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Abstract001

With the emergence of advanced reasoning002
models like OpenAI o4 and DeepSeek-R1,003
large language models (LLMs) have demon-004
strated remarkable reasoning capabilities. How-005
ever, their ability to perform rigorous logical006
reasoning remains an open question. This sur-007
vey synthesizes recent advancements in logical008
reasoning within LLMs, a critical area of AI009
research. It outlines the scope of logical rea-010
soning in LLMs, its theoretical foundations,011
and the benchmarks used to evaluate reason-012
ing proficiency. We analyze existing capabil-013
ities across different reasoning paradigms —014
deductive, inductive, abductive, and analogical015
— and assess strategies to enhance reasoning016
performance, including data-centric tuning, re-017
inforcement learning, decoding strategies, and018
neuro-symbolic approaches. The review con-019
cludes with future directions, emphasizing the020
need for further exploration to strengthen logi-021
cal reasoning in AI systems.022

1 Introduction023

Logical reasoning is a fundamental challenge to024

artificial intelligence (AI) and natural language025

processing (NLP) (Newell and Simon, 1956; Mc-026

Carthy and Hayes, 1981; McCarthy, 1959). While027

early formal logic-based reasoning approaches028

faced limitations in scalability and adaptability029

(Pereira, 1982; Cann, 1993), data-driven models030

became the dominant method since the 1980s (Mc-031

Carthy, 1989). Recently, pre-trained Large Lan-032

guage Models (LLMs) and their emergent logical033

reasoning abilities have attracted increasing atten-034

tion (Liu et al., 2023b; Xu et al., 2023). Logical035

reasoning integrates LLMs with inference structur-036

ing, enabling multistep deduction and abstraction,037

and improving interpretability and reliability (Shi038

et al., 2021; Stacey et al., 2022; Rajaraman et al.,039

2023). It also strengthens generalization, help-040

ing models handle novel scenarios beyond their041

training data (Haruta et al., 2020). As LLMs be- 042

come integral to domains like legal analysis and 043

scientific discovery, ensuring the correctness and 044

verifiability of their reasoning is increasingly vi- 045

tal. As a result, post-training LLM for reasoning 046

has garnered a surge of interest in both industry 047

and research(OpenAI, 2024; DeepSeek-AI, 2025; 048

Muennighoff et al., 2025). 049

Recent surveys have touched upon LLMs’ rea- 050

soning (Li et al., 2025; Huang and Chang, 2023). 051

However, existing surveys discuss general reason- 052

ing, exemplified by chain-of-thought (CoT), treat- 053

ing logical reasoning as a task case, without ded- 054

icated discussion. There has been lack of a thor- 055

ough literature review focusing on LLMs and for- 056

mal symbolic logic. To address this issue, this 057

survey provides a comprehensive review of logi- 058

cal reasoning in large language models (LLMs), 059

with a focus on formal and symbolic logic-based 060

reasoning rather than general heuristic approaches. 061

The structure is illustrated in Figure 1. We begin 062

by defining logical reasoning in AI, distinguishing 063

it from general-purpose reasoning, and categoriz- 064

ing key paradigms, including deductive, inductive, 065

abductive, and analogical reasoning. Then, we ana- 066

lyze existing benchmarks and evaluation method- 067

ologies, identifying gaps in assessing symbolic in- 068

ference, consistency, and robustness. We further 069

explore state-of-the-art techniques for enhancing 070

logical reasoning, such as supervised fine-tuning, 071

logic-informed pre-training, reinforcement learn- 072

ing, inference-time decoding strategies, and hybrid 073

neuro-symbolic methods. We examine recent ad- 074

vances in neuro-symbolic integration, along with 075

applications of theorem provers, logic solvers, and 076

formal verification frameworks in LLMs. Finally, 077

we highlight open challenges in scalability, rea- 078

soning consistency, explainability, and efficiency, 079

proposing future directions for multi-modal reason- 080

ing, hybrid architectures, and improved evaluation 081

frameworks. 082
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Types & history (§2)

Task & Benchmarks (§3)

Natural Language Inference (§3.1) ConTRoL (Liu et al., 2021a) , FOLIO (Han et al., 2024a) , LogicNLI (Tian et al., 2021) ,
RulteTaker (Clark et al., 2021) , LogicBench (Parmar et al., 2023)

Reading Comprehension (§3.2) LogiQA (Liu et al., 2023a) , ReClor (Yu et al., 2020) , AR-LSAT (Yu et al., 2020) , CLUTRR (Sinha et al., 2019) ,
LINGOLY (Bean et al., 2024)

Multi-modal Logical Reasoning (§3.3) LogicVista (Xiao et al., 2024) , VISUALPUZZLES (Song et al., 2025)

Benchmarks and test suites (§3.4) GLoRE (liu et al., 2023) , LogiGLUE (Luo et al., 2024) , LogiTorch (Helwe et al., 2022)

Evaluation & Analysis (§4)

Deductive Reasoning (§4.1) (Saparov et al., 2023) , (Yuan et al., 2023) , (Ryb et al., 2022)

Inductive Reasoning (§4.2) (Yang et al., 2024b) , (Bowen et al., 2024) , (Sullivan, 2024)

Abductive Reasoning (§4.3) True Detective (Del and Fishel, 2023) , (Nguyen et al., 2023)

Analogical Reasoning (§4.4) ANALOGICAL (Wijesiriwardene et al., 2023) , (Petersen and van der Plas, 2023) , (Qin et al., 2024)

Overall Analysis & Metrics(§4.5) (Liu et al., 2023b) , (Xu et al., 2023) , (Liu et al., 2024c) , (Gandarela et al., 2024) , (Thatikonda et al., 2025)

Enhancement Methods (§5)

Data-Centric Approaches (§5.1)

Expert-Curated Datasets FOLIO (Han et al., 2024a) , P-FOLIO (Han et al., 2024b) ,
LeanDojo (Yang et al., 2023) , Symbol-LLM (Xu et al., 2024a)

Synthetic Datasets RulteTaker (Clark et al., 2021) , FLD×2 (Morishita et al., 2024)

LLM-distilled Datasets LogiCoT (Liu et al., 2023c) , LogicPro (Jiang et al., 2024) ,
PODA (Wang et al., 2024b)

Model-Centric Approaches (§5.2)

Supervised Fine-Tuning LogiCoT (Liu et al., 2023c) , LogiPT (Feng et al., 2024) , PGL (Wang et al., 2024a) ,
Symbol-LLM (Xu et al., 2024a) , TPCL (Wang et al., 2024b) ,

Reinforcement Learning pDPO(Jiao et al., 2024) , R3(Xi et al., 2024) , Marco-o1 (Zhao et al., 2024) ,
Deepseek-R1-Zero (DeepSeek-AI, 2025) , Deepseek-R1 (DeepSeek-AI, 2025)

Inference-Time Decoding

GoT (Lei et al., 2023) , Chain of Logic (Servantez et al., 2024) ,
Selection-Inference (Creswell et al., 2023) , (Malon et al., 2024) ,
Maieutic Prompting (Jung et al., 2022) , Logic-of-thought (Liu et al., 2024a) ,
DetermLR (Sun et al., 2024) , Neurologic (Lu et al., 2021) ,
Formal-LLM (Li et al., 2024)

External Knowledge Utilization (§5.3) (Zayyad and Adi, 2024) , LeanDojo (Yang et al., 2023) , LQOT (Liu et al., 2024b) , (Ouyang et al., 2023) ,
KnowRA (Mai et al., 2025)

Neuro-Symbolic Approaches (§5.4)
LINC (Olausson et al., 2023) , LOGICLLAMA (Yang et al., 2024a) ,
CLOVER (Ryu et al., 2024) , LOGIC-LM (Pan et al., 2023) , Logic Agent (Liu et al., 2024a) ,
LLM-TRes (Toroghi et al., 2024) , SymbCoT (Xu et al., 2024c) , Aristotle (Xu et al., 2024b)

Discussion (§6)

Figure 1: The structure of this survey

2 Logic in Artificial Intelligence083

Logical reasoning is a cornerstone of artificial intel-084

ligence (AI), enabling machines to simulate human085

thought processes and solve complex problems. At086

its core, logical reasoning applies structured rules087

to derive conclusions from premises, providing a088

rigorous framework for decision-making and infer-089

ence (Sun et al., 2023).090

2.1 History of Logic Reasoning Research091

Logical reasoning can be traced back to ancient092

Greece, where Aristotle’s syllogisms laid the foun-093

dation for classical logic. During the Middle Ages,094

scholars refined these theories, and in the 17th cen-095

tury, Leibniz’s universal language and calculus rati-096

ocinator bridged logic with mathematics, foreshad-097

owing modern computational logic. The 19th cen-098

tury saw George Boole’s Boolean algebra, which099

transformed logic into a mathematical framework,100

laying the foundation for digital computing.101

The 20th century ushered in modern logic, with102

Russell and Whitehead’s Principia Mathematica103

formalizing complex logical systems. By the mid-104

century, AI pioneers like John McCarthy leveraged105

logic for knowledge representation and automated106

theorem proving, leading to logic programming107

and knowledge bases. The 1970s introduced non-108

monotonic logic, enabling AI to handle common-109

sense reasoning. The 1980s saw logical reasoning110

integrate with knowledge representation, advanc-111

ing expert systems for real-world applications. The112

1990s saw the rise of knowledge graphs, structuring113

vast knowledge for complex reasoning tasks. 114

With the development of deep learning in the 115

21st century, neuro-symbolic approaches stand out 116

as a new approach for combining deep learning 117

with logical inference, resulting in tools like Deep- 118

Logic (Cingillioglu and Russo, 2019) and SAT- 119

Net (Wang et al., 2019). Logical reasoning remains 120

a cornerstone of AI research, evolving from phi- 121

losophy to modern computing. As AI advances, 122

logical reasoning continues to shape intelligent sys- 123

tems, ensuring structured, interpretable, and robust 124

decision-making. 125

2.2 Types of Logical Reasoning 126

Logical reasoning can be broadly categorized into 127

four main types, each serving distinct purposes and 128

applications: 129

Deductive Reasoning. This type of reasoning de- 130

rives specific conclusions from general principles 131

or premises. It operates under the rule that if all 132

premises are true and the reasoning is valid, the 133

conclusion must also be true. Deductive reason- 134

ing is fundamental in fields such as mathematics 135

and formal logic, where certainty and rigor are 136

paramount. 137

Inductive Reasoning. Unlike deductive reason- 138

ing, inductive reasoning draws general conclusions 139

based on specific observations or evidence. While 140

the conclusions are often considered probable, they 141

are not guaranteed to be true. Inductive reasoning is 142

widely used in scientific discovery and data-driven 143
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Dataset Lang. Task Reasoning Type Size Source
LOGIQA Zh/En MRC Misc. 8,678 Exam
ReClor En MRC Misc. 6,138 Exam
AR-LSAT En MRC Misc. 2,064 Exam
CLUTRR En MRC Inductive 6,016 Rule
GSM En MRC Deductive 19K Exam
LINGOLY En MRC Inductive 1,133 Expert
ConTRoL En NLI Deductive 8,325 Exam
FOLIO En NLI Deductive 1,351 Expert
LogicNLI En NLI Deductive 30K Exam
ProofWriter En NLI Deductive - Exam
LogicBench En NLI Deductive 1,270 Rule
ART En NLI Abductive 20K Expert
Analogical En NLI Analogical 720K Crowd
GLoRE Zh/En Misc. Misc. 17 tasks Misc.
LogiGLUE En Misc. Misc. 24 tasks Misc.
LogiTorch En Misc. Misc. 16 tasks Misc.
BIG-Bench En Misc. Misc. 7 tasks Misc.

Table 1: Main Datasets and Benchmarks of Logical
Reasoning Task.

decision-making, where patterns and trends are in-144

ferred from empirical data.145

Abductive Reasoning. This form of reasoning146

seeks the most plausible explanation or cause for147

a set of observations, often in the presence of in-148

complete information. Abductive reasoning is par-149

ticularly useful in diagnostic tasks and real-world150

problem-solving. While abductive conclusions are151

not certain, they provide a practical basis for hy-152

pothesis generation and decision-making under un-153

certainty.154

Analogical Reasoning. Analogical reasoning in-155

volves drawing comparisons between similar situa-156

tions or domains to make inferences or solve prob-157

lems. By identifying parallels between different158

scenarios, this type of reasoning enables creative159

problem-solving and knowledge transfer. Analogi-160

cal reasoning is particularly valuable in fields like161

education, design, and innovation.162

3 Tasks and Benchmarks163

Logical reasoning datasets and benchmarks are es-164

sential for evaluating the reasoning capabilities of165

large language models (LLMs). These datasets can166

be categorized into three types based on their data167

sources:168

Rule-based Datasets (Tafjord et al., 2021; Sinha169

et al., 2019) are automatically generated using logi-170

cal rules, enabling large-scale data collection. How-171

ever, ensuring diversity is crucial to avoid repetitive172

patterns and comprehensively evaluate reasoning173

capabilities.174

Crowdsourced Datasets (Bhagavatula et al.,175

2020) leverage collective human intelligence for176

diverse reasoning tasks. While requiring quality177

control measures, these datasets capture nuanced 178

linguistic patterns and commonsense knowledge 179

that automated methods often miss. 180

Expert-Designed Datasets (Han et al., 2024a) 181

are constructed by domain experts, ensuring high 182

precision and accuracy. Although typically smaller 183

than crowd-sourced corpora, their meticulous de- 184

sign makes them indispensable for in-depth logical 185

reasoning evaluation. 186

Exam-Based Datasets (Liu et al., 2021b; Yu 187

et al., 2020; Wang et al., 2022) originate from 188

standardized test questions (e.g., Chinese National 189

Civil Service Exam, LSAT, CAT), offering high- 190

quality, expert-crafted logic problems at scale. 191

These datasets are widely used to evaluate reason- 192

ing in real-world scenarios. 193

Table 1 summarizes important datasets for logi- 194

cal reasoning, which typically cover tasks such as 195

Natural Language Inference (NLI) (§3.1), Machine 196

Reading Comprehension (MRC) (§3.2). Examples 197

can be found in A.1. 198

3.1 Natural Language Inference (NLI) 199

NLI evaluates whether a hypothesis logically fol- 200

lows from a premise, directly assessing a model’s 201

reasoning ability. Labels typically fall into bi- 202

nary (Entailment, Non-entailment) or ternary (En- 203

tailment, Contradiction, Neutral) classifications. 204

Some datasets use True and False labels instead. 205

ConTRoL (Liu et al., 2021a), derived from re- 206

cruitment exams, contains 8,325 entries labeled 207

as Correct, Incorrect, or Can’t Say, correspond- 208

ing to entailment, contradiction, and neutral. FO- 209

LIO (Han et al., 2024a), an expert-constructed 210

dataset for First-Order Logic (FOL) reasoning, 211

consists of 1,351 entries labeled True or False. 212

LogicNLI (Tian et al., 2021), with 30K en- 213

tries generated via logical rules, isolates FOL- 214

based inference from commonsense reasoning. 215

ProofWriter (Tafjord et al., 2021) extends Rule- 216

Taker (Clark et al., 2021) by introducing closed- 217

world (CWA) and open-world (OWA) assumptions, 218

covering handcrafted domain theories and crowd- 219

sourced paraphrased rules for linguistic and do- 220

main generalization. LogicBench (Parmar et al., 221

2023), generated by GPT-3, includes 1,270 test en- 222

tries across 25 reasoning types (e.g., propositional 223

logic, FOL) labeled Yes or No. ART (Bhagavatula 224

et al., 2020) contains 20K commonsense narrative 225

contexts and 200k explanations for abductive rea- 226

soning evaluation. 227
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3.2 Machine Reading Comprehension (MRC)228

Machine Reading Comprehension (MRC) evalu-229

ates logical reasoning by requiring models to an-230

swer questions based on a given passage, com-231

monly formatted as multiple-choice, span extrac-232

tion, or free response. LogiQA (Liu et al., 2023a),233

sourced from the Chinese Civil Service Exam, con-234

tains 15,937 Chinese and English entries target-235

ing complex logical reasoning. ReClor (Yu et al.,236

2020), derived from the GMAT, features 6,138237

English multiple-choice questions with four op-238

tions. AR-LSAT (Wang et al., 2022), collected239

from the LSAT exam, includes 2,064 entries cov-240

ering ordering, grouping, and allocation games241

with five options each. CLUTRR (Sinha et al.,242

2019) focuses on inductive reasoning for kinship243

relationships in short narratives, containing 6,016244

entries combining entity extraction and logical in-245

ference. LINGOLY (Bean et al., 2024) uses Lin-246

guistic Olympiad puzzles (1,133 problems across247

6 formats and 5 difficulty levels) to assess pattern248

identification and generalization in low-resource or249

extinct languages.250

3.3 Multi-modal Logical Reasoning251

Recently, logical reasoning combining texts and252

images has been explored in several research. Log-253

icVista (Xiao et al., 2024) collects 448 comprehen-254

sive exam-based logical reasoning data in Visual255

contexts with human-annotated rationales suitable256

for both open-ended and multiple-choice evalua-257

tion. VISUALPUZZLES (Song et al., 2025) is a258

holistic benchmark of 1,167 exam-based puzzle-259

like multi-modal questions specifically designed to260

decouple reasoning abilities from domain knowl-261

edge.262

3.4 Benchmark Suites263

Benchmark suites standardize evaluation and fa-264

cilitate model comparison in logical reasoning re-265

search. GLoRE (liu et al., 2023) provides 17 test-266

only datasets for few-shot and zero-shot evaluation267

of generalization capabilities. LogiGLUE (Luo268

et al., 2024) unifies 24 logical reasoning tasks into269

a sequence-to-sequence format with both training270

and test sets for comprehensive evaluation. Logi-271

Torch (Helwe et al., 2022) offers a PyTorch-based272

framework with 16 datasets and model architec-273

tures for streamlined logical reasoning experiments.274

BIG-bench (Srivastava et al., 2022) includes 7 col-275

laborative logical reasoning tasks such as Logic276

Grid Puzzle and Logical Fallacy Detection. Lo- 277

giEval and LogiEval-Hard (Liu et al., 2025) pro- 278

vides a holistic testing suite with various sub-tasks 279

for logical reasoning. 280

4 Evaluations 281

The rapid development of pre-trained language 282

models (PLMs) necessitates rigorous evaluation 283

of their logical reasoning capabilities. This section 284

examines four reasoning paradigms—deductive, 285

inductive, abductive, and analogical—while ana- 286

lyzing evaluation approaches and metrics. 287

4.1 Deductive Reasoning 288

Deductive reasoning, deriving specific conclusions 289

from general premises, is crucial for automated 290

theorem proving. Despite LLMs performing well 291

on tasks like compositional proofs, standard bench- 292

marks and encoding entailment relationships, they 293

struggle with extended reasoning, hypothetical sub- 294

proofs without examples, generalization, and sensi- 295

tivity to syntactic variations (Saparov et al., 2023; 296

Yuan et al., 2023; Ryb et al., 2022). 297

4.2 Inductive Reasoning 298

Inductive reasoning, which generalizes from spe- 299

cific instances to broader rules, is essential for tasks 300

like hypothesis generation and pattern recognition. 301

While Yang et al. (2024b) find that pre-trained mod- 302

els can serve as effective “reasoners”, Bowen et al. 303

(2024) show that even advanced LLMs struggle 304

with simple inductive tasks in their symbolic set- 305

tings. Similarly, Sullivan (2024) demonstrates that 306

Transformer models, even after fine-tuning, fail 307

to learn fundamental logical principles, indicating 308

limited inductive reasoning capabilities. 309

4.3 Abductive Reasoning 310

Abductive reasoning, which seeks the most plausi- 311

ble explanations for observed phenomena, is cru- 312

cial in fields like law and medicine. Del and Fishel 313

(2023) highlights the challenges LLMs face in 314

generating plausible hypotheses from incomplete 315

information. In the legal domain, Nguyen et al. 316

(2023) show that despite strong performance, mod- 317

els struggle with abductive reasoning, underscoring 318

the complexity of this paradigm. 319

4.4 Analogical Reasoning 320

Analogical reasoning, which infers unknown infor- 321

mation by comparing it with known information, is 322

vital for tasks requiring creativity and knowledge 323
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transfer. Wijesiriwardene et al. (2023) introduced324

ANALOGICAL, a benchmark for long-text analog-325

ical reasoning. They find that as analogy complex-326

ity increases, LLMs struggle to recognize analog-327

ical pairs. Petersen and van der Plas (2023) show328

that models can learn analogical reasoning with329

minimal data, approaching human performance.330

However, Qin et al. (2024) question whether LLMs331

truly rely on analogical reasoning, discovering that332

random examples in prompts often achieve compa-333

rable performance to relevant examples.334

4.5 Overall Analysis and Metrics335

Liu et al. (2023b) evaluate GPT-4 and ChatGPT on336

benchmarks like LogiQA and ReClor, showing that337

while GPT-4 outperforms ChatGPT, both of them338

struggle with out-of-distribution tasks. Xu et al.339

(2023) introduce the NeuLR dataset and propose a340

framework evaluating LLMs across six dimensions:341

correctness, rigor, self-awareness, proactivity, guid-342

ance, and absence of hallucinations.343

Metrics for Evaluating Logical Reasoning.344

Reasoning is fundamentally process-oriented rather345

than outcome-oriented (Leighton, 2003). Although346

traditional conclusion-based metrics like accuracy347

and F1 score are widely used for their simplic-348

ity and general applicability, they fall short in as-349

sessing the logical reasoning process (Mondorf350

and Plank, 2024). Recent studies have introduced351

rationale-based metrics to evaluate the reasoning352

trace. Structural parsing approaches (Saparov et al.,353

2023; Dziri et al., 2023) decompose the reasoning354

process into formalized representations or graphs355

to facilitate a more fine-grained evaluation. How-356

ever, these methods are typically constrained by357

the requirement for specially structured reason-358

ing texts. Other researchers have proposed in-359

terpretable quantitative metrics (Golovneva et al.,360

2022; Prasad et al., 2023), designing a variety of361

indicators to assess diverse properties of model rea-362

soning. Nevertheless, these methods often rely on363

complex feature engineering and typically use met-364

rics such as BERTScore or entropy, whose values365

lack clear physical interpretability. There remains366

a pressing need for a widely accepted and general367

rationale-based evaluation method.368

5 Enhancement Methods369

Enhancing LLMs’ logical reasoning remains cru-370

cial. This section focuses on core strategies: Data-371

Centric Approaches (§5.1), Model-Centric Ap-372

proaches (§5.2), External Knowledge Utilization 373

(§5.3), and Neuro-Symbolic Reasoning (§5.4). 374

5.1 Data-Centric Approaches 375

Data-centric approaches enhance LLMs’ reason- 376

ing capabilities by utilizing meticulously curated 377

training datasets. Formally: 378

D∗ = argmax
D

R(MD) (1) 379

where: 380

• D: training datasets. 381

• MD: model trained on D. 382

• R: performance evaluator. 383

This formulation highlights the central role of 384

dataset optimization in data-centric approaches. In 385

practice, data-centric methods typically involve 386

three types of datasets: expert-curated datasets, 387

synthetic datasets, and LLM-distilled datasets. 388

Expert-Curated Datasets. The FOLIO se- 389

ries (Han et al., 2024a,b) establish formal verifi- 390

cation through FOL annotations, with P-FOLIO ex- 391

tending the complexity of reasoning chains for en- 392

hanced training. LeanDojo (Yang et al., 2023) pro- 393

vides 98k+ human-proven mathematical theorems. 394

Additionally, Symbol-LLM (Xu et al., 2024a) sys- 395

tematically organizes 34 symbolic reasoning tasks 396

to capture inter-symbol relationships across 20 dis- 397

tinct symbolic families. These datasets benefit from 398

high-quality data, with the scale commonly limited 399

by labor-intensive annotation. 400

Rule-based Synthetic Datasets. Rule-based syn- 401

thetic data remains fundamental for data genera- 402

tion. RuleTaker (Clark et al., 2021) formalizes this 403

through a three-phase pipeline: behavior formaliza- 404

tion, example synthesis and linguistic equivalents 405

generation. Similarly, Morishita et al. (2024) de- 406

velops Formal Logic Deduction Diverse (FLD×2), 407

a synthetic dataset based on symbolic theory and 408

previous empirical insights. Rule-based data gener- 409

ation enables large-scale, systematic data creation 410

and fine-grained control over specific reasoning 411

patterns. However, rule-based datasets often suffer 412

from limited linguistic diversity, reduced realism 413

and a gap between artificial templates and real- 414

world inference complexity. 415

LLM-Distilled Datasets. Researchers employ 416

advanced models such as GPT-4 and Deepseek- 417

R1 for intermediate reasoning step distillation. 418

5



LogiCoT (Liu et al., 2023c) augments existing419

datasets with GPT4-generated reasoning chains,420

while LogicPro (Jiang et al., 2024) combines al-421

gorithmic problems with code solutions to create422

variable-guided reasoning data. To advance, Wang423

et al. (2024b) propose PODA, which generates424

contrastive analyses of correct/incorrect options425

through premise-oriented augmentation, enabling426

reasoning path differentiation via contrastive learn-427

ing. These methods leverage the reasoning ability428

of advanced language models and tackle the lack429

of diversity and complexity of rule-based meth-430

ods. However, training models on LLM-distilled431

data may lead to model collapse (Shumailov et al.,432

2023), causing the models to lose diversity and ac-433

curacy due to the loss of long-tail data present in434

real distributions.435

5.2 Model-Centric Approaches436

Model-Centric approaches enhance LLMs’ reason-437

ing capabilities by optimizing model parameters438

and decoding strategies. The formal objective is:439

(θ∗, S∗) = argmax
θ,S

R(Mθ, S) (2)440

where:441

• Mθ: model with learnable parameters θ.442

• S: decoding strategy (e.g., chain-of-thought443

prompting, verification-based decoding).444

• R: reasoning performance metric.445

This formulation highlights the joint optimiza-446

tion of model parameters θ and decoding strategy447

S. Practical implementations can be categorized448

as:449

• Instruction Fine-Tuning: optimizing θ.450

• Reinforcement Learning: optimizing θ.451

• Inference-Time Decoding: optimizing S.452

Model-Centric approaches focus on directly im-453

proving models’ reasoning capabilities by optimiz-454

ing its internal mechanisms and decoding strate-455

gies, making them complementary to data-centric456

approaches.457

5.2.1 Supervised Fine-Tuning458

Supervised Fine-Tuning (SFT) optimizes LLMs459

through supervised learning on pairs of inputs and460

desired outputs. For example, Liu et al. (2023c)461

designs multi-grained logical instructions spanning462

diverse levels of abstraction and complexity. Sim-463

ilarly, Feng et al. (2024) SFT models to mimic464

logical solvers by replicating formal deduction rea- 465

soning processes. In addition, Xu et al. (2024a) im- 466

plements two-stage symbolic fine-tuning through 467

Injection (injecting symbolic knowledge) and Infu- 468

sion (balancing symbol and NL reasoning). 469

To overcome SFT’s over-fitting limitations, 470

Wang et al. (2024b) enforce contrastive learning 471

between factual/counterfactual paths with SFT. Fur- 472

ther, Wang et al. (2024a) augments Llama models 473

with a Program-Guided Learning Framework and 474

logic-specific architecture adjustments. 475

In summary, the primary purpose of SFT in logi- 476

cal reasoning is generally to inject into the model 477

the capability for specific reasoning manners such 478

as symbolic reasoning or long CoT reasoning. Yue 479

et al. (2025) demonstrates that SFT is able to intro- 480

duce new reasoning patterns that are not present in 481

the base model. However, high-quality SFT data 482

relies on distillation from more advanced models 483

or human annotation, which is more general and ef- 484

fective for expanding smaller models’ boundaries. 485

For advanced large models, obtaining and scaling 486

up higher-quality SFT data is often challenging. 487

5.2.2 Reinforcement Learning 488

Reinforcement learning (RL) has become pivotal in 489

optimizing large language models (LLMs), partic- 490

ularly since the breakthrough of Reinforcement 491

Learning from Human Feedback (RLHF). Jiao 492

et al. (2024) leverage RL for planning-based rea- 493

soning optimization, while Xi et al. (2024) develop 494

R3, achieving process supervision benefits through 495

outcome-only supervision. 496

The success of large-scale RL in OpenAI- 497

o1 (OpenAI, 2024) has inspired numerous studies. 498

RL algorithms train o1-style models to enhance 499

Chain-of-Thought (CoT) reasoning, addressing is- 500

sues like formulaic outputs and limited long-form 501

reasoning. For instance, Zhao et al. (2024) in- 502

tegrates CoT instruction fine-tuning with Monte 503

Carlo Tree Search (MCTS) decoding for multi- 504

path reasoning exploration. In contrast, Zhang et al. 505

(2024) employs MCTS to generate code-reasoning 506

data for supervised fine-tuning (SFT) and Direct 507

Preference Optimization (DPO). 508

A significant breakthrough comes from 509

DeepSeek-R1 (DeepSeek-AI, 2025), which 510

pioneers a novel RL strategy to enhance logical 511

reasoning. DeepSeek-R1-Zero, trained purely 512

through RL without SFT, demonstrates impressive 513

reasoning capabilities but faces challenges in read- 514

ability and language consistency. To address this, 515
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DeepSeek-R1 introduces minimal long-CoT SFT516

data as a cold start before RL, achieving a balance517

between usability and reasoning performance. By518

iteratively synthesizing high-quality reasoning data519

through RL, DeepSeek-R1 overcomes limitations520

imposed by human annotators, addressing issues521

such as mechanistic responses, repetitive patterns,522

and insufficient long-chain reasoning. This523

approach represents a potential paradigm shift524

in logical reasoning optimization, pushing the525

boundaries of what LLMs can achieve in structured526

reasoning tasks. However, RL enhances sampling527

efficiency of existing reasoning paths encoded528

in the base model but does not generate new529

reasoning patterns (Yue et al., 2025) and therefore530

relies on the capabilities of the foundation models.531

From this perspective, SFT with high-quality532

human-annotated or LLM-distilled data is a533

simpler and more effective way to expand the534

boundaries of smaller models than RL.535

5.2.3 Inference-Time Decoding536

We categorize logical reasoning enhancement meth-537

ods during inference-time into inference-time scal-538

ing and constrained decoding.539

Inference-time scaling employs computational540

augmentation without parameter updates. One541

common approach is decoding with structured out-542

puts and modular workflows. GoT (Lei et al.,543

2023) creates structured reasoning nodes to im-544

prove complex multi-step logical reasoning. Sim-545

ilarly, Chain of Logic (Servantez et al., 2024) in-546

troduces a method that first divides the legal ques-547

tion into smaller sub-questions for solving, and548

then assembles the answers to resolve the origi-549

nal problem. In other contexts, researchers design550

more complex modular workflows for better perfor-551

mance (Creswell et al., 2023; Malon et al., 2024).552

Another inference-time scaling approach in-553

volves stimulating autonomous reasoning, guiding554

LLMs to iteratively refine their answers. Maieutic555

Prompting (Jung et al., 2022) eliminates contradic-556

tions through recursive reasoning. Similarly, Logic-557

of-Thoughts (Liu et al., 2024a) and DetermLR (Sun558

et al., 2024) progressively approach the answers in559

an iterative style.560

Inference-time scaling offers the flexibility to im-561

prove model performance without additional train-562

ing, but usually incurs higher inference costs.563

Constrained decoding methods, on the other564

hand, focus on improving the controllability and565

reliability of reasoning processes. Neurologic (Lu566

et al., 2021) enforces predicate logic constraints, 567

while Formal-LLM (Li et al., 2024) integrates au- 568

tomata for constraining plan generation. 569

5.3 External Knowledge Utilization 570

LLMs often generate incorrect answers due to hal- 571

lucinations when performing complex tasks such 572

as logical reasoning, making it necessary to incor- 573

porate external knowledge to assist in producing 574

accurate responses. Formally, the optimal integra- 575

tion of external knowledge can be formulated as a 576

joint optimization problem: 577

(M∗,K∗) = argmax
M,K

R(M,K) (3) 578

where: 579

• M : the neural model, which includes both the 580

model’s parameters and its decoding strategies 581

(generally with the parameters unchanged). 582

• K: knowledge integration strategy, in- 583

cluding knowledge source curation, struc- 584

tured knowledge representation, retrieval- 585

augmented mechanisms, etc. 586

• R: reasoning performance evaluator. 587

Zayyad and Adi (2024) and Yang et al. (2023) ex- 588

tract data from Lean, a mathematical proof tool, to 589

aid theorem proving. In contrast, “Logic-Query-of- 590

Thoughts" (LQOT) (Liu et al., 2024b) decomposes 591

complex logical problems into easier sub-questions 592

before integrating knowledge graphs. 593

In reading comprehension, Ouyang et al. (2023) 594

construct supergraphs to address complex contex- 595

tual reasoning, while KnowRA (Mai et al., 2025) 596

autonomously determines whether to accept exter- 597

nal knowledge to assist document-level relation 598

extraction. 599

5.4 Neuro-Symbolic Approaches 600

Neural-symbolic hybrid methods represent a bur- 601

geoning research area that aims to combine the 602

powerful representational capabilities of deep learn- 603

ing with the precision and interpretability of sym- 604

bolic reasoning. 605

Formally, a neural-symbolic hybrid system aims 606

to optimize both the neural model M and the sym- 607

bolic solver P (where P represents the symbolic 608

reasoning process) to maximize logical reasoning 609

performance. The overall objective can be ex- 610

pressed as: 611
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(M∗, P ∗) = argmax
M,P

R(P (M(x))),612

where:613

• M : The neural model, which includes both614

the model’s parameters and its decoding strate-615

gies. It maps the input x (e.g., natural lan-616

guage) into a symbolic representation z within617

a formal language L:618

z = M(x), z ∈ L.619

• P : The symbolic solver, which operates on620

the symbolic representation z produced by M621

to generate the final output y:622

y = P (z).623

• R: The reasoning performance metric.624

Two key directions of the optimization process:625

• Improving M : including refining the model’s626

parameters and decoding strategies to produce627

symbolic representations that are both accu-628

rate and compatible with P .629

• Enhancing P : involving improving the sym-630

bolic solver’s ability to process.631

By jointly optimizing M and P , neural-symbolic632

hybrid systems aim to leverage the strengths of both633

neural networks and symbolic reasoning to achieve634

superior logical reasoning capabilities. It is worth635

noting that in earlier neural-symbolic pipelines, P636

is often implemented as a fixed external logical rea-637

soning engine, and thus is generally not optimized.638

However, in advanced practice, LLMs are increas-639

ingly being used to perform the role of P , enabling640

diverse optimization.641

Fundamentally, these methods involve translat-642

ing problems into symbolic representations with643

LLMs, and external symbolic solvers solving them.644

For example, in LINC (Olausson et al., 2023),645

LLMs convert natural language (NL) into first-646

order logic (FOL) expressions, and utilize an exter-647

nal theorem prover for deductive inference.648

Further efforts focus on improving NL-to-649

symbolic translation. One prevailing approach650

is directly optimizing translation through train-651

ing (Yang et al., 2024a) or decoding strategies (Ryu652

et al., 2024), while the others depend on verifica-653

tion or correction mechanisms (Yang et al., 2024a;654

Pan et al., 2023).655

Building upon these, recent advancements ad- 656

dress the traditional pipeline limitations by fully 657

integrating LLMs into reasoning processes. Logic 658

Agent (LA) (Liu et al., 2024a) replaces external 659

solvers with rule-guided LLM inference chains, 660

while LLM-TRes (Toroghi et al., 2024) implements 661

self-contained verifiable reasoning without exter- 662

nal symbolic solvers. SymbCoT (Xu et al., 2024c) 663

coordinates translation, planning, solving and veri- 664

fication entirely through LLMs. Xu et al. (2024b) 665

propose Aristotle, which further systematizes the 666

symbolic reasoning pipeline through three LLM- 667

driven components: Logical Decomposer, Logical 668

Search Router, and Logical Resolver. However, 669

these modular approaches increase system com- 670

plexity and do not fundamentally enhance the mod- 671

els’ intrinsic reasoning capabilities. 672

6 Discussion 673

The landscape of logical reasoning in LLMs 674

presents several unresolved challenges that merit 675

deeper examination. In Appendix A.2, we pro- 676

vide an extensive discussion on fundamental ten- 677

sions shaping current research: the gap between 678

surface-level pattern matching and genuine log- 679

ical competence; inconsistencies in robustness 680

across varied reasoning contexts; competing pri- 681

orities of interpretability versus performance in hy- 682

brid approaches; limitations in current evaluation 683

paradigms; future directions. 684

7 Conclusion 685

This survey synthesizes the rapid advancements 686

and persistent challenges in logical reasoning for 687

large language models (LLMs). While LLMs 688

demonstrate impressive heuristic reasoning, rig- 689

orous logical inference remains inconsistent due 690

to limitations in robustness, generalization, and in- 691

terpretability. We analyzed strategies to enhance 692

reasoning, including neuro-symbolic integration, 693

data-centric tuning, reinforcement learning, test- 694

time scaling and other improved decoding meth- 695

ods, and highlighted benchmarks like FOLIO and 696

LogiQA for systematic evaluation. Future progress 697

hinges on hybrid architectures that unify neural 698

and symbolic reasoning, robust evaluation frame- 699

works, scalable methods for cross-domain and mul- 700

timodal inference, and directly enhancing base 701

model causality. Addressing these challenges will 702

advance LLMs toward reliable, interpretable rea- 703

soning critical for real-world applications. 704
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Limitations705

We focus on formal logical reasoning, which is in706

line with the symbolic approaches actively studied707

in the literature. For general reasoning or other708

specific reasoning types, readers may refer to com-709

plementary surveys.710
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Matej Zečević, Moritz Willig, Devendra Singh Dhami, 1112
and Kristian Kersting. 2023. Causal parrots: Large 1113
language models may talk causality but are not 1114
causal. Transactions on Machine Learning Research, 1115
2023(8). 1116

Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiang- 1117
ming Shu, Jinlin Xiao, and 1 others. 2024. o1- 1118
coder: an o1 replication for coding. arXiv preprint 1119
arXiv:2412.00154. 1120

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi 1121
Shi, and 1 others. 2024. Marco-o1: Towards open 1122
reasoning models for open-ended solutions. arXiv 1123
preprint arXiv:2411.14405. 1124

12

https://arxiv.org/abs/1905.12149
https://arxiv.org/abs/1905.12149
https://arxiv.org/abs/1905.12149
https://arxiv.org/abs/1905.12149
https://arxiv.org/abs/1905.12149
https://arxiv.org/abs/2407.04973
https://arxiv.org/abs/2407.04973
https://arxiv.org/abs/2407.04973
https://arxiv.org/abs/2306.09841
https://arxiv.org/abs/2306.09841
https://arxiv.org/abs/2306.09841
https://arxiv.org/abs/2306.09841
https://arxiv.org/abs/2306.09841
https://arxiv.org/abs/2412.16689
https://arxiv.org/abs/2412.16689
https://arxiv.org/abs/2412.16689


A Appendix1125

A.1 Data Examples1126

Figure 2 presents example questions from datasets1127

related to logical reasoning, serving as a supple-1128

ment to the description of task types in the main1129

text.1130

A.2 Further Discussion1131

The integration of logical reasoning into large lan-1132

guage models (LLMs) remains a critical challenge,1133

marked by persistent gaps between heuristic perfor-1134

mance and formal logical rigor. Below, we analyze1135

three unresolved tensions dominating the field and1136

outline future directions.1137

Superficial Reasoning vs. Genuine Logical Com-1138

petence. Despite promising results on benchmark1139

datasets, an fundamental question persists: do1140

LLMs truly possess logical reasoning abilities, or1141

do they merely approximate reasoning through so-1142

phisticated pattern recognition? Some recent stud-1143

ies have observed that current LLMs often lack sub-1144

stantive causal reasoning (Bao et al., 2025; Zečević1145

et al., 2023), which in turn limits both their capacity1146

for genuine inference and their ability to generalize,1147

posing a crucial challenge to be tackled.1148

Robustness vs. Generalization. LLMs exhibit1149

inconsistent performance in structured reasoning1150

tasks such as deductive inference and abductive1151

hypothesis generation. While models fine-tuned on1152

datasets like FOLIO (Han et al., 2024a) excel in1153

controlled settings, they struggle with adversarial1154

perturbations or semantically equivalent rephras-1155

ings. This inconsistency arises from their reliance1156

on surface-level statistical correlations rather than1157

causal relationships, coupled with limited out-of-1158

distribution generalization. A key question per-1159

sists: can LLMs achieve human-like robustness1160

without sacrificing cross-domain adaptability? Cur-1161

rent methods prioritize narrow task performance,1162

leaving real-world applicability uncertain.1163

Interpretability vs. Performance. A central ten-1164

sion lies in balancing neural scalability with sym-1165

bolic precision. Neuro-symbolic approaches like1166

Logic-LM (Pan et al., 2023) and Symbol-LLM (Xu1167

et al., 2024a) embed formal logic solvers into neu-1168

ral architectures, improving interpretability through1169

step-by-step proofs. However, these methods face1170

scalability bottlenecks with large knowledge bases1171

or complex rule dependencies. Conversely, data-1172

(a) A multi-choice reading comprehension example from
the LogiQA dataset.

(b) An NLI example from the ConTRoL dataset.

Figure 2: Example tests of Logical reasoning in NLP
tasks.

driven methods (e.g., instruction tuning on Log- 1173

icBench (Parmar et al., 2024)) achieve broader task 1174

coverage but fail to generalize beyond syntactic pat- 1175

terns. How can we reconcile transparent reasoning 1176

with black-box model performance? Hybrid archi- 1177

tectures offer promise but introduce computational 1178

overhead, limiting practical deployment. 1179

Evaluation Rigor. Existing benchmarks like 1180

LogiQA (Liu et al., 2021b) and ReClor (Yu et al., 1181

2020) conflate reasoning ability with pattern recog- 1182

nition through multiple-choice formats. While ef- 1183

forts like NeuLR (Xu et al., 2023) curate “neutral" 1184

content to isolate reasoning from domain knowl- 1185

edge, they lack scope for holistic evaluation. Cur- 1186

rent metrics (e.g., accuracy, BLEU) fail to assess 1187

consistency (invariance to logically equivalent in- 1188

puts) or soundness (adherence to formal proof struc- 1189

tures). What defines a gold standard for logical 1190

reasoning evaluation? Benchmarks must prioritize 1191

systematic testing of core principles (e.g., transitiv- 1192

ity, contraposition) over task-specific performance. 1193
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Future Directions. Addressing these challenges1194

requires hybrid architectures that dynamically in-1195

tegrate neural and symbolic components, such as1196

differentiable theorem provers, to balance scala-1197

bility and precision. Equally important is the de-1198

velopment of evaluation frameworks that stress-1199

test models on perturbed logical statements (e.g.,1200

negated premises, swapped quantifiers) to isolate1201

reasoning from memorization. Multi-modal reason-1202

ing, which grounds inference in diverse modalities1203

(text, images, code), presents untapped potential1204

for enhancing robustness and interpretability. Fi-1205

nally, interdisciplinary collaboration—leveraging1206

insights from formal logic, cognitive science, and1207

machine learning—will be essential to design sys-1208

tems that reason with and about uncertainty. Until1209

LLMs reliably disentangle logic from lexicon, their1210

deployment in high-stakes domains will remain1211

precarious. Bridging this gap demands rigorous1212

benchmarks, scalable hybrid methods, and a redefi-1213

nition of evaluation paradigms.1214
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