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Abstract001

Social media bots detection is a crucial task002
in maintaining the health of the Internet. The003
challenge of this task is that bots are evolving004
themselves by constantly stealing information005
from human accounts, a behavior also known006
as feature camouflage, to evade detection. To007
reduce the impact of camouflage, existing meth-008
ods detect by using intra-attribute heterogeneity.009
However, our work reveals that intra-attribute010
heterogeneity is being diluted by the further011
stealing behavior of bots, hindering the devel-012
opment of these methods. To address this, we013
propose a novel concept called cross-attribute014
heterogeneity. Compared to intra-attribute het-015
erogeneity, it is less susceptible to camouflage.016
Based on this superior nature, we design a017
framework called BCH to better detect more018
advanced bots through cross-attribute hetero-019
geneity. Additionally, to enhance compatibility020
with bots from different eras, BCH incorpo-021
rates a joint training strategy. Extensive experi-022
ments shows the superiority of BCH in detect-023
ing ever-evolving and era-diverse bots, as well024
as detailed analysis highlights the benefits of025
cross-attribute heterogeneity and the necessity026
of improving detection methods compatibility.027

1 Introduction028

Social media has become an integral part of daily029

life. However, with its growing influence, social030

media bots have emerged. The bots are a type of031

special account controlled by automated or semi-032

automated programs (Davis et al., 2016; Deb et al.,033

2019; Cresci, 2020). They engage in various mali-034

cious activities on social media, severely disrupting035

the health of the Internet. Therefore, effective bot036

detection has become a critical research topic.037

To better understand the motivation behind our038

work, it is essential to first grasp the evolution of039

the bots and how their characteristics change over040

time. Figure 1(a) shows early primitive bots. The041

main characteristics of these bots are suspicious042

(c) Era3: Nearly Complete Camouflaged Advanced Bot

Verified: False    Status: 1580 
Desc: Superfans of MJ !!

· What music do you like?
· I love this song by Michael !!
· Big win, team!

: Meta-attribute

: Posts-attribute

: Graph-attribute

: Followers : Followings

: Stolen Information

: Prob. of Being Human

: Prob. of Being Bot

(a) Era1: Primitive Bot

Verified: False    Status: 1580 
Desc: Join us for the big sale!

· Come and buy a pair of shoes!
· Come and buy a basketball!
· Come and buy a jersey!

(b) Era2: Camouflaged Advanced
Bot 

· What music do you like?
· I love this song by Michael !!
· Come and buy a jersey!

≈0.99

Figure 1: The characteristics of the bots change with
their evolution. Meta-attribute provides basic informa-
tion, posts-attribute introduces posting information and
graph-attribute describes neighbor information.

features. Suspicious features are caused by bots 043

engaging in malicious activities without any cam- 044

ouflage, and their specific manifestations mainly 045

include an excessive number of statuses, a single 046

topic in posts and a neighbor community composed 047

of bots (Beskow and Carley, 2019; Lee and Kim, 048

2014; Beskow and Carley, 2018). The emergence 049

of feature camouflage alters the characteristics of 050

primitive bots and transition them into initial cam- 051

ouflage era, as shown in Figure 1(b). During this 052

era, the main characteristic of bots is heterogeneity. 053

The reason why heterogeneity can replace suspi- 054

cious features is that bots begin to evade detection 055

by stealing information from humans. The origi- 056

nal information is covered by the stolen informa- 057

tion, thereby reducing suspicious features, while 058

the stolen and original information differ in topics, 059

language styles and other aspects, thereby increas- 060

ing heterogeneity (Lei et al., 2023; Li et al., 2023). 061

Since this heterogeneity only pertains to a single 062

attribute, it is also referred to as intra-attribute het- 063

erogeneity. As camouflage nears completion, bots 064

reshape their characteristic again and evolve into 065

a new era, where they are nearly indistinguishable 066

from humans based on a single attribute, as shown 067
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in Figure 1(c). For instance, if all of a bot’s posts068

are stolen from humans, its post-attribute will no069

longer exhibit any suspicion or heterogeneity.070

Existing detection methods fail to exploit the071

invariant characteristics in bots evolution, putting072

them at disadvantages in the ongoing battle against073

evasion strategies. Early methods detect uncam-074

ouflaged primitive bots through suspicious fea-075

tures (Yang et al., 2020; Wei and Nguyen, 2019;076

Feng et al., 2021c,a, 2022a). However, the rise of077

camouflage reduces the suspicious features, hin-078

dering the development of these methods. More079

recent methods attempt to detect camouflaged bots080

through intra-attribute heterogeneity (Shi et al.,081

2023; Ye et al., 2023; Fu et al., 2023; Lei et al.,082

2023; Liu et al., 2023). However, they still remain083

vulnerable to nearly complete camouflage, as they084

focus only on intra-attribute heterogeneity, which085

also be diluted by bots’ persistent stealing behavior.086

To address this challenge, our work focuses087

on the following question: How can we discover088

invariant characteristics throughout bots evolu-089

tion and effectively capture them to detect ever-090

evolving bots? Building upon this motivation,091

we propose BCH, a Bots detection method with092

Cross-attribute Heterogeneity. BCH proposes a093

novel concept called cross-attribute heterogeneity,094

as shown in Figure 1(c). The degree of camouflage095

varies across different attributes, resulting in cross-096

attribute heterogeneity. This heterogeneity arises097

from the inherent differences in the cost of camou-098

flaging different attributes. For example, camou-099

flaging graph-attribute requires an entire account100

as the cost, whereas camouflaging posts-attribute101

only needs stealing a single post. Therefore, it is102

bound to exist in the long term and can be regarded103

as an invariant characteristic. Based on this in-104

sight, BCH first encodes different attributes using105

multiple deep learning models, and then applies106

attention mechanisms to capture cross-attribute het-107

erogeneity for final detection.108

Additionally, another crucial yet overlooked sit-109

uation is that, while more advanced bots continue110

to emerge, some residual primitive bots still remain111

undetected on social media. Therefore, detection112

efforts should not only be compatible with the fu-113

ture but also with the past. Regrettably, although114

the heterogeneity can address camouflaged bots, it115

still struggles with early-era bots, as these prim-116

itive bots lack camouflage, leading the absence117

of heterogeneity in their characteristics. Existing118

methods fail to realize the limitations of hetero-119

geneity in terms of compatibility with the past. 120

They focus solely on designing increasingly com- 121

plex frameworks to accommodate heterogeneity 122

but overlooking initial suspicious features, render- 123

ing them ineffective in handling era-diverse bots. 124

To overcome this, BCH designs two encoders to 125

separately model suspicious features and hetero- 126

geneity. Afterward, BCH use a joint training strat- 127

egy to adaptively combine these two encoders — 128

when the suspicious features of an account are more 129

pronounced, the corresponding encoder will con- 130

tribute more to the final detection, and vice versa. 131

We evaluated our method on three representa- 132

tive datasets, which respectively are dominated 133

by uncamouflaged, camouflaged, and nearly com- 134

plete camouflaged bots. The experimental results 135

show the superiority of our method in two aspects. 136

First, BCH achieves a 20.76% F1 improvement 137

on dataset dominated by nearly complete camou- 138

flaged bots, highlighting the effectiveness of cross- 139

attribute heterogeneity. Second, unlike other meth- 140

ods that excel only on era-specific datasets, BCH 141

performs excellently across all datasets, proving the 142

necessity of the multi-encoder and joint training 143

strategy. Furthermore, detailed analysis reveals the 144

key role of cross-attribute heterogeneity and joint 145

training in detection. Additionally, we explore inte- 146

grating cross-attribute heterogeneity with large lan- 147

guage models, thereby leveraging advanced NLP 148

technique to benefit bots detection task. 149

Our contributions can be summarized as follows: 150

• We are the first to leverage evolutionary invariant 151

characteristic for bots detection. It helps us to 152

better handle the ever-evolving bots. 153

• We are the first to consider the compatibility of 154

detection methods with the past. It helps us to 155

better handle the era-diverse bots. 156

• We also implement our ideas on advanced large 157

language models, opening up potential directions 158

for future research. 159

2 Problem Formulation 160

Given a user U , it consists of meta-attribute M , 161

posts-attribute T and graph-attribute G. M in- 162

troduces the user’s basic information, including 163

boolean, numerical and textual information, T in- 164

cludes the posts generated by the user, and G in- 165

volves the meta-attribute of the user’s followers 166

and followings. Table 1 shows the details of these 167

attributes. Our goal is to detect whether a user is 168

human or bot based on these attributes. 169
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Figure 2: An overall architecture of BCH. In the first step, the suspicious features encoder models suspicious
features exhibited by users and tokenizes users all three attributes. In the second step, the heterogeneity encoder
captures intra-attribute, cross-attribute and topology-aware cross-attribute heterogeneity. Finally, BCH employs
both suspicious features and heterogeneity for detection to combat ever-evolving and era-diverse bots.

3 Methodology170

Figure 2 presents an overview of BCH. It comprises171

a suspicious features encoder and a heterogeneity172

encoder. These two encoders operate during their173

respective steps and are integrated by joint training.174

§A.4 shows the details of hyperparameters involved175

in this section, such as matrix shapes and more.176

3.1 Suspicious Features Encoder177

Suspicious features encoder serves two purposes.178

The primary one is to model suspicious features179

of users, thereby helping the detection of primitive180

bots, and the secondary one is to tokenize each181

attribute of users, thereby facilitating the capture182

of heterogeneity in subsequent processes.183

Regarding the first purpose, this encoder begins184

by using two MLP blocks and the RoBERTa (Liu185

et al., 2019) to embed the boolean, numerical and186

textual information in users meta-attributes. The187

corresponding embedding results are denoted as188

rb, rv and rp. Next, this encoder combines all189

embeddings to construct the suspicious features190

embedding S. Notably, we do not use users graph-191

attribute and posts-attribute here, as (Feng et al.,192

2021c) demonstrate that leveraging meta-attribute193

alone is sufficient to handle most primitive bots.194

Regarding the second purpose, this encoder195

needs to separately tokenize users all three dis-196

tinct attributes. For meta-attribute, the suspicious197

features embedding S can be directly used as the198

tokenized result. For graph-attribute, since it is199

Symbol Type Description Example

M Tuple Meta-attribute (B,V ,P )
B List Boolean

information
Information such as
unverified and prot-
ected can be repres-
ented as [0,1]

V List Numerical
information

Information such as
12 followers and 27
followings can be r-
epresented as [12,27]

P String Textual
informatin

Information such as
user’s profile

G Tuple Graph-attribute (fr,fw)
fr List Meta-attribute

of followers
{M i

fr}
|fr|
i=1

fw List Meta-attribute
of followings

{M i
fw}

|fw|
i=1

T List Posts-attribute {ti}|T |
i=1

t String Post
A post generated by a
user

Table 1: The details of user’s attributes.

composed of the meta-attributes from users follow- 200

ers and followings, it can be tokenized in the same 201

way as the previous step. The tokenized results are 202

respectively denoted as {Si
fr}

|fr|
i=1 and {Si

fw}
|fw|
i=1 . 203

For posts-attribute, it can be tokenized using the 204

RoBERTa of this encoder. The tokenized result is 205

denoted as {rit}
|T |
i=1. Both S, {Si

fr}
|fr|
i=1, {Si

fw}
|fw|
i=1 206

and {rit}
|T |
i=1 will be forwarded as tokens to the next 207

encoder for heterogeneity capturing. 208
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3.2 Heterogeneity Encoder209

To capture heterogeneity of users, BCH includes210

a heterogeneity encoder. The structure of this en-211

coder can be roughly divided into three branches.212

The workflows of the first two branches are simi-213

lar, they are respectively designed to capture intra-214

attribute heterogeneity (IA het.) and cross-attribute215

heterogeneity (CA het.), and the last branch is216

tasked with incorporating cross-attribute hetero-217

geneity and topological information.218

Branch for Capturing IA Het. In this branch,219

BCH first organizes the tokens from the previous220

step into attribute-related sequences, including the221

follower sequence, following sequence and posts222

sequence. It then feeds them into a transformer-223

encoder to capture intra-attribute heterogeneity by224

computing their self-attention weights. The above225

process can be represented by E.q (1):226

hfr = Transformer({Si
fr}

|fr|
i=1),

hfw = Transformer({Si
fw}

|fw|
i=1 ),

ht = Transformer({ti}|T |
i=1).

(1)227

Afterward, BCH employs a CNN block to down-228

sample these weights, and then flattens the down-229

sampled results to obtain the final intra-attribute230

heterogeneity embeddings. The corresponding em-231

bedding results are denoted as h̃fr, h̃fw and h̃t.232

Branch for Capturing CA Het. The workflow233

of this branch is similar to capturing intra-attribute234

heterogeneity, with the main difference being the235

input to the transformer-encoder. Specifically, in236

this branch, BCH concatenates the user token, fol-237

lower tokens, following tokens and posts tokens238

into a single cross-attribute sequence as the in-239

put, and then captures cross-attribute heterogene-240

ity through the same operations as in the previous241

branch. The obtained cross-attribute heterogeneity242

attention weight and embedding are respectively243

denoted as hc and h̃c.244

Branch for Capturing Topology-aware CA Het.245

Social media bots often carry out malicious activi-246

ties in the form of groups, and become neighbors247

through follower or following relationships (Cresci,248

2020). This phenomenon can be described by a249

topological structure, where nodes represent users250

and edges represent follower or following relation-251

ships. In the branch of capturing cross-attribute het-252

erogeneity, BCH adopts sequential model (Trans-253

former) to process follower and following tokens,254

resulting in its inability to use the topological in- 255

formation formed by the user and its neighbors. To 256

address this, BCH designed a branch that captures 257

topology-aware cross-attribute heterogeneity. 258

Specifically, in this branch, BCH first uses the 259

obtained cross-attribute heterogeneity attention 260

weight as a guide to reconstruct the topological 261

information, as shown in E.q (2): 262

g = hc[0][1 : 1 + |fr|+ |fw|],
homfr, hetfr = Split(g[ : |fr|], k),
homfw, hetfw = Split(g[|fr| : ], k),

(2) 263

where the Split function is defined as: 264

(L1, L2) = Split(v, k),

L1 = {i | vi ∈ the largest ⌈k × |v|⌉ of v},
L2 = {j | j /∈ L1},

(3) 265

and k ∈ (0, 1] is a ratio hyperparameter, a smaller 266

k indicates higher sensitivity to heterogeneity. 267

Analyzing the results of the Split function, 268

homfr and homfw represent neighbors who are 269

assigned higher attention by the user, thus these 270

neighbors can be considered homogeneous with the 271

user. Conversely, hetfr and hetfw denotes neigh- 272

bors who are assigned lower attention, and these 273

neighbors can be regarded as heterogeneous with 274

the user. For instance, the heterogeneous neigh- 275

bors may arise when a bot intentionally following 276

a human account to camouflage itself. Therefore, 277

in summary, BCH achieves a integration of cross- 278

attribute heterogeneity and topological information 279

through the reconstruction. 280

BCH then adopts a R-GCN (Schlichtkrull et al., 281

2018) block, to embed the reconstructed topologi- 282

cal information, and finally extracts current users 283

embedding from topological information to repre- 284

sent topology-aware cross-attribute heterogeneity. 285

The above process can be represented by E.q (4): 286

htc =RGCN_Block(G),
h̃tc = htc[0],

(4) 287

where the G is defined as: 288

V = {S}∪{Si
fr}

|fr|
i=1 ∪ {Si

fw}
|fw|
i=1 ,

E = {< S, vj , rj >| vj ∈ V\{S}, rj ∈ R},
G = (V, E),

(5) 289

and R = {0, 1, 2, 3} respectively represents the 290

four reconstructed relationships, including homo- 291

geneous follower, homogeneous following, hetero- 292

geneous follower and heterogeneous following. 293
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3.3 Joint Training Strategy294

The encoders of BCH provide two different groups295

of bots’ characteristics. The embedding S from296

suspicious features encoder provide suspicious fea-297

tures for detecting uncamouflaged bots, and the298

embeddings h̃fr, h̃fw, h̃t, h̃c and h̃tc from hetero-299

geneity encoder provide heterogeneity for detecting300

camouflaged bots. To adaptively leverage different301

characteristics, BCH designs a confidence calcula-302

tion formula, as shown in E.q (6):303

α =
H(ŷs)

−1

H(ŷs)
−1 +H(ŷh)

−1
(6)304

where H(ŷ∗) denotes the entropy function:305

H(ŷ∗) = −
1∑

i=0

p(ŷ
(i)
∗ ) log p(ŷ

(i)
∗ ), (7)306

and ŷs and ŷh are prediction vectors generated by307

employing softmax to each group of embeddings.308

The confidence α ∈ [0, 1]. When BCH is more309

certain about the judgment based on suspicious fea-310

tures (i.e., when |ŷ(0)s − ŷ
(1)
s | is larger), α increases.311

Conversely, when BCH is more certain about the312

heterogeneity, α decreases. Therefore, BCH treats313

it as a weighting coefficient to construct final loss314

function, as shown in E.q (8):315

L = α · Ls + (1− α) · Lh, (8)316

where Ls and Lh denotes losses from ys and yh.317

4 Experiment318

4.1 Experimental Setup319

Datasets We claim that BCH can address ever-320

evolving and era-diverse bots effectively. There-321

fore, we want to select three different types of322

datasets, where the first consists of nearly complete323

camouflaged bots, the second consists of initial324

camouflaged bots and the third consists of uncam-325

ouflaged bots. Using datasets with such nature will326

make our experimental results more convincing.327

To achieve this, we propose a LLM-based bot328

type identification method, as shown in §A.1. We329

apply it to multiple widely used datasets and ul-330

timately select the three most representative ones.331

The chosen datasets include TwiBot-22 (Feng et al.,332

2022b), dominated by nearly fully camouflaged333

bots; TwiBot-20 (Feng et al., 2021b), dominated334

by initial camouflaged bots; and Cresci-15 (Cresci335

et al., 2015), dominated by uncamouflaged bots.336

§A.1 presents more details of these datasets.337

Baselines We select eleven advanced baselines 338

for comparison, which include CACL(Chen et al., 339

2024), LMBot (Cai et al., 2024), BIC (Lei et al., 340

2023), BotPercent (Tan et al., 2023), BotMoE (Liu 341

et al., 2023), Hays et al (Hays et al., 2023), 342

RGT (Feng et al., 2022a), BotRGCN (Feng et al., 343

2021c), SGBot (Yang et al., 2020), Alhosseini et 344

al (Alhosseini et al., 2019), Wei et al (Wei and 345

Nguyen, 2019). They cover methods for detecting 346

early-era primitive bots by modeling suspicious 347

features, as well as methods for detecting camou- 348

flaged bots by capturing intra-attribute heterogene- 349

ity. §A.2 shows more details of these baselines. 350

4.2 Main Results 351

Table 2 reports the main experimental results of 352

BCH across three datasets, from which we can ob- 353

serve that BCH consistently outperforms all base- 354

lines on all datasets, verifying the effectiveness 355

of BCH. Additionally, further analysis of Table 2 356

leads us to the following three conclusions. 357

Heterogeneity is more effective than suspi- 358

cious features in combating camouflaged bots. 359

On TwiBot-20 and TwiBot-22, the two best meth- 360

ods both leverage heterogeneity. The best method 361

is BCH, compared to methods based on suspicious 362

features, it improves the F1 by 0.72% and 20.89% 363

on these two datasets. The second-best method 364

is BotMoE, outperforming the methods based on 365

suspicious features by 0.40% and 0.13% on F1. 366

These improvements highlight the importance of 367

heterogeneity in detecting camouflaged bots. 368

Cross-attribute heterogeneity is more effec- 369

tive than intra-attribute heterogeneity in de- 370

tecting nearly complete camouflaged bots. On 371

TwiBot-22, there is a significant gap between the 372

two best methods. As the best method, our pro- 373

posed BCH surpasses the second-best BotMoE by 374

20.76% on F1. This indicates the notable potential 375

of cross-attribute heterogeneity in handling nearly 376

complete camouflaged bots. 377

Compared to relying on era-specific charac- 378

teristics solely, incorporating suspicious features 379

and heterogeneity facilitates BCH identifying 380

era-diverse bots. Existing methods use either sus- 381

picious features or heterogeneity alone, hindering 382

their ability to achieve the best for bots from differ- 383

ent eras. For instance, some methods based on sus- 384

picious features, such as LMBot, even performer 385

better compared to those based on heterogeneity, 386

like BotMoE, on Cresci-15 dataset. In comparison, 387

our BCH outperforms all methods on all datasets by 388
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Method S I C Cresci-15 TwiBot-20 TwiBot-22
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Methods For Uncamouflaged Bots
Wei et al. ✓ ✗ ✗ 96.10 (1.1) 77.91 (0.1) 71.30 (0.2) 54.00 (2.7) 70.20 (0.1) 46.80 (1.4)

Alhosseini et al. ✓ ✗ ✗ 89.60 (0.6) 87.69 (1.2) 59.90 (0.6) 57.81 (0.4) 47.72 (8.7) 29.99 (3.0)
SGBot ✓ ✗ ✗ 77.10 (0.2) 77.91 (0.1) 81.57 (0.3) 84.90 (0.4) 75.11 (0.1) 36.59 (0.2)

BotRGCN ✓ ✗ ✗ 96.50 (0.7) 97.30 (0.5) 83.27 (0.7) 85.26 (0.7) 77.67 (1.1) 57.50 (1.4)
Hays et al. ✓ ✗ ✗ 98.00 (0.0) 97.56 (0.4) 82.10 (0.2) 86.00 (0.0) - -
BotPercent ✓ ✗ ✗ - - 84.53 (0.3) 86.00 (0.5) 73.10 (0.0) 50.64 (0.1)

LMBot ✓ ✗ ✗ 98.31 (0.4) 98.71 (0.1) 85.63 (0.2) 87.61 (0.3) - -

Methods For Initial Camouflaged Bots
RGT ✗ ✓ ✗ 97.20 (0.3) 97.78 (0.2) 86.60 (0.4) 87.06 (0.4) 76.50 (0.4) 42.94 (1.9)
BIC ✗ ✓ ✗ 96.13 (0.9) 96.94 (0.2) 87.33 (0.2) 87.86 (0.2) - -

BotMoE ✗ ✓ ✗ 98.00 (0.2) 98.30 (0.4) 87.30 (0.1) 88.01 (0.3) 77.81 (0.5) 57.63 (0.7)
CACL ✗ ✓ ✗ 97.65 (2.0) 98.12 (1.3) 85.12 (1.0) 87.28 (0.8) 75.38 (0.0) 49.59 (0.8)

Methods For Nearly Complete Camouflaged and Era-Diverse Bots
BCH (Ours) ✓ ✓ ✓ 98.50 (0.0) 98.83 (0.5) 87.41 (0.1) 88.33 (0.2) 78.38 (0.3) 78.39 (0.5)

Table 2: Results on Cresci-15, TwiBot-20 and TwiBot-22. We run each experiment 5 times with different random
seeds, and report their average results and variance. S , I and C indicate whether suspicious features, intra- or cross-
attribute heterogeneity are leveraged in corresponding method. - indicates the absence of results due to the limitations
in dataset or method. Bold and underline indicate the best and second results. Additionally, some methods use extra
posts and neighbors compared to others. To ensure fairness, we limit the number of posts/neighbors to 200/20 in
reproduction, which may result in slight differences between our results and those reported in the original paper.

Settings Average-F1 Decline
BCH (Ours) 88.5 -
(a) Effect of Different Attributes in CA Het

1. w/o meta-attribute 86.8 1.7
2. w/o graph-attribute 86.5 2.0
3. w/o posts-attribute 86.1 2.4

(b) Effect of Different Heterogeneity
1. w/o IA het. 85.3 3.2
2. w/o CA het. 83.9 4.6
3. w/o CA het. (topology) 82.0 6.5

(c) Effect of Joint Training Strategy
1. α = 0 84.8 3.7
2. α = 1 81.2 7.3

Table 3: Ablations on the effect of different attributes
in cross-attribute heterogeneity, the effect of different
heterogeneity, and the effect of the joint training strategy.
we report the average F1 across all three datasets.

leveraging both suspicious features and heterogene-389

ity. This suggests that using more comprehensive390

characteristics helps enhance the compatibility of391

detection methods with both past and future.392

4.3 Ablation Study393

Effect of Different Attributes in Cross-attribute394

Heterogeneity As shown in Table 3(a), we con-395

duct ablations by gradually removing different at-396

tributes from the cross-attribute sequence. In real-397

ity, due to the varying costs of camouflage, graph-398

attribute is the least camouflaged, as disguising399

it requires entire accounts. In contrast, the posts- 400

attribute is the most camouflaged, as it only needs 401

to steal posts. As for meta-attribute, its level of 402

camouflage falls in between. Therefore, remov- 403

ing either of the first two attributes, compared 404

to meta-attribute, will more severely weaken the 405

overall cross-attribute heterogeneity, thereby caus- 406

ing greater impacts on detection. The ablation re- 407

sults clearly reflect this real-world scenario. Com- 408

pared to meta-attribute, removing graph-attribute 409

and posts-attribute result in more significant per- 410

formance degradation, showing the reliability of 411

cross-attribute heterogeneity we capture. 412

Effect of Different Heterogeneity As shown in 413

Table 3(b), we conduct ablations by removing dif- 414

ferent branches from the heterogeneous encoder. 415

The results show that removing any branch leads 416

to performance decline, indicating that each het- 417

erogeneity contributes to detection. Moreover, the 418

performance drop from removing cross-attribute 419

heterogeneity far exceeds removing intra-attribute 420

heterogeneity, highlighting the importance of cross- 421

attribute heterogeneity; and the performance loss 422

caused by removing topology-aware heterogeneity 423

is greater than regular heterogeneity, emphasizing 424

the necessity of adopting graph-based models. 425

Effect of Joint Training Strategy As shown in 426

Table 3(c), we conduct ablations by fixing α in 427
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Figure 3: (a) Blue, orange and green respectively rep-
resent detection with only suspicious features, intra-
attribute heterogeneity and cross-attribute heterogeneity.
g1 to g7 represent bots from early to nearest. (b) The
red line indicates the downward trend of entropy.

E.q (8) to 0 and 1. Fixing α means that BCH will428

no longer consider which era the bots belong to.429

When α = 0, BCH treats all bots as camouflaged,430

while α = 1, BCH treats all bots as uncamou-431

flaged. Both configurations result in performance432

drop, suggesting that suspicious features and het-433

erogeneity cannot fully replace each other, thus434

highlighting the importance of joint training.435

5 Analysis436

5.1 Study on Ever-Evolving Bots Detection437

Cross-Attribute Heterogeneity Is an Evolution-438

ary Invariant From an overall timeline perspec-439

tive, recent bots are more advanced than earlier440

ones. Therefore, we can study the changes of dif-441

ferent characteristics during the evolution of bots442

by grouping the bots through their account cre-443

ation time. Based on this idea, we first divide the444

bots in the test set of TwiBot-22 into seven groups.445

Next, by using the training set of TwiBot-22, we446

train three different versions of BCH, including:447

detection only uses suspicious features, detection448

only uses intra-attribute heterogeneity, and detec-449

tion only uses cross-attribute heterogeneity. Fi-450

nally, we analyze the performance of these three451

versions on different groups. Figure 3(a) presents452

the results, from which we can draw two conclu-453

sions. (i) With the evolve of bots, relying solely on454

suspicious features or inta-attribute heterogeneity 455

leads to performance drops, indicating they are not 456

evolution invariants and cannot be used to detect 457

ever-evolving bots. (ii) In contrast, detection using 458

only cross-attribute heterogeneity maintains consis- 459

tently outstanding performance, suggesting it is an 460

evolution invariant and thus can be used to effec- 461

tively handle ever-evolving bots. Furthermore, we 462

observe that for earlier bots, performance with het- 463

erogeneity is worse than suspicious features, which 464

also shows the necessity of joint training. 465

Attention Weights Can Capture Cross-attribute 466

Heterogeneity We want to analyze whether the 467

attention weights in BCH can reliability capture 468

cross-attribute heterogeneity. To this end, we first 469

use the bot type identification method mentioned 470

in §4.1 to classify the bots in TwiBot-22 into three 471

groups, including: uncamouflaged, initially cam- 472

ouflaged, and nearly complete camouflaged bots. 473

Next, when testing the BCH trained on TwiBot- 474

22, we visualize the cross-attribute heterogeneity 475

weight hc of BCH by calculating its entropy. Fig- 476

ure 3(b) presents the results, from which we can 477

observe that hc corresponding to bots has a lower 478

entropy, differing from humans. This indicates that 479

if hc is used to represent cross-attribute heterogene- 480

ity, the cross-attribute heterogeneity of bots will 481

be more stable than humans, and the stability will 482

increase as the degree of camouflage approaches 483

completeness. This consistency with reality demon- 484

strates the effectiveness of attention weights in cap- 485

turing cross-attribute heterogeneity. 486

5.2 Study on Era-Diverse Bots Detection 487

Method Train
Test CD PD Average-F1

BCH
CD

73.4 75.4 74.4
BotMoE 64.3 70.2 67.3
LMBot 62.0 44.9 53.5
BCH

PD
46.1 82.9 64.5

BotMoE 46.0 81.6 63.8
LMBot 45.6 82.5 64.1

Table 4: The cross-dataset validation experiment.

To demonstrate that BCH is more compatible, 488

we first construct two datasets using TwiBot-22, 489

named CD (Camouflaged Dataset) and PD (Primi- 490

tive Dataset). Both datasets contains same human 491

samples but differ in bots, where CD includes only 492

camouflaged bots and PD consists only uncamou- 493

flaged bots. Next, we select LMBot and BotMoE as 494
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Method Accuracy F1-Score
BotSay (Feng et al., 2024) 89.9 91.5
BotSay (Llama2-7B) 83.5 83.5
BotSay + CA Het (Llama2-7B) 86.6 86.2

Table 5: Bots Detection with LLMs. The original Bot-
Say use GPT-3.5-Turbo as its backbone. To reduce costs,
we reproduce it on Llama2-7B. As an exploratory exper-
iment, we select small-scale TwiBot-20 as our dataset.

our baselines, where the former relies exclusively495

on suspicious features and the latter solely on het-496

erogeneity. Afterward, we split CD and PD into497

train/test subsets, and perform cross-dataset valida-498

tion for BCH, LMBot and BotMoE using different499

subsets. Table 4 shows the experimental results,500

from which we can observe that BCH achieves the501

best performance on the unselected bots type, re-502

gardless of whether it is trained on camouflaged or503

uncamouflaged bots, indicating that BCH possesses504

the ability to be compatible with both the past and505

the future through its joint training strategy.506

5.3 Detection with Large Language Models507

Existing LLM-based bots detection methods still508

rely on traditional concepts of suspicious features509

and intra-attribute heterogeneity, which may limit510

the full potential of LLMs. To address this, we511

enable LLMs to capture cross-attribute heterogene-512

ity through a two-stage training strategy. Specifi-513

cally, in the first stage, we randomly replace one514

of a user’s meta-attribute, graph-attribute or posts-515

attribute by copying attribute from others. The516

LLMs are then trained to identify which attribute517

has been replaced, making them more sensitive to518

heterogeneity across different attributes. As for519

the second stage, LLMs are trained to determine520

whether a user is a bot based on its three origi-521

nal (unreplaced) attributes. We adopt method pro-522

posed by (Feng et al., 2024) as our comparison,523

and use the same approach as it to convert users524

all attributes into text for compatibility with LLMs.525

Table 5 shows the results, which show that intro-526

ducing cross-attribute heterogeneity significantly527

enhances the detection capabilities of LLMs.528

6 Related Work529

Social Media Bots Detection Early detection530

methods fall into three groups based on the at-531

tributes of users they use. The first group focuses532

on meta-attribute, leveraging traditional machine533

learning algorithms and manually designed fea-534

tures to model suspicious features (Lee and Kim, 535

2014; Beskow and Carley, 2018, 2019; Yang et al., 536

2020; Hays et al., 2023; Wu et al., 2023b). The 537

second group targets posts-attribute, employing 538

NLP techniques to model suspicious features (Wei 539

and Nguyen, 2019; Kudugunta and Ferrara, 2018; 540

Heidari and Jones, 2020; Luo et al., 2020; Wu 541

et al., 2023a; Cai et al., 2024). The third group uti- 542

lizes graph-attribute, representing social media as a 543

graph and applying graph-based machine learning 544

to model suspicious features (Feng et al., 2021c,a; 545

Magelinski et al., 2020; Alhosseini et al., 2019; 546

Feng et al., 2021c; Alothali et al., 2023; Tan et al., 547

2023). Although these methods can effectively de- 548

tect primitive uncamouflaged bots by analyzing spe- 549

cific suspicious features, the limited consideration 550

of heterogeneity constrains their further develop- 551

ment, particularly in the face of feature camouflage. 552

In contrast, our work jointly models suspicious 553

features and heterogeneity, which significantly en- 554

hance the adaptability of our proposed method. 555

Heterogeneity Modeling Recent detection meth- 556

ods emphasize heterogeneity. They often use tech- 557

niques adapted from general domain to model het- 558

erogeneity. We outline the widely used general 559

heterogeneity modeling methods. For textual data, 560

we can follow the work of (Bobur et al., 2020; 561

Lei et al., 2023), capturing heterogeneity by us- 562

ing the attention weights. For graph data, we can 563

capture heterogeneity using heterogeneous GNNs, 564

as shown in (Shi et al., 2023; Fu et al., 2023; Ye 565

et al., 2023; Feng et al., 2022a; Liu et al., 2023). 566

Additionally, inspired by (Chen et al., 2024), we 567

can also leverage contrastive learning to capture 568

heterogeneity. However, unlike our work, existing 569

detection methods use these general techniques to 570

model only intra-attribute heterogeneity, while ne- 571

glecting cross-attribute heterogeneity. This limit 572

their ability to handle ever-evolving bots. 573

7 Conclusion 574

We point out that overlooking evolutionary invari- 575

ant and incompatibility with the past are two weak- 576

nesses of existing works, hindering the detection 577

of ever-evolving and era-diverse bots. To address 578

these, we propose cross-attribute heterogeneity as 579

invariant, and combine it with early-era bots char- 580

acteristics for detection. Experiments and analysis 581

show the effectiveness and rationale of our work in 582

handling ever-evolving and era-diverse bots. 583
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Limitations584

In this paper, we propose only one type of evo-585

lutionary invariant, which we refer to as cross-586

attribute heterogeneity. In fact, we can draw on the587

idea used in designing cross-attribute heterogeneity588

to mine more invariants by introducing multimodal589

information. For example, if we only consider the590

text modality of the posts-attribute, the bot may not591

exhibit any obvious characteristics. However, if592

we also consider the images attached to the posts,593

cross-modal heterogeneity still exists among the594

bot. This heterogeneity is determined by the bot’s595

purpose. Specifically, bots cannot fully replicate all596

the modal information from human posts. If they597

do so, they will be unable to carry out their intended598

malicious behavior via the posts-attribute. Instead,599

they only steal the text modality from human posts600

and hide their true intent in other modalities, such601

as images or videos. Therefore, cross-modal het-602

erogeneity can also be considered as an invariant.603

Capturing cross-modal heterogeneity requires ad-604

ditional multimodal techniques, which is why we605

have not delved deeper into this aspect. We hope606

future work will address this limitation.607
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A Appendix849

A.1 The Details of Datasets850

Statistics We adopt three widely used datasets851

for our experiments, including Cresci-15 (Cresci852

et al., 2015), TwiBot-20 (Feng et al., 2021b) and853

TwiBot-22 (Feng et al., 2022b). Table 6 presents854

the statistical information of these datasets. We855

follow the official setup to divide these datasets856

into training, validation and test sets.857

Statistics C-15 T-20 T-22

# Human 1,950 5,237 860,057
# Bot 3,351 6,589 139,943
# User 5,301 229,580 1,000,000
# Post 2,827,757 33,488,192 88,217,457
# Edge 7,085,134 33,716,171 170,185,937

Table 6: The statistics of the datasets.

Cresci-15 TwiBot-20 TwiBot-22

40

30

20

10
Pr
op
ot
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n

50

Figure 4: The proportion of different bots in each
dataset. Blue, orange and green respectively represent
uncamouflaged bots, initial camouflaged bots and nearly
complete camouflaged bots.

LLM-Based Bot Type Identification Method 858

To study the proportions of nearly complete camou- 859

flaged, initial camouflaged and uncamoufalged bots 860

in each dataset, we propose a LLM-based bot type 861

identification method, which evaluates the bot’s 862

level of camouflage based on its posts-attribute. 863

Specifically, we first input the posts-attribute of 864

each bot into two different LLMs, including gpt- 865

3.5-turbo and claude-3-haiku. Next, we utilize stan- 866

dard zero-shot CoT (Kojima et al., 2022) to prompt 867

each LLM to determine whether the posts-attribute 868

belongs to a bot. Finally, we classify each bot 869

through the judgment results generated by different 870

LLMs. If both LLMs make the correct judgments, 871

we consider the bot to be a uncamouflaged bot. 872

And if one of LLMs makes an incorrect judgment, 873

we consider the bot to be an initial camouflaged bot. 874

Alternatively, if both LLMs make incorrect judg- 875

ments, we consider the bot to be a nearly complete 876

camouflaged bot. Figure 4 shows the results, from 877

which we can observe that Cresci-15 is dominated 878

by uncamouflaged bots, TwiBot-20 is dominated 879

by initial camouflaged bots and TwiBot-22 is dom- 880

inated by nearly complete camouflaged bots. 881
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Custom Dataset In §5.2, we construct two new882

datasets which we refer to as CD and PD. CD in-883

cludes 5,000 humans and 5,000 camouflaged bots,884

and PD consists of 5,000 humans and 5,000 uncam-885

ouflaged bots. Additionally, we split these datasets886

into training and test sets in a ratio of 8:2.887

A.2 The Details of Baselines888

• CACL (Chen et al., 2024) captures heterogeneity889

on graph-attribute through a contrastive learning890

framework for social media bots detection.891

• LMBot (Cai et al., 2024) models suspicious892

features on posts-attribute by pre-training a893

lanaguage model for social media bots detection.894

• BotMoE (Liu et al., 2023) simultaneously cap-895

tures heterogeneity on graph-attribute and twees-896

attribute through a universal framework for social897

media bots detection.898

• BIC (Lei et al., 2023) captures heterogeneity on899

twees-attribute through the attention mechanism900

for social media bots detection.901

• BotPercent (Tan et al., 2023) models suspicious902

features on posts-attribute and graph-attribute by903

integrating multiple advanced methods for social904

media bots detection.905

• Hays et al (Hays et al., 2023) models suspicious906

features on meta-attribute and posts-attribute907

through a decision tree method for social media908

bots detection.909

• RGT (Feng et al., 2022a) captures graph-910

attribute heterogeneity by leveraging a relational911

graph transformer and a semantic attention net-912

work for social media bots detection.913

• BotRGCN (Feng et al., 2021c) models suspi-914

cious features on meta-attribute, posts-attribute915

and graph-attribute by leveraging pre-trained lan-916

guage model and graph convolutional neural net-917

works for social media bots detection.918

• SGBot (Yang et al., 2020) models suspicious919

feature on meta-attribute and feeds them into920

random forest classifiers for social media bots921

detection.922

• Alhosseini et al (Alhosseini et al., 2019) models923

suspicious feature on graph-attribute by lever-924

aging graph convolutional neural networks for925

social media bots detection.926

• Wei et al (Wei and Nguyen, 2019) models sus-927

picious feature on posts-attribute by leveraging928

word-embeddings and bidirectional LSTMs for929

social media bots detection.930

A.3 The Details of Training 931

Hyperparameter C-15 T-20 T-22
learning rate 1e-4 1e-4 1e-4
batch size 64 64 64
epoch 30 15 10
L2 regularization 1e-5 1e-5 1e-5
Optimizer RAdamW RAdamW RAdamW
Dropout 0.1 0.1 0.1

Table 7: Hyperparameters of training on each dataset.

Training Hyperparameters Table 7 presents the 932

hyperparameters settings for training on Cresci-15, 933

TwiBot-20 and TwiBot-22. Except for epoch, the 934

other hyperparameters remain consistent across all 935

the three datasets. 936

Training Overhead Our training is conducted on 937

an NVIDIA GeForce RTX 3090 GPU with 24GB 938

of memory. Training for one epoch on Cresci-15 939

takes approximately 0.1 GPU hours, on TwiBot- 940

20 requires about 0.5 GPU hours, and on TwiBot- 941

22 takes around 10 GPU hours. Our inference is 942

performed on the same device. Inference for one 943

epoch on Cresci-15 takes approximately 0.06 GPU 944

hours, on TwiBot-20 requires about 0.1 GPU hours, 945

and on TwiBot-22 takes around 0.8 GPU hours. 946

A.4 The Details of Model Architecture 947

Table 8 presents the details of BCH’s architecture. 948

Additionally, Table 9 further illustrates how the 949

hyperparameters in the architecture are determined. 950
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Name Description Value

BS Batch size, which we have already discussed in §A.3 64
|B| Boolean information, which we will introduce in Table 10 11
D Default output dimension of RoBERTa-base 768
|V| Numerical information, which we will introduce in Table 10 5
HEAD Number of attention heads in the Transformer-Encoder 4
H Corresponding to 200 posts, 10 followers and 10 followings 221
W Corresponding to 200 posts, 10 followers and 10 followings 221
M1 The number of output channels for the first convolutional kernel 32
M2 The number of output channels for the second convolutional kernel 64
|fr| Number of followers we leveraged in BCH 10
|fw| Number of followings we leveraged in BCH 10

Table 9: Hyperparameters of the BCH’s architecture.

Information Name Description

Boolean Information

protected Protected or not
verified Verified or not
geo_enabled Enable geo-location or not
contributors_enabled Enable contributors or not
is_translator Tanslator or not
is_translation_enabled Translation or not
profile_background_tile The background tile
profile_user_background_image Have background image or not
has_extended_profile Have extended profile or not
default_profile The default profile
default_profile_image The default profile image

Numerical Information

# follower Number of followers
# following Number of following
# favorites Number of likes
# statuses Number of statuses
# active_days Account creation duration

Table 10: Boolean and numerical information we used in the suspicious encoder.
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