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Abstract—This paper presents a geometric representation for
energy-efficient motion generation based on kinetic energy fields.
Minimal energy paths correspond to geodesics in the configura-
tion space manifold that satisfy equations of motion. Specifically,
the kinetic energy corresponds to the constant-velocity curves on
the Riemannian manifold endowed with a symmetric positive-
definite kinetic energy metric. We introduce a wave propagation
model for energy fields and geodesic flows by solving a first-
order partial differentiable equation (PDE): the eikonal equation
on the Riemannian manifold. A neural Riemannian Eikonal
solver is proposed to handle high-dimensional spaces, leading
to a compact and grid-free representation. Given a specific
kinematics chain, the kinetic energy field is trained offline and
allows efficient reactive motion generation to be computed online,
enabling the rapid generation of paths from arbitrary start and
goal configurations. We present preliminary results on generating
energy-efficient motions on planar robot examples and a 7-axis
Franka robot.

I. INTRODUCTION

Motion generation is a long-standing problem in robotics.
Various approaches based on inverse kinematics [3, 4] and
planning [20, 11, 9] techniques have been proposed to gen-
erate feasible trajectories to satisfy different constraints such
as goal reaching, obstacle avoidance, and minimum path
lengths. These methods plan motions at the kinematics level
and subsequently develop controllers to track these planned
trajectories. However, the underlying dynamics are often ig-
nored, which may lead to instability and robustness problems,
potentially also increasing energy consumption. Due to the
high nonlinearity, dynamics-aware motion generation remains
a challenging problem.

Studies in differential geometry have opened up new per-
spectives on this problem by viewing motions as geodesics in
the configuration space manifold whose geometric properties
are entirely defined by the underlying dynamics [2]. For
instance, the kinetic energy we focused on, corresponds to
geodesic lengths on the Riemannian manifold defined by
kinetic energy metric [10]. Several approaches have been
proposed to compute geodesics on the manifold, by solving
the geodesic equations or using optimization techniques to
find the approximated geodesics [10, 1, 13]. However, these
methods either suffer from computational complexity issues
that are hard to scale to high-dimensional systems [1, 10], or
can easily converge to poor local minima and result in distorted
geodesics [13].

In this paper, we use a kinetic energy field to represent the
energy landscape in the configuration space manifold. This
is inspired by the use of a distance field [15, 14], which is

popular in motion planning because it can provide distance and
gradient information. The kinetic energy field inherits these
advantages and also encodes dynamics properties by solving
the eikonal equation on the Riemannian manifold. Minimal
geodesics are backtracked through gradient flows of the energy
field.

Eikonal equation is a first-order nonlinear partial differential
equation (PDE) that describes the evolution of wave propaga-
tion, whose solution corresponds to the shortest arrival time
from a source point to any other goal point under a given
velocity field [22]. Here, we consider the Riemannian eikonal
equation, where the velocity is anisotropic and defined by the
kinetic energy metric. The kinetic energy field is the solution
of this differential equation.

We present two approaches for the Riemannian eikonal
equation: a numerical and a neural eikonal solver. The numer-
ical solver relies on discrete differential geometry, offering
accurate and interpretable results but poor scaling proper-
ties [5, 16]. In contrast, neural PDE solvers provide grid-free
solutions and show greater flexibility and scalability in han-
dling complex geometries and high dimensions [18, 12, 19].

The neural network parameterization for kinetic energy
fields and geodesic flows introduces additional benefits. The
network model only depends on the intrinsic inertia-mass ma-
trix given by a robot manipulator. Once the network is trained,
it can be used online for the generation of energy-efficient
paths for arbitrary source and target joint configurations.
In addition, it provides a compact structure for continuous-
time fields. Finally, the gradient can be computed through
network backpropagation, accounting for analytical geodesic
flows with high efficiency. The geodesic flow of the energy
field can also be viewed as a local policy to integrate to
other motion planning frameworks to satisfy constraints such
as joint limits and collision avoidance. We demonstrate our
preliminary results on planar robot examples and on a 7-axis
Franka robot.

II. BACKGROUND

We briefly introduce here the mathematical background of
the Riemannian manifold, geodesics, kinetic energy metric,
and eikonal equation (see [2] for details).

A. Riemannian Metrics and Geodesics

A d-dimensional Riemannian manifold M is a topological
space with a smooth metric tensor A(x) defined at each
point x ∈ M. The metric tensor A(x) is a positive definite
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Fig. 1: An illustration of our approach. (a) Configuration space manifold endowed with a Riemannian metric equal to the inverse of the
inertial matrix (visualized as ellipsoids). The geodesics on this manifold correspond to the minimal kinetic energy paths. We solve the eikonal
equation on this manifold, accounting for the kinetic energy field (b) and gradient flow (c) that can be used to backtrack geodesics (the
source point is fixed for visualization). (d) Geodesic path (solid line) and Euclidean path (dashed line) on this manifold with corresponding
robot motions.
symmetric matrix, defining a Riemannian metric. For each
point x ∈ M, there is a tangent space TxM, that locally
linearizes the manifold. The inner product of two velocity
vectors u,v in tangent space TxM at x ∈ M is defined
as ⟨u,v⟩A = uTA(x)v and the Riemannian norm ∥u∥A of
u is defined as ∥u∥A =

√
⟨u,u⟩A. The definition of inner

product and Riemannian norm enables the measurement of
vector lengths and angles in tangent space TxM so that we
can define the Riemannian distance between two points x1,x2

as

L(x1,x2) = min
x(t)

∫ t1

t0

∥ẋ(t)∥A(x) dt, (1)

where x(t) is a smooth curve connecting x1 and x2 with
x(t0) = x1 and x(t1) = x2. Geodesics are the shortest curves
with constant velocity connecting x1 and x2.

B. Configuration Space Manifold
In robotics, the configuration space corresponds to the set

of all possible joint configurations of a robot. It can be thought
of as a manifold that locally resembles Euclidean space but
can have a more complex global structure that geometrically
reflects the robot’s dynamics. In terms of kinetic energy, this
manifold incorporates the mass-inertia matrix that curves the
space and accounts for nonlinear properties. It is given by

U =
1

2
q̇TM(q)q̇, (2)

where q and q̇ are joint position and velocity vectors. M(q)
is the inertial matrix (kinetic metric), defining a Riemannian
manifold in configuration space. The geodesic equation can
be derived by applying the Euler-Lagrange equation

q̈i +
∑
j,k

Γi
jkq̇j q̇k = 0, (3)

where Γi
jk = 1

2

∑n
l=1 M

−1
il

(
∂Mlj

∂qk
+ ∂Mlk

∂qj
− ∂Mjk

∂ql

)
are the

Christoffel symbols that describe the curvature of the mani-
fold, and Mlj , qi are l, j-th and i-th element of M and q. This
equation is also equivalent to the standard equation of motion
M(q)q̈+C(q, q̇)q̇+g(q) = τ in the absence of gravity term
g(q) = 0 and external forces τ . The joint velocity ∥q̇∥M
is constant along the geodesic. The solution of this geodesic
equation corresponds to the kinetic energy optimal path.

C. Eikonal Equation

The eikonal equation is a nonlinear first-order PDE ∥q̇∥ =
c(q) that describes the propagation of wavefronts. Given a
speed model, its solution is the arrival time from a source point
to the front, corresponding to the continuous shortest path. The
signed distance field (SDF) is a special case when c(q) = 1.
A typical numerical approach to solve this PDE is the Fast
Marching Method (FMM) [22], requiring the discretization of
the domain into a mesh.

The Riemannian eikonal equation is a variant of the standard
eikonal equation ∥q̇∥M = c(q). It describes the propagation
of wavefronts in a Riemannian manifold, corresponding to
the minimal distance traveled along the curved surface of
the manifold. We consider the kinetic energy in configuration
space in the absence of obstacles with unit velocity ∥q̇∥M = 1
to build the energy map.

III. RIEMANNIAN EIKONAL SOLVER

We present two approaches to solve the Riemannian eikonal
equation for the kinetic energy field: a numerical method
that discretizes the configuration space to a Cartesian grid,
generalizing the fast marching method to Riemannian mani-
fold, and a neural Riemannian eikonal solver (NES). Rieman-
nian fast marching provides accurate solutions. However, it
leads to significant computational and memory efficiency in
high dimensions and does not scale well to high-resolution
grids [16]. Neural PDE solvers provide a grid-free structure
that computes gradients through network propagation, showing
better scalability and efficiency. However, the training process
can be complex and the convergence is not guaranteed.

A. Riemannian Fast Marching

Starting from a set of initial points, the fast marching
method updates the travel times of its neighbors iteratively
based on the eikonal equation and the Riemannian metric,
until all points on the grid have been processed, accounting for
travel times corresponding to the energy field. The accuracy
of the algorithm depends on the resolution of the grid and the
anisotropy of the Riemannian metric.

We test this approach by considering a 2D robot with link
lengths l1 = l2 = 2 and masses m1 = m2 = 1 concentrated
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Fig. 2: The solution of Riemannian eikonal equation in case of
obstacles (black contours) calculated using fast marching. (a) Kinetic
energy field. (b) Geodesic flow.

at the articulations, with joint limits from −π to π. Therefore,
the inertia matrix M(q) is given by

M(q)=

[
(m1 +m2)l

2
1 +m2l

2
2 + 2m2l1l2 cos(q2) m2l

2
2 +m2l1l2 cos(q2)

m2l
2
2 +m2l1l2 cos(q2) m2l

2
2

]
,

where q1 and q2 are two joint configurations. We solve the
Riemannian Eikonal equation ∥∇U(q)∥M−1(q) = 1 with
source point qs as the boundary. The solution U is the minimal
geodesic length on the manifold corresponding to the minimal
kinetic energy path defined by M . The vector field of gradient
flow is written as V (q) = M−1(q)∇U(q), which has unit
norm with respect to the kinetic energy metric

∥V (q)∥2M(q) = V ⊤(q)M(q)V (q)

= ∇U⊤(q)M−1(q)M(q)M−1(q)∇U(q)

= ∇U⊤(q)M−1(q)∇U(q)

= ∥∇U(q)∥2M−1(q) = 1.
(4)

We use the method described in [17] for implementation
that uses Voronoi reduction to handle Riemannian metrics
with strong anisotropy. Fig. 1 (b) and (c) are the solution of
the energy field and geodesic flow, with source point qs =
−(0.5, 0.8). It shows that minimal kinetic energy trajectories
follow geodesics on the manifold instead of straight lines.
(d) visualizes the manifold in 3D and shows different robot
motions between a geodesic path and an Euclidean path. A
comparison of geodesic length is shown in Tab I.

It is worth noting that the formulation of the eikonal
equation can be naturally used to handle motion planning
problems in terms of collision avoidance, by assigning zero
velocity for points inside the obstacle, corresponding to infinite
travel time. We showcase an example in Fig. 2.

B. Neural Riemannian Eikonal Solver

The geodesic length U(q, qs) from source joint configu-
ration qs to goal q on the Riemannian manifold can be ap-
proximated through a neural network. The idea is to calculate

Euclidean Path Geodesic Path
FMM NES

2D planar robot 7.35 6.38 6.44
7D Franka robot 3.76 - 3.30

TABLE I: Path lengths on the Riemannian manifold defined by
kinetic energy metric.
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Fig. 3: Solution of neural Riemannian eikonal solver. (a) shows the
energy field and geodesic flow at the same source point as 1(b)(c). (b)
highlights the difference in the geodesic flows between the solution
from NES (Gold) and FMM (Violet).
the gradient ∇qU(q, qs) and make it satisfy the Riemannian
eikonal equation ∥∇U(q, qs)∥M−1(q) = 1. Following previ-
ous work described in [12], we reformulate the geodesic as

Uθ(q, qs) = ∥q − qs∥(σ ◦ uθ(q, qs)), (5)

where uθ(q, qs) is the output from the neural network pa-
rameterized by θ. σ is a non-negative strictly increasing
function and ◦ is function composition. This equation ensures
the energy at the source point Uθ(qs, qs) = 0, mitigating
singularity issues for points near the source point [23, 12, 8].
We used a Softplus function σ(x) = 1

β (1 + exp(βx)) after
the neural network output.

Unlike FMM, which fixes the source position, the neural
network solver can handle any point pairs within the domain.
To guarantee the symmetry of the geodesic distance for
permuted pairs, we require Uθ(q1, q2) = Uθ(q2, q1) and to
maintain the equity of the gradient with respect to the same
configuration, we require ∇q1

Uθ(q1, q2) = ∇q1
Uθ(q2, q1).

The factorized eikonal equation 5 is further extended for the
global estimation as suggested in [8], namely

Uθ(q1, q2) = ∥q1 − q2∥
σ ◦ uθ(q1, q2) + σ ◦ uθ(q2, q1)

2
.

(6)
We employ automatic differentiation for calculating the

gradient of the parameterized network output with respect to
the input ∇q1

Uθ(q1, q2). This gradient is utilized to construct
the loss function, ensuring the restriction of the gradient as
shown in (4), namely

L(q1, q2) =

√√√√ n∑
i=1

(
∥∇qi

1
Uθ(qi

1, q
i
2)∥M−1(qi

1)
− 1

)2

, (7)

where i is the i-th data and n is the batchsize. To improve
the performance of the neural eikonal solver, we exploit
a geometry-aware method to sample training data on the
Riemannian manifold.

C. Geometry-Aware Sampling

Sampling points in Euclidean space randomly or uniformly
does not exploit the local geometric structure of a manifold.
Consequently, the solution from the eikonal equation can
deviate from the true geodesics [12, 6]. The challenge lies



in incorporating knowledge of the geometric structure during
the sampling process.

1) Target probabilistic density function: At each tangent
space, an infinitesimal space is induced by the Riemannian
metric dM(q) =

√
|M(q)|dq, bridging the target proba-

bilistic density function (pdf) ρ(q) with respect the Lesbergue
measurement dq, to the pdf p(q) with respect to dM(q) by

ρ(q) = p(q)
√

|M(q)|. (8)

2) Sampling on the Riemannian manifold: The objective is
to sample variables on the Riemannian manifold from the pdf
ρ(q), while taking into account the local geometric structure.
Given the Riemannian metric tensor, we adopt the Metropolis
adjusted Langevin Monte Carlo algorithm on the Riemannian
Manifold [7]. The algorithm describes the Langevin diffusion
process on the Riemannian manifold in a stochastic differential
equation (SDE)

dq(t) =
1

2
∇̃qL(q(t)) + db̃(t), (9)

with ∇̃qL(q(t)) representing the natural gradient equipped by
the Riemannian metric tensor ∇̃qL(q) = M−1(q) ∇qL(q),
where L(q) is the logarithm of the desired pdf ρ(q). Assuming
p(q) is a constant, the natural gradient is expressed using (8):

∇̃qL(q) = M−1(q)∇q

√
|M(q)|. (10)

In (9), db̃(t) defines the Brownian motion on the Riemannian
manifold as

db̃i(t) =
1√

|M(q(t))|

D∑
j=1

∂

∂qj

(
(M−1(q(t)))ij

√
|M(q(t))|

)
dt

+

(√
M−1(q(t))db(t)

)
i

.

(11)
After applying the first-order Euler integration with the fixed
step size ϵ to the SDE (9) as

qi(t+1) = qi(t) +
ϵ2

2

(
(M−1(q(t))∇qL(q(t)))i

)
− ϵ2

D∑
j=1

(
(M−1(q(t)))ij

∂M(q(t))

∂qj

M−1(q(t))

)
ij

+
ϵ2

2

D∑
j=1

(M−1(q(t)))ij Tr

(
(M−1(q(t)))

∂G(q(t))

∂qj

)
+ (ϵ

√
M−1(q(t))z(t))i

= µ(q(t), ϵ)i +
(
ϵ

√
M−1(q(t))z(t)

)
i
,

(12)
the random variable can be sampled from the Gaussian distri-
bution

p
(
q(t+1)|q(t)

)
=N

(
q(t+ 1)|µ(q(t), ϵ), ϵ2M−1

(
q(t)

))
.

(13)
The acceptance of the sampled variable is finally calculated
with min

{
1, p(q(t+1))p(q(t)|q(t+1))

p(q(t))p(q(t+1)|q(t))

}
.

(a) (b)

Fig. 4: Geodesic (a) and Euclidean (b) motions of 7D Franka robot.

D. Results

The network is parameterized using a fully connected mul-
tilayer perception (MLP) trained with the Adam optimizer. We
first compare the result of the neural eikonal solver with FMM
on the 2D robot, demonstrated in Fig. 3. Quantitive results
are reported in Table I. Geodesic motions lead to a short path
length on the manifold. We show the geodesic and Euclidean
motions of a 7-axis Franka robot in Fig. 4.

IV. DISCUSSION & FUTURE WORK

In this paper, we propose to solve the Riemannian eikonal
equation for energy-aware motion generation on a configu-
ration space manifold. Unlike other geometric methods that
optimize geodesic paths on the manifold [10, 13], our approach
is physics-informed, where a unit norm constrains joint veloc-
ities on the manifold. The proposed neural eikonal solver is
promising due to its efficiency in terms of online inference,
as well as its generalizability to any start-goal pairs in the
configuration space. As a local policy, the gradient flow can be
integrated into other frameworks such as Riemannian motion
policies [21] to handle energy efficiency. There are several
possible extensions for future work:

Energy-aware inverse kinematics. In this work, we con-
sidered both source and goal points in configuration space.
However, the energy term could be pulled back to task space
by using the pseudoinverse of Jacobian matrix q̇⊤Mq̇ =
ẋ⊤J†M(J†)⊤ẋ. Therefore, geodesics on the manifold defined
by the metric J†M(J†)⊤ corresponds to the minimal-energy
inverse kinematics solution.

General dynamics-aware motion generation and ma-
nipulation tasks. The kinetic energy metric on Riemannian
manifold is a special case of equations of motion. Other
metrics and geometries could also be considered to achieve
more general dynamics-aware motion planning. Besides, the
eikonal equation is also a special case of the Hamilton-
Jacobi-Bellman (HJB) equation and the neural PDE solvers
could be extended to general manipulation tasks exploiting
differentiable equations.

Introducing geometric features into data. Fourier features
have been demonstrated to enhance the solver accuracy [24].
However, Fourier features are the eigenfunctions of Euclidean
space and do not adequately represent the eigenfunctions for
a general manifold. Future work could involve learning the
eigenfunctions on the high-dimensional manifold and integrat-
ing them with the neural solver framework.
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