
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

AGUVIS: UNIFIED PURE VISION AGENTS FOR AU-
TONOMOUS GUI INTERACTION

Yiheng Xu∗♠ Zekun Wang∗♠ Junli Wang∗♠ Dunjie Lu♠

Tianbao Xie♠ Amrita Saha♣ Doyen Sahoo♣ Tao Yu†♠ Caiming Xiong†♣
♠University of Hong Kong ♣Salesforce Research
♠{yhxu,tyu}@cs.hku.hk ♣cxiong@salesforce.com
https://aguvis-project.github.io

ABSTRACT

Automating GUI tasks remains challenging due to reliance on textual represen-
tations, platform-specific action spaces, and limited reasoning capabilities. We
introduce AGUVIS, a unified vision-based framework for autonomous GUI agents
that directly operates on screen images, standardizes cross-platform interactions
and incorporates structured reasoning via inner monologue. To enable this, we
construct AGUVIS DATA COLLECTION, a large-scale dataset with multimodal
grounding and reasoning annotations, and develop a two-stage training pipeline
that separates GUI grounding from planning and reasoning. Experiments show
that AGUVIS achieves state-of-the-art performance across offline and real-world
online benchmarks, marking the first fully autonomous vision-based GUI agent
that operates without closed-source models. We open-source all datasets, models,
and training recipes to advance future research.

1 INTRODUCTION

Graphical User Interfaces (GUIs) represent the primary medium of human-computer interaction in
digital environments, from websites to desktop and mobile applications (Deng et al., 2023; Zhou
et al., 2024; Xie et al., 2024; Rawles et al., 2024b). Creating autonomous agents that can effectively
navigate these interfaces could revolutionize human productivity by enabling automated task execu-
tion using existing human-centric tools. Such automation requires mastery of three core competen-
cies: visual understanding to comprehend complex interfaces, grounding to map natural language
instructions to visual elements, and planning & reasoning to synthesize observations into effective
actions. While recent advances in vision-language models (VLMs) have significantly enhanced vi-
sual interface interpretation, developing truly autonomous GUI agents remains challenging due to
fundamental limitations in current approaches.

Although recent advances in large vision-language models (LVLMs) (OpenAI, 2024; Team et al.,
2024; Li et al., 2024a; Wang et al., 2024; Deitke et al., 2024; Chen et al., 2024b) have significantly
enhanced the ability to interpret complex visual interfaces, we identify several critical barriers to ad-
vancing GUI automation. First, existing approaches predominantly rely on textual representations
(e.g., HTML or accessibility trees) rather than visual ones (Gur et al., 2024; Kim et al., 2023; Deng
et al., 2023; Zhou et al., 2024; Xie et al., 2024), whose input observation is lengthy (more than 4K),
and the length increases as the complexity of the GUI grows (Xie et al., 2024), limiting general-
ization and increasing computational overhead compared to more natural image-based representa-
tions. Second, the heterogeneous action spaces across different platforms prevent effective cross-
environment learning, constraining the available training data for each environment and impeding
further scalability. Third, current methods either lack reliable visual grounding (Zheng et al., 2024a)
or depend heavily on closed-source language models for reasoning (Gou et al., 2024; Lu et al., 2024),
creating a fundamental bottleneck in advancing model capabilities through training. Fourth, existing
methods typically train agents to generate “reactive” low-level actions directly (Hong et al., 2024;
Cheng et al., 2024), failing to leverage the reasoning capabilities inherent in vision-language mod-
els. This reactive approach struggles with complex scenarios in the real world that require careful
planning and broad generalization. These limitations have prevented the development of scalable,
generalizable GUI agents that can operate autonomously across diverse digital environments.

∗Equal contribution †Corresponding authors. Work was partially done during YX’s internship at Salesforce.

1

https://aguvis-project.github.io

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Thought: I have set my starting point as
Boston Logan Airport. To proceed, I need to click
on the ‘To’ input field and ...

Low-level Instruction: Click on the 'To'
input field and type 'North Station' as the
destination.

Inner Monologue

Action:

pyautogui.click(x=0.6756, y=0.4)

pyautogui.write(text='North Station')

GUI Action

Pure-vision Observation

User: Plan a trip from Boston Logan
Airport to North Station.

Instruction

Unified Action Space

browser.select_option(x, y, value)

mobile.back()

terminate(status)

Pluggable Actions

pyautogui.click(x, y)

pyautogui.write(message)

pyautogui.press(‘enter’)

Basic Actions

Figure 1: Overview of AGUVIS unified GUI interaction framework for autonomous GUI agents.

To address these challenges, we introduce AGUVIS (as shown in Figure 1), a unified vision-based
framework that harmonizes visual observation and consistent action spaces across diverse GUI envi-
ronments. Our approach eliminates dependence on platform-specific textual representations by op-
erating directly on screen images, enabling more natural and generalizable interface understanding.
We develop a standardized action space through a plugin system that maintains consistent interaction
patterns across platforms while accommodating environment-specific requirements. Crucially, we
incorporate explicit inner monologue during training, allowing the model to develop sophisticated
reasoning patterns that emulate human problem-solving processes. This inner monologue enables
the model to break down complex tasks into manageable steps, consider alternative approaches, and
adapt to novel situations—capabilities that go beyond simple reactive behaviors.

To enable this unified framework, we make several technical contributions. First, we construct AGU-
VIS DATA COLLECTION, a large-scale cross-platform dataset of GUI agent trajectories that features
comprehensive multimodal grounding and reasoning annotations, including explicit reasoning paths
captured through inner monologue. Second, we develop a novel two-stage training pipeline that sep-
arates GUI grounding from planning and reasoning, incorporating structured thought processes to
enhance autonomous navigation capabilities. Finally, we demonstrate that AGUVIS achieves state-
of-the-art performance in both offline evaluation and real-world online scenarios, marking the first
fully autonomous vision-based GUI agent that operates without relying on closed-source models.
By open-sourcing our datasets, models, and training recipes, we provide a foundation for future
research in autonomous GUI interaction.

2 AGUVIS

2.1 PROBLEM FORMULATION

GUI interaction presents unique challenges due to partial observability and sequential decision-
making, naturally lending itself to modeling as a Partially Observable Markov Decision Process
(POMDP). We formalize this as a tuple (S,A,O, T,O), where S represents possible environment
states, A denotes available actions, and O refers to possible observations. The state transition func-
tion T : S×A×S → [0, 1] defines state transition probabilities given actions, while the observation
function O : S ×A×O → [0, 1] specifies observation probabilities given states and actions.

At each time step t, the agent receives an image observation ot from the GUI environment and
generates an action at through a structured reasoning process. This process involves inner mono-
logue (Huang et al., 2022), which helps the agent interpret observations and determine appropriate
actions. The agent then executes at, receives a new observation ot+1, and continues until achieving
the goal G or reaching a terminal state.

2.2 UNIFIED GUI INTERACTION FRAMEWORK

Contemporary GUI agents predominantly rely on platform-specific representations like HTML or
accessibility trees for interface interpretation, leading to fragmented approaches across different en-
vironments. We propose a unified framework that operates purely through visual observations and
standardized interactions, addressing key limitations of existing methods while improving compu-
tational efficiency.

Our framework unifies both observation and action spaces across platforms while incorporating
structured reasoning processes. For observations, we leverage direct visual input instead of parsing

2

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

platform-specific interface code, enabling the model to process GUIs as humans do - through visual
perception. The vision-centric approach not only enhances generalization across platforms but also
significantly reduces computational overhead. While traditional textual methods typically require
processing 4k-6k tokens per interaction—as shown in Figure 3 for HTML and reported in Xie et al.
(2024) for accessibility tree—our visual approach maintains a constant token cost of 1,196 tokens
for 720p images, independent of interface complexity.

At each interaction step, the agent employs a two-component inner monologue to bridge visual
perception with action execution. The first component performs explicit reasoning (ht) about the
current state relative to the task goal G and previous thoughts ht−1, enabling adaptive planning.
Finally, the agent generates precise action instructions (ainstr

t) that translate high-level intentions into
concrete interface interactions. This structured thought process enables reliable handling of complex
multi-step tasks.

For action execution, we adopt pyautogui as our universal interaction interface, supplemented by
a flexible plugin system. The pyautogui library provides a comprehensive set of programmatic
commands that mirror human input behaviors, allowing us to represent GUI interactions consistently
across platforms. As shown in Table 9, this standardized action space enables the model to translate
its inner monologue into concrete actions without requiring environment-specific design.

Our plugin system extends the base pyautogui action space to handle platform-specific require-
ments while maintaining the natural flow of thought-to-action conversion. It incorporates specialized
interactions like mobile gestures, platform-specific shortcuts, and meta-actions such as providing re-
sponses or signaling task completion. The system aligns new actions with existing commands where
possible, using explicit descriptions only when necessary, ensuring that the agent’s inner reasoning
remains coherent across different interaction modes. Details of these pluggable functions, partic-
ularly for mobile environments, are provided in Appendix A.2, where we describe specific mobile
interaction functions and their corresponding prompts.

By integrating visual perception, structured reasoning through inner monologue, and unified action
representation, our framework enables training a single model capable of operating across diverse
GUI environments. This integrated approach not only simplifies the training process but also pro-
motes human-like interaction patterns and better generalization to novel interfaces. The reduced
computational overhead of visual processing, coupled with the power of structured reasoning, makes
this framework particularly effective for real-world applications.

2.3 AGUVIS DATA COLLECTION

Thought

Identifying the 'Wi-Fi
subscriptions' ...

Low-level Instruction

Click on the “Wi-FI”
subscription link to...

Prompt GPT-4o to generate
structured Inner Monologue

Click (x, y)Show me the page
about Wi-Fi setting

TrajectoriesUI Elements

Augmented Planning DataAugmented Inst. and Action Pairs

Visual Observation

GPT-4o

Instruction Ground Truth Action

Inner Monologue

Instruction-Action
Augmentation

UI Element Coordinates

Maida Vale Library
Facebook
Mayfair

More (0.3370, 0.6483)
(0.1878, 0.9525)
(0.1378, 0.6483)
(0.1226, 0.9738)

Inst. Action

Click on Maida Vale Library

Drag to select Facebook

Right-Click on Mayfair

Double-Click on More pyautogui.doubleClick(0.3370, 0.6483)

pyautogui.click(0.1878, 0.9525)

pyautogui.moveTo(0.0956, 0.6483)

pyautogui.dragTo(0.1378, 0.6483)

pyautogui.rightClick(0.1226, 0.9738)

GUI Screenshot

Figure 2: AGUVIS DATA COLLECTION augmen-
tation pipeline for two-stage training data.

The effectiveness of GUI agents critically de-
pends on high-quality training data that cap-
tures both grounding accuracy and complex
reasoning patterns. However, collecting such
data presents unique challenges due to the di-
verse nature of GUI environments and the need
for detailed reasoning annotations. We ad-
dress these challenges through a two-pronged
data collection strategy that leverages existing
resources and automated augmentation tech-
niques shown in Figure 2. Our dataset con-
sists of two splits: a grounding split focus-
ing on element localization and interaction (Ta-
ble 10), and a planning & reasoning split cap-
turing multi-step task completion (Table 11).
This division aligns with our framework’s dual
emphasis on visual understanding and struc-
tured reasoning.

Template-augmented Grounding Data. To create comprehensive grounding data, we employ a
dual-source approach. First, we unify existing GUI datasets across platforms by converting their
instruction-action annotations into our standardized pyautogui format. Second, we leverage the

3

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

rich metadata available in broader UI datasets without action annotations, including all element
positions and attributes, to generate synthetic instruction-action pairs through carefully designed
templates. This approach not only expands our training data but also ensures coverage of diverse
interface patterns and interaction types.

VLM-augmented Planning & Reasoning Trajectories. While existing GUI agent datasets pro-
vide high-level goals and action sequences (Deng et al., 2023; Rawles et al., 2024b; Li et al., 2024c),
they often lack the intermediate reasoning steps crucial for advanced agent behavior. We address
this limitation through a novel VLM-based trajectory augmentation process. For each trajectory
step, we construct a rich training example by first highlighting relevant UI elements in the observa-
tion ot to guide the VLM’s attention. Given the high-level goal G, the current image observation
ot, and the grounded action at, we prompt GPT-4o to generate the inner monologue components:
thoughts ht, and low-level action instruction ainstr

t . To maintain temporal coherence, we include
previous action instructions ainstr

1 , . . . , ainstr
t−1 in the context. The complete prompting template and

example are detailed in Appendix B.2 and Figure 6. Our carefully crafted approach ensures the
generated inner monologues are predictive rather than post-hoc explanations, enabling the agent to
develop planning capabilities. Through extensive human evaluation with quantitative analysis de-
tailed in Appendix B.3, we validate the quality of these augmented trajectories, confirming that they
effectively capture not just the actions to take, but also the complete reasoning process leading to
those actions. Our analysis reveals that 86.7% of the augmented data successfully demonstrates
intermediate reasoning that aligns with both the ground truth actions and the overall goal intention,
with detailed failure case analysis provided in Appendix B.3.2.

2.4 MODEL ARCHITECTURE

Vision-based GUI agents require direct mapping between visual observations and actions, necessi-
tating an architecture optimized for high-resolution image processing while preserving spatial rela-
tionships. We selected Qwen2-VL as our foundation, leveraging its NaViT image encoder’s support
for dynamic resolution processing—a critical feature for handling diverse interface layouts. Another
key strength of the architecture lies in its position embedding mechanism. By replacing absolute po-
sition embeddings with 2D-RoPE, the model maintains precise spatial awareness across varying
screen dimensions while efficiently converting interface screenshots into visual tokens. These im-
provements significantly reduce computational overhead compared to conventional methods.

To validate our framework’s flexibility, we also implemented it using LLaVA-OneVision, which
similarly supports high-resolution image processing with variable aspect ratios, albeit with higher
token costs. This implementation confirms our framework’s model-agnostic nature, with detailed
comparisons presented in Section 4.1.

2.5 TRAINING PARADIGM

The training process of AGUVIS is divided into two stages: Grounding Training and Planning &
Reasoning Training. Each stage leverages a distinct split from AGUVIS DATA COLLECTION to pro-
gressively build the agentic abilities. The complete training example templates and prompt formats
for both stages are detailed in Appendix C.1.

Stage 1: Grounding Training The first stage focuses on developing fundamental GUI interaction
capabilities through efficient processing of single-screenshot environments. To address the chal-
lenge of multiple interactable objects within each screenshot generating redundant training data, we
implement a grounding packing strategy. This approach bundles multiple instruction-action pairs
into a single image, creating a single-image-multiple-turn format. By processing several ground-
ing examples simultaneously from each screenshot, we significantly reduce training overhead while
maintaining performance (shown in Appendix C.2). The result of this stage is AGUVIS-G, a model
equipped with advanced GUI understanding and interaction capabilities.

Stage 2: Planning & Reasoning Training Building on AGUVIS-G’s foundation, the second stage
develops advanced decision-making and reasoning abilities necessary for complex, multi-step tasks.
We leverage our detailed inner-monologue trajectory data (as described in Section 2.3) to implement
a reasoning mixture approach, exposing the model to varying levels of cognitive complexity. This

4

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 1: Comparison of various planners and grounding methods on ScreenSpot across various de-
vice and input modalities. The top part of table shows the results on original instructions evaluation
setting while the bottom part shows results on self-plan evaluation setting. Best results are in bold.

Planner Grounder Mobile Desktop Web Avg
Text Icon/Widget Text Icon/Widget Text Icon/Widget

-

GPT-4 22.6 24.5 20.2 11.8 9.2 8.8 16.2
GPT-4o 20.2 24.9 21.1 23.6 12.2 7.8 18.3
CogAgent 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick 78.0 52.0 72.2 30.0 55.7 32.5 53.4
Qwen2-VL 75.5 60.7 76.3 54.3 35.2 25.7 55.3
UGround 82.8 60.3 82.5 63.6 80.4 70.4 73.3
AGUVIS-G-7B 88.3 78.2 88.1 70.7 85.7 74.8 81.8

GPT-4
SeeClick 76.6 55.5 68.0 28.6 40.9 23.3 48.8
OmniParser 93.9 57.0 91.3 63.6 81.3 51.0 73.0
UGround 90.1 70.3 87.1 55.7 85.7 64.6 75.6

GPT-4o SeeClick 81.0 59.8 69.6 33.6 43.9 26.2 52.3
UGround 93.4 76.9 92.8 67.9 88.7 68.9 81.4

AGUVIS-7B 95.6 77.7 93.8 67.1 88.3 75.2 84.4
AGUVIS-72B 94.5 85.2 95.4 77.9 91.3 85.9 89.2

ranges from basic action instructions to comprehensive inner monologues encompassing thoughts,
and detailed action plans. The dynamic adjustment of trajectory complexity ensures the model devel-
ops adaptable reasoning patterns and sophisticated decision-making capabilities. The final result is
AGUVIS, a fully-trained model capable of handling both offline and online GUI tasks across diverse
environments with nuanced understanding and precision. Training implementation details, including
hardware configurations, training durations, and hyperparameters, are provided in Appendix C.2.

3 EXPERIMENTS

3.1 GUI GROUNDING EVALUATION

ScreenSpot. We first evaluated AGUVIS’s fundamental GUI grounding capabilities using
ScreenSpot (Cheng et al., 2024), a benchmark that spans mobile, desktop, and website platforms.
Following established protocols from previous work (Cheng et al., 2024; Gou et al., 2024), we tested
under two conditions: direct execution from original instructions and self-planned execution requir-
ing natural language planning before action.

The results in Table 1 demonstrate AGUVIS’s exceptional grounding capabilities across platforms.
Our AGUVIS-G-7B, trained with grounding stage, significantly outperforms existing models on orig-
inal instructions. The full model AGUVIS-7B shows stronger performance after planning trajectory
training, surpassing previous approaches that rely on closed-source LLMs like GPT-4o. The scaled
version, AGUVIS-72B, achieves state-of-the-art performance with an average score of 89.2.

3.2 OFFLINE GUI AGENT EVALUATION

Table 2: Step Accuracy of out-of-domain data
on AndroidControl under high-level and low-level
tasks. “Acc.Tree” means the accessibility tree.

Obs. Planner Grounder Step Acc.
High Low

Acc. Tree GPT-4-Turbo Choice 42.1 55.0
PaLM 2S* Choice 58.5 77.5

Image

GPT-4-Turbo SeeClick 39.4 47.2
GPT-4-Turbo UGround 46.2 58.0
GPT-4o SeeClick 41.8 52.8
GPT-4o UGround 48.4 62.4

Image AGUVIS-7B 61.5 80.5
AGUVIS-72B 66.4 84.4

We assessed AGUVIS’s planning capabili-
ties through two major offline benchmarks:
Multimodal-Mind2Web (Zheng et al., 2024a)
for website interaction and AndroidControl (Li
et al., 2024d) for mobile device operation.

Multimodal-Mind2Web focused on website
navigation and interaction tasks. Unlike previ-
ous approaches that utilize textual inputs (Deng
et al., 2023) or Set-of-Marks (Zheng et al.,
2024a), our model operates solely on GUI
screenshots. The results in Table 3 show that
AGUVIS achieves superior performance across

5

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 3: Performance comparison on Multimodal Mind2Web across different settings. We report
element accuracy (Ele.Acc), Operation F1 (Op.F1), and step success rate (Step SR). Best results are
in bold. “T” means the textual HTML code as inputs. “I” means the GUI images as inputs. More
explanation about result source in Appendix D.2

Obs. Planner Grounder Cross-Task Cross-Website Cross-Domain

Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR

T GPT-3.5 Choice 19.4 59.2 16.8 14.9 56.5 14.1 25.2 57.9 24.1
GPT-4 Choice 40.8 63.1 32.3 30.2 61.0 27.0 35.4 61.9 29.7

T + I GPT-4 Choice 46.4 73.4 40.2 38.0 67.8 32.4 42.4 69.3 36.8
GPT-4 SoM 29.6 - 20.3 20.1 - 13.9 27.0 - 23.7

I
GPT-4o SeeClick 32.1 - - 33.1 - - 33.5 - -
GPT-4V OmniParser 42.4 87.6 39.4 41.0 84.8 36.5 45.5 85.7 42.0
GPT-4o UGround 47.7 - - 46.0 - - 46.6 - -

I
SeeClick-9.6B 28.3 87.0 25.5 21.4 80.6 16.4 23.2 84.8 20.8
AGUVIS-7B 64.2 89.8 60.4 60.7 88.1 54.6 60.4 89.2 56.6

AGUVIS-72B 69.5 90.8 64.0 62.6 88.6 56.5 63.5 88.5 58.2

all metrics, with a particularly notable improvement in Step Success Rate (+51.9% on average),
highlighting enhanced planning capabilities.

AndroidControl. For mobile interface interaction, we evaluated AGUVIS on AndroidControl us-
ing a subset of 500 randomly sampled step-actions following the setting in Li et al. (2024d). We
tested both high-level planning scenarios and low-level instruction execution, comparing against
models using various input modalities. Table 2 demonstrates AGUVIS’s superior performance in
both settings, confirming its effectiveness across different interaction paradigms.

3.3 ONLINE GUI AGENT EVALUATION

To validate real-world applicability, we evaluated AGUVIS across four comprehensive benchmarks:
Mind2Web-Live (Pan et al., 2024b), AndroidWorld (Rawles et al., 2024a), MobileMiniWob (Rawles
et al., 2024b).

Mind2Web-Live provides a dynamic web-based environment derived from Mind2Web, evaluating
task completion through step-by-step success rates. AndroidWorld operates in a virtual Android en-
vironment, using a Pixel 6 phone simulator for mobile agent assessment. MobileMiniWob adapts 92
tasks from MiniWob++ to the AndroidWorld environment, providing standardized GUI interaction
scenarios. More details are in Appendix D.3. We test two distinct configurations: one pairs GPT-4o
as a planner with AGUVIS-7B as a grounder, and the other employs AGUVIS-72B in both roles.

Table 4: Task Success Rate (SR) and efficiency
costs on Mind2Web-Live. Cost is calculated by
dividing inference cost by # successful steps.

Inputs Planner Grounder SR Cost

HTML

GPT-4-Turbo Choice 21.1 –
GPT-4o Choice 22.1 0.142
Llama-3.1-405B Choice 24.0 0.174
Llama-3.1-70B Choice 20.2 0.031
GPT-3.5-turbo Choice 17.3 0.092

Image
GPT-4-Turbo UGround 23.1 –
GPT-4o UGround 19.2 –
GPT-4o AGUVIS-7B 24.0 0.106

Image AGUVIS-70B 27.1 0.012

Table 5: Task Success Rates (SR) on AndroidWorld
(AW) and MobileMiniWob (MMW). Best results are in
bold.

Input Planner Grounder AWSR MMWSR

AXTree GPT-4-Turbo Choice 30.6 59.7
Gemini 1.5 Pro Choice 19.4 57.4

Image
+ AXTree

GPT-4-Turbo SoM 25.4 67.7
Gemini 1.5 Pro SoM 22.8 40.3

Image
GPT-4-Turbo UGround 31.0 –
GPT-4o UGround 32.8 –
GPT-4o AGUVIS-7B 37.1 55.0

Image AGUVIS-70B 26.1 66.0

Results Tables 4 and 5 present our findings. When using GPT-4o as the planner, AGUVIS-7B
demonstrates superior performance across benchmarks compared to existing methods. The unified
AGUVIS-72B approach achieves best-in-class performance on Mind2Web-Live and MobileMini-
Wob. These results, combined with our model’s significant efficiency advantages, demonstrate the
potential of pure vision-based agents for real-world GUI automation tasks.

6

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

4 ANALYSIS

4.1 IMPACT OF TRAINING STAGES

Table 6: Ablation on AGUVIS-7B on MM-Mind2Web and AndroidControl benchmarks. We report
the step success rate. We provide a more comprehensive ablation in Appendix E.1

Settings ScreenSpot Multimodal-Mind2Web AndroidControl
Cross-Task Cross-Website Cross-Domain High-Level Low-Level

AGUVIS-7B 84.4 60.4 54.6 56.6 61.5 80.5
(a) w/o Stage 2 81.8 50.9 45.2 45.3 58.0 75.6
(b) w/o Stage 1 77.4 59.7 55.3 56.8 58.8 79.8
(c) w/o Stage 1 & 2 55.3 50.9 44.9 47.7 59.1 59.2

(d) w/o Inner Monologue 79.3 55.4 53.7 54.9 60.3 69.1

We first assess the impact of each stage in our training pipeline by evaluating several variants of
AGUVIS. As shown in Table 6, we examine the performance of: (a) a model trained without the
second stage (planning & reasoning), referred to as AGUVIS-G, and (b) Qwen2-VL, the base model
without both stages of specialized training. The results demonstrate clear performance degradation
when either training stage is omitted. In particular, removing Stage 2 (planning & reasoning) leads
to significant drops in performance across all metrics.

To verify that these improvements stem from our methodology rather than the inherent capabilities
of Qwen2-VL, we conducted parallel experiments using LLaVA as an alternative backbone. The
results in Table 15 show that even with a weaker foundation model, the AGUVIS training pipeline
yields substantial improvements. For instance, LLaVA’s performance on ScreenSpot improves from
3.8% to 81.2% after applying our complete training process, validating the effectiveness of our
approach across various architectures.

4.2 ROLE OF INNER MONOLOGUE

Inner monologue plays a crucial role in enhancing both planning and grounding capabilities. As
demonstrated in Table 6, removing inner monologue from training results in significant performance
drops across all benchmarks. The impact is particularly noticeable in low-level tasks, where per-
formance on AndroidControl’s low-level evaluation decreases from 80.5% to 69.1% without inner
monologue. This suggests that inner monologue not only improves high-level planning but also
enhances the model’s ability to ground and execute specific instructions accurately. More detailed
results and analysis are in Appendix E.1.2.

4.3 CROSS-PLATFORM BENEFITS

Table 7: Ablation study on Multimodal-Mind2Web, ana-
lyzing the impact of training data from different device do-
mains within a unified action space.

Data #Traj. Task Website Domain

Web + Mobile 35k 58.5 55.4 54.8
Web Only 6k 53.1 50.3 52.2
Mind2Web Only 1k 50.9 44.9 47.7

Our unified training approach en-
ables effective knowledge transfer
across different platforms, allowing
the model to develop generalizable
interaction capabilities. As shown
in Table 7, training on both web
and mobile data leads to signifi-
cantly better performance compared
to platform-specific training. On
web-specific tasks in Multimodal-
Mind2Web, models trained with both web and mobile data achieve superior results compared to
those trained solely on web data or Mind2Web data alone.

These improvements highlight the ability of our framework to leverage commonalities across dif-
ferent GUI environments, fostering generalization beyond individual datasets. The combination of
a pure vision approach and standardized pyautogui actions establishes a shared representation
space, enabling effective cross-platform learning.

7

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

To further evaluate the generalization capabilities of our model, we tested it on OSWorld, a unified
computer environment designed for multimodal agents. OSWorld presents complex workflows,
encompassing 369 real-world computer tasks that span web applications, desktop software, and
OS-level operations. The results are shown in Table 8.

Table 8: Success rate on the OSWorld benchmark
in the screenshot-only setting.

Planner Grounding Task SR

GPT-4o SoM 4.59
GPT-4o AGUVIS-7B 14.79
GPT-4o AGUVIS-72B 17.04

GPT-4o 5.03
GPT-4V 5.26

Gemini-Pro-1.5 5.40
Claude Computer-Use 14.9

OpenAI Operator 19.7

AGUVIS-72B 10.26

Remarkably, despite being trained exclusively
on web and mobile trajectory data, our model
demonstrates strong generalization to desktop
GUI tasks. On OSWorld, when paired with
GPT-4o for planning, our model achieves a
17.04% task success rate, significantly out-
performing SoM-based approaches (4.59%)
and even surpassing Claude Computer-Use
(14.9%). Furthermore, AGUVIS-72B, when
deployed as an independent model, achieves
10.26%, demonstrating that our approach is
competitive even without external planning
support. This result underscores that our ap-
proach does not overfit to specific environments
but instead captures fundamental GUI interac-
tion principles, enabling effective transfer to
novel computing scenarios.

4.4 EFFICIENCY BENIFITS FROM PURE VISION PERCEPTION

The pure vision approach significantly reduces computational overhead compared to traditional tex-
tual methods. As illustrated in Figure 3, while HTML-based approaches typically require processing
about 4,000 tokens per interaction, our vision-based method maintains a constant token cost of 1,196
tokens for 720p images, independent of interface complexity. This efficiency translates to substan-
tial practical benefits in deployment, with our method reducing costs by 93% and input tokens per
step by 70% compared to GPT-4o in Mind2Web-Live, as detailed in Figure 3 and Table 4.

Figure 3: Comparison of Input Tokens per Step and
USD Efficiency in GUI Interaction. The bar chart
shows the input tokens required per step during GUI
interactions, while the line graph illustrates USD Ef-
ficiency for all models.

GPT-4o GPT-3.5 AGUVIS-72B

1,000

2,000

3,000

4,000

In
pu

tT
ok

en
s

Pe
rS

te
p HTML Image

U
SD

E
ffi

ci
en

cy

Figure 4: Error analysis on Screenspot under the
self-plan setting. This stacked bar chart illustrates
how frequently each plan type (Self Plan or En-
forced Plan) encounters Ambiguous Error (blue) ver-
sus Grounding Error (orange).

Self Plan Enforced Plan
0

0.2
0.4
0.6
0.8
1 Planning Bonus

Ambiguous Error Grounding Error

4.5 ERROR ANALYSIS AND FUTURE WORK

To understand failure modes and potential improvements, we conducted a detailed error analysis on
50 samples from the ScreenSpot dataset under the self-plan setting. Our analysis reveals two primary
categories of errors, as shown in Figure 4: 40% stem from ambiguous instructions that could refer
to multiple grounding targets, while the remaining 60% are grounding errors. A critical finding is
that the model currently lacks the ability to indicate uncertainty or refuse actions when faced with
ambiguous instructions - an essential capability for real-world deployment where incorrect actions
could have significant consequences.

When we enforce planning by prompting the agent model to generate inner monologue before ex-
ecution - as detailed in Appendix E.2.1 - it resolves 20% of these grounding errors, suggesting that
explicit reasoning helps the model leverage its knowledge more effectively. However, our analysis

8

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

reveals a significant challenge: while many queries appear simple syntactically, they actually re-
quire deeper semantic understanding and domain knowledge. In these cases, the model struggles to
recognize the need for planning and defaults to direct grounding instead of explicit reasoning. We
provide illustrative examples of these semantically challenging cases in Appendix E.2.2.

These insights highlight several promising directions for future work, along with concrete solutions.
To develop more reliable GUI agents for real-world settings, we propose incorporating adversarial
training examples where the correct action is to refuse execution or raise safety concerns, helping
models learn to handle ambiguous or potentially harmful situations appropriately. To enhance the
model’s ability to identify semantically complex tasks requiring planning, we suggest augmenting
training data with explicit annotations of task complexity and required reasoning depth, potentially
combined with a dynamic threshold system during inference to balance planning overhead against
accuracy gains. By pursuing these directions, we can work toward GUI agents that not only perform
tasks accurately but also do so with appropriate caution and self-awareness - a crucial requirement
for real-world deployment.

5 RELATED WORK

5.1 BENCHMARKS AND DATASETS FOR GUI AGENT

Recent advancements in autonomous GUI agents have led to the development of numerous
benchmarks and datasets. Web-based benchmarks such as Mind2Web (Deng et al., 2023), We-
bArena (Zhou et al., 2024; Koh et al., 2024a), WebLINX (Lù et al., 2024), WorkArena (Drouin
et al., 2024) and WebCanvas (Pan et al., 2024b) focus on evaluating agents’ performance in web
environments. For desktop and mobile platforms, datasets like OSWorld (Xie et al., 2024), Win-
dowsAgentArena (Bonatti et al., 2024), AitW (Rawles et al., 2024b), AitZ (Zhang et al., 2024b),
AMEX (Chai et al., 2024), GUI-Odyssey (Lu et al., 2024) and AndroidControl (Li et al., 2024b)
have been introduced to assess agents’ capabilities across different operating systems and device
types. Cross-platform datasets such as ScreenSpot (Cheng et al., 2024), OmniACT (Kapoor et al.,
2024), GUICourse (Chen et al., 2024a), and CRAB (Xu et al., 2024a) aim to provide comprehensive
evaluation frameworks spanning multiple devices and interfaces. Evaluations on specialized appli-
cations have also emerged, such as WonderBread (Wornow et al., 2024)’s focus on business process
management tasks and Spider-2V (Cao et al., 2024)’s on data science and engineering workflows.
This work extensively tests agentic benchmarks under both online and offline settings to thoroughly
evaluate and demonstrate the model’s planning and grounding capabilities.

5.2 MODELS AND APPROACHES FOR GUI AGENT

In parallel with dataset development, significant progress has been made in creating more capa-
ble GUI agents. Models like WebGPT (Nakano et al., 2021), Lemur (Xu et al., 2024b), Agent-
Lumos (Yin et al., 2024), CogAgent (Hong et al., 2024), AutoWebGLM (Lai et al., 2024) and
xLAM (Zhang et al., 2024a) have demonstrated improved performance in web navigation tasks.
Auto-GUI (Zhang & Zhang, 2024), AppAgent (Zhang et al., 2023), and ScreenAgent (Niu et al.,
2024) propose novel approaches for direct GUI interaction without relying on application-specific
APIs. SearchAgent (Koh et al., 2024b) introduces an inference-time search algorithm to enhance
multi-step reasoning and planning in interactive web environments. These advancements collec-
tively contribute to developing more sophisticated and capable GUI agents, pushing the boundaries
of what’s possible in automated task completion across various digital platforms.

6 CONCLUSION

We introduced AGUVIS, a unified pure vision-based framework for autonomous GUI agents that
operate across diverse platforms. By leveraging vision-only observations and a standardized action
space, AGUVIS eliminates reliance on platform-specific representations and closed-source models.
Our structured reasoning approach, combined with a large-scale dataset and a two-stage training
pipeline, enables superior grounding, planning, and reasoning. Extensive experiments demonstrate
state-of-the-art performance in both offline and online GUI tasks. We open-source all datasets,
models, and training recipes to accelerate future research in this domain.

9

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

REFERENCES

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi, Jindong Chen, and
Blaise Agüera y Arcas. Uibert: Learning generic multimodal representations for UI understand-
ing. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
2021.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Fender C. Bucker, Lawrence Jang, and Zack Hui.
Windows agent arena: Evaluating multi-modal os agents at scale. ArXiv preprint, 2024. URL
https://api.semanticscholar.org/CorpusID:272600411.

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, Yeqiao Fu, Hongcheng Gao, Xinzhuang
Xiong, Hanchong Zhang, Yuchen Mao, Wenjing Hu, Tianbao Xie, Hongshen Xu, Danyang
Zhang, Sida Wang, Ruoxi Sun, Pengcheng Yin, Caiming Xiong, Ansong Ni, Qian Liu, Vic-
tor Zhong, Lu Chen, Kai Yu, and Tao Yu. Spider2-v: How far are multimodal agents from
automating data science and engineering workflows? ArXiv preprint, 2024. URL https:
//arxiv.org/abs/2407.10956.

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Peng Gao, Shuai
Ren, and Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents.
ArXiv preprint, 2024. URL https://arxiv.org/abs/2407.17490.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile
gui agents. ArXiv preprint, 2024a. URL https://arxiv.org/abs/2406.11317.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
glong Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan
Chen, Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng
Zhang, Han Lv, Yi Wang, Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng
Deng, Jiaye Ge, Kai Chen, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao,
Jifeng Dai, and Wenhai Wang. Expanding performance boundaries of open-source multimodal
models with model, data, and test-time scaling. CoRR, abs/2412.05271, 2024b. doi: 10.48550/
ARXIV.2412.05271. URL https://doi.org/10.48550/arXiv.2412.05271.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing GUI grounding for advanced visual GUI agents. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August
11-16, 2024, 2024. URL https://doi.org/10.18653/v1/2024.acl-long.505.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, Jiasen Lu, Taira Anderson, Erin
Bransom, Kiana Ehsani, Huong Ngo, Yen-Sung Chen, Ajay Patel, Mark Yatskar, Chris Callison-
Burch, Andrew Head, Rose Hendrix, Favyen Bastani, Eli VanderBilt, Nathan Lambert, Yvonne
Chou, Arnavi Chheda, Jenna Sparks, Sam Skjonsberg, Michael Schmitz, Aaron Sarnat, Byron
Bischoff, Pete Walsh, Chris Newell, Piper Wolters, Tanmay Gupta, Kuo-Hao Zeng, Jon Bor-
chardt, Dirk Groeneveld, Jen Dumas, Crystal Nam, Sophie Lebrecht, Caitlin Wittlif, Carissa
Schoenick, Oscar Michel, Ranjay Krishna, Luca Weihs, Noah A. Smith, Hannaneh Hajishirzi,
Ross B. Girshick, Ali Farhadi, and Aniruddha Kembhavi. Molmo and pixmo: Open weights and
open data for state-of-the-art multimodal models. CoRR, abs/2409.17146, 2024. doi: 10.48550/
ARXIV.2409.17146. URL https://doi.org/10.48550/arXiv.2409.17146.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey
Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design ap-
plications. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology, 2017.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samual Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. In Advances in Neural Information
Processing Systems, 2023.

10

https://api.semanticscholar.org/CorpusID:272600411
https://arxiv.org/abs/2407.10956
https://arxiv.org/abs/2407.10956
https://arxiv.org/abs/2407.17490
https://arxiv.org/abs/2406.11317
https://doi.org/10.48550/arXiv.2412.05271
https://doi.org/10.18653/v1/2024.acl-long.505
https://doi.org/10.48550/arXiv.2409.17146

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and
Alexandre Lacoste. Workarena: How capable are web agents at solving common knowledge work
tasks?, 2024. URL https://arxiv.org/abs/2403.07718.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun,
and Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI
agents. CoRR, abs/2410.05243, 2024. URL https://doi.org/10.48550/arXiv.
2410.05243.

Izzeddin Gur, Hiroki Furuta, Austin V. Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis. In International Conference on Learning Representations, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. ArXiv preprint, 2022. URL https://arxiv.org/abs/
2207.05608.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. ArXiv preprint, 2024. URL https://arxiv.org/
abs/2402.17553.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks. In
Advances in Neural Information Processing Systems, 2023.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating mul-
timodal agents on realistic visual web tasks. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics, 2024a.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents. ArXiv preprint, 2024b. URL https://arxiv.org/abs/2407.01476.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: Bootstrap and reinforce a large lan-
guage model-based web navigating agent. ArXiv preprint, 2024. URL https://arxiv.org/
abs/2404.03648.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li,
Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. ArXiv preprint, 2024a.
URL https://arxiv.org/abs/2408.03326.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on computer control agents. ArXiv preprint, 2024b.
URL https://arxiv.org/abs/2406.03679.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on computer control agents, 2024c. URL https:
//arxiv.org/abs/2406.03679.

Wei Li, William W. Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
gundlu, and Oriana Riva. On the effects of data scale on computer control agents. ArXiv preprint,
2024d. URL https://arxiv.org/abs/2406.03679.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile UI action sequences. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Association for Computational Linguistics, 2020a.
URL https://aclanthology.org/2020.acl-main.729.

11

https://arxiv.org/abs/2403.07718
https://doi.org/10.48550/arXiv.2410.05243
https://doi.org/10.48550/arXiv.2410.05243
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2402.17553
https://arxiv.org/abs/2402.17553
https://arxiv.org/abs/2407.01476
https://arxiv.org/abs/2404.03648
https://arxiv.org/abs/2404.03648
https://arxiv.org/abs/2408.03326
https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2406.03679
https://aclanthology.org/2020.acl-main.729

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. Widget captioning:
Generating natural language description for mobile user interface elements. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Associ-
ation for Computational Linguistics, 2020b. URL https://aclanthology.org/2020.
emnlp-main.443.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app
gui navigation on mobile devices. ArXiv preprint, 2024. URL https://arxiv.org/abs/
2406.08451.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with multi-
turn dialogue. ArXiv preprint, 2024. URL https://arxiv.org/abs/2402.05930.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent, 2024. URL https://arxiv.org/abs/2408.00203.

Microsoft. Playwright for python documentation. https://playwright.dev/python/,
2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. ArXiv preprint, 2021. URL https://arxiv.org/
abs/2112.09332.

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
Qi Wang. Screenagent: A vision language model-driven computer control agent, 2024. URL
https://arxiv.org/abs/2402.07945.

OpenAI. Hello gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi Shang,
Shuyan Zhou, Tongshuang Wu, and Zhengyang Wu. Webcanvas: Benchmarking web agents
in online environments. ArXiv preprint, 2024a. URL https://arxiv.org/abs/2406.
12373.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi Shang,
Shuyan Zhou, Tongshuang Wu, et al. Webcanvas: Benchmarking web agents in online environ-
ments. ArXiv preprint, 2024b. URL https://arxiv.org/abs/2406.12373.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An impera-
tive style, high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory optimiza-
tions toward training trillion parameter models. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2020, Virtual Event /
Atlanta, Georgia, USA, November 9-19, 2020, 2020.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,

12

https://aclanthology.org/2020.emnlp-main.443
https://aclanthology.org/2020.emnlp-main.443
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2406.08451
https://arxiv.org/abs/2406.08451
https://arxiv.org/abs/2402.05930
https://arxiv.org/abs/2408.00203
https://playwright.dev/python/
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2402.07945
https://openai.com/index/hello-gpt-4o
https://arxiv.org/abs/2406.12373
https://arxiv.org/abs/2406.12373
https://arxiv.org/abs/2406.12373
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmark-
ing environment for autonomous agents, 2024a. URL https://arxiv.org/abs/2405.
14573.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 2024b.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal un-
derstanding across millions of tokens of context. ArXiv preprint, abs/2403.05530, 2024. URL
https://arxiv.org/abs/2403.05530.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. ArXiv preprint, 2024. URL https://arxiv.org/
abs/2409.12191.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Hugging-
face’s transformers: State-of-the-art natural language processing. ArXiv preprint, 2019. URL
https://arxiv.org/abs/1910.03771.

Michael Wornow, Avanika Narayan, Ben T Viggiano, Ishan S. Khare, Tathagat Verma, Tibor
Thompson, Miguel Angel Fuentes Hernandez, Sudharsan Sundar, Chloe Trujillo, Krrish Chawla,
Rongfei Lu, Justin Shen, Divya Nagaraj, Joshua Martinez, Vardhan Agrawal, Althea Hudson,
Nigam H. Shah, and Christopher Re. Do multimodal foundation models understand enterprise
workflows? a benchmark for business process management tasks. ArXiv preprint, 2024. URL
https://arxiv.org/abs/2406.13264.

Jason Wu, Siyan Wang, Siman Shen, Yi-Hao Peng, Jeffrey Nichols, and Jeffrey Bigham. Webui: A
dataset for enhancing visual ui understanding with web semantics. ACM Conference on Human
Factors in Computing Systems (CHI), 2023.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. ArXiv preprint, 2024. URL https:
//arxiv.org/abs/2404.07972.

Tianqi Xu, Linyao Chen, Dai-Jie Wu, Yanjun Chen, Zecheng Zhang, Xiang Yao, Zhiqiang Xie,
Yongchao Chen, Shilong Liu, Bochen Qian, Philip H. S. Torr, Bernard Ghanem, and G. Li. Crab:
Cross-environment agent benchmark for multimodal language model agents. ArXiv preprint,
2024a. URL https://arxiv.org/abs/2407.01511.

Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao
Liu, Tianbao Xie, Zhoujun Cheng, Siheng Zhao, Lingpeng Kong, Bailin Wang, Caiming Xiong,
and Tao Yu. Lemur: Harmonizing natural language and code for language agents. In International
Conference on Learning Representations, 2024b.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Raghavi Chandu, Kai-Wei Chang, Yejin
Choi, and Bill Yuchen Lin. Agent lumos: Unified and modular training for open-source lan-
guage agents. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics, 2024.

China. Xiaoyan Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu,
and Gang Yu. Appagent: Multimodal agents as smartphone users. ArXiv preprint, 2023. URL
https://arxiv.org/abs/2312.13771.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao Feng, Tulika Awalgaonkar, Rithesh

13

https://arxiv.org/abs/2405.14573
https://arxiv.org/abs/2405.14573
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2406.13264
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2407.01511
https://arxiv.org/abs/2312.13771

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Murthy, Eric Hu, Zeyuan Chen, Ran Xu, Juan Carlos Niebles, Shelby Heinecke, Huan Wang, Sil-
vio Savarese, and Caiming Xiong. xlam: A family of large action models to empower ai agent sys-
tems. ArXiv preprint, 2024a. URL https://api.semanticscholar.org/CorpusID:
272424184.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu
Tang. Android in the zoo: Chain-of-action-thought for gui agents. ArXiv preprint, 2024b. URL
https://arxiv.org/abs/2403.02713.

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
In Findings of the Association for Computational Linguistics, 2024.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024, 2024a.

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. In The Twelfth International Conference on Learn-
ing Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024b.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realis-
tic web environment for building autonomous agents. In International Conference on Learning
Representations, 2024.

14

https://api.semanticscholar.org/CorpusID:272424184
https://api.semanticscholar.org/CorpusID:272424184
https://arxiv.org/abs/2403.02713

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A AGUVIS UNIFIED DESIGN

A.1 DETAILS OF ACTION SPACE IN AGUVIS

In this section, we introduce our unified action space of our pure vision agent framework AGUVIS.
As shown in Table 9, we use default standard pyautogui actions with pluggable actions as the
action space of AGUVIS, which ensures the agent model’s universality across environments as well
as its flexibility in the specific environment.

Table 9: Default standard pyautogui actions A with pluggable actions.

Category Action Space

Basic
Actions

pyautogui.moveTo(x, y)
pyautogui.click(x, y)
pyautogui.write(‘text’)
pyautogui.press(‘enter’)
pyautogui.hotkey(‘ctrl’, ‘c’)
pyautogui.scroll(200)
pyautogui.dragTo(x, y)

Pluggable
Actions

browser.select option(x, y, value)
mobile.swipe(from, to)
mobile.home()
mobile.back()
mobile.open app(name)
terminate(status)
answer(text)

... ...

A.2 PLUGGABLE FUNCTIONS: MOBILE ENVIRONMENTS AS AN EXAMPLE

We provide the following pluggable functions for Aguvis in the mobile environment, along with
their corresponding descriptions.

Pluggable Functions for AGUVIS

You are a GUI agent. You are given a task and a screenshot of the
screen. You need to perform a series of pyautogui actions to
complete the task.

You have access to the following functions:
- {"name": "mobile.home", "description": "Press the home button"}
- {"name": "mobile.back", "description": "Press the back button"}
- {

"name": "mobile.long_press",
"description": "Long press on the screen",
"parameters": {

"type": "object",
"properties": {"x": {"type": "number", "description": "The
x coordinate of the long press"}, "y": {"type": "number",
"description": "The y coordinate of the long press"}},
"required": ["x", "y"]

}
}

- {
"name": "mobile.open_app",
"description": "Open an app on the device",
"parameters": {

15

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

"type": "object",
"properties": {"app_name": {"type": "string",
"description": "The name of the app to open"}},
"required": ["app_name"]

}
}

- {
"name": "terminate",
"description": "Terminate the current task and report its
completion status",
"parameters": {

"type": "object",
"properties": {"status": {"type": "string", "enum":
["success"], "description": "The status of the task"}},
"required": ["status"]

}
}

- {
"name": "answer",
"description": "Answer a question", "parameters": {

"type": "object",
"properties": {"answer": {"type": "string", "description":
"The answer to the question"}},
"required": ["answer"]

}
}

B DATA CURATION OF AGUVIS DATA COLLECTION

B.1 DETAILED SOURCE DATASET STATISTICS

We present the detailed statistical information of all training datasets utilized in both the grounding
and planning & reasoning stages. The statistics are shown in Table 10 and Table 11, respectively.

Table 10: The grounding split of AGUVIS DATA COLLECTION. Each example in this split consists
of a single-step trajectory.

Data source Platform Instruction #Trajectory

SeeClick (Cheng et al., 2024) Website Augmented 271K
GUIEnv (Chen et al., 2024a) Website Augmented 328K
GUIAct (Chen et al., 2024a) Website Original 67K
WebUI (Wu et al., 2023) Website Augmented 57K
Widget Captioning (Li et al., 2020b) Mobile Original 101K
RicoSCA (Li et al., 2020a) Mobile Original 173K
UI RefExp (Bai et al., 2021) Mobile Original 16K
RICO Icon (Deka et al., 2017) Mobile Augmented 16K
OmniACT (Kapoor et al., 2024) Desktop & Website Original 7K

Total 1.036M

B.2 PROMPT FOR AUGMENTING PLANNING & REASONING TRAJECTORIES

Prompt for GPT-4o generating planning & reasoning data

Goal: {goal}
Previous Actions: {previous_actions}

16

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Given the current screenshot and the next ground truth action
labeled as `{current_action_instruction}`, the action commands is:
```json
{action_commands}
```
This element is highlighted in red bounding box in the image.

Describe the situation in detail, focusing on the goal and current
observation. Ensure your reasoning aligns with the goal and the
labeled action, but avoid using the labeled action or the
highlighted bounding box as reasoning support, as they represent
hindsight rather than predictive insight. Conclude with a clear,
actionable instruction in one sentence. Aim to reason through the
task as if solving it, rather than simply reflecting on the labeled
outcome. Use the first-person perspective to represent the
annotator's thought process.

We use GPT-4o as the foundational model to augment our integrated agent trajectory. In this stage,
goal represents the target of the trajectory, previous actions is a stack of all past low-level instruc-
tions, current action instruction refers to the low-level instruction corresponding to the current ac-
tion in the dataset, and action commands is the representation of the current action in the form of
pyautogui code within the dataset. We show the augmented examples generated by GPT-4o in
Figure 5.

B.3 HUMAN STUDY ON AUGMENTED DATA

B.3.1 QUALITATIVE HUMAN STUDY

Based on our findings that our Augmented Planning and Reasoning Data improves the performance
of Aguvis, we conducted a qualitative study on augmented data. From the VLM-augmented data,
we selected 90 samples for a human study and evaluated them according to specific criteria.

We determined that for augmented data to be considered successful, it must:

• Match the action type and action target elements of the ground truth,

• Correctly describe the step’s intention,

• Establish a clear connection between the step’s intention and the overall goal,

• Assist the agent in successfully completing the task.

Among the sampled data, we found that 86.7% demonstrated intermediate reasoning that aligned
with the ground truth actions and the overall goal’s action intention. The remaining 7.8% cases were
influenced by dataset noise (irrelevant or unnecessary actions within the task), and 5.5% cases were
due to misinterpretations of the action intention under clean data.

Table 11: The planning & reasoning split of AGUVIS DATA COLLECTION.

Data source Platform Inner Monologue Avg. Steps #Trajectory

MM-Mind2Web (Zheng et al., 2024a) Website Generated 7.7 1,009
GUIAct (Chen et al., 2024a) Website Generated 6.7 2,482
MiniWoB++ (Zheng et al., 2024b) Website Generated 3.6 2,762
AitZ (Zhang et al., 2024b) Mobile Original 6.0 1,987
AndroidControl (Li et al., 2024d) Mobile Original 5.5 13,594
GUI Odyssey (Lu et al., 2024) Mobile Generated 15.3 7,735
AMEX (Chai et al., 2024) Mobile Generated 11.9 2,991
AitW (Rawles et al., 2024b) Mobile Generated 8.1 2,346

Total 35K

17

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

B.3.2 FAILURE CASES UNDER NOISY TRAINING DATA

We analyzed error cases in the generated data and identified several issues. Specifically, we found
that unnecessary actions in the training data can lead to the VLM failing to establish a connection
between these extra actions and the overall goal, ultimately resulting in incorrect reasoning and
planning.

While these redundant actions do not compromise the trajectory’s overall completeness or correct-
ness, they do introduce challenges for the VLM in generating accurate planning.

Goal: Show me the page with information about Wi-
Fi subscriptions.

Previous actions:

Step 1: Click on the 'TRAVEL INFO' tab to explore
available options for Wi-Fi subscription information.

Step 2: Click on the 'Pre-paid Wi-Fi' link to access
Wi-Fi subscription information.

Action: pyautogui.click(x=0.8018, y=0.6183)

Generated Planning

Goal: Find the documents required to sell a car in
New Jersey for which payments are being paid and it
has single person on the title who can come to the
store

Previous actions:

Step 1: Click on the 'Sell/Trade' link in the navigation
bar to proceed.

Step 2: Select 'New Jersey' from the dropdown menu
labeled 'In what state are you selling the car?'.

Action: pyautogui.click(x=0.5938, y=0.8633)

Thought: To determine the document requirements
for selling a car in New Jersey, I need to select options
that accurately reflect the current status of the car's
payments and ownership. Since payments are being
made, I will choose 'Yes' for that question to proceed
and assess any further requirements or conditions this
might bring into play.

Low-level Instruction: Click on the 'Yes' radio button
next to 'Are you making payments on the car?'

Generated Planning

Thought: Identifying the 'Wi-Fi subscriptions' link on
the United Wi-Fi page aligns perfectly with the goal of
finding subscription information. I am considering
available options and see a dedicated link for
subscriptions.

Low-level Instruction: Click on the 'Wi-Fi
subscriptions' link to access information about Wi-Fi
subscriptions.

Figure 5: Examples of augmented planning and reasoning data generated by GPT-4o. The position
of the mouse in the image represents the ground truth click position in the training data.

18

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

C AGUVIS TRAINING

C.1 TRAINING EXAMPLE SCHEMA

Training Data Schema of Stage 1 Grounding

Prompt
<|im_start|>system
You are a GUI agent. You are given a task and a screenshot of the
screen. You need to perform a series of pyautogui actions to
complete the task.<|im_end|>
<|im_start|>user
<|vision_start|><|image_pad|><|vision_end|>
Please generate the next move according to the ui screenshot,
instruction and previous actions.
Instruction: {overall_goal}
Previous actions: {previous_actions}
<|im_end|>

Generation
<|im_start|>assistant<|recipient|>os
Action: {pyautogui function}
<|diff_marker|>

Training Data Schema of Stage 2 Planning

Prompt
<|im_start|>system
You are a GUI agent. You are given a task and a screenshot of the
screen. You need to perform a series of pyautogui actions to
complete the task.<|im_end|>
<|im_start|>user
<|vision_start|><|image_pad|><|vision_end|>
Please generate the next move according to the ui screenshot,
instruction and previous actions.
Instruction: {overall_goal}
Previous actions: {previous_actions}
<|im_end|>

Generation
<|im_start|>assistant<|recipient|>all
Thought: {Planning}
Low-level Instruction: {Low-level Instruction}
<|im_end|>
<|im_start|>assistant<|recipient|>os
Action: {pyautogui function}
<|diff_marker|>

AGUVIS introduces a novel explicit planning and reasoning training framework that differs from
existing approaches. We illustrate these differences with visual examples in Figure 6. While existing
training datasets utilize trajectory data to fine-tune agents, these approaches often involve agents
directly outputting action commands (e.g., via pyautogui), bypassing the generation of observations,
thoughts, and low-level instructions in natural language that correspond to actions. To elicit the
reasoning and planning capabilities of vision-language models and provide the model with richer
context for action generation, we scale up training datasets that explicitly require the model to output

19

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

reasoning and planning steps. Moreover, this approach enhances the interpretability of computer-use
agents’ behavior, laying a solid foundation for future research.

Existing GUI Agent Data

Please generate the next move according to the
UI screenshot, instruction and previous actions.

Instruction: Plan a trip from Boston Logan
Airport to North Station.

Previous actions:

Step 1: Click on the 'Trip Planner' tab to begin
planning the trip.

Step 2: Click on the 'From' input field and type
'Boston Logan Airport'.

Step 3: Click on 'Boston Logan Int'l Airport, 1
Harborside Dr, East Boston, MA 02128, United
States' to set it as my starting location.

Thought: I have set my starting point as Boston Logan
Airport. To proceed, I need to set the destination to
North Station, allowing the trip planner to suggest
routes. 

Low-level Instruction: Click on the 'To' input field and
type 'North Station' as the destination.

Action:

pyautogui.click(x=0.6756, y=0.4)

pyautogui.write(text='North Station')

Aguvis Collection Data

Prompt

Generation

Please generate the next move according to the
UI screenshot, instruction and previous actions.

Instruction: Plan a trip from Boston Logan
Airport to North Station.

Previous actions:

Step 1: pyautogui.click(x=0.4754, y=0.2062)

Step 2: pyautogui.click(x=0.3295, y=0.4)

pyautogui.write(text='Boston Logan Airport')

Step 3: pyautogui.click(x=0.3262, y=0.4764)

Action:

pyautogui.click(x=0.6756, y=0.4)

pyautogui.write(text='North Station')

Prompt

Generation

Image Input

Figure 6: Compared to the schema of exisiting gui agent data (left), the schema of AGUVIS plan-
ning & reasoning data (right) includes explicit reasoning process with informative natural language
previous action context.

C.2 TRAINING DETAILS

For AGUVIS based on the Qwen2-VL backbone, we set the maximum pixels for each image to
1280 × 720 to achieve a better trade-off between performance and efficiency1. Following the SFT
strategy in Wang et al. (2024), we freeze the ViT parameters during training. For AGUVIS based on
the LLaVA-OneVision backbone, we adopt the anyres strategy, which splits high-resolution images

1During preliminary experiments, we observe that increasing the maximum pixels to 1920× 1080 does not
yield significant improvements on ScreenSpot performance.

20

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

into multiple patches following (Li et al., 2024a). The maximum sequence length of tokens is set to
8192 for all models. We use Adam optimizer (Loshchilov & Hutter, 2019) for both grounding and
planning & reasoning training stages and employ a cosine learning rate scheduler with a warm-up
ratio of 3% steps. In the grounding stage, we introduce a grounding packing strategy to enhance
training efficiency. We conduct an ablation study using the grounding data of website platform to
investigate the strategy effectiveness. We observe that it reduces overall GPU hours from 6 hours
to 1 hour. Moreover, this strategy even marginally improve the performance of ScreenSpot website
split from 73.3 to 76.8.

We train AGUVIS with a batch size of 128 for 1 epoch in each stage. The peak learning rate is set
to 1e-5 for AGUVIS-7B and 5e-6 for AGUVIS-72B. Our codebase is based on Pytorch (Paszke et al.,
2019) and Huggingface Transformers (Wolf et al., 2019). During training, we utilize the strategies of
DeepSpeed optimization (Rajbhandari et al., 2020), BF16 format and gradient checkpointing to save
GPU memory. We train AGUVIS on a cluster of H100-80G GPUs: AGUVIS-7B uses 8 nodes and
completes the grounding training within 5 hours and planning & reasoning training within 1 hour.
AGUVIS-72B uses 16 nodes and completes the grounding training within 30 hours and planning &
reasoning training within 6 hours.

D EVALUATION BENCHMARKS

In this section, we introduce more details of evaluation benchmarks used in our work.

D.1 GUI GROUNDING EVALUATION

ScreenSpot. ScreenSpot (Cheng et al., 2024)is a typical benchmark designed specifically for GUI
visual grounding, consisting of 1.2K single-step instructions and coordinates of the target elements.
This dataset encompasses a variety of grounding instructions tailored for mobile, desktop, and web-
site platforms, and categorizes element types into text and icons/widgets. The benchmark is assessed
under two distinct settings: (1) Original Instructions: models perform grounding actions directly fol-
lowing the original instructions; and (2) Self-plan: models are required to generate plans in natural
language based on the original instructions before executing grounding actions.

D.2 OFFLINE GUI AGENT EVALUATION

Multimodal-Mind2Web. We utilize Multimodal-Mind2Web (Zheng et al., 2024a) for evaluat-
ing the offline planning capabilities of GUI agents on websites, which builds on the original
Mind2Web (Deng et al., 2023). We report element accuracy (Ele.Acc), Operation F1 (Op.F1), and
step success rate (Step SR).

In Table 2 for Multimodal Mind2Web (Zheng et al., 2024a), we only report element accuracy for
SeeClick (Cheng et al., 2024) and CogAgent (Hong et al., 2024). This is because the original
SeeClick and CogAgent models were evaluated on Mind2Web (Deng et al., 2023), not Multimodal
Mind2Web, making the examples misaligned and incomparable. Therefore, we referenced the re-
sults from UGround (Gou et al., 2024), where they report the element accuracy of the SeeClick and
CogAgent models on Multimodal Mind2Web, striving to comprehensively present all previously
representative methods.

AndroidControl. Following the setting in Li et al. (2024d), we randomly sample 500 step-actions
from AndroidControl full test set to create a subset, and we report the step accuracy on out-of-
domain (OOD) data within both high-level and low-level tasks. The high-level task setting necessi-
tates that the model plans and executes actions, whereas the low-level task setting requires the model
to simply adhere to human-labeled instructions for executing the next-step action.

D.3 ONLINE GUI AGENT EVALUATION

Mind2Web-Live. We adopt Mind2Web-Live (Pan et al., 2024b) to evaluate GUI agents’ online
planning, a derived dynamic data set from Mind2Web, comprising 104 real-time interactive web
tasks. It evaluates whether each required step within a task has been successfully completed and uses

21

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

the task success rate (Task SR) as the reported metric. The original Mind2Web-Live is built with
WebCavas (Pan et al., 2024a), which is a text-based agent framework. To better accommodate the
unified observation and action space of pure vision models, we utilize BrowserGym (Drouin et al.,
2024) as the evaluation environment for online web tasks which provide support for pure vision-
based agent models. BrowserGym is a browser testing environment built on the Playwright (Mi-
crosoft, 2024) engine. We incorporate all Mind2Web-Live tasks and evaluation into BrowserGym,
involving registering all Mind2Web-Live tasks, setting up the entry points for these tasks, and port-
ing the Mind2Web-Live evaluation functions to BrowserGym.

As Mind2Web-Live is a text-based benchmark, we have to adapt its evaluation function to suit our
pure vision-based model. To achieve this, we introduce the two modifications following:

• For the Mind2Web-Live benchmark’s click verification, we adapt our coordinate-based
approach by comparing the ground truth CSS selector’s bounding box (when available)
with our click coordinates, as we cannot directly identify HTML elements.

• Similarly, for input validation, we retrieve and compare the value of the ground truth input
element (if present) with the expected value, circumventing the need for precise HTML
element identification based on CSS selectors.

The Mind2Web-Live environment relies on real-world websites, many of which implement detection
systems for automated browser testing and reCAPTCHA challenges. These factors created difficul-
ties during evluation on the Mind2Web-Live dataset, resulting in a lower task success rate (Task
SR). Specifically, we observed the following websites to have significant issues with automation
detection:

• kohls. Model using the search functionality on the Kohls website through Playwright di-
rectly results in a 502 Bad Gateway error.

• target. We are unable to open target’s job website using Playwright due to network con-
nection error.

• united. We are unable to open united website using Playwright due to network connection
error.

In addition to the websites that were consistenly prone to failure, several other sites intermittently
blocked our Playwright access during testing. In total, we encountered 18 network errors and 6
reCAPTCHA tasks that the model was unable to complete, preventing our model from scoring on
these 24 tasks.

AndroidWorld. AndroidWorld (Rawles et al., 2024b) is a benchmark operating on an Android
virtual environment, capable of dynamically instantiating with randomly generated parameters to
generate unique tasks for automatic evaluation. It spans 20 real-world applications, encompassing
116 diverse tasks. To assess the pure vision agent models, we follow the instructions in Rawles
et al. (2024b), installing a Pixel 6 phone simulator on our computers to serve as the experimental
environment. The benchmark incorporates a fully automated task-level evaluation system that auto-
matically assesses whether a state has successfully completed a designated task. The AndroidWorld
environment supports optional inputs such as Set-of-Mark (SoM) and textual AXTree information,
which most multimodal models currently rely on to complete tasks. However, we solely use raw
screenshots as the observation input and restrict the model to coordinate-level actions and basic
mobile functions.

MobileMiniWob. MobileMiniWob (Rawles et al., 2024b) is the instantiation of 92 tasks from
MiniWob++ (Zheng et al., 2024b) in the AndroidWorld environment. Thus, we adopt the same
observation and action space used in AndroidWorld and use a real-time evaluation function to deter-
mine task success.

D.3.1 PROMPTS FOR USING GPT-4O AS PLANNING MODEL

In all online experiments, we employed two settings: GPT-4o as the planner, AGUVIS-7B as the
grounder, and AGUVIS-72B as both the planner and grounder. For experiments where AGUVIS-
72B served as both the planner and grounder, the prompt was straightforward: we only needed to

22

https://www.kohls.com
https://www.jobs.target.com
https://www.united.com/en/us

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

provide AGUVIS-72B with a single prompt at each step, and it could independently handle reasoning,
planning, and grounding. We use prompt for forcing plan to improve AGUVIS-72B’s performance
on the online experiments, as illustrated in Appendix E.2.1

In the GPT-4o + AGUVIS-7B setting, the situation was more complex. Two key challenges needed
to be addressed: making GPT-4o’s planning usable by AGUVIS-7B and determining which actions
required AGUVIS-7B for grounding. To address these challenges, we modified GPT-4o’s prompts
based on Mind2Web-Live (BrowserGym) and AndroidWorld to enable it to delegate grounding ac-
tions to AGUVIS-7B when necessary and to share its planning outputs with AGUVIS-7B. Specif-
ically, we append <|im start|>assistant<|recipient|>all\nThought:{GPT-4o
Thought}\nAction:{GPT-4o Low-level Instruction} to the end of the prompt and
therefore let AGUVIS-7B generate grounding actions based on GPT-4o’s response.

Table 12: Prompt used for the planning model in Mind2Web-Live, modified from the prompt in
(Drouin et al., 2024)

Instructions
Review the current state of the page and all other information to find the best possible
next action to accomplish your goal. Your answer will be interpreted and executed by a
program, make sure to follow the formatting instructions.

Goal: {Goal}
Observation of current step
Current URL: {URL}
History of interaction with the task: {History}
Action Space
8 different types of actions are available.

noop(wait ms: float = 1000)
Description: Do nothing, and optionally wait for the given time (in milliseconds).

send msg to user(text: str)
Description: Sends a message to the user.

scroll(delta x: float, delta y: float, relative: bool = False)
Description: Scroll horizontally and vertically. Amounts in pixels, positive for right or
down scrolling, negative for left or up scrolling. Dispatches a wheel event.

fill(element: str, value: str)
Description: Fill out a form field. It focuses the element and triggers an input event with
the entered text. It works for <input>, <textarea>, and [contenteditable] elements. The
’element’ parameter represents the semantic information of the element you want to fill.

click(element: str, button: Literal[‘left’, ‘middle’, ‘right’] = ‘left’)
Description: Click an element. The ‘element’ parameter represents the semantic informa-
tion of the element you want to click.

dblclick(element: str, button: Literal[‘left’, ‘middle’, ‘right’] = ‘left’)
Description: Double click an element. The ‘element’ parameter represents the semantic
information of the element you want to double click.

hover(element: str)
Description: Hover over an element. The ‘element’ parameter represents the semantic
information of the element you want to hover over.

keyboard press(key: str)
Continued on the next page

23

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 12 – Continued from the previous page
Instructions
Review the current state of the page and all other information to find the best possible
next action to accomplish your goal. Your answer will be interpreted and executed by a
program, make sure to follow the formatting instructions.

Description: Press a combination of keys. Accepts the logical key names that are emit-
ted in the keyboardEvent.key property of the keyboard events: Backquote, Minus, Equal,
Backslash, Backspace, Tab, Delete, Escape, ArrowDown, End, Enter, Home, Insert, Page-
Down, PageUp, ArrowRight, ArrowUp, F1 - F12, Digit0 - Digit9, KeyA - KeyZ, etc.
You can alternatively specify a single character you’d like to produce such as “a” or “#”.
Following modification shortcuts are also supported: Shift, Control, Alt, Meta.

Only a single action can be provided at once. Example:
fill(‘comment text area’, ‘This is an example’)
Note: you are on mac so you should use Meta instead of Control for Control+C etc.

Table 13: Prompts used for the planning model in AndroidWorld, modified from the prompt in
(Rawles et al., 2024a)

Instruction
You are an agent who can operate an Android phone on behalf of a user. Based on user’s
goal/request, you may
- Answer back if the request/goal is a question (or a chat message), like user asks “What
is my schedule for today?”.
- Complete some tasks described in the requests/goals by performing actions (step by step)
on the phone.

When given a user request, you will try to complete it step by step. At each step, you will
be given the current screenshot and a history of what you have done (in text). Based on
these pieces of information and the goal, you must choose to perform one of the action
in the following list (action description followed by the JSON format) by outputing the
action in the correct JSON format.
- If you think the task has been completed, finish the task by using the status action with
complete as goal status: {“action type”: “status”, “goal status”: “complete”}
- If you think the task is not feasible (including cases like you don’t have enough informa-
tion or can not perform some necessary actions), finish by using the ‘status’ action with
infeasible as goal status: {“action type”: “status”, “goal status”: “infeasible”}
- Answer user’s question: {“action type”: “answer”, “text”: “answer text”}
- Click/tap on an element on the screen. Please describe the element you want to click
using natural language. {“action type”: “click”, “target”: target element description}.
- Long press on an element on the screen, similar with the click action above, use the
semantic description to indicate the element you want to long press: {“action type”:
“long press”, “target”: target element description}.
- Type text into a text field (this action contains clicking the text field, typing in the text
and pressing the enter, so no need to click on the target field to start), use the semantic
description to indicate the target text field: {“action type”: “input text”, “text”: text input,
“target”: target element description}
- Press the Enter key: {“action type”: “keyboard enter”}
- Navigate to the home screen: {“action type”: “navigate home”}
- Navigate back: {“action type”: “navigate back”}
- Scroll the screen or a scrollable UI element in one of the four directions, use the same
semantic description as above if you want to scroll a specific UI element, leave it empty
when scroll the whole screen: {“action type”: “scroll”, “direction”: up, down, left, right,
“element”: optional target element description}

Continued on the next page

24

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 13 – Continued from the previous page

- Open an app (nothing will happen if the app is not installed): {“action type”:
“open app”, “app name”: name}
- Wait for the screen to update: {“action type”: “wait”}

Guidelines
Here are some useful guidelines you need to follow:
General:
- Usually there will be multiple ways to complete a task, pick the easiest one. Also when
something does not work as expected (due to various reasons), sometimes a simple retry
can solve the problem, but if it doesn’t (you can see that from the history), SWITCH to
other solutions.
- Sometimes you may need to navigate the phone to gather information needed to com-
plete the task, for example if user asks “what is my schedule tomorrow”, then you may
want to open the calendar app (using the ‘open app’ action), look up information there,
answer user’s question (using the ‘answer’ action) and finish (using the ‘status’ action with
complete as goal status).
- For requests that are questions (or chat messages), remember to use the ‘answer’ action
to reply to user explicitly before finish! Merely displaying the answer on the screen is
NOT sufficient (unless the goal is something like “show me ...”).
- If the desired state is already achieved (e.g., enabling Wi-Fi when it’s already on), you
can just complete the task.
Action Related:
- Use the ‘open app’ action whenever you want to open an app (nothing will happen if the
app is not installed), do not use the app drawer to open an app unless all other ways have
failed.
- Use the ‘input text’ action whenever you want to type something (including password)
instead of clicking characters on the keyboard one by one. Sometimes there is some default
text in the text field you want to type in, remember to delete them before typing.
- For ‘click’, ‘long press’ and ‘input text’, the target element description parameter you
choose must based on a VISIBLE element in the screenshot.
- Consider exploring the screen by using the ‘scroll’ action with different directions to
reveal additional content.
- The direction parameter for the ‘scroll’ action can be confusing sometimes as it’s op-
posite to swipe, for example, to view content at the bottom, the ‘scroll‘ direction should
be set to “down”. It has been observed that you have difficulties in choosing the correct
direction, so if one does not work, try the opposite as well.
Text Related Operations:
- Normally to select certain text on the screen: (i) Enter text selection mode by long
pressing the area where the text is, then some of the words near the long press point will
be selected (highlighted with two pointers indicating the range) and usually a text selection
bar will also appear with options like ‘copy’, ‘paste’, ‘select all’, etc. (ii) Select the exact
text you need. Usually the text selected from the previous step is NOT the one you want,
you need to adjust the range by dragging the two pointers. If you want to select all text in
the text field, simply click the ‘select all’ button in the bar.
- At this point, you don’t have the ability to drag something around the screen, so in
general you can not select arbitrary text.
- To delete some text: the most traditional way is to place the cursor at the right place and
use the backspace button in the keyboard to delete the characters one by one (can long
press the backspace to accelerate if there are many to delete). Another approach is to first
select the text you want to delete, then click the backspace button in the keyboard.
- To copy some text: first select the exact text you want to copy, which usually also brings
up the text selection bar, then click the ‘copy’ button in bar.
- To paste text into a text box, first long press the text box, then usually the text selection
bar will appear with a ‘paste’ button in it.

Continued on the next page

25

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 13 – Continued from the previous page

- When typing into a text field, sometimes an auto-complete dropdown list will appear.
This usually indicating this is a enum field and you should try to select the best match by
clicking the corresponding one in the list.

E ANALYSIS

E.1 MORE TRAINING ABLATION

E.1.1 TRAINING STRATEGY ABLATION

To further demonstrate the contribution of Stage 1 (GUI Grounding), Stage 2 (GUI Planning &
Reasoning), and their combination to model training, we conducted an ablation study. Specifically,
we designed five experimental settings on AGUVISQWEN2-VL and AGUVISLLAVA-OV:

• Stage 1 → Stage 2 corresponds to the staged configuration AGUVIS used in our paper,
where Stage 1 is followed by Stage 2 sequentially.

• Stage 1 + Stage 2 represents a joint training setup, where two stages are combined into a
training process.

• w/o Stage x indicates the absence of the respective stage in the setting.

Note that for the setting of removing Stage 2 (w/o Stage 2 or w/o Stage 1 & 2), the models are
fine-tuned on the corresponding task-specific dataset for planning tasks.

From the first two rows in Table 14, it can be observed that the differences between models trained
with Staged Training and Joint Training setups are relatively minor. However, a clear trend emerges:
models trained using the Joint Training setup perform better on GUI grounding tasks but exhibit infe-
rior performance on datasets requires planning ability such as MM-Mind2Web and AndroidControl
High-level. This trend implies grounding data in Stage 1 is more abundant, dominating the opti-
mization process and biasing the model toward grounding tasks. In contrast, the data in Stage 2,
which combines planning and grounding, is of higher quality and better aligned with the agent’s
deployment scenarios. This rationale underpins our decision to position Stage 2 later in the training
sequence.

Moreover, it is observed that compared to AGUVISQWEN2-VL trained through both Stage 1 and Stage
2, the model trained with only Stage 2 data maintains similar performance on MM-Mind2Web and
AndroidControl but exhibits a notable decline in GUI grounding performance on ScreenSpot. This
suggests that the stability on Mind2Web and AndroidControl can be attributed to Qwen2VL’s pre-
training on natural image grounding. However, the diverse image and domain requirements of the
ScreenSpot GUI grounding test set highlight the necessity of extensive and varied grounding training
from Stage 1. This training is essential for improving the grounding performance required for a
cross-platform GUI agent model.

To verify this analysis, we conduct the same ablation study on the LLaVA model, as shown in
Table 15. From the results, we can see that the original LLaVA did not undergo extensive natural
image grounding training during the training process, making it insufficient for LLaVA to excel
when only Stage 1 or Stage 2 is conducted. When both Stage 1 and Stage 2 are performed, LLaVA
can be significantly improved, even surpassing previous SOTA results. This validates the above
analysis and further demonstrates that our method is model-agnostic and universally applicable to
popular VLMs like Qwen2-VL and LLaVA.

26

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 14: Ablation study of AGUVISQWEN2-VL on training strategy.

Settings ScreenSpot Multimodal-Mind2Web AndroidControl
Cross-Task Cross-Website Cross-Domain High-Level Low-Level

Stage 1 → 2 84.4 58.5 55.4 54.8 61.5 80.5
Stage 1 + 2 85.0 56.1 53.1 55.6 59.2 80.9
w/o Stage 2 81.8 50.9 45.2 45.3 58.0 75.6
w/o Stage 1 77.4 59.7 55.3 55.8 58.8 79.8
w/o Stage 1 & 2 55.3 50.9 44.9 47.7 59.1 59.2

Table 15: Ablation study of AGUVISLLAVA-OV on training strategy.

Settings ScreenSpot Multimodal-Mind2Web AndroidControl
Cross-Task Cross-Website Cross-Domain High-Level Low-Level

Stage 1 → 2 81.2 55.3 50.0 50.8 60.7 82.4
w/o Stage 2 70.0 43.4 39.0 40.7 54.9 65.6
w/o Stage 1 71.3 42.5 40.3 42.8 61.4 80.5
w/o Stage 1 & 2 3.8 33.8 30.5 32.4 50.4 50.0

E.1.2 DATA STRATEGY ABLATION

To investigate the impact of different device domain datasets within a unified action space, we de-
signed three settings on the MM-Mind2Web dataset: (1) training with the complete dataset compris-
ing both Web and Mobile data, (2) training using only the Web data, and (3) fine-tuning exclusively
on the MM-Mind2Web dataset. All three experiments include fine-tuning on the MM-Mind2Web
dataset.

Table 16: Ablation Study of The Impact of Mobile Data on MM-Mind2Web.

Model Training Data MM-Mind2Web

Cross-Task Cross-Website Cross-Domain

AGUVISQWEN2-VL

Web + Mobile (Stage 2 Equivalent) 58.5 55.4 54.8
Web Only 53.1 50.3 52.2
Mind2Web Only 50.9 44.9 47.7

AGUVISLLAVA-OV

Web + Mobile (Stage 2 Equivalent) 55.3 50.0 50.8
Web Only 44.9 43.5 42.1
Mind2Web Only 43.4 39.0 40.7

Table 17: Ablation Study of the Impact of Inner Monologue.

AGUVIS ScreenSpot Multimodal-Mind2Web AndroidControl
Cross-Task Cross-Website Cross-Domain High-Level Low-Level

AGUVIS 84.4 58.5 55.4 54.8 61.5 80.5
AGUVIS w/o IM 79.3 55.4 53.7 54.9 60.3 69.1

The experimental results, presented in the Table 7, demonstrate that training AGUVIS with both Web
and Mobile data consistently outperforms the setting trained exclusively on MM-Mind2Web. This
performance gain underscores the contribution of Mobile data to enhancing cross-device domain
generalization in the Web domain, validating the effectiveness of our cross-platform data.

In addition, we conducted ablation study on the role of incorporating inner monologue (IM) in train-
ing. The result shown in Table 17 demonstrated clear performance gain from inner monologue. This
gain can be attributed to two key factors: the use of inner monologue enables the model to elicit rea-
soning about the current step while also serving as context to facilitate more effective planning for
subsequent steps. Additionally, incorporating low-level instructions from the training data improves

27

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

the accuracy of the model’s action execution, as demonstrated in both the Screenspot and Android-
Control low-level tasks. This is mainly because the low-level instructions of inner monologue act
as atomic instruction and grounding action pairs, also enhancing the grounding ability of our GUI
agents.

E.2 PLANNING ANALYSIS

E.2.1 PROMPTS FOR SELF-PLANNING AND ENFORCED PLANNING MODE.

In Appendix C.1, we present the training data schema for Stage 1 and Stage 2. We use the special
token <|recipient|> along with os or all to control whether the message content is an inner
monologue or a pyautogui action command. Thanks to this design, we can use <|recipient|>
during the inference phase to control the content generated by the agent model.

In the Enforced Plan Setting, we employ the <|recipient|>all\nThought prompt to compel
the model to generate a planning phase following this. While in the self-plan setting, we do not add
any word after <|recipient|>, so the model can choose to generate os to directly produce a
pyautogui command, or generate all to first create natural language reasoning and then generate
a pyautogui command.

Prompt Template For Self-plan

<|im_start|>system
You are a GUI agent. You are given a task and a screenshot of the
screen. You need to perform a series of pyautogui actions to
complete the task.<|im_end|>
<|im_start|>user
<|vision_start|><|image_pad|><|vision_end|>Please generate the next
move according to the ui screenshot, instruction and previous
actions.

Instruction: {goal}

Previous actions: {previous_actions}
<|im_end|>
<|im_start|>assistant<|recipient|>

Prompt Template For Enforced Plan

<|im_start|>system
You are a GUI agent. You are given a task and a screenshot of the
screen. You need to perform a series of pyautogui actions to
complete the task.<|im_end|>
<|im_start|>user
<|vision_start|><|image_pad|><|vision_end|>Please generate the next
move according to the ui screenshot, instruction and previous
actions.

Instruction: {overall_goal}

Previous actions: {previous_actions}
<|im_end|>
<|im_start|>assistant<|recipient|>all
Thought:

28

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

E.2.2 CASES OF INNER MONOLOGUE BONUS

Task Instruction: add a new file

pyautogui.click(x=0.3997, y=0.0148)

Thought: To add a new file, I need to select the 'New' option
from the context menu. This will likely open a dialog or prompt
to create a new file, aligning with the goal of adding a new file
to the directory.

Action: Click on the 'New' option in the context menu.

pyautogui.click(x=0.6836, y=0.2535)

Task Instruction: send current page

pyautogui.click(x=0.9792, y=0.8046)

Thought: To share the current page, I need to find and click the
share icon, which is typically represented by a network or link
symbol. This icon is usually located in the browser's toolbar or
menu.

Action: Click the share icon in the browser to share the current
page.

pyautogui.click(x=0.9792, y=0.876)

Task Instruction: go to personal homepage

pyautogui.click(x=0.0219, y=0.0333)

Thought: To reach the personal homepage, I need to interact
with the user profile element, which is typically represented by
an avatar or username. This element is usually clickable and
leads to the user's profile page.

Action: Click on the user profile icon or username at the top
right corner to go to the personal homepage.

pyautogui.click(x=0.9615, y=0.0326)

Task Instruction: rate this product with four stars

pyautogui.click(x=0.2271, y=0.2926)

Thought: To achieve the goal of rating the product with four
stars, I need to click on the fourth star in the rating section.
This will ensure the product is rated with four stars, aligning
with the task requirement.

Action: Click on the fourth star in the rating section to rate the
product with four stars.

pyautogui.click(x=0.2445, y=0.293)

Task Instruction: switch to song lyric

pyautogui.click(x=0.5, y=0.9252)

Thought: To switch to song lyrics, I need to find and click on
the lyrics button, which is typically represented by a text or chat
icon. This icon is usually located at the bottom of the screen
among other playback controls.

Action: Click on the lyrics icon at the bottom of the screen to
switch to song lyrics.

pyautogui.click(x=0.2352, y=0.9267)

Task Instruction: change dark mode options

pyautogui.click(x=0.7306, y=0.3575)

Thought: To change the dark mode options, I need to select the
'More Dark mode options' option. This will likely lead to
additional settings related to dark mode.

Action: Click on 'More Dark mode options' to explore further
settings.

pyautogui.click(x=0.4991, y=0.6742)

Figure 7: Benefits of inner monologue in autonomous GUI interactions across Desktop, Website,
and Mobile environments. Gray indicates output without inner monologue, yellow with inner mono-
logue.

29

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

E.3 AGUVIS TRAJECTORIES EXAMPLES ON ONLINE EVALUATION

E.3.1 MIND2WEB-LIVE CASE: AGUVIS-72B AS PLANNER AND GROUNDER

Thought: To find the list of Men's
Blazers, I need to navigate to the 'MEN'
section first. The 'MEN' tab is visible in
the navigation bar, which is the logical
next step to access men's clothing
categories.

Low-level instruction: Click on the
'MEN' tab in the navigation bar.

Action: pyautogui.click(x=0.456, y=0.049)

Task

Planner

Show me the list of Men's Blazers, Black, Size M on uniqlo.

Aguvis72B&

Step 1

Thought: To filter the list of men's
blazers to show only black options, I
need to select the 'BLACK' color option
from the color filter menu.

Low-level instruction: Click on the
'BLACK' color option to filter the blazers
by black color.

Action: pyautogui.click(x=0.303, y=0.324)

Step 6

Thought: To find the specific black, size
M blazers, I need to apply the
appropriate filters. The 'Color' filter is
crucial for narrowing down the options
to black blazers.

Low-level instruction: Click on the
'Color' filter to select black.

Action: pyautogui.click(x=0.478, y=0.351)

Step 5

Thought: I need to select the 'Blazers'
option under 'MEN / Outerwear' to
proceed with finding men's blazers in
black, size M.

Low-level instruction: Click on the
'Blazers' option under 'MEN / Outerwear'
to view the list of men's blazers.

Action: pyautogui.click(x=0.15, y=0.344)

Step 4

DONE

Step 9

Thought: To achieve the goal of
filtering for men's black blazers in size
M, I need to select the 'M' size option
from the list. This will update the search
results to show only the blazers
available in size M.

Low-level instruction: Click on the
checkbox next to size 'M' to filter the
results for size M blazers.

Action: pyautogui.click(x=0.273, y=0.388)

Step 8

Thought: I need to apply the size filter
to narrow down the results to size M.
The next logical step is to interact with
the size filter option.

Low-level instruction: Click on the
'Size' filter to select size M.

Action: pyautogui.click(x=0.401, y=0.353)

Step 7

Thought: To find men's blazers, I need
to use the search bar to input the
keyword 'blazers'. This will help me
locate the specific category of clothing
I'm interested in.

Low-level instruction: Type 'blazers'
into the search bar to find men's blazers.

Action:

pyautogui.click(x=0.203, y=0.828)

pyautogui.write(message='blazers')

Grounder

Step 3

Thought: To find the list of Men's
Blazers, I need to navigate to the
relevant section. The search bar is
available, which can be used to directly
search for 'blazers'

Low-level instruction: Click on the
search bar to start typing 'blazers'.

Action: pyautogui.click(x=0.501, y=0.92)

Step 2

Figure 8: Example of AGUVIS-72B as planner and grounder executing on Mind2Web-Live task.
Due to space limitations, we present here the trajectory generated guided by Thought.

30

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

E.3.2 MIND2WEB-LIVE CASE: GPT-4O AS PLANNER AND AGUVIS-7B AS GROUNDER

Thought: To find a walkthrough guide
for Assassin's Creed Valhalla on IGN, I
should use the search functionality. The
search icon is visible on the left sidebar.
Clicking on it should allow me to enter
the search query.

Low-level instruction:

click('search icon')

Action: pyautogui.click(x=0.033, y=0.4014)

Task

Planner

Find a walkthrough guide for Assassin's Creed Valhalla on ign

Aguvis7BGPT-4o

Step 1

Thought: To find the walkthrough
guide, I should look for a section or link
that specifically mentions guides or
walkthroughs. Since I don't see any
relevant links or sections immediately, I
should scroll further down the page to
see if more content is revealed.

Low-level instruction: scroll(0, 500)

Action: /

Step 6

Thought: I am currently on the
Assassin's Creed Valhalla page on IGN,
and I have clicked on the "Overview" tab.
To find the walkthrough guide, I should
look for a section or link that specifically
mentions "walkthrough" or "guide."

Low-level instruction: scroll(0, 300)

Action: /

Step 5

Thought: To find a walkthrough guide, I
should look for relevant sections or links
on this page. The page has tabs like
Overview, Playlists, and Reviews. The
walkthrough guide is likely to be under
one of these tabs, possibly the Overview
or Playlists tab.

Low-level instruction: click('Overview
tab')

Action: pyautogui.click(x=0.2115, y=0.7222)

Step 4

DONE

Step 8

Thought: There is also a "Walkthrough"
link under the "Top Guide Sections" on
the right side. Clicking the
"Walkthrough" link should take me
directly to the walkthrough guide.

Low-level instruction:
click('Walkthrough')

Action: pyautogui.click(x=0.5852, y=0.7681)

Step 7

Thought: The search results for
"Assassin's Creed Valhalla walkthrough"
are displayed. The first result is
"Assassin's Creed Valhalla." This is likely
to contain the walkthrough guide we are
looking for. I should click on this result
to proceed.

Low-level instruction: click('Assassin\'s
Creed Valhalla')

Action: pyautogui.click(x=0.4991, y=0.4847)

Grounder

Step 3

Thought: The search bar is now visible.
To find a walkthrough guide for
Assassin's Creed Valhalla, I need to enter
the search query in the search bar.

Low-level instruction:

fill('search input field', 'Assassin\'s Creed
Valhalla walkthrough')

Action:

pyautogui.click(x=0.4991, y=0.3417)

pyautogui.write(text="Assassin's Creed
Valhalla walkthrough")

Step 2

Figure 9: Example of GPT-4o as planner and AGUVIS-7B as grounder executing on Mind2Web-Live
task.

31

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

E.3.3 ANDROIDWORLD CASE: AGUVIS-72B AS PLANNER AND GROUNDER

Thought: To achieve the goal of
managing expenses in Pro Expense, I
need to open the app first. The list of
apps includes Pro Expense, which is
relevant to the task at hand.

Low-level instruction: Open the Pro
Expense app using mobile.open_app.

Action:

mobile.open_app(app_name='Pro Expense')

Task

Planner

Delete all but one of any expenses in pro expense that are exact duplicates,
ensuring at least one instance of each unique expense remains.

Aguvis72B&

Step 1

Thought: To achieve the goal of
deleting duplicate expenses, I need to
access the Expense Logs to view all
expenses and identify duplicates. The
Expense Logs option is visible in the
menu.

Low-level instruction: Click on
'Expense Logs' to view the list of
expenses.

Action: pyautogui.click(x=0.272, y=0.317)

Grounder

Step 3

Thought: To achieve the goal of
deleting duplicate expenses, I need to
access the list of all expenses. The
current screen shows recent expenses,
but I need to navigate to a section where
I can view and manage all expenses. The
menu icon at the top left is likely the
gateway to accessing more options,
including the full list of expenses.

Low-level instruction: Click on the
menu icon at the top left to access more
options.

Action: pyautogui.click(x=0.501, y=0.92)

Step 2

Thought: I need to delete one of the
duplicate 'Public Transit' entries to
ensure only one unique entry remains.
This aligns with the goal of removing
duplicate expenses.

Low-level instruction: Click on one of
the 'Public Transit' entries to delete it.

Action: pyautogui.click(x=0.545, y=0.614)

Step 4

Step 7

Thought: I need to confirm the deletion
of the duplicate 'Public Transit' entry to
ensure only one unique entry remains.

Low-level instruction: Click on the
'CONFIRM' button to delete the selected
duplicate entry.

Action: pyautogui.click(x=0.532, y=0.923)

Step 6

Thought: I need to delete duplicate
entries, ensuring at least one unique
entry remains. The current focus is on
the 'Public Transit' entry, which seems to
be a duplicate. I should delete this entry
to meet the goal.

Low-level instruction: Click on the
delete icon next to the 'Public Transit'
entry to remove it.

Action: pyautogui.click(x=0.909, y=0.693)

Step 5

DONE

Figure 10: Example of AGUVIS-72B as planner and grounder executing on AndroidWorld task. Due
to space limitations, we present here the trajectory generated guided by Thought.

32

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

E.3.4 ANDROIDWORLD CASE: GPT-4O AS PLANNER AND AGUVIS-7B AS GROUNDER

Thought: Open the Simple SMS
Messenger app to send a text message.

Low-level instruction: {"action_type":
"open_app", "app_name": "Simple SMS
Messenger"}

Action: /

Step 1

Thought: Input the phone number into
the "Add Contact or Number..." field.

Low-level instruction: {"action_type":
"input_text", "text": "+16597910719",
"target": "Add Contact or Number..."}

Action:

pyautogui.click(x=0.4991, y=0.1504)

pyautogui.write(message=’+16597910719’)

Step 3

Thought: Start a new conversation to
send the text message.

Low-level instruction: {"action_type":
"click", "target": "Start a conversation"}

Action: pyautogui.click(x=0.5, y=0.1996)

Step 2

Thought: Tap the checkmark to confirm
the phone number and proceed to the
message input screen.

Low-level instruction: {"action_type":
"click", "target": "checkmark icon"}

Action: pyautogui.click(x=0.9407, y=0.1483)

Step 4

Step 7

Thought: Send the message by tapping
the send button.

Low-level instruction: {"action_type":
"click", "target": "send button with SMS
icon"}

Action: pyautogui.click(x=0.9306, y=0.6025)

Step 6

Thought: Input the message "Beauty is
in the eye of the beholder." into the
message field.

Low-level instruction: {"action_type":
"input_text", "text": "Beauty is in the eye
of the beholder.", "target": "Type a
message..."}

Action:

pyautogui.click(x=0.4991, y=0.6075)

pyautogui.write(‘Beauty is in the eye of the
beholder.’)

Step 5

DONE

Task

Planner

Send a text message using Simple SMS Messenger to +16597910719 with
message: Beauty is in the eye of the beholder.

Aguvis7BGPT-4o Grounder

Figure 11: Example of GPT-4o as planner and AGUVIS-7B as grounder executing on AndroidWorld
task.

33

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

E.4 CASE OF AGUVIS GENERALIZATION IN REAL-WORLD SCENARIOS

Thought: To proceed with finding a flight, I need to dismiss the privacy pop-up to
access the search functionality.

Low-level instruction: Click 'No, thanks' to dismiss the privacy pop-up.

Action: pyautogui.click(x=0.498, y=0.603)

Thought: To proceed with contacting support, I need to close this overlay to access the
main page where the 'Contact Us' or 'Support' link is likely located.

Low-level instruction: Click the 'X' button to close the cookie consent overlay.

Action: pyautogui.click(x=0.704, y=0.093)

Figure 12: Case of AGUVIS generalization in real-world scenarios: closing cookie pop-ups, which
is an out-of-domain situation in our training data.

34

	Introduction
	Aguvis
	Problem Formulation
	Unified GUI Interaction Framework
	Aguvis Data Collection
	Model Architecture
	Training Paradigm

	Experiments
	GUI Grounding Evaluation
	Offline GUI Agent Evaluation
	Online GUI Agent Evaluation

	Analysis
	Impact of Training Stages
	Role of Inner Monologue
	Cross-Platform Benefits
	Efficiency Benifits from Pure Vision Perception
	Error Analysis and Future Work

	Related Work
	Benchmarks and datasets for GUI agent
	Models and approaches for GUI agent

	Conclusion
	Aguvis Unified Design
	Details of Action Space in Aguvis
	Pluggable Functions: Mobile Environments as An Example

	Data Curation of Aguvis Data Collection
	Detailed Source Dataset Statistics
	Prompt for Augmenting Planning & Reasoning Trajectories
	Human Study on Augmented Data
	Qualitative Human Study
	Failure Cases Under Noisy Training Data

	Aguvis Training
	Training Example Schema
	Training Details

	Evaluation Benchmarks
	GUI Grounding Evaluation
	Offline GUI Agent Evaluation
	Online GUI Agent Evaluation
	Prompts for using GPT-4o as Planning Model

	Analysis
	More Training Ablation
	Training Strategy Ablation
	Data Strategy Ablation

	Planning Analysis
	Prompts for self-planning and enforced planning mode.
	Cases of Inner Monologue Bonus

	Aguvis Trajectories Examples on Online Evaluation
	Mind2Web-Live Case: Aguvis-72B as Planner and Grounder
	Mind2Web-Live Case: GPT-4o as Planner and Aguvis-7B as Grounder
	AndroidWorld Case: Aguvis-72B as Planner and Grounder
	AndroidWorld Case: GPT-4o as Planner and Aguvis-7B as Grounder

	Case of Aguvis Generalization in Real-World Scenarios

