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Abstract

With the emergence of advanced reasoning
models like OpenAl 04 and DeepSeek-R1,
large language models (LLMs) have demon-
strated remarkable reasoning capabilities. How-
ever, their ability to perform rigorous logical
reasoning remains an open question. This sur-
vey synthesizes recent advancements in logical
reasoning within LLLMs, a critical area of Al
research. It outlines the scope of logical rea-
soning in LLMs, its theoretical foundations,
and the benchmarks used to evaluate reason-
ing proficiency. We analyze existing capabil-
ities across different reasoning paradigms —
deductive, inductive, abductive, and analogical
— and assess strategies to enhance reasoning
performance, including data-centric tuning, re-
inforcement learning, decoding strategies, and
neuro-symbolic approaches. The review con-
cludes with future directions, emphasizing the
need for further exploration to strengthen logi-
cal reasoning in Al systems.

1 Introduction

Logical reasoning is a fundamental challenge to
artificial intelligence (AI) and natural language
processing (NLP) (Newell and Simon, 1956; Mc-
Carthy and Hayes, 1981; McCarthy, 1959). While
early formal logic-based reasoning approaches
faced limitations in scalability and adaptability
(Pereira, 1982; Cann, 1993), data-driven models
became the dominant method since the 1980s (Mc-
Carthy, 1989). Recently, pre-trained Large Lan-
guage Models (LLMs) and their emergent logical
reasoning abilities have attracted increasing atten-
tion (Liu et al., 2023b; Xu et al., 2023). Logical
reasoning integrates LLLMs with inference structur-
ing, enabling multistep deduction and abstraction,
and improving interpretability and reliability (Shi
et al., 2021; Stacey et al., 2022; Rajaraman et al.,
2023). It also strengthens generalization, help-
ing models handle novel scenarios beyond their

training data (Haruta et al., 2020). As LLMs be-
come integral to domains like legal analysis and
scientific discovery, ensuring the correctness and
verifiability of their reasoning is increasingly vi-
tal. As a result, post-training LLM for reasoning
has garnered a surge of interest in both industry
and research(OpenAl, 2024; DeepSeek-Al, 2025;
Muennighoff et al., 2025).

Recent surveys have touched upon LLMs’ rea-
soning (Li et al., 2025; Huang and Chang, 2023).
However, existing surveys discuss general reason-
ing, exemplified by chain-of-thought (CoT), treat-
ing logical reasoning as a task case, without ded-
icated discussion. There has been lack of a thor-
ough literature review focusing on LLMs and for-
mal symbolic logic. To address this issue, this
survey provides a comprehensive review of logi-
cal reasoning in large language models (LLMs),
with a focus on formal and symbolic logic-based
reasoning rather than general heuristic approaches.
The structure is illustrated in Figure 1. We begin
by defining logical reasoning in Al, distinguishing
it from general-purpose reasoning, and categoriz-
ing key paradigms, including deductive, inductive,
abductive, and analogical reasoning. Then, we ana-
lyze existing benchmarks and evaluation method-
ologies, identifying gaps in assessing symbolic in-
ference, consistency, and robustness. We further
explore state-of-the-art techniques for enhancing
logical reasoning, such as supervised fine-tuning,
logic-informed pre-training, reinforcement learn-
ing, inference-time decoding strategies, and hybrid
neuro-symbolic methods. We examine recent ad-
vances in neuro-symbolic integration, along with
applications of theorem provers, logic solvers, and
formal verification frameworks in LLMs. Finally,
we highlight open challenges in scalability, rea-
soning consistency, explainability, and efficiency,
proposing future directions for multi-modal reason-
ing, hybrid architectures, and improved evaluation
frameworks.
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Figure 1: The structure of this survey

2 Logic in Artificial Intelligence

Logical reasoning is a cornerstone of artificial intel-
ligence (Al), enabling machines to simulate human
thought processes and solve complex problems. At
its core, logical reasoning applies structured rules
to derive conclusions from premises, providing a
rigorous framework for decision-making and infer-
ence (Sun et al., 2023).

2.1 History of Logic Reasoning Research

Logical reasoning can be traced back to ancient
Greece, where Aristotle’s syllogisms laid the foun-
dation for classical logic. During the Middle Ages,
scholars refined these theories, and in the 17th cen-
tury, Leibniz’s universal language and calculus rati-
ocinator bridged logic with mathematics, foreshad-
owing modern computational logic. The 19th cen-
tury saw George Boole’s Boolean algebra, which
transformed logic into a mathematical framework,
laying the foundation for digital computing.

The 20th century ushered in modern logic, with
Russell and Whitehead’s Principia Mathematica
formalizing complex logical systems. By the mid-
century, Al pioneers like John McCarthy leveraged
logic for knowledge representation and automated
theorem proving, leading to logic programming
and knowledge bases. The 1970s introduced non-
monotonic logic, enabling Al to handle common-
sense reasoning. The 1980s saw logical reasoning
integrate with knowledge representation, advanc-
ing expert systems for real-world applications. The
1990s saw the rise of knowledge graphs, structuring

vast knowledge for complex reasoning tasks.

With the development of deep learning in the
21st century, neuro-symbolic approaches stand out
as a new approach for combining deep learning
with logical inference, resulting in tools like Deep-
Logic (Cingillioglu and Russo, 2019) and SAT-
Net (Wang et al., 2019). Logical reasoning remains
a cornerstone of Al research, evolving from phi-
losophy to modern computing. As Al advances,
logical reasoning continues to shape intelligent sys-
tems, ensuring structured, interpretable, and robust
decision-making.

2.2 Types of Logical Reasoning

Logical reasoning can be broadly categorized into
four main types, each serving distinct purposes and
applications:

Deductive Reasoning. This type of reasoning de-
rives specific conclusions from general principles
or premises. It operates under the rule that if all
premises are true and the reasoning is valid, the
conclusion must also be true. Deductive reason-
ing is fundamental in fields such as mathematics
and formal logic, where certainty and rigor are
paramount.

Inductive Reasoning. Unlike deductive reason-
ing, inductive reasoning draws general conclusions
based on specific observations or evidence. While
the conclusions are often considered probable, they
are not guaranteed to be true. Inductive reasoning is
widely used in scientific discovery and data-driven



Dataset Lang. | Task | Reasoning Type Size Source
LOGIQA Zh/En | MRC Misc. 8,678 Exam
ReClor En MRC Misc. 6,138 Exam
AR-LSAT En MRC Misc. 2,064 Exam
CLUTRR En MRC Inductive 6,016 Rule
GSM En MRC Deductive 19K Exam
LINGOLY En MRC Inductive 1,133 Expert
ConTRoL En NLI Deductive 8,325 Exam
FOLIO En NLI Deductive 1,351 Expert
LogicNLI En NLI Deductive 30K Exam
ProofWriter En NLI Deductive - Exam
LogicBench En NLI Deductive 1,270 Rule
ART En NLI Abductive 20K Expert
Analogical En NLI Analogical 720K | Crowd
GLoRE Zh/En | Misc. Misc. 17 tasks | Misc.
LogiGLUE En Misc. Misc. 24 tasks | Misc.
LogiTorch En Misc. Misc. 16 tasks | Misc.
BIG-Bench En Misc. Misc. 7 tasks Misc.

Table 1: Main Datasets and Benchmarks of Logical
Reasoning Task.

decision-making, where patterns and trends are in-
ferred from empirical data.

Abductive Reasoning. This form of reasoning
seeks the most plausible explanation or cause for
a set of observations, often in the presence of in-
complete information. Abductive reasoning is par-
ticularly useful in diagnostic tasks and real-world
problem-solving. While abductive conclusions are
not certain, they provide a practical basis for hy-
pothesis generation and decision-making under un-
certainty.

Analogical Reasoning. Analogical reasoning in-
volves drawing comparisons between similar situa-
tions or domains to make inferences or solve prob-
lems. By identifying parallels between different
scenarios, this type of reasoning enables creative
problem-solving and knowledge transfer. Analogi-
cal reasoning is particularly valuable in fields like
education, design, and innovation.

3 Tasks and Benchmarks

Logical reasoning datasets and benchmarks are es-
sential for evaluating the reasoning capabilities of
large language models (LLMs). These datasets can
be categorized into three types based on their data
sources:

Rule-based Datasets (Tafjord et al., 2021; Sinha
et al., 2019) are automatically generated using logi-
cal rules, enabling large-scale data collection. How-
ever, ensuring diversity is crucial to avoid repetitive
patterns and comprehensively evaluate reasoning
capabilities.

Crowdsourced Datasets (Bhagavatula et al.,
2020) leverage collective human intelligence for
diverse reasoning tasks. While requiring quality

control measures, these datasets capture nuanced
linguistic patterns and commonsense knowledge
that automated methods often miss.

Expert-Designed Datasets (Han et al., 2024a)
are constructed by domain experts, ensuring high
precision and accuracy. Although typically smaller
than crowd-sourced corpora, their meticulous de-
sign makes them indispensable for in-depth logical
reasoning evaluation.

Exam-Based Datasets (Liu et al., 2021b; Yu
et al.,, 2020; Wang et al., 2022) originate from
standardized test questions (e.g., Chinese National
Civil Service Exam, LSAT, CAT), offering high-
quality, expert-crafted logic problems at scale.
These datasets are widely used to evaluate reason-
ing in real-world scenarios.

Table 1 summarizes important datasets for logi-
cal reasoning, which typically cover tasks such as
Natural Language Inference (NLI) (§3.1), Machine
Reading Comprehension (MRC) (§3.2). Examples
can be found in A.1.

3.1 Natural Language Inference (NLI)

NLI evaluates whether a hypothesis logically fol-
lows from a premise, directly assessing a model’s
reasoning ability. Labels typically fall into bi-
nary (Entailment, Non-entailment) or ternary (En-
tailment, Contradiction, Neutral) classifications.
Some datasets use True and False labels instead.
ConTRoL (Liu et al., 2021a), derived from re-
cruitment exams, contains 8,325 entries labeled
as Correct, Incorrect, or Can’t Say, correspond-
ing to entailment, contradiction, and neutral. FO-
LIO (Han et al., 2024a), an expert-constructed
dataset for First-Order Logic (FOL) reasoning,
consists of 1,351 entries labeled True or False.
LogicNLI (Tian et al.,, 2021), with 30K en-
tries generated via logical rules, isolates FOL-
based inference from commonsense reasoning.
ProofWriter (Tafjord et al., 2021) extends Rule-
Taker (Clark et al., 2021) by introducing closed-
world (CWA) and open-world (OWA) assumptions,
covering handcrafted domain theories and crowd-
sourced paraphrased rules for linguistic and do-
main generalization. LogicBench (Parmar et al.,
2023), generated by GPT-3, includes 1,270 test en-
tries across 25 reasoning types (e.g., propositional
logic, FOL) labeled Yes or No. ART (Bhagavatula
et al., 2020) contains 20K commonsense narrative
contexts and 200k explanations for abductive rea-
soning evaluation.



3.2 Machine Reading Comprehension (MRC)

Machine Reading Comprehension (MRC) evalu-
ates logical reasoning by requiring models to an-
swer questions based on a given passage, com-
monly formatted as multiple-choice, span extrac-
tion, or free response. LogiQA (Liu et al., 2023a),
sourced from the Chinese Civil Service Exam, con-
tains 15,937 Chinese and English entries target-
ing complex logical reasoning. ReClor (Yu et al.,
2020), derived from the GMAT, features 6,138
English multiple-choice questions with four op-
tions. AR-LSAT (Wang et al., 2022), collected
from the LSAT exam, includes 2,064 entries cov-
ering ordering, grouping, and allocation games
with five options each. CLUTRR (Sinha et al.,
2019) focuses on inductive reasoning for kinship
relationships in short narratives, containing 6,016
entries combining entity extraction and logical in-
ference. LINGOLY (Bean et al., 2024) uses Lin-
guistic Olympiad puzzles (1,133 problems across
6 formats and 5 difficulty levels) to assess pattern
identification and generalization in low-resource or
extinct languages.

3.3 Multi-modal Logical Reasoning

Recently, logical reasoning combining texts and
images has been explored in several research. Log-
icVista (Xiao et al., 2024) collects 448 comprehen-
sive exam-based logical reasoning data in Visual
contexts with human-annotated rationales suitable
for both open-ended and multiple-choice evalua-
tion. VISUALPUZZLES (Song et al., 2025) is a
holistic benchmark of 1,167 exam-based puzzle-
like multi-modal questions specifically designed to
decouple reasoning abilities from domain knowl-
edge.

3.4 Benchmark Suites

Benchmark suites standardize evaluation and fa-
cilitate model comparison in logical reasoning re-
search. GLoRE (liu et al., 2023) provides 17 test-
only datasets for few-shot and zero-shot evaluation
of generalization capabilities. LogiGLUE (Luo
et al., 2024) unifies 24 logical reasoning tasks into
a sequence-to-sequence format with both training
and test sets for comprehensive evaluation. Logi-
Torch (Helwe et al., 2022) offers a PyTorch-based
framework with 16 datasets and model architec-
tures for streamlined logical reasoning experiments.
BIG-bench (Srivastava et al., 2022) includes 7 col-
laborative logical reasoning tasks such as Logic

Grid Puzzle and Logical Fallacy Detection. Lo-
giEval and LogiEval-Hard (Liu et al., 2025) pro-
vides a holistic testing suite with various sub-tasks
for logical reasoning.

4 Evaluations

The rapid development of pre-trained language
models (PLMs) necessitates rigorous evaluation
of their logical reasoning capabilities. This section
examines four reasoning paradigms—deductive,
inductive, abductive, and analogical—while ana-
lyzing evaluation approaches and metrics.

4.1 Deductive Reasoning

Deductive reasoning, deriving specific conclusions
from general premises, is crucial for automated
theorem proving. Despite LLMs performing well
on tasks like compositional proofs, standard bench-
marks and encoding entailment relationships, they
struggle with extended reasoning, hypothetical sub-
proofs without examples, generalization, and sensi-
tivity to syntactic variations (Saparov et al., 2023;
Yuan et al., 2023; Ryb et al., 2022).

4.2 Inductive Reasoning

Inductive reasoning, which generalizes from spe-
cific instances to broader rules, is essential for tasks
like hypothesis generation and pattern recognition.
While Yang et al. (2024b) find that pre-trained mod-
els can serve as effective “reasoners”, Bowen et al.
(2024) show that even advanced LLMs struggle
with simple inductive tasks in their symbolic set-
tings. Similarly, Sullivan (2024) demonstrates that
Transformer models, even after fine-tuning, fail
to learn fundamental logical principles, indicating
limited inductive reasoning capabilities.

4.3 Abductive Reasoning

Abductive reasoning, which seeks the most plausi-
ble explanations for observed phenomena, is cru-
cial in fields like law and medicine. Del and Fishel
(2023) highlights the challenges LLMs face in
generating plausible hypotheses from incomplete
information. In the legal domain, Nguyen et al.
(2023) show that despite strong performance, mod-
els struggle with abductive reasoning, underscoring
the complexity of this paradigm.

4.4 Analogical Reasoning

Analogical reasoning, which infers unknown infor-
mation by comparing it with known information, is
vital for tasks requiring creativity and knowledge



transfer. Wijesiriwardene et al. (2023) introduced
ANALOGICAL, a benchmark for long-text analog-
ical reasoning. They find that as analogy complex-
ity increases, LLLMs struggle to recognize analog-
ical pairs. Petersen and van der Plas (2023) show
that models can learn analogical reasoning with
minimal data, approaching human performance.
However, Qin et al. (2024) question whether LLMs
truly rely on analogical reasoning, discovering that
random examples in prompts often achieve compa-
rable performance to relevant examples.

4.5 Overall Analysis and Metrics

Liu et al. (2023b) evaluate GPT-4 and ChatGPT on
benchmarks like LogiQA and ReClor, showing that
while GPT-4 outperforms ChatGPT, both of them
struggle with out-of-distribution tasks. Xu et al.
(2023) introduce the NeuLR dataset and propose a
framework evaluating LLMs across six dimensions:
correctness, rigor, self-awareness, proactivity, guid-
ance, and absence of hallucinations.

Metrics for Evaluating Logical Reasoning.
Reasoning is fundamentally process-oriented rather
than outcome-oriented (Leighton, 2003). Although
traditional conclusion-based metrics like accuracy
and F1 score are widely used for their simplic-
ity and general applicability, they fall short in as-
sessing the logical reasoning process (Mondorf
and Plank, 2024). Recent studies have introduced
rationale-based metrics to evaluate the reasoning
trace. Structural parsing approaches (Saparov et al.,
2023; Dziri et al., 2023) decompose the reasoning
process into formalized representations or graphs
to facilitate a more fine-grained evaluation. How-
ever, these methods are typically constrained by
the requirement for specially structured reason-
ing texts. Other researchers have proposed in-
terpretable quantitative metrics (Golovneva et al.,
2022; Prasad et al., 2023), designing a variety of
indicators to assess diverse properties of model rea-
soning. Nevertheless, these methods often rely on
complex feature engineering and typically use met-
rics such as BERTScore or entropy, whose values
lack clear physical interpretability. There remains
a pressing need for a widely accepted and general
rationale-based evaluation method.

5 Enhancement Methods

Enhancing LLMs’ logical reasoning remains cru-
cial. This section focuses on core strategies: Data-
Centric Approaches (§5.1), Model-Centric Ap-

proaches (§5.2), External Knowledge Utilization
(§5.3), and Neuro-Symbolic Reasoning (§5.4).

5.1 Data-Centric Approaches

Data-centric approaches enhance LLMs’ reason-
ing capabilities by utilizing meticulously curated
training datasets. Formally:

D* = arg max R(Mp) (1)
where:

* D: training datasets.
e Mp: model trained on D.
* R: performance evaluator.

This formulation highlights the central role of
dataset optimization in data-centric approaches. In
practice, data-centric methods typically involve
three types of datasets: expert-curated datasets,
synthetic datasets, and LLM-distilled datasets.

Expert-Curated Datasets. The FOLIO se-
ries (Han et al., 2024a,b) establish formal verifi-
cation through FOL annotations, with P-FOLIO ex-
tending the complexity of reasoning chains for en-
hanced training. LeanDojo (Yang et al., 2023) pro-
vides 98k+ human-proven mathematical theorems.
Additionally, Symbol-LLM (Xu et al., 2024a) sys-
tematically organizes 34 symbolic reasoning tasks
to capture inter-symbol relationships across 20 dis-
tinct symbolic families. These datasets benefit from
high-quality data, with the scale commonly limited
by labor-intensive annotation.

Rule-based Synthetic Datasets. Rule-based syn-
thetic data remains fundamental for data genera-
tion. RuleTaker (Clark et al., 2021) formalizes this
through a three-phase pipeline: behavior formaliza-
tion, example synthesis and linguistic equivalents
generation. Similarly, Morishita et al. (2024) de-
velops Formal Logic Deduction Diverse (FLD «2),
a synthetic dataset based on symbolic theory and
previous empirical insights. Rule-based data gener-
ation enables large-scale, systematic data creation
and fine-grained control over specific reasoning
patterns. However, rule-based datasets often suffer
from limited linguistic diversity, reduced realism
and a gap between artificial templates and real-
world inference complexity.

LLM-Distilled Datasets. Researchers employ
advanced models such as GPT-4 and Deepseek-
R1 for intermediate reasoning step distillation.



LogiCoT (Liu et al., 2023c) augments existing
datasets with GPT4-generated reasoning chains,
while LogicPro (Jiang et al., 2024) combines al-
gorithmic problems with code solutions to create
variable-guided reasoning data. To advance, Wang
et al. (2024b) propose PODA, which generates
contrastive analyses of correct/incorrect options
through premise-oriented augmentation, enabling
reasoning path differentiation via contrastive learn-
ing. These methods leverage the reasoning ability
of advanced language models and tackle the lack
of diversity and complexity of rule-based meth-
ods. However, training models on LLM-distilled
data may lead to model collapse (Shumailov et al.,
2023), causing the models to lose diversity and ac-
curacy due to the loss of long-tail data present in
real distributions.

5.2 Model-Centric Approaches

Model-Centric approaches enhance LLMs’ reason-
ing capabilities by optimizing model parameters
and decoding strategies. The formal objective is:

(67, 57) = arg max R(Mj, 5) 2)
where:

e Mpy: model with learnable parameters 6.

¢ S: decoding strategy (e.g., chain-of-thought
prompting, verification-based decoding).

* R: reasoning performance metric.

This formulation highlights the joint optimiza-
tion of model parameters 6 and decoding strategy
S. Practical implementations can be categorized
as:

¢ Instruction Fine-Tuning: optimizing 6.
» Reinforcement Learning: optimizing 6.
* Inference-Time Decoding: optimizing S.

Model-Centric approaches focus on directly im-
proving models’ reasoning capabilities by optimiz-
ing its internal mechanisms and decoding strate-
gies, making them complementary to data-centric
approaches.

5.2.1 Supervised Fine-Tuning

Supervised Fine-Tuning (SFT) optimizes LLMs
through supervised learning on pairs of inputs and
desired outputs. For example, Liu et al. (2023c)
designs multi-grained logical instructions spanning
diverse levels of abstraction and complexity. Sim-
ilarly, Feng et al. (2024) SFT models to mimic

logical solvers by replicating formal deduction rea-
soning processes. In addition, Xu et al. (2024a) im-
plements two-stage symbolic fine-tuning through
Injection (injecting symbolic knowledge) and Infu-
sion (balancing symbol and NL reasoning).

To overcome SFT’s over-fitting limitations,
Wang et al. (2024b) enforce contrastive learning
between factual/counterfactual paths with SFT. Fur-
ther, Wang et al. (2024a) augments Llama models
with a Program-Guided Learning Framework and
logic-specific architecture adjustments.

In summary, the primary purpose of SFT in logi-
cal reasoning is generally to inject into the model
the capability for specific reasoning manners such
as symbolic reasoning or long CoT reasoning. Yue
et al. (2025) demonstrates that SFT is able to intro-
duce new reasoning patterns that are not present in
the base model. However, high-quality SFT data
relies on distillation from more advanced models
or human annotation, which is more general and ef-
fective for expanding smaller models’ boundaries.
For advanced large models, obtaining and scaling
up higher-quality SFT data is often challenging.

5.2.2 Reinforcement Learning

Reinforcement learning (RL) has become pivotal in
optimizing large language models (LLMs), partic-
ularly since the breakthrough of Reinforcement
Learning from Human Feedback (RLHF). Jiao
et al. (2024) leverage RL for planning-based rea-
soning optimization, while Xi et al. (2024) develop
R3, achieving process supervision benefits through
outcome-only supervision.

The success of large-scale RL in OpenAl-
ol (OpenAl, 2024) has inspired numerous studies.
RL algorithms train ol-style models to enhance
Chain-of-Thought (CoT) reasoning, addressing is-
sues like formulaic outputs and limited long-form
reasoning. For instance, Zhao et al. (2024) in-
tegrates CoT instruction fine-tuning with Monte
Carlo Tree Search (MCTS) decoding for multi-
path reasoning exploration. In contrast, Zhang et al.
(2024) employs MCTS to generate code-reasoning
data for supervised fine-tuning (SFT) and Direct
Preference Optimization (DPO).

A significant breakthrough comes from
DeepSeek-R1 (DeepSeek-Al, 2025), which
pioneers a novel RL strategy to enhance logical
reasoning. DeepSeek-R1-Zero, trained purely
through RL without SFT, demonstrates impressive
reasoning capabilities but faces challenges in read-
ability and language consistency. To address this,



DeepSeek-R1 introduces minimal long-CoT SFT
data as a cold start before RL, achieving a balance
between usability and reasoning performance. By
iteratively synthesizing high-quality reasoning data
through RL, DeepSeek-R1 overcomes limitations
imposed by human annotators, addressing issues
such as mechanistic responses, repetitive patterns,
and insufficient long-chain reasoning.  This
approach represents a potential paradigm shift
in logical reasoning optimization, pushing the
boundaries of what LLMs can achieve in structured
reasoning tasks. However, RL enhances sampling
efficiency of existing reasoning paths encoded
in the base model but does not generate new
reasoning patterns (Yue et al., 2025) and therefore
relies on the capabilities of the foundation models.
From this perspective, SFT with high-quality
human-annotated or LLM-distilled data is a
simpler and more effective way to expand the
boundaries of smaller models than RL.

5.2.3 Inference-Time Decoding

We categorize logical reasoning enhancement meth-
ods during inference-time into inference-time scal-
ing and constrained decoding.

Inference-time scaling employs computational
augmentation without parameter updates. One
common approach is decoding with structured out-
puts and modular workflows. GoT (Lei et al.,
2023) creates structured reasoning nodes to im-
prove complex multi-step logical reasoning. Sim-
ilarly, Chain of Logic (Servantez et al., 2024) in-
troduces a method that first divides the legal ques-
tion into smaller sub-questions for solving, and
then assembles the answers to resolve the origi-
nal problem. In other contexts, researchers design
more complex modular workflows for better perfor-
mance (Creswell et al., 2023; Malon et al., 2024).

Another inference-time scaling approach in-
volves stimulating autonomous reasoning, guiding
LLMs to iteratively refine their answers. Maieutic
Prompting (Jung et al., 2022) eliminates contradic-
tions through recursive reasoning. Similarly, Logic-
of-Thoughts (Liu et al., 2024a) and DetermLL.R (Sun
et al., 2024) progressively approach the answers in
an iterative style.

Inference-time scaling offers the flexibility to im-
prove model performance without additional train-
ing, but usually incurs higher inference costs.

Constrained decoding methods, on the other
hand, focus on improving the controllability and
reliability of reasoning processes. Neurologic (Lu

et al., 2021) enforces predicate logic constraints,
while Formal-LLM (Li et al., 2024) integrates au-
tomata for constraining plan generation.

5.3 External Knowledge Utilization

LLMs often generate incorrect answers due to hal-
lucinations when performing complex tasks such
as logical reasoning, making it necessary to incor-
porate external knowledge to assist in producing
accurate responses. Formally, the optimal integra-
tion of external knowledge can be formulated as a
joint optimization problem:

(M7, K7) = arg max R(M, K) )
where:

* M: the neural model, which includes both the
model’s parameters and its decoding strategies
(generally with the parameters unchanged).

* K: knowledge integration strategy, in-
cluding knowledge source curation, struc-
tured knowledge representation, retrieval-
augmented mechanisms, etc.

* R: reasoning performance evaluator.

Zayyad and Adi (2024) and Yang et al. (2023) ex-
tract data from Lean, a mathematical proof tool, to
aid theorem proving. In contrast, “Logic-Query-of-
Thoughts" (LQOT) (Liu et al., 2024b) decomposes
complex logical problems into easier sub-questions
before integrating knowledge graphs.

In reading comprehension, Ouyang et al. (2023)
construct supergraphs to address complex contex-
tual reasoning, while KnowRA (Mai et al., 2025)
autonomously determines whether to accept exter-
nal knowledge to assist document-level relation
extraction.

5.4 Neuro-Symbolic Approaches

Neural-symbolic hybrid methods represent a bur-
geoning research area that aims to combine the
powerful representational capabilities of deep learn-
ing with the precision and interpretability of sym-
bolic reasoning.

Formally, a neural-symbolic hybrid system aims
to optimize both the neural model M and the sym-
bolic solver P (where P represents the symbolic
reasoning process) to maximize logical reasoning
performance. The overall objective can be ex-
pressed as:



(M", ") = arg max R(P(M (@)

where:

e M: The neural model, which includes both
the model’s parameters and its decoding strate-
gies. It maps the input x (e.g., natural lan-
guage) into a symbolic representation z within
a formal language L:

z=M(z), ze€lL.

* P: The symbolic solver, which operates on
the symbolic representation z produced by M
to generate the final output y:

y=P(2).
* R: The reasoning performance metric.
Two key directions of the optimization process:

* Improving M: including refining the model’s
parameters and decoding strategies to produce
symbolic representations that are both accu-
rate and compatible with P.

* Enhancing P: involving improving the sym-
bolic solver’s ability to process.

By jointly optimizing M and P, neural-symbolic
hybrid systems aim to leverage the strengths of both
neural networks and symbolic reasoning to achieve
superior logical reasoning capabilities. It is worth
noting that in earlier neural-symbolic pipelines, P
is often implemented as a fixed external logical rea-
soning engine, and thus is generally not optimized.
However, in advanced practice, LLMs are increas-
ingly being used to perform the role of P, enabling
diverse optimization.

Fundamentally, these methods involve translat-
ing problems into symbolic representations with
LLM:s, and external symbolic solvers solving them.
For example, in LINC (Olausson et al., 2023),
LLMs convert natural language (NL) into first-
order logic (FOL) expressions, and utilize an exter-
nal theorem prover for deductive inference.

Further efforts focus on improving NL-to-
symbolic translation. One prevailing approach
is directly optimizing translation through train-
ing (Yang et al., 2024a) or decoding strategies (Ryu
et al., 2024), while the others depend on verifica-
tion or correction mechanisms (Yang et al., 2024a;
Pan et al., 2023).

Building upon these, recent advancements ad-
dress the traditional pipeline limitations by fully
integrating LL.Ms into reasoning processes. Logic
Agent (LA) (Liu et al., 2024a) replaces external
solvers with rule-guided LLM inference chains,
while LLM-TRes (Toroghi et al., 2024) implements
self-contained verifiable reasoning without exter-
nal symbolic solvers. SymbCoT (Xu et al., 2024c)
coordinates translation, planning, solving and veri-
fication entirely through LLMs. Xu et al. (2024b)
propose Aristotle, which further systematizes the
symbolic reasoning pipeline through three LLM-
driven components: Logical Decomposer, Logical
Search Router, and Logical Resolver. However,
these modular approaches increase system com-
plexity and do not fundamentally enhance the mod-
els’ intrinsic reasoning capabilities.

6 Discussion

The landscape of logical reasoning in LLMs
presents several unresolved challenges that merit
deeper examination. In Appendix A.2, we pro-
vide an extensive discussion on fundamental ten-
sions shaping current research: the gap between
surface-level pattern matching and genuine log-
ical competence; inconsistencies in robustness
across varied reasoning contexts; competing pri-
orities of interpretability versus performance in hy-
brid approaches; limitations in current evaluation
paradigms; future directions.

7 Conclusion

This survey synthesizes the rapid advancements
and persistent challenges in logical reasoning for
large language models (LLMs). While LLMs
demonstrate impressive heuristic reasoning, rig-
orous logical inference remains inconsistent due
to limitations in robustness, generalization, and in-
terpretability. We analyzed strategies to enhance
reasoning, including neuro-symbolic integration,
data-centric tuning, reinforcement learning, test-
time scaling and other improved decoding meth-
ods, and highlighted benchmarks like FOLIO and
LogiQA for systematic evaluation. Future progress
hinges on hybrid architectures that unify neural
and symbolic reasoning, robust evaluation frame-
works, scalable methods for cross-domain and mul-
timodal inference, and directly enhancing base
model causality. Addressing these challenges will
advance LLMs toward reliable, interpretable rea-
soning critical for real-world applications.



Limitations

We focus on formal logical reasoning, which is in
line with the symbolic approaches actively studied
in the literature. For general reasoning or other
specific reasoning types, readers may refer to com-
plementary surveys.
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A Appendix
A.1 Data Examples

Figure 2 presents example questions from datasets
related to logical reasoning, serving as a supple-
ment to the description of task types in the main
text.

A.2 Further Discussion

The integration of logical reasoning into large lan-
guage models (LLMs) remains a critical challenge,
marked by persistent gaps between heuristic perfor-
mance and formal logical rigor. Below, we analyze
three unresolved tensions dominating the field and
outline future directions.

Superficial Reasoning vs. Genuine Logical Com-
petence. Despite promising results on benchmark
datasets, an fundamental question persists: do
LLMs truly possess logical reasoning abilities, or
do they merely approximate reasoning through so-
phisticated pattern recognition? Some recent stud-
ies have observed that current LLMs often lack sub-
stantive causal reasoning (Bao et al., 2025; Zecevi¢
etal., 2023), which in turn limits both their capacity
for genuine inference and their ability to generalize,
posing a crucial challenge to be tackled.

Robustness vs. Generalization. LLMs exhibit
inconsistent performance in structured reasoning
tasks such as deductive inference and abductive
hypothesis generation. While models fine-tuned on
datasets like FOLIO (Han et al., 2024a) excel in
controlled settings, they struggle with adversarial
perturbations or semantically equivalent rephras-
ings. This inconsistency arises from their reliance
on surface-level statistical correlations rather than
causal relationships, coupled with limited out-of-
distribution generalization. A key question per-
sists: can LLMs achieve human-like robustness
without sacrificing cross-domain adaptability? Cur-
rent methods prioritize narrow task performance,
leaving real-world applicability uncertain.

Interpretability vs. Performance. A central ten-
sion lies in balancing neural scalability with sym-
bolic precision. Neuro-symbolic approaches like
Logic-LM (Pan et al., 2023) and Symbol-LLM (Xu
et al., 2024a) embed formal logic solvers into neu-
ral architectures, improving interpretability through
step-by-step proofs. However, these methods face
scalability bottlenecks with large knowledge bases
or complex rule dependencies. Conversely, data-
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Passage: For a television program about astrology, investigators went
into the street and found twenty volunteers born under the sign of
Gemini who were willing to be interviewed on the program and to
take a personality test. The test confirmed the investigators’ personal
impressions that each of the volunteers was more sociable and
extroverted than people are on average. This modest investigation
thus supports the claim that one’s astrological birth sign influences
one’s personality.

Question: Which one of the following, if true, indicates the most
serious flaw in the method used by the investigators?

A. People born under astrological signs other than Gemini have been
judged by astrologers to be much less sociable than those born under
Gemini.

B. There is not likely to be a greater proportion of people born under
the sign of Gemini on the street than in the population as a whole.

C. People who are not sociable and extroverted are not likely to agree
to participate in such an investigation.

D.The personal impressions the investigators first formed of other
people have tended to be confirmed by the investigators’ later
experience of those people.

(a) A multi-choice reading comprehension example from
the LogiQA dataset.

Premise: Ten new television shows appeared during the month of
September. Five of the shows were sitcoms, three were hourlong
dramas, and two were news-magazine shows. By January, only seven
of these new shows were still on the air. Five of the shows that
remained were sitcoms.

Hypothesis: At least one of the shows that were cancelled was an
hourlong drama.

Label: Entailment

(b) An NLI example from the ConTRoL dataset.

Figure 2: Example tests of Logical reasoning in NLP
tasks.

driven methods (e.g., instruction tuning on Log-
icBench (Parmar et al., 2024)) achieve broader task
coverage but fail to generalize beyond syntactic pat-
terns. How can we reconcile transparent reasoning
with black-box model performance? Hybrid archi-
tectures offer promise but introduce computational
overhead, limiting practical deployment.

Evaluation Rigor. Existing benchmarks like
LogiQA (Liu et al., 2021b) and ReClor (Yu et al.,
2020) conflate reasoning ability with pattern recog-
nition through multiple-choice formats. While ef-
forts like NeuLR (Xu et al., 2023) curate “neutral”
content to isolate reasoning from domain knowl-
edge, they lack scope for holistic evaluation. Cur-
rent metrics (e.g., accuracy, BLEU) fail to assess
consistency (invariance to logically equivalent in-
puts) or soundness (adherence to formal proof struc-
tures). What defines a gold standard for logical
reasoning evaluation? Benchmarks must prioritize
systematic testing of core principles (e.g., transitiv-
ity, contraposition) over task-specific performance.



Future Directions. Addressing these challenges
requires hybrid architectures that dynamically in-
tegrate neural and symbolic components, such as
differentiable theorem provers, to balance scala-
bility and precision. Equally important is the de-
velopment of evaluation frameworks that stress-
test models on perturbed logical statements (e.g.,
negated premises, swapped quantifiers) to isolate
reasoning from memorization. Multi-modal reason-
ing, which grounds inference in diverse modalities
(text, images, code), presents untapped potential
for enhancing robustness and interpretability. Fi-
nally, interdisciplinary collaboration—Ileveraging
insights from formal logic, cognitive science, and
machine learning—will be essential to design sys-
tems that reason with and about uncertainty. Until
LLM:s reliably disentangle logic from lexicon, their
deployment in high-stakes domains will remain
precarious. Bridging this gap demands rigorous
benchmarks, scalable hybrid methods, and a redefi-
nition of evaluation paradigms.
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