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Abstract

Social media bots detection is a crucial task
in maintaining the health of the Internet. The
challenge of this task is that bots are evolving
themselves by constantly stealing information
from human accounts, a behavior also known
as feature camouflage, to evade detection. To
reduce the impact of camouflage, existing meth-
ods detect by using intra-attribute heterogeneity.
However, our work reveals that intra-attribute
heterogeneity is being diluted by the further
stealing behavior of bots, hindering the devel-
opment of these methods. To address this, we
propose a novel concept called cross-attribute
heterogeneity. Compared to intra-attribute het-
erogeneity, it is less susceptible to camouflage.
Based on this superior nature, we design a
framework called BCH to better detect more
advanced bots through cross-attribute hetero-
geneity. Additionally, to enhance compatibility
with bots from different eras, BCH incorpo-
rates a joint training strategy. Extensive experi-
ments shows the superiority of BCH in detect-
ing ever-evolving and era-diverse bots, as well
as detailed analysis highlights the benefits of
cross-attribute heterogeneity and the necessity
of improving detection methods compatibility.

1 Introduction

Social media has become an integral part of daily
life. However, with its growing influence, social
media bots have emerged. The bots are a type of
special account controlled by automated or semi-
automated programs (Davis et al., 2016; Deb et al.,
2019; Cresci, 2020). They engage in various mali-
cious activities on social media, severely disrupting
the health of the Internet. Therefore, effective bot
detection has become a critical research topic.

To better understand the motivation behind our
work, it is essential to first grasp the evolution of
the bots and how their characteristics change over
time. Figure 1(a) shows early primitive bots. The
main characteristics of these bots are suspicious
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Figure 1: The characteristics of the bots change with
their evolution. Meta-attribute provides basic informa-
tion, posts-attribute introduces posting information and
graph-attribute describes neighbor information.

features. Suspicious features are caused by bots
engaging in malicious activities without any cam-
ouflage, and their specific manifestations mainly
include an excessive number of statuses, a single
topic in posts and a neighbor community composed
of bots (Beskow and Carley, 2019; Lee and Kim,
2014; Beskow and Carley, 2018). The emergence
of feature camouflage alters the characteristics of
primitive bots and transition them into initial cam-
ouflage era, as shown in Figure 1(b). During this
era, the main characteristic of bots is heterogeneity.
The reason why heterogeneity can replace suspi-
cious features is that bots begin to evade detection
by stealing information from humans. The origi-
nal information is covered by the stolen informa-
tion, thereby reducing suspicious features, while
the stolen and original information differ in topics,
language styles and other aspects, thereby increas-
ing heterogeneity (Lei et al., 2023; Li et al., 2023).
Since this heterogeneity only pertains to a single
attribute, it is also referred to as intra-attribute het-
erogeneity. As camouflage nears completion, bots
reshape their characteristic again and evolve into
a new era, where they are nearly indistinguishable
from humans based on a single attribute, as shown



in Figure 1(c). For instance, if all of a bot’s posts
are stolen from humans, its post-attribute will no
longer exhibit any suspicion or heterogeneity.

Existing detection methods fail to exploit the
invariant characteristics in bots evolution, putting
them at disadvantages in the ongoing battle against
evasion strategies. Early methods detect uncam-
ouflaged primitive bots through suspicious fea-
tures (Yang et al., 2020; Wei and Nguyen, 2019;
Feng et al., 2021c,a, 2022a). However, the rise of
camouflage reduces the suspicious features, hin-
dering the development of these methods. More
recent methods attempt to detect camouflaged bots
through intra-attribute heterogeneity (Shi et al.,
2023; Ye et al., 2023; Fu et al., 2023; Lei et al.,
2023; Liu et al., 2023). However, they still remain
vulnerable to nearly complete camouflage, as they
focus only on intra-attribute heterogeneity, which
also be diluted by bots’ persistent stealing behavior.

To address this challenge, our work focuses
on the following question: How can we discover
invariant characteristics throughout bots evolu-
tion and effectively capture them to detect ever-
evolving bots? Building upon this motivation,
we propose BCH, a Bots detection method with
Cross-attribute Heterogeneity. BCH proposes a
novel concept called cross-attribute heterogeneity,
as shown in Figure 1(c). The degree of camouflage
varies across different attributes, resulting in cross-
attribute heterogeneity. This heterogeneity arises
from the inherent differences in the cost of camou-
flaging different attributes. For example, camou-
flaging graph-attribute requires an entire account
as the cost, whereas camouflaging posts-attribute
only needs stealing a single post. Therefore, it is
bound to exist in the long term and can be regarded
as an invariant characteristic. Based on this in-
sight, BCH first encodes different attributes using
multiple deep learning models, and then applies
attention mechanisms to capture cross-attribute het-
erogeneity for final detection.

Additionally, another crucial yet overlooked sit-
uation is that, while more advanced bots continue
to emerge, some residual primitive bots still remain
undetected on social media. Therefore, detection
efforts should not only be compatible with the fu-
ture but also with the past. Regrettably, although
the heterogeneity can address camouflaged bots, it
still struggles with early-era bots, as these prim-
itive bots lack camouflage, leading the absence
of heterogeneity in their characteristics. Existing
methods fail to realize the limitations of hetero-

geneity in terms of compatibility with the past.

They focus solely on designing increasingly com-

plex frameworks to accommodate heterogeneity

but overlooking initial suspicious features, render-
ing them ineffective in handling era-diverse bots.

To overcome this, BCH designs two encoders to

separately model suspicious features and hetero-

geneity. Afterward, BCH use a joint training strat-
egy to adaptively combine these two encoders —
when the suspicious features of an account are more
pronounced, the corresponding encoder will con-
tribute more to the final detection, and vice versa.
We evaluated our method on three representa-
tive datasets, which respectively are dominated
by uncamouflaged, camouflaged, and nearly com-
plete camouflaged bots. The experimental results
show the superiority of our method in two aspects.

First, BCH achieves a 20.76% F1 improvement

on dataset dominated by nearly complete camou-

flaged bots, highlighting the effectiveness of cross-
attribute heterogeneity. Second, unlike other meth-
ods that excel only on era-specific datasets, BCH
performs excellently across all datasets, proving the
necessity of the multi-encoder and joint training
strategy. Furthermore, detailed analysis reveals the
key role of cross-attribute heterogeneity and joint
training in detection. Additionally, we explore inte-
grating cross-attribute heterogeneity with large lan-
guage models, thereby leveraging advanced NLP
technique to benefit bots detection task.

Our contributions can be summarized as follows:

* We are the first to leverage evolutionary invariant
characteristic for bots detection. It helps us to
better handle the ever-evolving bots.

* We are the first to consider the compatibility of
detection methods with the past. It helps us to
better handle the era-diverse bots.

* We also implement our ideas on advanced large
language models, opening up potential directions
for future research.

2 Problem Formulation

Given a user U, it consists of meta-attribute M,
posts-attribute 7' and graph-attribute G. M in-
troduces the user’s basic information, including
boolean, numerical and textual information, 7" in-
cludes the posts generated by the user, and G in-
volves the meta-attribute of the user’s followers
and followings. Table 1 shows the details of these
attributes. Our goal is to detect whether a user is
human or bot based on these attributes.
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Figure 2: An overall architecture of BCH. In the first step, the suspicious features encoder models suspicious
features exhibited by users and tokenizes users all three attributes. In the second step, the heterogeneity encoder
captures intra-attribute, cross-attribute and topology-aware cross-attribute heterogeneity. Finally, BCH employs
both suspicious features and heterogeneity for detection to combat ever-evolving and era-diverse bots.

3 Methodology

Figure 2 presents an overview of BCH. It comprises
a suspicious features encoder and a heterogeneity
encoder. These two encoders operate during their
respective steps and are integrated by joint training.
§A.4 shows the details of hyperparameters involved
in this section, such as matrix shapes and more.

3.1 Suspicious Features Encoder

Suspicious features encoder serves two purposes.
The primary one is to model suspicious features
of users, thereby helping the detection of primitive
bots, and the secondary one is to tokenize each
attribute of users, thereby facilitating the capture
of heterogeneity in subsequent processes.
Regarding the first purpose, this encoder begins
by using two MLP blocks and the RoBERTa (Liu
et al., 2019) to embed the boolean, numerical and
textual information in users meta-attributes. The
corresponding embedding results are denoted as
Ty, Ty and 7,. Next, this encoder combines all
embeddings to construct the suspicious features
embedding S. Notably, we do not use users graph-
attribute and posts-attribute here, as (Feng et al.,
2021c) demonstrate that leveraging meta-attribute
alone is sufficient to handle most primitive bots.
Regarding the second purpose, this encoder
needs to separately tokenize users all three dis-
tinct attributes. For meta-attribute, the suspicious
features embedding S can be directly used as the
tokenized result. For graph-attribute, since it is
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Table 1: The details of user’s attributes.

composed of the meta-attributes from users follow-
ers and followings, it can be tokenized in the same
way as the previous step. The tokenized results are
respectively denoted as {S}T}L]; and {S fw}|f wl,
For posts-attribute, it can be tokenized using the
RoBERTa of this encoder. The tokenized result is

denoted as {ri}'” . Both S, {ss, y {S%., yrel

and {ri} gl will be forwarded as tokens to the next
encoder for heterogeneity capturing.



3.2 Heterogeneity Encoder

To capture heterogeneity of users, BCH includes
a heterogeneity encoder. The structure of this en-
coder can be roughly divided into three branches.
The workflows of the first two branches are simi-
lar, they are respectively designed to capture intra-
attribute heterogeneity (/A het.) and cross-attribute
heterogeneity (CA het.), and the last branch is
tasked with incorporating cross-attribute hetero-
geneity and topological information.

Branch for Capturing IA Het. In this branch,
BCH first organizes the tokens from the previous
step into attribute-related sequences, including the
follower sequence, following sequence and posts
sequence. It then feeds them into a transformer-
encoder to capture intra-attribute heterogeneity by
computing their self-attention weights. The above
process can be represented by E.q (1):

hfr = Tmnsformer({SfT}‘fr
By = Transformer({wa}Uw‘) ()
hy = Tmnsformer({ti}i:1

Afterward, BCH employs a CNN block to down-
sample these weights, and then flattens the down-
sampled results to obtain the final intra-attribute
heterogeneity embeddings. The corresponding em-
bedding results are denoted as h fr h fw and ht

Branch for Capturing CA Het. The workflow
of this branch is similar to capturing intra-attribute
heterogeneity, with the main difference being the
input to the transformer-encoder. Specifically, in
this branch, BCH concatenates the user token, fol-
lower tokens, following tokens and posts tokens
into a single cross-attribute sequence as the in-
put, and then captures cross-attribute heterogene-
ity through the same operations as in the previous
branch. The obtained cross-attribute heterogeneity
attention weight and embedding are respectively
denoted as h. and ﬁc.

Branch for Capturing Topology-aware CA Het.
Social media bots often carry out malicious activi-
ties in the form of groups, and become neighbors
through follower or following relationships (Cresci,
2020). This phenomenon can be described by a
topological structure, where nodes represent users
and edges represent follower or following relation-
ships. In the branch of capturing cross-attribute het-
erogeneity, BCH adopts sequential model (Trans-
former) to process follower and following tokens,

resulting in its inability to use the topological in-
formation formed by the user and its neighbors. To
address this, BCH designed a branch that captures
topology-aware cross-attribute heterogeneity.

Specifically, in this branch, BCH first uses the
obtained cross-attribute heterogeneity attention
weight as a guide to reconstruct the topological
information, as shown in E.q (2):

9 = hel0][1: 1+ [fr|+ | fwl],
homg,, het ¢, = Split(g[: |fr]], k)

K), (2)
hom ¢y, het 4, = Split(g[|fr]: |, k),

where the Split function is defined as:
(L1, L2) = Split(v, k),
Ly = {i|v; € thelargest [k x |v|] of v}, (3)
Ly={jlj ¢ L},

and k € (0, 1] is a ratio hyperparameter, a smaller
k indicates higher sensitivity to heterogeneity.

Analyzing the results of the Split function,
homy, and hom,, represent neighbors who are
assigned higher attention by the user, thus these
neighbors can be considered homogeneous with the
user. Conversely, het s, and het f,, denotes neigh-
bors who are assigned lower attention, and these
neighbors can be regarded as heterogeneous with
the user. For instance, the heterogeneous neigh-
bors may arise when a bot intentionally following
a human account to camouflage itself. Therefore,
in summary, BCH achieves a integration of cross-
attribute heterogeneity and topological information
through the reconstruction.

BCH then adopts a R-GCN (Schlichtkrull et al.,
2018) block, to embed the reconstructed topologi-
cal information, and finally extracts current users
embedding from topological information to repre-
sent topology-aware cross-attribute heterogeneity.
The above process can be represented by E.q (4):

hie =RGCN_Block(G), @
Btc — htc[o]a

where the G is defined as:

V = {SY0{Sp, 1 U {Sp 1
E={< Svj,rj >|v; e V\{S},r; e R}, (O
Gg=W¢),
and R = {0,1,2,3} respectively represents the
four reconstructed relationships, including homo-

geneous follower, homogeneous following, hetero-
geneous follower and heterogeneous following.



3.3 Joint Training Strategy

The encoders of BCH provide two different groups
of bots’ characteristics. The embedding S from
suspicious features encoder provide suspicious fea-
tures for detecting uncamouflaged bots, and the
embeddings h fr h fuwo ht, h and htc from hetero-
geneity encoder provide heterogeneity for detecting
camouflaged bots. To adaptively leverage different
characteristics, BCH designs a confidence calcula-
tion formula, as shown in E.q (6):

_ H@E)T
= a1 - (6)
H(gs) ™ + H(9n)
where H (7, ) denotes the entropy function:
) log p(§.” 7
p )ogp(g-7), (7

and g5 and ¢, are prediction vectors generated by
employing softmax to each group of embeddings.

The confidence « € [0, 1]. When BCH is more
certain about the judgment based on suspicious fea-
tures (i.e., when \géo) gjgl)\ is larger), o increases.
Conversely, when BCH is more certain about the
heterogeneity, o decreases. Therefore, BCH treats
it as a weighting coefficient to construct final loss
function, as shown in E.q (8):

L=a Li+(1—a) L, 8)
where L, and £, denotes losses from y, and yp,.

4 Experiment

4.1 Experimental Setup

Datasets We claim that BCH can address ever-
evolving and era-diverse bots effectively. There-
fore, we want to select three different types of
datasets, where the first consists of nearly complete
camouflaged bots, the second consists of initial
camouflaged bots and the third consists of uncam-
ouflaged bots. Using datasets with such nature will
make our experimental results more convincing.

To achieve this, we propose a LLM-based bot
type identification method, as shown in §A.1. We
apply it to multiple widely used datasets and ul-
timately select the three most representative ones.
The chosen datasets include TwiBot-22 (Feng et al.,
2022b), dominated by nearly fully camouflaged
bots; TwiBot-20 (Feng et al., 2021b), dominated
by initial camouflaged bots; and Cresci-15 (Cresci
et al., 2015), dominated by uncamouflaged bots.
§A.1 presents more details of these datasets.

Baselines We select eleven advanced baselines
for comparison, which include CACL(Chen et al.,
2024), LMBot (Cai et al., 2024), BIC (Lei et al.,
2023), BotPercent (Tan et al., 2023), BotMoE (Liu
et al., 2023), Hays et al (Hays et al.,, 2023),
RGT (Feng et al., 2022a), BotRGCN (Feng et al.,
2021c), SGBot (Yang et al., 2020), Alhosseini et
al (Alhosseini et al., 2019), Wei et al (Wei and
Nguyen, 2019). They cover methods for detecting
early-era primitive bots by modeling suspicious
features, as well as methods for detecting camou-
flaged bots by capturing intra-attribute heterogene-
ity. §A.2 shows more details of these baselines.

4.2 Main Results

Table 2 reports the main experimental results of
BCH across three datasets, from which we can ob-
serve that BCH consistently outperforms all base-
lines on all datasets, verifying the effectiveness
of BCH. Additionally, further analysis of Table 2
leads us to the following three conclusions.

Heterogeneity is more effective than suspi-
cious features in combating camouflaged bots.
On TwiBot-20 and TwiBot-22, the two best meth-
ods both leverage heterogeneity. The best method
is BCH, compared to methods based on suspicious
features, it improves the F1 by 0.72% and 20.89%
on these two datasets. The second-best method
is BotMoE, outperforming the methods based on
suspicious features by 0.40% and 0.13% on F1.
These improvements highlight the importance of
heterogeneity in detecting camouflaged bots.

Cross-attribute heterogeneity is more effec-
tive than intra-attribute heterogeneity in de-
tecting nearly complete camouflaged bots. On
TwiBot-22, there is a significant gap between the
two best methods. As the best method, our pro-
posed BCH surpasses the second-best BotMoE by
20.76% on F1. This indicates the notable potential
of cross-attribute heterogeneity in handling nearly
complete camouflaged bots.

Compared to relying on era-specific charac-
teristics solely, incorporating suspicious features
and heterogeneity facilitates BCH identifying
era-diverse bots. Existing methods use either sus-
picious features or heterogeneity alone, hindering
their ability to achieve the best for bots from differ-
ent eras. For instance, some methods based on sus-
picious features, such as LMBot, even performer
better compared to those based on heterogeneity,
like BotMoE, on Cresci-15 dataset. In comparison,
our BCH outperforms all methods on all datasets by



Cresci-15 TwiBot-20 TwiBot-22
Method s Tc Accuracy  F1-Score Accuracy  F1-Score Accuracy  F1-Score
Methods For Uncamouflaged Bots
Wei et al. v X X 96.10 (1.1) 77.91 (0.1) 71.30 (0.2) 54.00 (2.7) 70.20 (0.1) 46.80 (1.4)
Alhosseinietal. v X X 89.60 (0.6) 87.69 (1.2) 59.90 (0.6) 57.81(0.4) 47.72 (8.7) 29.99 (3.0)
SGBot v X X 77.10 (0.2) 77.91 (0.1) 81.57(0.3) 84.90 (0.4) 75.11 (0.1) 36.59 (0.2)
BotRGCN v X X 96.50 (0.7) 97.30(0.5) 83.27 (0.7) 85.26 (0.7) 77.67 (1.1) 57.50 (1.4)
Hays et al. v X X 98.00 (0.0) 97.56 (0.4) 82.10 (0.2) 86.00 (0.0) - -
BotPercent o X X - - 84.53 (0.3) 86.00 (0.5) 73.10 (0.0) 50.64 (0.1)
LMBot o X X 98.31 (0.4) 98.71 (0.1) 85.63(0.2) 87.61(0.3) - -
Methods For Initial Camouflaged Bots
RGT X v X 97.20 (0.3) 97.78 (0.2) 86.60 (0.4) 87.06 (0.4) 76.50 (0.4) 42.94(1.9)
BIC X v X 96.13 (0.9) 96.94 (0.2) 87.33(0.2) 87.86(0.2) - -
BotMoE X v X 98.00 (0.2) 98.30(0.4) 87.30 (0.1) 88.01(0.3) 77.81(0.5) 57.63(0.7)
CACL X v X 97.65 (2.0) 98.12(1.3) 85.12(1.0) 87.28 (0.8) 75.38 (0.0) 49.59 (0.8)
Methods For Nearly Complete Camouflaged and Era-Diverse Bots
BCHOurs) v v V/ 98.50 (0.0) 98.83 (0.5) 87.41(0.1) 88.33(0.2) 78.38 (0.3) 78.39 (0.5)

Table 2: Results on Cresci-15, TwiBot-20 and TwiBot-22. We run each experiment 5 times with different random
seeds, and report their average results and variance. S, Z and C indicate whether suspicious features, intra- or cross-
attribute heterogeneity are leveraged in corresponding method. - indicates the absence of results due to the limitations
in dataset or method. Bold and underline indicate the best and second results. Additionally, some methods use extra
posts and neighbors compared to others. To ensure fairness, we limit the number of posts/neighbors to 200/20 in
reproduction, which may result in slight differences between our results and those reported in the original paper.

Settings Average-F1 Decline
BCH (Ours) 88.5 -
(a) Effect of Different Attributes in CA Het

it requires entire accounts. In contrast, the posts-
attribute is the most camouflaged, as it only needs
to steal posts. As for meta-attribute, its level of

1. w/o meta-attribute 86.8 1.7 camouflage falls in between. Therefore, remov-
2. w/o graph-attribute 86.5 2.0 : : :
3. wio posts-attribute 26 1 54 ing either of the first two attributes, compared

(b) Effect of Different Heterogeneity

to meta-attribute, will more severely weaken the
overall cross-attribute heterogeneity, thereby caus-

1. w/o IA het. 85.3 3.2 \ _ ! /
2. w/o CA het. 83.9 4.6 ing greater impacts on detection. The ablation re-
3. w/o CA het. (topology) 82.0 6.5 sults clearly reflect this real-world scenario. Com-

(c) Effect of Joint Training Strategy
l.a=0 84.8 3.7
2.a=1 81.2 7.3

Table 3: Ablations on the effect of different attributes
in cross-attribute heterogeneity, the effect of different
heterogeneity, and the effect of the joint training strategy.
we report the average F1 across all three datasets.

leveraging both suspicious features and heterogene-
ity. This suggests that using more comprehensive
characteristics helps enhance the compatibility of
detection methods with both past and future.

4.3 Ablation Study

Effect of Different Attributes in Cross-attribute
Heterogeneity As shown in Table 3(a), we con-
duct ablations by gradually removing different at-
tributes from the cross-attribute sequence. In real-
ity, due to the varying costs of camouflage, graph-
attribute is the least camouflaged, as disguising

pared to meta-attribute, removing graph-attribute
and posts-attribute result in more significant per-
formance degradation, showing the reliability of
cross-attribute heterogeneity we capture.

Effect of Different Heterogeneity As shown in
Table 3(b), we conduct ablations by removing dif-
ferent branches from the heterogeneous encoder.
The results show that removing any branch leads
to performance decline, indicating that each het-
erogeneity contributes to detection. Moreover, the
performance drop from removing cross-attribute
heterogeneity far exceeds removing intra-attribute
heterogeneity, highlighting the importance of cross-
attribute heterogeneity; and the performance loss
caused by removing topology-aware heterogeneity
is greater than regular heterogeneity, emphasizing
the necessity of adopting graph-based models.

Effect of Joint Training Strategy As shown in
Table 3(c), we conduct ablations by fixing « in
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E.q (8) to 0 and 1. Fixing o means that BCH will
no longer consider which era the bots belong to.
When o = 0, BCH treats all bots as camouflaged,
while ¢ = 1, BCH treats all bots as uncamou-
flaged. Both configurations result in performance
drop, suggesting that suspicious features and het-
erogeneity cannot fully replace each other, thus
highlighting the importance of joint training.

5 Analysis

5.1 Study on Ever-Evolving Bots Detection

Cross-Attribute Heterogeneity Is an Evolution-
ary Invariant From an overall timeline perspec-
tive, recent bots are more advanced than earlier
ones. Therefore, we can study the changes of dif-
ferent characteristics during the evolution of bots
by grouping the bots through their account cre-
ation time. Based on this idea, we first divide the
bots in the test set of TwiBot-22 into seven groups.
Next, by using the training set of TwiBot-22, we
train three different versions of BCH, including:
detection only uses suspicious features, detection
only uses intra-attribute heterogeneity, and detec-
tion only uses cross-attribute heterogeneity. Fi-
nally, we analyze the performance of these three
versions on different groups. Figure 3(a) presents
the results, from which we can draw two conclu-
sions. (i) With the evolve of bots, relying solely on

suspicious features or inta-attribute heterogeneity
leads to performance drops, indicating they are not
evolution invariants and cannot be used to detect
ever-evolving bots. (ii) In contrast, detection using
only cross-attribute heterogeneity maintains consis-
tently outstanding performance, suggesting it is an
evolution invariant and thus can be used to effec-
tively handle ever-evolving bots. Furthermore, we
observe that for earlier bots, performance with het-
erogeneity is worse than suspicious features, which
also shows the necessity of joint training.

Attention Weights Can Capture Cross-attribute
Heterogeneity We want to analyze whether the
attention weights in BCH can reliability capture
cross-attribute heterogeneity. To this end, we first
use the bot type identification method mentioned
in §4.1 to classify the bots in TwiBot-22 into three
groups, including: uncamouflaged, initially cam-
ouflaged, and nearly complete camouflaged bots.
Next, when testing the BCH trained on TwiBot-
22, we visualize the cross-attribute heterogeneity
weight h. of BCH by calculating its entropy. Fig-
ure 3(b) presents the results, from which we can
observe that h. corresponding to bots has a lower
entropy, differing from humans. This indicates that
if h. is used to represent cross-attribute heterogene-
ity, the cross-attribute heterogeneity of bots will
be more stable than humans, and the stability will
increase as the degree of camouflage approaches
completeness. This consistency with reality demon-
strates the effectiveness of attention weights in cap-
turing cross-attribute heterogeneity.

5.2 Study on Era-Diverse Bots Detection

Method Train Test CD PD Average-F1
BCH 734 754 74.4
BotMoE CD 64.3 70.2 67.3
LMBot 62.0 449 53.5
BCH 46.1 82.9 64.5
BotMoE PD 46.0 81.6 63.8
LMBot 45.6 82.5 64.1

Table 4: The cross-dataset validation experiment.

To demonstrate that BCH is more compatible,
we first construct two datasets using TwiBot-22,
named CD (Camouflaged Dataset) and PD (Primi-
tive Dataset). Both datasets contains same human
samples but differ in bots, where CD includes only
camouflaged bots and PD consists only uncamou-
flaged bots. Next, we select LMBot and BotMoE as



Method Accuracy F1-Score
BotSay (Feng et al., 2024) 89.9 91.5
BotSay (Llama2-7B) 83.5 83.5
BotSay + CA Het (Llama2-7B)  86.6 86.2

Table 5: Bots Detection with LLMs. The original Bot-
Say use GPT-3.5-Turbo as its backbone. To reduce costs,
we reproduce it on Llama2-7B. As an exploratory exper-
iment, we select small-scale TwiBot-20 as our dataset.

our baselines, where the former relies exclusively
on suspicious features and the latter solely on het-
erogeneity. Afterward, we split CD and PD into
train/test subsets, and perform cross-dataset valida-
tion for BCH, LMBot and BotMoE using different
subsets. Table 4 shows the experimental results,
from which we can observe that BCH achieves the
best performance on the unselected bots type, re-
gardless of whether it is trained on camouflaged or
uncamouflaged bots, indicating that BCH possesses
the ability to be compatible with both the past and
the future through its joint training strategy.

5.3 Detection with Large Language Models

Existing LLM-based bots detection methods still
rely on traditional concepts of suspicious features
and intra-attribute heterogeneity, which may limit
the full potential of LLMs. To address this, we
enable LLMs to capture cross-attribute heterogene-
ity through a two-stage training strategy. Specifi-
cally, in the first stage, we randomly replace one
of a user’s meta-attribute, graph-attribute or posts-
attribute by copying attribute from others. The
LLMs are then trained to identify which attribute
has been replaced, making them more sensitive to
heterogeneity across different attributes. As for
the second stage, LLLMs are trained to determine
whether a user is a bot based on its three origi-
nal (unreplaced) attributes. We adopt method pro-
posed by (Feng et al., 2024) as our comparison,
and use the same approach as it to convert users
all attributes into text for compatibility with LLMs.
Table 5 shows the results, which show that intro-
ducing cross-attribute heterogeneity significantly
enhances the detection capabilities of LLMs.

6 Related Work

Social Media Bots Detection Early detection
methods fall into three groups based on the at-
tributes of users they use. The first group focuses
on meta-attribute, leveraging traditional machine
learning algorithms and manually designed fea-

tures to model suspicious features (Lee and Kim,
2014; Beskow and Carley, 2018, 2019; Yang et al.,
2020; Hays et al., 2023; Wu et al., 2023b). The
second group targets posts-attribute, employing
NLP techniques to model suspicious features (Wei
and Nguyen, 2019; Kudugunta and Ferrara, 2018;
Heidari and Jones, 2020; Luo et al., 2020; Wu
et al., 2023a; Cai et al., 2024). The third group uti-
lizes graph-attribute, representing social media as a
graph and applying graph-based machine learning
to model suspicious features (Feng et al., 2021c,a;
Magelinski et al., 2020; Alhosseini et al., 2019;
Feng et al., 2021c; Alothali et al., 2023; Tan et al.,
2023). Although these methods can effectively de-
tect primitive uncamouflaged bots by analyzing spe-
cific suspicious features, the limited consideration
of heterogeneity constrains their further develop-
ment, particularly in the face of feature camouflage.
In contrast, our work jointly models suspicious
features and heterogeneity, which significantly en-
hance the adaptability of our proposed method.

Heterogeneity Modeling Recent detection meth-
ods emphasize heterogeneity. They often use tech-
niques adapted from general domain to model het-
erogeneity. We outline the widely used general
heterogeneity modeling methods. For textual data,
we can follow the work of (Bobur et al., 2020;
Lei et al., 2023), capturing heterogeneity by us-
ing the attention weights. For graph data, we can
capture heterogeneity using heterogeneous GNN,
as shown in (Shi et al., 2023; Fu et al., 2023; Ye
et al., 2023; Feng et al., 2022a; Liu et al., 2023).
Additionally, inspired by (Chen et al., 2024), we
can also leverage contrastive learning to capture
heterogeneity. However, unlike our work, existing
detection methods use these general techniques to
model only intra-attribute heterogeneity, while ne-
glecting cross-attribute heterogeneity. This limit
their ability to handle ever-evolving bots.

7 Conclusion

We point out that overlooking evolutionary invari-
ant and incompatibility with the past are two weak-
nesses of existing works, hindering the detection
of ever-evolving and era-diverse bots. To address
these, we propose cross-attribute heterogeneity as
invariant, and combine it with early-era bots char-
acteristics for detection. Experiments and analysis
show the effectiveness and rationale of our work in
handling ever-evolving and era-diverse bots.



Limitations

In this paper, we propose only one type of evo-
lutionary invariant, which we refer to as cross-
attribute heterogeneity. In fact, we can draw on the
idea used in designing cross-attribute heterogeneity
to mine more invariants by introducing multimodal
information. For example, if we only consider the
text modality of the posts-attribute, the bot may not
exhibit any obvious characteristics. However, if
we also consider the images attached to the posts,
cross-modal heterogeneity still exists among the
bot. This heterogeneity is determined by the bot’s
purpose. Specifically, bots cannot fully replicate all
the modal information from human posts. If they
do so, they will be unable to carry out their intended
malicious behavior via the posts-attribute. Instead,
they only steal the text modality from human posts
and hide their true intent in other modalities, such
as images or videos. Therefore, cross-modal het-
erogeneity can also be considered as an invariant.
Capturing cross-modal heterogeneity requires ad-
ditional multimodal techniques, which is why we
have not delved deeper into this aspect. We hope
future work will address this limitation.
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A Appendix

A.1 The Details of Datasets

Statistics We adopt three widely used datasets
for our experiments, including Cresci-15 (Cresci
et al., 2015), TwiBot-20 (Feng et al., 2021b) and
TwiBot-22 (Feng et al., 2022b). Table 6 presents
the statistical information of these datasets. We
follow the official setup to divide these datasets
into training, validation and test sets.
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Statistics C-15 T-20 T-22

# Human 1,950 5,237 860,057

# Bot 3,351 6,589 139,943

# User 5,301 229,580 1,000,000
# Post 2,827,757 33,488,192 88,217,457
# Edge 7,085,134 33,716,171 170,185,937

Table 6: The statistics of the datasets.
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Figure 4: The proportion of different bots in each
dataset. , and respectively represent
uncamouflaged bots, initial camouflaged bots and nearly
complete camouflaged bots.

LLM-Based Bot Type Identification Method
To study the proportions of nearly complete camou-
flaged, initial camouflaged and uncamoufalged bots
in each dataset, we propose a LLM-based bot type
identification method, which evaluates the bot’s
level of camouflage based on its posts-attribute.
Specifically, we first input the posts-attribute of
each bot into two different LLMs, including gpt-
3.5-turbo and claude-3-haiku. Next, we utilize stan-
dard zero-shot CoT (Kojima et al., 2022) to prompt
each LLM to determine whether the posts-attribute
belongs to a bot. Finally, we classify each bot
through the judgment results generated by different
LLMs. If both LLMs make the correct judgments,
we consider the bot to be a uncamouflaged bot.
And if one of LLMs makes an incorrect judgment,
we consider the bot to be an initial camouflaged bot.
Alternatively, if both LLMs make incorrect judg-
ments, we consider the bot to be a nearly complete
camouflaged bot. Figure 4 shows the results, from
which we can observe that Cresci-15 is dominated
by uncamouflaged bots, TwiBot-20 is dominated
by initial camouflaged bots and TwiBot-22 is dom-
inated by nearly complete camouflaged bots.
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Custom Dataset In §5.2, we construct two new
datasets which we refer to as CD and PD. CD in-
cludes 5,000 humans and 5,000 camouflaged bots,
and PD consists of 5,000 humans and 5,000 uncam-
ouflaged bots. Additionally, we split these datasets
into training and test sets in a ratio of 8:2.

A.2 The Details of Baselines

* CACL (Chen et al., 2024) captures heterogeneity
on graph-attribute through a contrastive learning
framework for social media bots detection.

* LMBot (Cai et al., 2024) models suspicious
features on posts-attribute by pre-training a
lanaguage model for social media bots detection.

* BotMoE (Liu et al., 2023) simultaneously cap-
tures heterogeneity on graph-attribute and twees-
attribute through a universal framework for social
media bots detection.

* BIC (Lei et al., 2023) captures heterogeneity on
twees-attribute through the attention mechanism
for social media bots detection.

* BotPercent (Tan et al., 2023) models suspicious
features on posts-attribute and graph-attribute by
integrating multiple advanced methods for social
media bots detection.

» Hays et al (Hays et al., 2023) models suspicious
features on meta-attribute and posts-attribute
through a decision tree method for social media
bots detection.

* RGT (Feng et al, 2022a) captures graph-
attribute heterogeneity by leveraging a relational
graph transformer and a semantic attention net-
work for social media bots detection.

* BotRGCN (Feng et al., 2021c) models suspi-
cious features on meta-attribute, posts-attribute
and graph-attribute by leveraging pre-trained lan-
guage model and graph convolutional neural net-
works for social media bots detection.

* SGBot (Yang et al., 2020) models suspicious
feature on meta-attribute and feeds them into
random forest classifiers for social media bots
detection.

¢ Alhosseini ef al (Alhosseini et al., 2019) models
suspicious feature on graph-attribute by lever-
aging graph convolutional neural networks for
social media bots detection.

* Wei et al (Wei and Nguyen, 2019) models sus-
picious feature on posts-attribute by leveraging
word-embeddings and bidirectional LSTMs for
social media bots detection.
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A.3 The Details of Training

Hyperparameter C-15 T-20 T-22
learning rate le-4 le-4 le-4
batch size 64 64 64
epoch 30 15 10

L2 regularization le-5 le-5 le-5
Optimizer RAdamW RAdamW RAdamW
Dropout 0.1 0.1 0.1

Table 7: Hyperparameters of training on each dataset.

Training Hyperparameters Table 7 presents the
hyperparameters settings for training on Cresci-15,
TwiBot-20 and TwiBot-22. Except for epoch, the
other hyperparameters remain consistent across all
the three datasets.

Training Overhead Our training is conducted on
an NVIDIA GeForce RTX 3090 GPU with 24GB
of memory. Training for one epoch on Cresci-15
takes approximately 0.1 GPU hours, on TwiBot-
20 requires about 0.5 GPU hours, and on TwiBot-
22 takes around 10 GPU hours. Our inference is
performed on the same device. Inference for one
epoch on Cresci-15 takes approximately 0.06 GPU
hours, on TwiBot-20 requires about 0.1 GPU hours,
and on TwiBot-22 takes around 0.8 GPU hours.

A.4 The Details of Model Architecture

Table 8 presents the details of BCH’s architecture.
Additionally, Table 9 further illustrates how the
hyperparameters in the architecture are determined.
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Name Description Value

BS Batch size, which we have already discussed in §A.3 64
IBI Boolean information, which we will introduce in Table 10 11
D Default output dimension of RoBERTa-base 768
VI Numerical information, which we will introduce in Table 10 5
HEAD Number of attention heads in the Transformer-Encoder 4
H Corresponding to 200 posts, 10 followers and 10 followings 221
W Corresponding to 200 posts, 10 followers and 10 followings 221
M; The number of output channels for the first convolutional kernel 32
M, The number of output channels for the second convolutional kernel 64
Ifrl Number of followers we leveraged in BCH 10
[fwl Number of followings we leveraged in BCH 10

Table 9: Hyperparameters of the BCH’s architecture.

Information Name Description

Boolean Information

protected Protected or not

verified Verified or not

geo_enabled Enable geo-location or not

contributors_enabled Enable contributors or not

1s_translator Tanslator or not

1s_translation_enabled Translation or not

profile_background_tile The background tile

profile_user_background_image Have background image or not

has_extended_profile Have extended profile or not

default_profile The default profile

default_profile_image The default profile image
Numerical Information

# follower Number of followers

# following Number of following

# favorites Number of likes

# statuses Number of statuses

# active_days Account creation duration

Table 10: Boolean and numerical information we used in the suspicious encoder.

14



	Introduction
	Problem Formulation
	Methodology
	Suspicious Features Encoder
	Heterogeneity Encoder
	Joint Training Strategy

	Experiment
	Experimental Setup
	Main Results
	Ablation Study

	Analysis
	Study on Ever-Evolving Bots Detection
	Study on Era-Diverse Bots Detection
	Detection with Large Language Models

	Related Work
	Conclusion
	Appendix
	The Details of Datasets
	The Details of Baselines
	The Details of Training
	The Details of Model Architecture


