf-
fle their order. Meanwhile, we also set the tem-
perature to 0.7 to further improve the diversity.
Due to the API cost, we only constructed 5040
training samples (84 different tasks with 60 training samples each). The entire template for generat-
ing new positive and negative examples has shown in the appendix (see Figure 6).

The performance with generated examples has been shown in Table 4. We find that TADIS still
benefits the performance in both zero-shot and few-shot settings with generated examples, which
improve 5.08 and 1.36 averaged ROUGE-L, respectively. However, the smaller model benefits more
than larger model, which seems to be contrary to our previous experimental results. We suspect this
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is because there are only 54% generated samples are valid as Self-instruct reports (Wang et al., 2023).
Therefore, the larger model (3B) only improves the average ROUGE-L by 1.36 as it is misled by
the partial wrong thinking labels. For the smaller model (770M), TADIS tends to induce the model
learning the thinking format to elicit a better answer.

Table 4: The ROUGE-L results with generated
examples by Self-instruct method (ChatGPT as
the backbone; (Wang et al., 2023)) in zero-shot
and few-shot settings on held-out dataset.

Model Size
Testing Setting →

Training Setting ↓
Zero-Shot Few-Shot Avg RougeL

770M
SuperNI(Few-Shot) 23.08 40.54 31.81

TADIS 32.62 41.16 36.89

3B
SuperNI(Few-Shot) 36.38 43.09 39.73

TADIS 37.95 44.23 41.09

Table 5: The ROUGE-L results for different
stages in zero-shot and few-shot settings on
held-out dataset. Separated: divide think-
ing and answering into two independent stages.
Combined: thinking first, answering later.

Model size Stage Zero-Shot Few-Shot Avg RougeL

770M
Separated 40.69 29.11 34.90

Combined 33.58 46.66 40.12

3B
Separated 42.82 43.40 43.11

Combined 43.09 52.11 47.60

Does the thinking and answering stages of TADIS can be separated? Our ultimate goal is to
make the model learn from examples and elicit a better answer. Therefore, we explored whether the
same performance could be achieved by separating the thinking and answering stages of TADIS.
Specifically, we separated a standard TADIS training sample into two sub-samples: evaluation in-
stance (i.e., zero-shot) and the task of judging the correctness of provided examples. (i.e., judge
whether these examples satisfy the requirements of task definition.) A concrete instance is shown
in the appendix (see Figure 4). It’s worth noting that we do not perform judgment tasks for each
example but combine multiple examples together for judgment. This strategy can avoid causing an
imbalance in the number of real tasks and judgment tasks, which could affect the performance of
downstream tasks.

The results are shown in Table 5. We observe consistent performance drops when the thinking and
answering stages are separated, which indicates the necessity of combining thinking and answering.
The performance decreases by 5.22 and 4.49 average ROUGE-L with 770M and 3B model sizes,
respectively. This is not surprising because it’s the same for humans that we also think and then
use the verification results to come up with better answers instead of separating them. Overall,
combining thinking and answering stages can further elicit models for better answers.

Table 6: The performance without actions after think-
ing in TADIS. w/o TA: A standard SuperNI (few-shot)
method without thinking and actions. w/o TR: We
directly remove the text: I should learn from correct
examples and avoid wrong examples

Method Zero-Shot Few-Shot Avg RougeL
TADIS 43.09 52.11 47.60

- w/o TR 41.48 51.29 46.38
(-1.61) (-0.82) (-1.22)

- w/o TA 38.50 51.08 44.81
(-4.59) (-1.03) (-2.79)

Does actions after thinking matter in
TADIS ? We performed ablation exper-
iments to explore the importance of ac-
tions after thinking. Specifically, we di-
rectly remove actions in standard TADIS
(i.e., “I should learn from correct exam-
ples and avoid mistakes in the wrong ex-
amples”). Table 6 depicts the performance
with or without actions. We find that the
performance without actions will drop by
1.61 and 0.82 ROUGE-L in zero-shot and
few-shot settings, respectively, showing the
indispensable of actions after thinking. In
a nutshell, actions and thinking are equally
pivotal in TADIS. Reminding the model of
what actions it should take after thinking
can elicit better answers. When both think-
ing and action are removed (w/o TA) and the correctness labels of the examples are specified in
the prompt, the model in Wang et al. (2022) has lower performance on zero-shot and few-shot set-
tings. Compared with TADIS, its ROUGE-L scores drop by 4.59 and 1.03 in zero-shot and few-shot
settings, respectively.
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Table 7: The performance (ROUGE-L) with different numbers of demonstration examples in zero-
shot and few-shot settings. N pos and M neg: There are N positive examples and M negative
examples in each training sample at most.

Model #Params
Testing Setting →

Training Setting ↓
Zero-Shot Few-Shot Avg RougeL

T5-Large-LM-Adapt 770M

SuperNI(1 pos and 1 neg) 33.30 45.08 39.19

SuperNI(2 pos and 2 neg) 30.75 45.82 38.28

TADIS (1 pos and 1 neg) 33.58 46.66 40.12

TADIS (2 pos and 2 neg) 28.66 45.85 37.26

T5-XL-LM-Adapt 3B

SuperNI(1 pos and 1 neg) 38.54 51.08 44.81

SuperNI(2 pos and 2 neg) 35.72 49.64 42.68

TADIS (1 pos and 1 neg) 43.09 52.11 47.60

TADIS (2 pos and 2 neg) 38.92 51.41 45.17

Do additional examples lead to further learning with TADIS ? Humans can improve their abil-
ity to complete downstream tasks by studying and learning from more demonstration examples.
Therefore, we construct experiments to explore whether more examples lead to better performance.
The results are shown in Table 7. The performance with different examples is extremely different
from what we expected. More examples consistently lead to performance degradation with SuperNI
and TADIS methods in zero-shot and few-shot settings. Actually, this conclusion is consistent with
in-context learning that multiple demonstration examples are not necessarily better than one demon-
stration example (Chen et al., 2023a). Specifically, the 770M and 3B models dropped by 2.9 and
2.4 respectively. We suppose there are two reasons: (1) For the smaller model, more examples lead
to more multiple types which increases the difficulty of learning format. (2) For the larger model,
a pair of positive and negative examples is enough for model to learn the difference between them,
and more examples will distract it. We will further explore the detailed reasons for this phenomenon
in the future.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we propose TADIS, a method that can steer language models for Deep-Thinking about
shown examples to elicit a better answer. The model is expected to learn from the example verifi-
cation process, which encourages the model to have Deep-Thinking of examples instead of merely
seeing. Finally, using the thinking as conditions will elicit models for a better answer. Experimental
results on held-in and held-out datasets in both zero-shot and few-shot settings demonstrate the ef-
fectiveness of TADIS. In our preliminary experiment, TADIS is observed to improve the instruction
tuning performance with examples created with Self-instruct method, which indicates a promising
approach for instruction tuning in more diverse applications. Due to the limitation of computing
resources, we do not experiment with larger models such as LLaMA(Touvron et al., 2023), we will
scale our experiments in the future.

6 LIMITATIONS

The proposed TADIS method requires both positive and negative examples which are not readily
available for many datasets. Although these examples can be created with Self-instruct method, the
generated examples have to be carefully filtered and selected as only 54% generated samples are
valid according to the observations in Wang et al. (2023).

9
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7 REPRODUCIBILITY STATEMENT

The supplementary materials include the training and test data sets used in our experiments (gen-
erated through the SuperNI official code 2) as well as the training code and scripts. We provide a
detailed template for TADIS, Self-instruct and training with separate two Stages in Appendix A.1.
Considering that reproducing results from scratch can be prohibitively expensive, we plan to publish
our experimental results to promote reproducibility.
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A APPENDIX

A.1 DIFFERENT DATA FORMAT

Data Template for TADIS. Our proposed TADIS method takes the task definition, examples and
instance input as the prompt. The model first generates the verification result and corresponding
action of the provided examples, then outputs the reply for the instance input.

Task Definition: {{definition}}
Example 1 -
- Input: {{exp.input}}
- Output: {{exp.output}}
Example 2 -
- Input: {{exp.input}}
- Output: {{exp.output}}
Evaluation Instance -
- Input: {{exp.input}}

Thinking -
- thinking and actions: {{Example 1 is correct/wrong and example 2 is correct/wrong. I
should learn from correct examples and avoid the mistakes in these wrong examples.}}

Answering -
- Output: {{exp.output}}

Figure 4: The data template used for TADIS method.

Data Template Used for Training with Separate Two Stages. When the model is trained with
separate thinking and answering stages (see Does the thinking and answering stages of TADIS
can be separated? in Section 4.3), the model will only verify the correctness of provided examples
in the thinking subtask.

Task Definition: {{definition}}
Example 1 -
- Input: {{exp.input}}
- Output: {{exp.output}}
Example 2 -
- Input: {{exp.input}}
- Output: {{exp.output}}
Judge whether each example conforms to the task definition.
Prediction: {{Example 1 is correct/wrong and example 2 is correct/wrong.}}

Figure 5: The data template used for training with two separated stages.
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Data Template for Generating Examples with Self-Instruct. When generating positive and neg-
ative examples with Self-instruct method, we randomly select four pairs of positive and negative
examples from the example pool as in-context learning examples. The ChatGPT will generate a
positive and negative example pair based on the prompt. We use the data template as follows:

Few-Shot:
Task Definition: {{definition}}
Positive Example
- Input: {{exp.input}}
- Output: {{exp.output}}
Negitave Example
- Input: {{exp.input}}
- Output: {{exp.output}}
......

Generated Examples:
Positive Example
- Input: {{gen.input}}
- Output: {{gen.output}}
Negitave Example
- Input: {{gen.input}}
- Output: {{gen.output}}

Figure 6: The data template for creating positive and negative examples with Self-instruct method.

A.2 TRAINING DETAILS

For both the T5-Large-LM-Adapt (770M) and T5-XL-LM-Adapt (3B) models, we finetuned
them for five epochs, with batch size as 64. We use Adam optimizer with β1 = 0.9, β2 = 0.999.
The linear learning rate scheduler starts from 2 × 10−4, then decays to 0. We tried to use the
commonly used learning rate 2× 10−5, but found that the model did not converge well. Therefore,
we use a large learning rate Lr = 2 × 10−4 which is also same as that in Kung & Peng (2023).
All of experiments are run on 8 × 4090 GPUs with 24G memory. The models are trained with
Huggingface Transformers toolkit. The maximum input length is 1024 and the maximum
output length is 128. This reproduces the results in Wang et al. (2022).
For the inference of TADIS in the zero-shot setting, although no examples are provided, we ran-
domly add the thinking results about the imagined examples to align with the format used during
training. We apply position shuffling and multiple example sampling strategies to prevent the model
from directly memorizing examples instead of thinking about them. Specifically, we construct four
different types of input data: (1) Without examples: A training sample without any example. (2)
Only negative examples: A training sample with only negative examples.(3) Only positive exam-
ples: A training sample with only positive examples.(4) Mixing examples: A training sample with
both positive and negative examples.
During training, we sample examples to enable the overall input data to meet with the maximum in-
put length limit. Specifically, for each input data sample, we first add task definition and evaluation
instance. Then add example 1 and example 2 respectively. If the number of tokens is greater than
max length at any stage, we will stop. In this way, we could obtain multiple types of provided ex-
amples. The proportions of ‘without examples’, ‘only positive examples’, ‘only negative examples’
and ‘mixing examples’ are 2.9%, 6.3%, 0.5% and 90.2% respectively in our constructed training
data.
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