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Abstract

Plasma-based etching and thin-film processing rely on high plasma densities and
independent ion energy control to achieve high etching rates and anisotropy. How-
ever, accurately predicting spatially varying etching rates remains challenging.
Physics-based models (PBMs) can capture the complex plasma dynamics, but
they are computationally prohibitive due to the need to solve large systems of
partial differential equations, especially when optimization tasks require repeated
evaluations. Moreover, plasma processes depend strongly on gas chemistry, reactor
configurations, and operating conditions, requiring separate PBMs for each sce-
nario. The complexity is further amplified in the case of gas mixtures. To address
this challenge, we propose an architecture that leverages pre-trained single-element
neural network predictors, coupled through an inductively learned Graph Neural
Network, GraphSAGE, to predict etching rates of mixtures. GraphSAGE enables
inference on unseen graphs without retraining, making it possible to extend pre-
dictions to new mixtures using only the pool of pre-trained single-element models.
We evaluate our approach on a two-gas argon-oxygen mixture, demonstrating
promising accuracy and generalization capabilities.
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Informatics and Telecommunications, NCSR “Demokritos”, Ag. Paraskevi, Greece
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1 Introduction

Plasma, often described as the fourth state of matter, consists of charged and neutral particles that
are electrically quasi-neutral on average. Low-pressure plasmas are widely used in semiconductor
manufacturing for substrate etching and thin-film deposition, accounting for roughly 40–45% of
process steps in device fabrication [1]. In plasma etching, electromagnetic fields generate reactive
species in the reactor bulk that interact with the substrate; a key performance requirement is etching
uniformity across the wafer.

Despite significant advances, predicting local etching rates remains a challenge due to the coupled
effects of electromagnetic fields, plasma transport, and volumetric and surface chemistry. Accurate
prediction is essential for optimizing plasma processes and understanding how operating parameters—
such as power, pressure, gas composition, and substrate temperature—influence etching outcomes.

Physics-based models (PBMs) provide detailed descriptions of these interactions by solving coupled
sets of partial differential equations for mass, energy, momentum, and electromagnetic fields. How-
ever, their computational cost is prohibitive, especially in optimization workflows where multiple
iterations are required [2]. Surrogate models based on machine learning (ML) offer an attractive
alternative, mapping operating conditions directly to substrate-scale etching rates and enabling
orders-of-magnitude speedups.

In practice, plasma etching involves diverse gas chemistries, reactor designs, and process conditions.
Each combination requires a separate PBM and dataset to train an ML predictor, which becomes
increasingly expensive for mixtures of gases. By contrast, single-gas PBMs are significantly sim-
pler and less costly to generate. The difference in PBM runtimes, where single elements require
significantly less computation, becomes increasingly pronounced as mixtures involve more elements.
This motivates our work: complex mixtures demand longer runtimes and greater modeling effort
for PBMs. Since the pool of single elements is finite, we propose running single-element PBMs
individually and employing a more abstract structure to decouple their interactions. In the context
of ML pipelines, this translates to a framework that leverages pre-trained single-gas predictors and
learns their interactions rather than treating each gas mixture as a new system from scratch.

Graph Neural Networks (GNNs) are a natural fit for this problem. Individual single-gas predictors
can be represented as nodes in a graph, while edges capture their interactions and underlying
chemical kinetics. The GNN then learns mixture-level embeddings that map to etching rates. Unlike
transductive GNNs such as GCN [3] and GAT [4], which require all nodes to be seen during training,
GraphSAGE [5] is inductive: it learns functions that generate embeddings from local neighborhoods,
enabling generalization to unseen gases and mixtures.

In this work, we propose a generalizable architecture that integrates pre-trained single-gas neural
predictors with GraphSAGE to estimate etching rates of mixtures. This inductive framework allows
both inference on unseen mixtures and incorporation of new gases without retraining on the entire
dataset. We validate our approach on a two-gas system—oxygen (O2) and argon (Ar)—etching a
Poly(methyl methacrylate) (PMMA) blanket samples in a low-pressure inductively coupled plasma
reactor. Compared against a feedforward neural network (FNN) baseline, our method achieves
superior accuracy and shows strong potential for scalable mixture prediction.

2 Experimental Setup

2.1 Data generation

This work investigates plasma etching of PMMA blanket samples in the Gaseous Electronics Con-
ference (GEC) reference reactor operating in inductively coupled plasma (ICP) mode [6]. The
axisymmetric physics-based model (PBM) solves species and electron mass balances, electron energy,
momentum, and Poisson/Ampère equations, with coil power and chamber pressure as inputs and
etching rates as outputs. Etching is modeled for pure O2, pure Ar, and their mixtures. Pure O2 etching
involves ion-enhanced chemistry with 156 reactions and six ion species, while pure Ar etching is
dominated by physical sputtering, with 40 reactions and one ion species [6, 7, 8]. In Ar/O2 mixtures,
etching arises from both mechanisms: oxygen adsorption followed by ion-enhanced reactions releas-
ing volatile by-products, and argon-driven sputtering [6, 7, 9, 10]. The mixture reaction set includes
209 reactions and 17 species (7 ions). Operating conditions span pressures of 10–70 mTorr, powers
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Figure 1: Proposed architecture and data pipeline. Mixture power and pressure inputs are processed
by pre-trained single-chemistry networks, and their outputs are combined with gas (element) fractions
to form node features in a complete graph. The graph is processed by a GraphSAGE layer followed
by a linear layer to predict the etching rates of the mixture.

FNN features GraphSAGE
Testgrid Test thresh

Output Layer 0.81 0.93
Last Hidden Layer 0.95 0.98
Second to Last Hidden Layer 0.94 0.95
Only First Hidden Layer 0.85 0.97

Table 1: Performance of GraphSAGE models on the two test set configurations, evaluated across four
different sets of characteristics. The evaluation metric is R2.

of 50–2000 W, and Ar fraction in the mixture of 0.01–0.96, yielding etch rates of 0.1–0.4 µm/min
(O2) and 10−4– 0.089 µm/min (Ar). Typical PBM runtimes are ∼30 min (Ar), ∼45 min (O2), and
∼60 min (mixtures).2

2.2 Single gas neural networks

For each plasma chemistry (O2, Ar), 4000 data points were generated through PBM simulations and
split 60-20-20% into training, validation, and testing sets. The test data were drawn from a distinct
input subspace to ensure fair evaluation. The predictive models are simple FNNs with two inputs
(coil power, pressure) and ten outputs, corresponding to etching rates at radial wafer positions. Each
FNN consists of 3 hidden layers and an output layer. The O2 and Ar networks achieve R2 scores of
0.84 and 0.96, respectively, reflecting the higher complexity of the O2 chemistry.

2.3 Mixture gas neural networks

2.3.1 Baseline

For the Ar/O2 mixture, 4758 PBM data points are used with the same training regime as the single-
element NNs. A FNN with inputs power, pressure, and xAr, the Ar fraction in the mixture, is
employed as baseline for etching-rate prediction. Two testing strategies are considered: (i) Testgrid,
where the top 25% of power and pressure values are withheld for testing (4281 train, 297 test), and (ii)
Testthresh, where only cases with xAr > 0.2 are used for training (3963 train, 615 test). The latter
emphasizes conditions dominated by the more complex O2 chemistry, as described in Section 2.1.
The baseline model achieves an R2 of 0.93 on Testgrid and 0.94 on Testthresh.

2.3.2 Model architecture

Figure 1 illustrates the proposed architecture. The normalized power and pressure inputs from the
mixture data are first fed into the two pre-trained single-chemistry networks, which remain frozen
during mixture prediction. Normalization is performed with a min-max scaler fitted on the mixture
data, ensuring all inputs lie within [0, 1], consistent with the expectations of the pre-trained networks.

2Hardware: AMD Ryzen Threadripper 3960X, 24 cores, 264GB RAM.

3



The outputs of each network (or intermediate layer representations, as discussed later) are concate-
nated with the corresponding mixture composition of each chemistry, forming feature vectors. Each
feature vector is associated with a node in the graph, and serves as its node attributes. The graph is
complete, since all chemistries in the mixture are expected to interact with one another. In the present
case, the graph contains two nodes, corresponding to O2 and Ar. Each node has 11 features: 10 from
the network output and one representing the element fraction in the mixture. The nodes are connected
by two directed edges, one in each direction, resulting in a two-node complete graph.

This graph is processed by a GraphSAGE layer followed by a ReLU activation. The resulting feature
vectors are then passed through a linear layer to predict the 10 etching rates of the mixture. The
hidden dimension of the GraphSAGE layer is chosen to keep the number of trainable parameters
comparable to the baseline, ensuring a fair evaluation.

2.3.3 Results and Discussion

We evaluate the proposed architecture on two testing sets and investigate different node feature
representations by extracting features from intermediate layers of the pre-trained single-gas networks.
While the final outputs of these networks reflect single-gas etching rates, they are not directly
informative for mixture prediction. Instead, intermediate representations most probably capture
richer, chemistry-specific information that the graph model can more effectively combine.

Results are summarized in Table 1, where rows correspond to feature choices: (i) network outputs,
(ii) last hidden layer, (iii) second-to-last hidden layer, and (iv) first layer. Our results show that
the proposed method outperforms the baseline network across both testing set configurations, with
the best performance achieved when the final output layer is omitted. Overall, it outperformed the
baseline in 5 out of 8 experiments. These findings support the intuition that leveraging learned
features from hidden layers, rather than directly using the outputs of individual networks, leads to
improved predictive performance.

3 Conclusion and Future Work

We introduced a generalizable architecture for predicting etching rates in plasma mixtures, designed
to replace computationally expensive PBMs. The approach leverages pre-trained single-element
networks and integrates them through an inductive graph learning framework. Evaluation on Ar/O2
mixtures demonstrates that our method outperforms a conventional neural baseline.

A key strength of the proposed framework is its ability to generalize to unseen mixtures without
re-training, requiring only pre-trained single-element predictors–a far smaller modeling effort than
building full PBMs for every possible mixture. As future work, we plan to extend the study to mixtures
involving additional elements to further validate the scalability and generality of our approach.
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A Technical Appendices and Supplementary Material

A.1 Training and Evaluation Details

A.1.1 Single element networks

The O2 and Ar networks have approximately 580 trainable parameters per network. Optimal hyper-
parameters were selected via grid search. For the Ar network, the best configuration used a batch size
of 4, learning rate of 2.94× 10−3, and weight decay of 1.74× 10−6. For the O2 network, the optimal
settings were a batch size of 32, learning rate of 9.62× 10−4, and weight decay of 2.06× 10−5. Both
models were trained for 700 epochs with an early stopping patience of 20.

In the selected testing set for the O2 data the power falls within the range [1340 W, 2000 W] and the
pressure falls within [46 mTorr, 70 mTorr]. For the Ar data, the selected power range is [330 W, 500
W], and the pressure range is [39 mTorr, 60 mTorr].

A weighted mean squared error loss was employed to address the large radial variation of etching
rates across the wafer. Etching rates near the wafer center can exceed those at the edge by an order of
magnitude due to higher species densities. With an unweighted loss, this imbalance prevented the
networks from adequately learning the lower-valued edge outputs. By weighting the corresponding
loss terms, we ensured balanced contributions from all radial positions.

Regularization was applied through early stopping and L2 weight decay. All input and output data
were scaled via min-max normalization to the range [0, 1], with the same procedure applied to mixture
data.

A.1.2 Baseline mixture network

The baseline network is a feedforward NN with an input layer, an output layer, and five hidden
layers. Each of the hidden layers and the output layer has a width of 10. The total number of
trainable parameters is 590. The selected hyperparameters where: a batch size of 32, learning rate of
9.62× 10−4, and weight decay of 2.06× 10−5.

A.1.3 GNN mixture network

The network was trained with a learning rate of 0.001, a batch size of 32 and a weight decay of
2.05× 10−5. Its trainable parameters were 571.

A.2 Other GNN architecture results

We also conducted experiments to compare the performance of GraphSAGE with two other GNN
architectures of similar capacity (GCN and GAT, with the same number of trainable parameters).
The results are presented in Table 2. GCN appears unable to capture the task effectively, while
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GAT performs well. Although GAT achieves slightly better results on the Testgrid configuration,
GraphSAGE demonstrates superior performance on average.

FNN features GCN GAT GraphSAGE
Testgrid Test thresh Testgrid Test thresh Testgrid Test thresh

Output Layer 0.10 0.55 0.58 0.92 0.81 0.93
Last Hidden Layer 0.27 0.51 0.95 0.96 0.95 0.98
Second to Last Hidden Layer 0.26 0.46 0.97 0.91 0.94 0.95
Only First Hidden Layer 0.22 0.48 0.97 0.89 0.85 0.97

Table 2: Performance comparison of GCN, GAT, and GraphSAGE models on two test metrics,
evaluated across four different sets of characteristics. The evaluation metric is R2. Bold values
indicate the best performance within each column.
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