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Abstract— Effective trajectory stitching for long-horizon
planning is a significant challenge in robotic decision-making.
While diffusion models have shown promise in planning, they
are limited to solving tasks similar to those seen in their
training data. We propose CompDiffuser, a novel generative
approach that can solve new tasks by learning to compositionally
stitch together shorter trajectory chunks from previously seen
tasks. Our key insight is modeling the trajectory distribution
by subdividing it into overlapping chunks and learning their
conditional relationships through a single bidirectional diffusion
model. This allows information to propagate between segments
during generation, ensuring physically consistent connections.
We conduct experiments on benchmark tasks of various
difficulties, covering different environment sizes, agent state
dimension, trajectory types, training data quality, and show
that CompDiffuser significantly outperforms existing methods.
Project website at https://comp-diffuser.github.io/.

I. INTRODUCTION

Generative models have demonstrated remarkable capabili-
ties in modeling complex distributions across domains like
images, videos, and 3D shapes. In robot planning, these mod-
els offer a promising approach by modeling distributions over
plan sequences, which allows amortizing the computational
cost of traditional search and optimization methods. This
effectively transforms planning into sampling likely solutions
given start and goal conditions. Recent works like Diffuser [1]
and Decision Diffuser [2] have shown how diffusion models
can learn to generate entire plans for long-horizon robotics
tasks. However, exhaustively modeling joint distributions over
entire plan sequences for all possible start and goal states
remains extremely sample-inefficient, as it requires collecting
long-horizon plan data covering all possible combinations of
initial states and goals.

The concept of trajectory stitching [3] from Reinforcement
Learning literature [4] presents a potential solution by
combining chunks of different trajectories to create new,
potentially better policies. The methods work by identifying
high-reward trajectory chunks and stitching them together
at states where they overlap or are similar enough, creating
composite trajectories that can inform better policy learning.
This effectively enables compositional generalization since
collecting long consecutive trajectories is costly, and these
short chunks can be flexibly assembled to complete new
tasks. The key challenge lies in finding appropriate stitching
points where trajectories can be combined while maintaining
dynamic consistency and feasibility. Our goal is to enable
generative planners to solve long-horizon tasks without
requiring long-horizon training data, while retaining their
ability to generate physically feasible, goal-directed plans.
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Fig. 1: Compositional Trajectory Generation. CompDiffuser
enables generative trajectory stitching through diffusion composition.
Left: Monolithic generative planner fails to generalize to tasks
of longer horizon and collapses to the maze center. Right: Our
method successfully navigates the ant agent from start to goal by
compositionally stitching together shorter trajectories.

We propose a novel diffusion-based approach, Com-
positional Diffuser (CompDiffuser), that enables effective
trajectory stitching through goal-conditioned causal trajectory
generation. Our key insight is that we can model the trajectory
distribution compositionally by subdividing it into distribu-
tions of overlapping chunks and learning their conditional
relationships. Rather than learning separate models for each
chunk, we train a single diffusion model that can generate
trajectory chunks conditioned on neighboring chunks’ states
(Figure 1). This allows information to propagate bidirec-
tionally during the reverse diffusion process as illustrated
in Figure 2: each chunk’s generation is influenced by both
past and future chunks. This architecture naturally enables
both parallel generation of chunks and causal autoregressive
generation, each with different trade-offs in computational
cost and planning quality.

We conduct extensive experiments across benchmark tasks
of varying difficulty levels, including different environment
sizes (from simple U-mazes to complex giant mazes), agent
state dimensions (from 2D point agents to 50D humanoid
robots), trajectory types (from maze navigation trajectories
to ball dribbling trajectories), and training data quality (from
clean demonstrations to noisy exploration data). Our results
demonstrate that CompDiffuser significantly outperforms
multiple imitation learning and offline reinforcement learning
baselines across all settings. We show that our approach
can effectively solve long-horizon tasks while maintaining
plan feasibility and goal-reaching behavior. We validate
the importance of our key technical components including
the bidirectional conditioning mechanism, the autoregressive
sampling process, and the flexible replanning capability.

https://comp-diffuser.github.io/


In summary, the key contributions of this work are:

• A noisy-sample conditioned diffusion planning frame-
work that enables learning compositional trajectory
distributions by decomposing the trajectory generation
procedure into a sequence of segments each generated
by a separate diffusion denoising process.

• A compositional goal-conditioned trajectory planning
method that uses bidirectional information propagation
during denoising to maintain physical consistency
between trajectory chunks.

• A set of empirical results showing significant
improvements over existing methods across multiple
trajectory stitching benchmarks, with detailed analysis
of model capabilities and limitations.

II. PLANNING THROUGH COMPOSITIONAL TRAJECTORY
GENERATION

We aim to develop a generative planning framework that
can generate long-horizon trajectories by composing multiple
modular generative models. Our method, Compositional
Diffuser (CompDiffuser), trains a single diffusion model on
short-horizon trajectories. At inference time, given a start
and goal, CompDiffuser runs parallel instances of this model
to generate a sequence of overlapping trajectory segments,
coordinating their denoising processes to ensure they smoothly
connect into a coherent long-horizon plan. This approach
enables us to stitch together short-horizon training trajectories
to form novel long-horizon trajectory plans.

A. Compositional Trajectory Modeling

Given a planning problem, consisting of a start state qs
and a goal state qg, we formulate planning as sampling a
trajectory τ from the probability distribution

[s1:T , a1:T ] ∼ pθ(τ |qs, qg), (1)

where s1:T corresponds to future states to reach the goal
state qg and a1:T corresponds to a set of future actions. To
implement this sampling procedure, prior work [2], [1] learns
a generative model p(τ) directly over previous trajectories τ
in the environment. However, since the generative model is
trained to model the density of previously seen trajectories,
it is restricted to generating plans with start and goal that are
similar to those seen in the past.

In this paper, we propose to model the generative model
over trajectories pθ(τ |qs, qg) compositionally [5], where we
subdivide trajectory τ into a set of K overlapping sub-chunks
τk (Figure 1). We then represent the trajectory distribution as

pθ(τ |qs, qg) ∝ p1(τ1|qs, τ2) pK(τK |τK−1, qg)
K−1∏
k=2

pk(τk|τk−1, τk+1).
(2)

In the above expression, each trajectory chunk τk is only
dependent on nearby trajectory chunks τk−1 and τk+1.
This allows pθ(τ |qs, qg) to generate trajectory plans that
significantly depart from previously seen trajectories, as long

Fig. 2: Illustrating the Trajectory Stitching Process. Given an
unseen start (blue circle) and goal (green star), CompDiffuser
generates a long-horizon plan by progressively denoising three
trajectory chunks in parallel, with each chunk conditioning on its
neighbors to ensure smooth transitions.

as intermediate trajectory chunks τk have been seen. Overall,
the goal of our method is to enable long-horizon planning
without long-horizon training data.
B. Training Compositional Trajectory Models

One approach to represent the composed probability distri-
bution in Equation 2 is to directly learn separate generative
models to represent each conditional probability distribu-
tion. However, sampling from the composed distribution is
challenging, as each individual trajectory chunk depends on
the values of neighboring chunks. As a result, to sample
from the composed distribution, one would need a blocked
Gibbs sampling procedure, where the value of each individual
trajectory chunk is iteratively sampled given decoded values
of neighboring trajectory chunks. This sampling procedure
is slow, and passing information across chunks to form a
consistent plan is challenging.

Information Propagation Through Noisy-Sample Condi-
tioning. We propose a more efficient approach that addresses
these challenges by leveraging the progressive denoising
process of diffusion models. The key challenge in composing
trajectories is ensuring feasible transitions between each pair
of neighboring chunks, i.e., maintaining physical constraints
and dynamic consistency at connection points where segments
overlap. Our key insight is that we can achieve this by having
trajectory segments guide each other’s generation: as one
segment takes shape through denoising, it helps shape its
neighbors into compatible configurations.

We implement this insight using a diffusion model that
generates trajectory chunks conditioning on their neighbors’
noisy samples. Given a dataset D of trajectories τ , we train
a denoising network ϵθ to learn the trajectory distribution
pθ(τk|τk−1, τk+1) with the training objective

Lnbr = Eτ∈D,t,k

[
∥ϵ− ϵθ(τ

t
k, t | τ tk−1, τ

t
k+1)∥2

]
, (3)

where k identifies a trajectory segment, t is the noise level, and
τ tk represents segment k corrupted with noise level t. Crucially,
when denoising each segment, the network conditions on
noisy versions of neighboring segments τ tk−1, τ

t
k+1 at the

same noise level. This allows each segment to influence its
neighbors’ denoising process, ensuring their final configura-
tions are dynamically compatible. In addition, further training
the network to condition on τ t−1

k−1 can enable autoregressive
compositional sampling, which we will discuss in Section
II-C. In practice, we only need to condition on the small
overlapping regions between consecutive trajectories, making
the generation process efficient while maintaining consistency
across connection points.
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Fig. 3: Compositional Trajectory Planning: Parallel Sampling and Autoregressive Sampling. We present an illustrative example of
sampling three trajectories τ1:3 with the proposed compositional sampling methods. Dashed lines represent cross trajectory information
exchange between adjacent trajectories and black lines represent the denoising flow of each trajectory. In parallel sampling, τ1:3 can be
denoised concurrently; while in autoregressive sampling, denoising τk depends on the previous trajectory τk−1, e.g., the denoising of τ2
depends on τ1 (as shown in the blue horizontal dashed arrows). Additionally, start state qs and goal state qg conditioning are applied to
the trajectories in the two ends, τ1 and τ3, which enables goal-conditioned planning. Trajectories τ1:3 will be merged to form a longer
plan τcomp after the full diffusion denoising process.

Representing Initial States and Goals. In addition,
we further train the same denoising network to represent
the distributions pθ(τ1|qs, τ2) and pθ(τK |τK−1, qg). This
corresponds to the training objective

Lstart = Eτ∈D,t,k

[
∥ϵ− ϵθ(τ

t
1, t | qs, τ t2)∥2

]
, (4)

with an analogous objective for the conditioned goal state
qg. We train the same denoising network ϵθ with both
conditioning. Please see Appendix XII for implementation
details. We provide an overview of our proposed training
strategy in Algorithm 1.

C. Compositional Trajectory Planning

Our compositional framework enables flexible sampling
strategies for generating long-horizon plans with Equation 2.
The basic sampling process starts by initializing each trajec-
tory chunk τk with Gaussian noise. Then, through iterative
denoising, each chunk is denoised while being conditioned
on its neighbors. This structure allows for different ways of
coordinating the denoising process across trajectory chunks,
each offering different tradeoffs between information propa-
gation and computational efficiency. We present two sampling
schemes (illustrated in Figure 3):

Parallel Sampling. Our first sampling approach conditions
denoising on the noisy adjacent trajectory chunks from the
previous denoising timestep, where the update rule is

τ t−1
k = αt(τ tk − ϵθ(τ

t
k|τ tk−1, τ

t
k+1) + βtξ), ξ ∼ N (0, 1),

where αt and βt are diffusion specific hyperparameters.
This approach allows us to run denoising on each trajectory
chunk in parallel, as each denoising update only requires the
values of the adjacent trajectory chunks at a previous noise
level. However, information propagation between the values
of adjacent trajectory chunks is limited at each denoising
timestep, as each trajectory chunk is denoised independently
of the denoising updates of other trajectory chunks.

Autoregressive Sampling. To better couple the values
of adjacent trajectory chunks, we propose to denoise each

trajectory chunk autoregressively dependent on the values of
neighboring chunks at each denoising timestep. In particular,
we iteratively denoise each trajectory τ t1:K starting from the τ t1,
and condition the denoising of τ tk on the previously decoded
chunk τ t−1

k−1 at the current noise level t−1 and the future chunk
τ tk+1 at the previous noise level t, giving us the equation

τ t−1
k = αt(τ tk − ϵθ(τ

t
k|τ t−1

k−1, τ
t
k+1) + βtξ), ξ ∼ N (0, 1).

This sequential generation process enables stronger coordi-
nation among the chunks since each chunk is conditioned
on the less noisy version of its previous chunk. However,
it requires generating chunks one at a time rather than
simultaneously, making it computationally less efficient than
parallel sampling. We compare the two sampling schemes
in Table VII, where we empirically find autoregressive
sampling leads to improved performance. Additionally, we
provide sampling time comparison in Table X. We use this
autoregressive sampling procedure throughout the experiments
in the paper and illustrate pseudocode for sampling in
Algorithm 2. Given such final set of generated chunks τ1:K ,
we then merge the chunks together to construct a final
trajectory τcomp by applying exponential trajectory blending
to areas where subchunks τk overlap (See Appendix XII-B
for details).

III. EXPERIMENTS

Our objective is to (1) validate that our method enforces
coherent trajectory stitching on multiple benchmarks, with
varying state space dimensions, task design, and training
data collection policies (2) understand how planning with
higher state dimensions, varying numbers of composed
trajectories, different sampling schemes, and replanning affect
the performance of the proposed method. Please see Appendix
VII for dataset details and Appendix VIII for descriptions
of baselines. Additional results are provided in Appendix IX
and X with failure analysis in Appendix XI.

Evaluation Setup. For each environment, we report the
success rate over all evaluation episodes, where the success
criterion is that the agent or target object is close to the goal



Env Type Size GCBC GCIVL GCIQL QRL CRL HIQL GSC Ours

antmaze
stitch

Medium 45 ±11 44 ±6 29 ±6 59 ±7 53 ±6 94 ±1 97±2 96±2

Large 3 ±3 18 ±2 7 ±2 18 ±2 11 ±2 67 ±5 66±2 86±2

Giant 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 21 ±2 20±1 65±3

explore
Medium 2 ±1 19 ±3 13 ±2 1 ±1 3 ±2 37 ±10 90±2 81±2

Large 0 ±0 10 ±3 0 ±0 0 ±0 0 ±0 4 ±5 21±3 27±1

humanoid
maze

stitch
Medium 29 ±5 12 ±2 12 ±3 18 ±2 71 ±3 96 ±4 92±1 91±1

Large 6 ±3 1 ±1 0 ±0 3 ±1 6 ±1 31 ±3 70±3 72±3

Giant 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 12 ±2 5±1 67±4

TABLE I: Quantitative Results on AntMaze and HumanoidMaze in OGBench. We
benchmark our method on the 5 test-time tasks defined in OGBench with 20 episodes
per task. We average the results over 5 seeds and report mean and standard deviation.

Top-down Plan Overview Zoom-in

Fig. 4: Qualitative Results of Planning in High
Dimension on OGBench AntMaze Large. Origi-
nal plan is sub-sampled for clearer view.

DD OursGSC
Fig. 5: Qualitative Comparison of DD, GSC and CompDiffuser
on OGBench PointMaze Giant. Effective bidirection information
propagation enables CompDiffuser to successfully synthesize tra-
jectories from start (bottom left) to goal (upper right), while other
methods generate o.o.d trajectories that are disconnected with the
start/goal or passing through walls. See Figure 9 for per-segment
visualization.

within a small threshold. We evaluate all methods with 5
random seeds for each experiment and report the mean and
standard deviation. Specifically, in [6] datasets, we evaluate
on 2 tasks in U-Maze, 6 tasks in Medium, and 7 tasks
in Large with 10 episodes per task; in OGBench [7], we
evaluate on 5 tasks in each environment with 20 episodes per
task. Each task is introduced in the respective papers and is
defined by a base start and goal state that require trajectory
stitching to complete. A random noise is added to the base
start and goal state for each evaluation episode.

A. PointMaze

We present experiment results on two types of trajectory-
stitching datasets in point maze environments, featuring
different dataset collection strategies. Our method is trained on
short trajectories of x-y positions of the point agent while can
directly generate much longer trajectories from start and goal
by composing multiple trajectories (numbers of composed
trajectories in each experiment are provided in Table XIII).
See Figure 5 and Figure 9 for qualitative results. Task details
and quantitative results are shown in Appendix IX-A.

B. High Dimension Tasks

AntMaze and HumanoidMaze. We present the evaluation
results of our method on various trajectory stitching tasks
involving higher-dimensional state spaces within OGBench:
AntMaze, HumanoidMaze. The data collection strategy is
identical to OGBench PointMaze, where each episode is
constrained to travel at most 4 blocks, while at inference, a

Size HIQL Ours
(2D)

Ours
(15D)

Ours
(29D)

Medium 94±1 96±2 95±0 97±2

Large 67±5 86±2 66±5 66±5

Giant 21±2 65±3 41±3 28±4

TABLE II: Quantitative Results
of Different Planning Dimensions
on OGBench AntMaze Stitch. Our
method constructs feasible plans that
reach long-distance goals while mod-
eling complex dynamics, such as
agent’s joint positions and velocities.

Fig. 6: Success Rate versus
Different Numbers of Com-
posed Trajectories K in OG-
Bench PointMaze Giant
(w/o replan).

successful plan requires the agent to travel up to 30 blocks.
Quantitative results are shown in Table I. See Appendix IX-B
for environment and implementation details. Additionally, we
present results on AntSoccer in Appendix IX-C.

C. Ablation Studies

Planning in High Dimension Space. We report experiment
results where CompDiffuser synthesizes trajectories in state
space of higher dimension. We compare the success rates of
planning in dimension of 2D, 15D, and 29D in Table II, and
present qualitative plans in Figure 4 and Figure 12.

Different Numbers of Composed Trajectories. We study
the effect of varying the numbers of trajectories to be
composed K. To better study the planning performance with
respect to K, we use the challenging PointMaze-Giant-
Stitch in OGBench as the testbed. As shown in Figure 6,
our method obtains consistent performance when composing
7 to 12 trajectories. Qualitatively, decreasing K will result in
a sparser trajectory while increasing K will cause the final
trajectory traveling back and forth to consume the redundant
states (See Figure 9).

IV. CONCLUSION

We introduce CompDiffuser, a generative trajectory stitch-
ing method leveraging the compositionality of diffusion
models. We propose a noise-conditioned score function
formulation that helps perform autoregressive sampling of
multiple short-horizon trajectories and can eventually stitch
them to form a longer-horizon goal-conditioned trajectory. Our
method demonstrates effective trajectory stitching capabilities
as evident from the extensive experiments on tasks of various
difficulties, including different environment sizes, planning
state dimensions, trajectory types, and training data quality.
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APPENDIX
In this appendix, we first introduce the evaluation environments and stitching datasets in Section VII. Next, we provide

additional quantitative results in Appendix IX and additional qualitative results in Appendix X. We provide failure mode
analysis in Section XI. Following this, we provide implementation details in Section XII, including model architecture,
training and evaluation setups, trajectory merging, and replanning. Lastly, we introduce notable baselines in Section VIII.

V. RELATED WORK

Diffusion Models For Planning. Many works have studied the applications of diffusion models [8], [9] for generative
planning [1], [2], [10], [11], [12], [13], [14], [15], [16]. Diffusion planning has been widely applied in various fields,
such as motion planning [17], [18], procedure planning [19], task planning [20], [21], autonomous driving [22], [23], [24],
reasoning [25], and reward learning [26]. Many techniques have also been combined with diffusion planning, including
hierarchical planning [27], [28], [29], self-evolving planner [30], preference alignment [31], tree branch-pruning [32],
refining [33], replanning [34], uncertainty-aware planning [35], equivariance [36]. However, these works are usually constrained
to plan within similar horizons as training data. Our work instead proposes a compositional diffusion planning approach that
generalizes to much longer horizon via generative trajectory stitching.

Trajectory Stitching. A flurry of works have explored the trajectory stitching problem given offline data. One typical
category of solution is based on data augmentation or goal relabeling along with various techniques, such as generative
models [37], [38], [39], [40], [41], [42], model-based approaches [43], [44], [45], [46], and clustering [6]. Other supervised
learning based methods, such as sequence modeling [47], [48], [49], [50], [51], latent space learning [52], [53], [54], and
learning with dynamic programming [55], [56], [57], have also demonstrated some extent of stitching capability. In this
work, we propose a different trajectory stitching approach based on generative modeling, where the model only learns
from plain short trajectory segments while is able to directly perform goal-conditioned trajectory stitching through test-time
compositional generation.

Compositional Generative Models. Compositional Generative Models [58], [59], [60], [5], [61], [62], [63], [64] are
widely studied in various domains, including visual content generation [65], [59], [66], [67], [68], [69], human motion
generation [70], [71], [72], traffic generation [73], robotic planning [74], [75], [18], and policy learning [76], [77]. Most
existing work on compositionality focuses on sampling under the conjunction of several given conditions. While several
studies [78], [79] have explored sequential compositional models, they are restricted to planning within a given skeleton and
hence unable to generalize to longer sequences or new tasks. In contrast, we propose a compositional planning framework
that scales to generating much longer sequences and completing new tasks via directly stitching short trajectory segments,
without relying on pre-defined task-dependent skeletons.

VI. PSEUDOCODE FOR TRAINING AND INFERENCE

Algorithm 1 Training CompDiffuser

1: Require: train dataset D, diffusion denoiser model
ϵθ(τ

t, t | st_cond, end_cond), number of training steps N ,
diffusion timestep T

2: for i = 1→ N do
3: τ0 ∼ D, sample clean trajectory from dataset
4: τ01:K ← divide τ0 to K overlapping chunks
5: τ t1:K ← add noise to τ01:K , t ∼ T , following DDPM
6: # Objective for noisy chunk condition
7: Lnbr = ∥ϵ− ϵθ(τ

t
k, t | τ tk−1, τ

t
k+1)∥2, k ∼ [2,K − 1]

8: # Objective for start / end state condition
9: Lstart = ∥ϵ− ϵθ(τ

t
1, t | qs, τ t2)∥2, qs = τ01 [0]

10: Lend = ∥ϵ− ϵθ(τ
t
K , t | τ tK−1, qg)∥2, qg = τ0K [−1]

11: Lall = Lnbr + Lstart + Lend

12: Backprop to update ϵθ(.) using Lall

13: end for
14: return ϵθ(.)

Algorithm 2 Autoregressive Trajectory Sampling

1: Models: trained diffusion denoiser model
ϵθ(τ, t | st_cond, g_cond)

2: Input: start state qs, goal state qg, number of composed
trajectories K

3: Initialize K trajectories τ1:K ∼ N (0, I)
4: for t = T → 1 do
5: # Denoise τ1 conditioned on qs and τ t2
6: τ t−1

1 = ϵθ(τ
t
1, t | qs, τ

t
2)

7: # Denoise intermediate trajectories τ2 to τK−1

8: for k = 2→ K − 1 do
9: τ t−1

k = ϵθ(τ
t
k, t | τ

t−1
k−1, τ

t
k+1)

10: end for
11: # Denoise τK conditioned on τ t−1

K−1 and qg
12: τ t−1

K = ϵθ(τ
t
K , t | τ t−1

K−1, qg)
13: end for
14: τcomp = Merge the denoised trajectories τ01:K
15: return τcomp



VII. ENVIRONMENT AND STITCHING DATASETS

In this paper, we directly evaluate our method on public stitching datasets introduced in two recent papers [6] and
OGBench [7]. In this section, we provide detailed descriptions of each dataset along with qualitative examples of trajectories
in these datasets.

A. Stitching Datasets in [6]

This paper [6] divides each evaluation environment into several small regions and each demonstration trajectory in the
training datasets can only navigate within a specific region. There is a small overlap (one block) between each region, which
can be used to stitch trajectories across regions. Therefore, to complete test-time goals, the agent needs to conduct effective
reasoning based on the given start state and goal state and identify the corresponding overlap joints. The division of regions
is visualized in the original paper [6]. We use the environments and datasets from their official implementation release at
https://github.com/RajGhugare19/stitching-is-combinatorial-generalisation.

B. OGBench Datasets

OGBench is a comprehensive benchmark designed for offline goal-conditioned RL. Since our focus is to evaluate the
trajectory stitching ability of CompDiffuser, we use the Stitch and Explore dataset types in OGBench.

In Stitch datasets, trajectories are constrained to navigate no more than 4 blocks in the environment. The start and goal
state of each trajectory can be sampled from the entire environment provided that the travel distance between the start and
goal is within 4 blocks. Qualitative examples of the trajectories in the Stitch dataset are shown in Figure 7.

In Explore datasets, trajectories are of extremely low-quality though high-coverage. The data collection policy contains
a large amount of action noise and will randomly re-sample a new moving direction after every 10 steps. Hence, each
demonstration trajectory in the training dataset typically moves within only 2-3 blocks due to the random moving direction.
These datasets might be even more challenging due to the large noisy and cluster-like trajectory pattern. Qualitative examples
of the trajectories in the Explore dataset are shown in Figure 8.

AntMaze Medium Stitch AntMaze Large Stitch AntMaze Giant Stitch
Fig. 7: Trajectory Examples in OGBench AntMaze Stitch Datasets. Each Trajectory is limited to travel at most 4 blocks for dataset
type Stitch, while at inference, the distance between the start and goal can be up to 30 in the Giant Maze.

We show the environment names, corresponding datasets, and the maximum environment steps for each evaluation episode
in Table III. All methods are trained on the OGBench public release datasets. We slightly increase the environment steps for
some environments due to the task difficulty (e.g., Giant Maze). For these environments, we follow the implementation in
https://github.com/seohongpark/ogbench. and rerun all baselines with the increased maximum environment steps; for other
environments, we directly adopt the reported success rates in the original paper.

https://github.com/RajGhugare19/stitching-is-combinatorial-generalisation
https://github.com/seohongpark/ogbench


AntMaze Medium Explore AntMaze Large Explore
Fig. 8: Trajectory Examples in OGBench AntMaze Explore Datasets. Trajectories in Explore datasets are of extremely low-quality
though high-coverage. The data collection policy contains a large amount of action noise and will randomly re-sample a new moving
direction after every 10 steps.

Environment Type Size Dataset Name Env Steps

pointmaze stitch
Medium pointmaze-medium-stitch-v0 1000
Large pointmaze-large-stitch-v0 1000
Giant pointmaze-giant-stitch-v0 1000

AntMaze Stitch
Medium antmaze-medium-stitch-v0 1000
Large antmaze-large-stitch-v0 2000
Giant antmaze-giant-stitch-v0 2000

AntSoccer stitch
Arena antsoccer-arena-stitch-v0 5000
Medium antsoccer-medium-stitch-v0 5000

HumanoidMaze Stitch
Medium humanoid-medium-stitch-v0 5000
Large humanoid-large-stitch-v0 5000
Giant humanoid-giant-stitch-v0 8000

TABLE III: Our Evaluation Environments and Datasets in OGBench.



VIII. BASELINES

We compare our approach with a wide variety of baselines, including diffusion-based trajectory planning algorithms, data
augmentation based stitching algorithms, and goal-conditioned offline RL algorithms.

Particularly, we include the following methods:

• For generative planning methods, we include Decision Diffuser (DD) [2] for monolithic trajectory sampling and
Generative Skill Chaining (GSC) [78] for trajectory stitching;

• For data augmentation based methods, we include stitching specific data augmentation [6] with RvS [80] and Decision
Transformer (DT) [47]. Since the evaluation setting is identical, we directly adopt the reported numbers in the original
paper [6].

• For offline reinforcement learning methods, we include goal-conditioned behavioral cloning (GCBC) [81], [82], goal-
conditioned implicit V-learning (GCIVL) and Q-learning (GCIQL) [83], Quasimetric RL (QRL) [84], Contrastive RL
(CRL) [85], and Hierarchical implicit Q-learning (HIQL) [86]. For these baselines, we follow the implementation setup
established by OGBench [7] throughout our experiments.

We describe the implementation details of a few notable ones below.

Generative Skill Chaining (GSC) [78]. GSC is a recent diffusion model-based skill stitching method. We directly adopt its
original score-averaging based stitching algorithm and apply it in our tasks. Specifically, when composing K trajectories τ1:K ,
GSC averages the scores of the overlapping segments between adjacent trajectories (in total K − 1 overlapping segments
in this case) prior to each denoising timestep. For a fair comparison, we re-use the same diffusion denoiser networks in
CompDiffuser for every GSC experiment.

Hierarchical Implicit Q-Learning (HIQL) [86]. HIQL is a recently proposed Q-learning based method that employs a
hierarchical framework for training goal-conditioned RL agents. It learns a goal conditioned value function and uses it to
learn feature representations, high-level policy, and low-level policy. We follow the original implementation of the method in
OGBench [7].

Goal-Conditioned Behavioral Cloning (GCBC) [81]. GCBC is a classic imitation learning-based method. In our experiments,
GCBC trains an MLP that takes as input the observation state and a future goal state from the same offline trajectory and
outputs a corresponding action for the agent. We use the same implementation as in OGBench [7].



IX. ADDITIONAL QUANTITATIVE RESULTS

In this section, we provide additional quantitative experiment results. In Section IX-E, we study how varying the number
of composed trajectories K affects the performance of our method. In Section IX-F, we investigate the effect of inverse
dynamic models of different horizons. Next, we provide a sampling time comparison of Decision Diffuser and the proposed
parallel and autoregressive sampling schemes in Section IX-G. Following this, in Section IX-H, we analyze how the proposed
autoregressive sampling scheme performs when using different denoising starting directions.

A. PointMaze

PointMaze in [6]. Following the original framework, the training data are curated by dividing each environment (here,
maze) into several small regions, and feasible trajectories constrained within their respective regions are sampled. Possible
stitching between segments is facilitated by a small overlap (one block) between different regions, which can be used to
join trajectories across regions. More dataset details are provided in Appendix VII-A. We present the quantitative results on
these datasets in Table IV, where we compare to goal-conditioned behavior cloning methods trained with data augmentation,
Decision Diffuser, and GSC. Most baselines perform suboptimally, likely because they are unable to autonomously identify
the small overlapping regions needed for trajectory stitching. In contrast, CompDiffuser successfully resolves all tasks across
various maze sizes, demonstrating its ability to stitch trajectories even when the connecting regions are small.

PointMaze in OGBench [7]. In this particular setup, each trajectory in the training dataset is constrained to navigate no
more than four blocks in the environment. The start and goal of each trajectory can be sampled from the entire environment
provided that the travel distance between the start and goal is within four blocks. These trajectories are much shorter than the
ones required for a feasible plan between a given start and goal at inference. More details about these datasets are provided
in Appendix VII-B. We present the quantitative results in Table IV, where we compared our method to GSC and multiple
offline RL baselines following the benchmark established in [7]. We observe that while GSC is able to perform on par
with CompDiffuser in Medium and Large mazes, it struggles as the planning horizon further increases, as illustrated in
the qualitative results in Figure 5. CompDiffuser significantly outperforms all baselines in Giant maze, demonstrating its
efficacy in complex environments. Additional results are provided in Appendix X-A, X-B, and X-C.

Env Size RvS RvS (SA) RvS (GA) DT DT (SA) DT (GA) DD GSC Ours

PointMaze
[6]

U-Maze 17±7 97±5 76±5 17±5 65±4 54±4 0±0 100±0 100±0

Medium 1±2 55±3 21±3 20±2 55±3 62±2 30±1 93±1 100±0

Large 3±4 38±5 31±5 22±2 35±2 39±5 0±0 99±2 100±0

Env Type Size GCBC GCIVL GCIQL QRL CRL HIQL GSC Ours

PointMaze
[7] stitch

Medium 23 ±18 70 ±14 21 ±9 80 ±12 0 ±1 74 ±6 100±0 100±0

Large 7 ±5 12 ±6 31 ±2 84 ±15 0 ±0 13 ±6 100±0 100±0

Giant 0 ±0 0 ±0 0 ±0 50 ±8 0 ±0 0 ±0 29±3 68±3

TABLE IV: Quantitative Results on PointMaze Stitching Datasets in [6] and OGBench [7]. We compare CompDiffuser
to baselines of multiple categories, including diffusion, data augmentation, and offline reinforcement learning. SA and GA
stand for state augmentation and goal augmentation respectively, as described in [6]. Our results are averaged over 5 seeds
and standard deviations are shown after the ± sign.

B. AntMaze and HumanoidMaze

AntMaze and HumanoidMaze. We conduct maze navigation experiments of multiple agents, ant and humanoid, using the
pre-collected Stitch datasets provided in OGBench. The data collection strategy is identical to OGBench PointMaze,
where each episode is constrained to travel at most 4 blocks, while at inference, a successful plan requires the agent to travel
up to 30 blocks. We compare our method with the offline RL benchmark established in [7] along with the best-performing
diffusion-based compositional stitching baseline GSC, as shown in Table I in the main paper. Both GSC and CompDiffuser
generate plans in a planar x-y space while the agent follows the plans with a learned inverse dynamics model. We observe a
pattern similar to the results in PointMaze, where CompDiffuser can consistently give high success rates as the planning
horizon and complexity increase while other baselines start to collapse. To complete the study, we also conduct experiments
where the full agent state is used for planning instead of the x-y space and provide the results in Section III-C.

AntMaze with Low-Quality Data. We evaluate CompDiffuser on OGBench AntMaze with a different data collection
strategy, Explore. These datasets consist of extremely low-quality yet high-coverage data, where the data collection policy
contains a large amount of action noise and will randomly re-sample a new moving direction after every 10 steps (Please
see Figure 8 in Appendix for qualitative examples). Hence, each demonstration episode typically oscillates within only 2-3



blocks. Our planner needs to learn from these clustered trajectories to construct coherent plans that reach goals in large
spatial distances. We present the success rate of each method in Table I.

C. AntSoccer

The AntSoccer environment in OGBench requires the ant agent to move a soccer ball to a designated goal in the
environment, different from maze tasks that require the agent itself to reach the goal. OGBench provides two categories of
trajectories in AntSoccer Stitch datasets: (1) ant navigates in the maze without the ball and (2) ant moves and dribbles
the ball in the maze. The planner must stitch trajectories of these two skills to complete the goal-reaching objective, because
the ant must reach the ball first and then dribble it to the given goal location (see Figure 14 and Figure 13).

We present experimental results in two distinct maze configurations, Arena and Medium, in Table V relative to the
benchmarking provided in OGBench. Specifically, as an ablation study, we evaluate with two planner state space configurations:
(1) a 4D planner consisting of the x-y location of the ant and the ball; (2) a 17D planner consisting of the x-y location of the
ant and the ball along with all the joint positions of the ant. We observe that our compositional method outperforms all the
baselines in both configurations. Notably, the 17D variant demonstrates slightly higher success rates, likely due to the ability
of joint positions to provide more fine-grained information for ball dribbling.

Env Size GCBC GCIVL GCIQL QRL CRL HIQL GSC
(4D)

Ours
(4D)

GSC
(17D)

Ours
(17D)

antsoccer
stitch

arena 34 ±4 21 ±3 5 ±2 2 ±1 2 ±1 23 ±2 41±4 55±6 65±3 69±3

medium 2 ±1 1 ±0 0 ±0 0 ±0 0 ±0 8 ±2 5±2 13±1 12±2 17±3

TABLE V: Quantitative Results on OGBench AntSoccer Stitch. We evaluate two generative planners with different
planning state dimensions: a 4D planner that operates on the x-y positions of the ant and the ball, and a 17D planner that
additionally generates the 13 joint positions of the ant agent.

D. Ablation Studies

Replanning with CompDiffuser. Our method can also flexibly replan during a rollout, which enables the agent to recover
from failure, such as when the agent fails to track the planned trajectory due to sub-optimal inverse dynamic actions. In
practice, we replan if the distance between the agent’s current observation and the synthesized subgoal is larger than a
threshold. Please see Appendix XII-C for details. In Table VI, we present ablation studies of CompDiffuser with and without
replanning in PointMaze and AntMaze Stitch datasets in OGBench. CompDiffuser outperforms the best performing
baselines QRL and HIQL even without replanning in 5 out of 6 tasks. We also observe that w/ and w/o replanning yield
similar performance in maze size Medium and Large, while offering significant performance boost in the more complex
Giant maze.

Parallel vs. Autoregressive Sampling. We compare the performance of the two proposed compositional sampling schemes,
parallel and autoregressive, as presented in Table VII. Autoregressive sampling consistently outperforms the parallel sampling
across various tasks in plan quality, showing that the causal information flow, where each trajectory chunk is conditioned on
the already-denoised (less noisy) version of previous chunk, leads to more coherent and physically consistent transitions
between chunks. We include additional discussion and sampling time comparison in Appendix IX-G.

Env Size QRL HIQL Ours w/o
Replan

Ours w/
Replan

PointMaze
Medium 80±12 74±6 100±0 100±0

Large 84±15 13±6 100±0 100±0

Giant 50±8 0±0 53±6 68±3

AntMaze
Medium 59±7 94±1 92±2 96±2

Large 18±2 67±5 76±2 86±2

Giant 0±0 21±2 27±4 65±3

TABLE VI: Quantitative Results of CompDiffuser with and without
Replanning. We report the success rates on OGBench PointMaze
and AntMaze Stitch datasets. For w/o replan, CompDiffuser only
synthesizes one trajectory and executes the trajectory in a close-loop
manner; for w/ replan, CompDiffuser will synthesize a new trajectory
if the agent loses track of the current plan.

Env Size Replan Parallel AR

PointMaze
Large ✓ 100±0 100±0

Giant ✗ 45±1 53±6

Giant ✓ 66±2 68±3

AntMaze
Large ✓ 84±5 86±2

Giant ✗ 18±4 27±4

Giant ✓ 48±1 65±3

TABLE VII: Quantitative Comparison of two Sampling Schemes:
Parallel and Autoregressive (AR). Parallel sampling performs
on par with AR sampling in the easier Large maze, while
AR sampling can generate trajectories of higher quality when
constructing longer plans (i.e., composing more trajectories), likely
due to its causal denoising strategy.



E. Number of Composed Trajectories

In Table VIII, we compare CompDiffuser with GSC over composing different numbers of trajectories (results are also
shown in Figure 6). Our method performs steadily when composing different numbers of trajectories while GSC collapses.

PointMaze Giant Stitch

# Comp 7 8 9 10 11 12

GSC 21±1 21±3 15±2 2±1 0±0 0±0

CompDiffuser 51±7 53±6 55±4 56±2 50±6 50±3

TABLE VIII: Quantitative Results over Different Numbers of Composed Trajectories. We report success rates (w/o
replanning) of composing 7 to 12 trajectories in the OGBench PointMaze Giant Stitch dataset. CompDiffuser can
consistently construct feasible trajectories over various numbers of composed trajectories while GSC gradually collapses.

F. Inverse Dynamics Model

In this section, we evaluate our planner with inverse dynamics models of different horizons (results are also shown in
Figure 6). Specifically, we use an MLP to implement the inverse dynamics model, which takes as input the start and goal
state and outputs an action. We use the same training dataset (as to train the planner) to train the corresponding inverse
dynamics model. As shown in Table IX, our method performs steadily across different inverse dynamics model horizons,
showing that the subgoals generated by our planners are of high feasibility and are robust to various inverse dynamics models’
configurations.

Env Type Size 8 12 16 20 24 28

AntMaze Stitch
Large 77±4 86±2 80±2 85±3 76±2 77±3

Giant 61±5 65±3 68±4 63±3 60±2 63±3

TABLE IX: Quantitative Results of CompDiffuser with Inverse Dynamics Models of Different Horizons. We present the
success rates of CompDiffuser with 6 different inverse dynamics model horizons. In both environments, Large and Giant,
our method performs consistently across all configurations, showing that the synthesized plans adhere to the transition
dynamics and are easy to follow.

G. Sampling Time Comparison: Parallel vs. Autoregressive

In Table X, we compare the diffusion denoising sampling time of three methods: (1) monolithic model method, Decision
Diffuser (DD), where we directly sample a long trajectory with the same horizon as the proposed compositional sampling
method; (2) parallel compositional sampling, as shown in the left of Figure 3, where we denoise all trajectories τ1:K in one
batch; (3) autoregressive compositional sampling, as shown in the right of Figure 3, where we sequentially denoise each τk.

We observe that both parallel and AR sampling methods require more sampling time than DD probably due to (1) the the
simpler and smaller denoiser network of DD; (2) time for condition encoding (our method will first encode the noisy adjacent
trajectories τk−1 and τk+1 and feed the resulting latents to the denoiser ϵθ) and (3) the overhead of trajectory merging.

In addition, in our parallel sampling scheme, we stack all trajectories τ1:K to one batch and feed it to the denoiser network
ϵθ. While it indeed requires only one model forward, the batch size increases implicitly, which is probably the major reason
that the sampling time of Ours (Parallel) does not proportionally decrease as the number of composed trajectories K, in
comparison to Ours (AR).



Env Type Size DD (Monolithic) Ours (Parallel) Ours (AR)

PointMaze Stitch
Medium 0.23 1.02 1.54
Large 0.23 1.67 3.39
Giant 0.23 2.73 5.00

TABLE X: Quantitative Comparison of Sampling Time We report the time for sampling one (compositional) trajectory in
three different PointMaze environments using one Nvidia L40S GPU (unit: second). The reported results are averaged over
20 sampling. In Parallel and AR (Autoregressive) mode, we use the proposed compositional sampling scheme as shown in
Figure 3. Specifically, we compose 3, 6, and 9 trajectories in Maze Medium, Large, and Giant, respectively. In Decision
Diffuser (DD), we directly sample one trajectory with identical length as the compositional counterparts.

H. Starting Direction of Autoregressive Compositional Sampling

In the proposed autoregressive sampling scheme described in Figure 3, inside each diffusion denoising timestep, the
denoising starts from τ1 and sequentially proceeds to τK (from left to right), which we denote as forward passing. Another
implementation variant is to denoise in the reverse order, that is, first denoise τK and sequentially proceed to τ1 (from right
to left), which we denote as backward passing.

We provide a quantitative comparison of these two starting directions in Table XI. We observe that these two methods yield
similar performance, demonstrating that either autoregressive sampling direction can enable effective information propagation
and exchange.

Env Type Size Ours (Forward) Ours (Backward)

PointMaze Stitch
Medium 100±0 100±0

Large 100±0 100±0

Giant 55±4 56±2

TABLE XI: Quantitative Comparison of Forward and Backward Information Propagation. We study the effect of the
starting direction of the autoregressive sampling, from τ1 vs. from τK . To directly study the trajectory quality, we report the
results w/o replanning for both methods. Either Forward or Backward achieves similar performance, suggesting that our
sampling method is robust to different sampling configurations.



X. ADDITIONAL QUALITATIVE RESULTS

In this section, we present additional qualitative results of CompDiffuser. Videos and interactive demos are provided at our
project website (see Abstract section for the link).

A. Composing Different Numbers of Trajectories

We present qualitative results of composing 8 to 11 trajectories in OGBench PointMaze Giant Stitch environments
in Figure 9. We compositionally sample multiple trajectories to construct a long-horizon plan where the given start is at the
bottom-left corner and the given goal is at the top-right corner. For clearer view, we present the results before applying
trajectory merging (i.e., we show each individual trajectory of τ1:K ) and use different colors to highlight different trajectories.

K = 8 K = 9 K = 10 K = 11

Fig. 9: Composing Different Numbers of Trajectories at Inference. Our method is only trained on short trajectory segments that travel
at most 4 blocks, while is able to compositionally generate coherent long trajectories given the start (circle) and goal (star). When K is
smaller and barely sufficient to reach the goal (e.g., 8), the length of the overlapping part between segments decreases so as to extend the
travel distance of the overall compositional plan. In contrast, if given a larger K (e.g., 11), some parts of the compositional plan might
travel back and forth to consume the extra length.

B. Diverse Trajectory Morphology

The proposed compositional sampling method allows direct generalization to long-horizon planning tasks at test time
through its noisy-sample conditioning and bidirectional information propagation design. Meanwhile, this sampling approach
also preserves the multi-modal nature of the diffusion model, enabling a diverse range of trajectory morphology. As shown
in Figure 10, given a similar start and goal pair, our method can construct trajectories that reach the goal via various possible
paths. With such multi-modal flexibility, the proposed sampling process can be further customized with specific preferences
by integrating additional test-time steering techniques.

Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4

Fig. 10: Diverse Trajectory Morphology. We present four trajectories with similar start and goal in OGBench PointMaze Giant
Stitch. All trajectories are generated by CompDiffuser, composing 9 trajectories. CompDiffuser preserves the multi-modal nature of
diffusion models and is able to flexibly sample trajectories of diverse morphology.

C. Planning Results on Different Tasks.

In Section X-B above, we present multiple trajectories of Task 1 in OGBench PointMaze Giant. In this section, we
present qualitative results of the following Task 2 to Task 5, as in Figure 11. We set the number of composed trajectories K



to 9 in all tasks. The state state is shown by the black circle and the goal state is shown by the black star. Our method
successfully constructs feasible plans for various start-goal configurations across different spatial distances.

Task 2 Task 3 Task 4 Task 5

Fig. 11: Different Tasks in OGBench PointMaze Giant Stitch. We present qualitative plans by CompDiffuser on OGBench Task 2-5 (See
Figure 10 for results of Task 1). We set the number of composed trajectories to 9 for all the tasks above. The black circle denotes the start
state and the black star denotes the goal state. In task 2 and 3, our method effectively constructs long horizon plans that reach the goals on
the opposite side of the environment (despite being trained only on trajectories that travel at most 4 blocks). In comparison, Task 4 and 5
feature a relatively smaller spatial gap between the start and goal, thus requiring a shorter planning horizon. Our method still generalizes to
these tasks by generating plans that traverse additional distance or leveraging back-and-forth movements to consume the extra plan length.

D. Compositional Planning in High Dimensional Space

In this section, we present additional high dimensional trajectories generated by CompDiffuser in OGBench AntMaze
Large Stitch environment. Similar to other experiments in the paper, the models are trained on the corresponding
OGBench public release datasets.

AntMaze Large Stitch 29D. We train CompDiffuser on the state space of x-y position along with the ant’s joint positions
and velocities, resulting in a 29D planning task. Note that CompDiffuser is only trained on short trajectory segments (we set
its horizon to 160), while at test time, we compose 5 trajectories to directly construct trajectory plans of horizon 584. We
present additional qualitative results in Figure 12. Note that we uniformly sub-sample the length of the trajectory to 50 for
clearer view. Corresponding quantitative results are reported in Table II.

Fig. 12: Compositional Planning in 29D on OGBench AntMaze Large Stitch Tasks. Original trajectory plans are much denser and
we uniformly sub-sample 50 states from the original generated trajectories for better view. Five trajectories are composed as shown by
different colors: the blue one indicates the first trajectory τ1 and the purple one indicates the fifth trajectory τ5.

E. Compositional Planning in AntSoccer

We provide additional qualitative results in OGBench AntSoccer Arena Stitch environment in Figure 13 and
OGBench AntSoccer Medium Stitch environment in Figure 14. In this task, the ant is initialized to the location of the
blue circle and is tasked to move the ball to the goal location indicated by the pink circle. Hence, the ant needs to first reach
the ball from the far side of the environment and dribble the ball to the goal.

However, such long-horizon trajectories (the ant reaches the ball and then dribbles the ball to the goal) do not exist in the
training dataset. The training dataset only contains two distinct types of trajectories: (1) the ant moves in the environment
without the ball, (2) the ant moves while dribbling the ball. Therefore, the planner needs to generalize and stitch in a zero-shot
manner – constructing an end-to-end trajectory that first approaches the ball and then dribbles the ball to the goal.



We train CompDiffuser on the state space of the ant’s x-y position and joint positions along with the x-y position of the
ball, resulting in a 17D planning task. Similar to Figure 14, we present each individual trajectory τ1:K in Figure 13 for
clearer view. Corresponding quantitative results are provided in Table V.

Init State 𝜏! 𝜏" 𝜏# 𝜏$

Fig. 13: Compositional Planning on OGBench AntSoccer Arena Stitch. We present the initial state for planning and each individual
trajectories τ1:4 above. The start position of the ant is shown by the blue circle (bottom right) and the goal is to move the ball to the
pink circle (upper right). We compositionally sample 4 trajectories (as shown from left to right), which will then be merged to form a
long-horizon plan. The ball is highlighted with a small yellow circle. Our compositional sampling method effectively stitches two different
types of trajectories and generalizes to more difficult tasks unseen in the training data.

Fig. 14: Qualitative Plan generated by CompDiffuser in OGBench AntSoccer Medium Stitch. The initial position of the ant is shown
by the blue circle and the goal is to move the ball to the pink circle. We plot each individual trajectory τ1:6 separately (as shown from left
to right) and mark the ball with a yellow circle for clearer view. These generated trajectories will be merged to form a long-horizon plan
τcomp. Note that our model is only trained on two different types of short trajectories: 1) the ant moves without dribbling the ball; 2) the
ant moves while dribbling the ball. At test time, the proposed compositional sampling method can stitch these two types of trajectories and
construct end-to-end plans of longer horizon to solve the more difficult task – first navigate to the ball from the far side and then dribble
the ball to the goal position.



XI. FAILURE MODE ANALYSIS

In this section, we present several failure cases of our method along with analyses and qualitative examples of these failure
modes. Our proposed framework consists of two components: a generative planner and an inverse dynamics model. We
outline and discuss several failure modes below.

A. Infeasible Generated Plan

As the number of composed trajectories K increases, our method may show inconsistencies in the trajectory plan, especially
when planning in high dimensional state space. We observe that although the start and goal conditioning can consistently
ensure that the composed plan begins at the initial state and terminates at the provided goal, the intermediate trajectories
may include implausible transitions, such as trajectories that jump over walls, making the overall plan infeasible. However,
empirically these failures usually occur at considerably higher K as compared to baseline methods (e.g., GSC, see Table IV
and Table I).

In Figure 15, we present a qualitative example of infeasible plan in OGBench AntMaze Giant Stitch when planning
in 29D space (ant’s x-y position, joint positions, and joint velocity) and composing 9 trajectories. The original white walls
are rendered transparent for better view of infeasible states. Though the generated compositional plan is mostly valid, the
second trajectory τ2, as shown in yellow, is infeasible as it passes through walls. This is probably due to the suboptimal
coordination among trajectories in the compositional sampling process.

As illustrated in the figure, certain trajectories (e.g., the neighboring blue, green, and red ones) barely proceeds, moving
only 2-3 blocks. To bridge the resulting spatial gap, the intermediate yellow trajectory must span a much longer distance.
However, the training data does not contain such long-horizon trajectories, making it difficult for a single trajectory to extend
to such length, which finally results in an o.o.d sample that goes through walls. We could potentially mitigate this issue with
rejection or guided sampling techniques to select feasible candidate plans.

Infeasible Plan: Passing through Walls
Fig. 15: Failure Mode: Infeasible Plan.
We increase the transparency of the original
white walls for better view of infeasible states.
The start state is at the top left corner and
the goal state is at the bottom right corner.
Nine trajectories are composed, highlighted
by different colors. The second trajectory τ2
(shown in yellow) is infeasible and passes
through walls. This is probably due to the
suboptimal coordination between trajectories
in the compositional sampling process: the
neighboring blue and green trajectories barely
progress, leaving a long o.o.d gap for the
yellow trajectory to fill.

Feasible Plan Rollout: Suboptimal Actions
Fig. 16: Failure Mode: Suboptimal Inverse Dynamics
Actions. We present a failure case of planning in 15D space
(ant’s x-y position and joint positions) in AntMaze Medium
Stitch. Left: the compositional plan where three trajectories
(represented in blue, yellow, and green) are composed. We
sub-sample the plan to 36 states for visualization (the original
plan is dense with over 300 states). Right: the corresponding
environment execution rollout of the compositional plan.
Though the synthesized plan is valid and successfully reaches
the goal, the inverse dynamics model may fail, as illustrated
on the right which gets stuck in a right turn and is unable
to proceed. Further incorporating some effective replanning
strategies or employing more robust inverse dynamics models
could potentially mitigate these failure scenarios.

B. Suboptimal Inverse Dynamics Model

In our experiments, we observe that even if CompDiffuser synthesizes a feasible trajectory for the agent to follow, the
agent might not successfully reach the goal due to the error by the inverse dynamics model. For example, the agent might
bump into walls due to unstable locomotion or get stuck in some local region, yet the synthesized plan is collision-free and
coherent.



In implementation, we use a simple MLP to parameterize the inverse dynamics model and train it with a regression MSE
loss. We believe that more optimized model architecture or specific finetuning might further boost the performance of the
inverse dynamics model, hence boosting the overall performance of our method. We deem that out of the scope of this work.

In Figure 16, we present a qualitative example of failure due to the inverse dynamics model in OGBench AntMaze
Giant Stitch. The planning is in 15D space (ant’s x-y position and joint positions) and composes 3 trajectories. While
we observe that the synthesized plan is feasible and successfully reaches the goal, the environment execution rollout fails
during the yellow trajectory. In this instance, the ant agent fails to execute the right turn, loses track of subsequent subgoals,
and becomes trapped in a local region. To address this issue, incorporating effective replanning strategies could help the
agent recover (since the new plan will start from the current trapped state). In addition, we deem that employing more robust
or specialized inverse dynamics models may further mitigate such failure scenarios.

C. Suboptimal Number of Composed Trajectories K

In our current implementation, the number of composed trajectories K needs to be manually specified at test time. As
shown by the quantitative results Table VIII and qualitative results Figure 9, a relatively larger K does not significantly
affect the model performance as the extra plan length will be consumed by staying or circulating within certain valid regions
in the environment. However, an aggressively smaller K might lead to failure plans – since the overall planning horizon
becomes insufficient to cover the substantial spatial gap between the start and the goal.

In this section, we provide qualitative examples of infeasible plans due to impractical K. In Figure 17, we show each
individual trajectory τk generated by our compositional sampling method when K ranges from 3 to 6. Note that a feasible
horizon to reach the goal from the start (bottom left) to the goal (upper right) requires composing at least 8 trajectories, i.e.,
K = 8.

Therefore, while the generated trajectories can begin at the start state and terminate at the goal state, the intermediate
segments become disconnected since there are too few trajectories to bridge the significant spatial gap (given that the training
data contains only short trajectories). Nonetheless, we observe that the overall flow of the trajectories is directed toward the
goal, and as K increases, the plan’s structure gradually becomes more feasible.

K = 3 K = 4 K = 5 K = 6
Fig. 17: Failure Model: Suboptimal Number of Composed Trajectories K. Our method may generate infeasible plans if K, the number
of composed trajectories, is set significantly below the required minimum. For example, in the planning task illustrated above, the start
state is located in the bottom left corner while the goal state is at the upper right corner. A feasible plan for this task typically requires
composing at least 8 trajectories (i.e., K = 8). We present qualitative examples of plans when K is smaller than the minimum threshold.
Though the first and last trajectory segments correctly attach to the start and goal states, the intermediate trajectories are disconnected due
to the insufficient plan length. However, the overall plan still progresses towards the goal, which may provide useful guidance signals to
the agent.



XII. IMPLEMENTATION DETAILS

Software: The computation platform is installed with Ubuntu 20.04.6, Python 3.9.20, PyTorch 2.5.0.

Hardware: We use 1 NVIDIA GPU for each experiment.

A. Our Conditional Diffusion Model

In this section, we introduce detailed implementation of our conditional diffusion model ϵθ(τ t, t | st_cond, end_cond).

Model Inputs and Outputs. Our diffusion model takes as input the noisy trajectory τ t, diffusion noise timestep t, and
the start condition st_cond and end condition end_cond for τ t. st_cond can be either noisy chunk or start state qs and
end_cond can be either noisy chunk or goal state qg . We use the predicting τ0 formulation to implement this network, i.e.,
the network directly predicts the clean sample τ0.

Implementation of Noisy Chunk Conditioning. As described in Section II, we only train one diffusion model ϵθ that is
able to condition on both the start state qs, goal state qg , and noisy chunk τ tk−1, τ tk+1, such that in test time we can use the
proposed compositional sampling approach to construct long-horizon plans. This unified one model design eliminate the need
for manual task subdivision (across multiple models) or reliance on predefined planning skeleton, thereby enabling holistic
end-to-end planning.

In practice, we can implement the noisy neighbor conditioning Lnbr simply using the overlapping part between the two
chunks instead of a full chunk τk−1/τk+1 conditioning, because the overlapping part is sufficient to ensure the connectivity
between two adjacent trajectories. Such design further simplifies the training procedure: instead of dividing a training trajectory
τ to K chunks, we only need to sample a noisy sub-chunk from τ itself.

Specifically, assume τ t is the noisy trajectory to be denoised and τ̂ t is another independent noisy version of τ also at
noisy timestep t. We denote the length of τ as h and the length of the overlapped part as ho, then we can use τ̂ t[0 : ho] and
τ̂ t[h− ho : h] as the noisy sub-chunks for st_cond and end_cond during training, respectively. Hence, when inference, the
end_cond for τ1 can be set to τ̂ t2[0 : ho] (the front chunk of the second trajectory τ2) and the st_cond for τ2 can be set to
τ̂ t2[0 : ho] (the tail chunk of the first trajectory τ1).

Model Architecture. For planning in 2D x-y space, we follow Decision Diffuser [2] (https://github.com/anuragajay/decision-
diffuser/) and use a conditional U-Net as the denoiser network. For planning in high dimension state space, we use a DiT [87]
based transformer [88] as the denoiser network (https://github.com/facebookresearch/DiT/).

Training Pipeline. We provide detailed hyperparameters for training our model on PointMaze Giant Stitch environment
in Table XII. We do not apply any hyperparameter search or learning rate scheduler. Please refer to our codebase for more
implementation details.

Hyperparameters Value

Horizon 160
Diffusion Time Step 512

Probability of Condition Dropout 0.2
Iterations 1.2M

Batch Size 128
Optimizer Adam

Learning Rate 2e-4
U-Net Base Dim 128

U-Net Encoder Dims (128, 256, 512, 1024)

TABLE XII: Hyperparameters for Training on PointMaze Giant Stitch environment.

Inference Pipeline. In Table XIII, we present the single model horizon (length of individual τk) and the inference-time
number of composed trajectories K corresponding to the reported results in Table IV, Table I and Table V.

For each evaluation problem, we generate B samples in a batch and we use a simple heuristic to select one sample as
the output plan. Specifically, we compute the L2-distance of each overlapping parts in the generated trajectory segments
τ1:K . The one with the smallest average distance will be adopted as the output plan, in the sense that a small distance in the
overlapping parts indicates better coherency between adjacent trajectories. we deem that developing some more advanced

https://github.com/anuragajay/decision-diffuser/
https://github.com/anuragajay/decision-diffuser/
https://github.com/facebookresearch/DiT/


inference-time methods with CompDiffuser may be an interesting future research direction, such as probability or density
based plan selection methods or compositional sampling with flexible preference steering.

Environment Type Size Single Model Horizon # of Composed Trajectories

PointMaze
[6] -

U-maze 40 5
Medium 144 5
Large 192 5

pointmaze stitch
Medium 160 3
Large 160 5
Giant 160 8

AntMaze Stitch
Medium 160 3
Large 160 6
Giant 160 9

AntMaze Explore
Medium 192 5
Large 192 6

AntSoccer stitch
Arena 160 5
Medium 160 6

HumanoidMaze Stitch
Medium 336 4
Large 336 6
Giant 336 11

TABLE XIII: Number of Composed Trajectories for Each Evaluation Environment. Our diffusion models are trained
with a short horizon as listed in the Single Model Horizon column. In test time, we compositionally generate multiple such
short trajectories to enable trajectory stitching and construct plans of much longer horizon.

B. Trajectory Merging

As introduced in Method Section II and Algorithm 2, the generated trajectories τ1:K are mutually overlapped and we merge
these K trajectories to form a long-horizon compositional trajectory τcomp. In this section, we describe the implementation of
the exponential trajectory blending technique which we use for merging.

We directly leverage the classic exponential trajectory blending formulation. For simplicity, let τ1 and τ2 denote the
trajectories to blend, τ1[t] denote the t-th state in τ1, tstart and tend denote the start and end index of the region to apply
blending. Note that, in practice, we only blend the overlapped part between two adjacent trajectories. We provide the equation
for exponential blending below,

τcomp[t] = w(t) ∗ τ1[t] + (1− w(t)) ∗ τ2[t], where w(t) =
e
−β

(
t−tstart

tend−tstart

)
− e−β

1− e−β
(5)

We set β = 2 across all our experiments. In practice, various other trajectory blending techniques can also be directly
applied, such as cosine blending and linear blending.

C. Replanning

In this section, we describe the detailed implementation of replanning. While our method is designed to directly generate
an end-to-end trajectory from the given start state to the goal state, replanning can be performed at any given timesteps
during a rollout. Specifically, we initiate replanning if the agent loses track of the current subgoal, i.e., the L2 distance
between the agent and the subgoal is larger than a threshold.

In a larger maze, the required number of composed trajectories, denoted as K, is usually large due to the distance between
the start state and the goal state. However, if we keep replanning with a similar large K even when the agent is already
close to the goal, the generated trajectory might travel back and forth to consume the unnecessary intermediate length (see
(2) and (3) in Figure 11), thus delaying the agent’s progress toward the goal.

To address this, we use a receding scheme for K to encourage faster convergence to the goal. Let K denote the number
of composed trajectories of the current plan (the plan that the agent is following), hcomp denote the length of the current



plan, hexe denote the length of the current plan that the agent already executes in the environment. The number of composed
trajectories used for replanning Kreplan is given by

Kreplan = ceil
(
(1− max(hexe − δ, 0)

hcomp
) ∗K

)
(6)

where δ is a hyper-parameter that controls the convergence speed to the goal, for example, Kreplan will decrease faster if δ
is set to a small (or negative) number while Kreplan will decrease very slowly if δ is a large positive number.
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