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ABSTRACT

Latent representations play a critical role in diffusion-based audio generation. We
observe that Mel-spectrograms exhibit an approximate power-law spectrum that
naturally aligns with diffusion’s coarse-to-fine denoising process, whereas wave-
form variational autoencoder (VAE) latents display nearly uniform energy across
channels. To bridge this gap, we introduce channel-span masking, an operation
that, in expectation, behaves like a rectangular window over channels and thus
acts as a low-pass filter in the channel–frequency domain, increasing channel lo-
cality. The induced locality steepens the latent spectral slope toward a power-law
distribution and yields up to 2–4× faster convergence of Diffusion Transformer
(DiT) training on audio generation tasks, while preserving reconstruction fidelity
and compression ratio. Experimental results show that our model performs on par
with, or better than, competitive baselines under the same conditions. Our codes
are available at https://anonymous.4open.science/r/lafa-F2A2

1 INTRODUCTION

Figure 1: Comparison of convergence speed
between a vanilla VAE and a VAE with
LAFA, using SAO-DiT and ETTA-DiT on
the SongDescriber dataset.

The Mel-spectrograms has long been the represen-
tation of choice for audio generation tasks, espe-
cially when incorporated with diffusion models (Le
et al., 2023; Forsgren & Martiros, 2022; Liu et al.,
2022; Zhu et al., 2023). This preference seems un-
usual in deep learning, where hand-crafted features
are typically overshadowed by learnable counter-
parts, yet Mel-spectrograms offer two key advan-
tages. First, it enjoys promising interpretability with
semantic richness; Second, it is capable to repre-
sent frequency components in decibel scale, align-
ing with human perceptual biases and the inductive
priors of generative models.

Diffusion models usually follow a coarse-to-fine
synthesis paradigm(Rissanen et al., 2022; Falck
et al., 2025). Natural images exhibit approximate
power-law power spectral density (PSD) of the form
1/fα, and a similar regularity has also been ob-
served in Mel-spectrograms(Haro et al., 2012b). Under Gaussian noising, the forward process pref-
erentially corrupts high frequencies below long frequency components, enabling the reverse process
to reconstruct low-frequency structures first and progressively add fine details. This spectral order-
ing complements Mel’s inherent low-frequency emphasis, directing diffusion capacity to regions
most sensitive to human perception.

However, in long-form audio generation scenarios, high-resolution Mel-spectrograms are often re-
quired for high-fidelity reconstruction, e.g. 44.1 kHz, which poses challenges for existing generative
models. Latent diffusion models mitigate this by leveraging VAEs to map signals to compact latent
spaces, enabling efficient denoising(Rombach et al., 2022). Yet, as shown in Figure 2, we observe
that compressed audio latents often exhibit amplified high-frequency energy along the channel axis,
possibly deviating from the Mel power-law bias and also undermining the spectral autoregression
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Figure 2: (a) Power spectral density (PSD) of Mel spectrogram vs. VAE latent. Mel exhibits a
power-law decay along the channel axis, whereas VAE latent retain more high-frequency energy. (b)
PSD of SAO-VAE latent vs. LAFA latent: LAFA suppresses high-frequency components, yielding
a PSD closer to a Mel spectrogram. The slope α is reported as the spectral decay exponent.

essential for diffusion models. This motivates us to pursue the elaborate design of a representation
that unifies mel-like structural inductive bias with VAE compression efficiency.

We conduct a visualization-based analysis of VAE latents and find that certain channels encode pure
noise, which not only degrades reconstruction fidelity but also introduces high-entropy information
that hinders diffusion modeling. This phenomenon becomes more pronounced as the channel dimen-
sionality increases, suggesting that larger-capacity VAEs do not necessarily yield better generative
performance.

Mask modeling has been widely used as a self-supervised learning strategy to enhance latent en-
coders. Typically, masking is applied along the time axis for audio, or on patches for images and
videos. The task requires the decoder to reconstruct masked tokens from neighboring unmasked
tokens, thereby encouraging the encoder to produce smoother latents that facilitate prediction.

Motivated by this insight, we introduce Latent Flow MAE (LAFA), a masked VAE bottleneck.
Specifically, we apply span masking along the latent channel dimension, with a causal mask to im-
pose monotonic order along the channel axis. Our experiments show that this approach improves
local correlations across channels, revealing structured locality in the latent representation. Theo-
retically, we demonstrate that mask modeling functions as a low-pass filter in the spectral domain.
We show that channel-span masking acts as a rectangular window in the channel axis, equivalent to
a convolution in the frequency domain.

Contributions. (i) Analysis. We provide the first systematic study of the channel axis in audio
VAEs, framing it as an object of geometric and spectral design for diffusion. To our knowledge,
this is the first theoretical treatment of mask modeling as a low-pass filter. (ii) Method. We propose
LAFA, a simple and plug-in VAE bottleneck that performs masked latent modeling with a flow-based
latent decoder, producing clean latents for downstream training. LAFA combines the spectral bias
of Mel-spectrograms with the compression capacity of a VAE, serving as an advanced alternative to
Mel features. (iii) Empirics. We present comprehensive evaluations on audio and music generation
tasks. LAFA improves sampling quality, accelerates DiT convergence by 2–4×, and generalizes
effectively across DiT architectures and diffusion objectives.

2 BACKGROUND

2.1 TEXT TO AUDIO SYSTEM

Non-autoregressive (NAR) systems generate in parallel and model signals more globally via iterative
refinement in diffusion models. Spectrogram-space models (e.g., Riffusion (Forsgren & Martiros,
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2022), MusicLDM (Chen et al., 2023)) denoise directly in the time–frequency domain, while latent-
diffusion systems first compress audio into a continuous latent with a variational autoencoder (VAE)
and perform denoising there before decoding to waveform, as in AudioLDM(Liu et al., 2023),Au-
dioLDM2 (Liu et al., 2024), Stable Audio Open (Evans et al., 2025), Noise2Music (Huang et al.,
2023), Moûsai (Schneider et al., 2023), and two-stage pipelines like MusicFlow that bridge semantic
units to acoustic latents (Prajwal et al., 2024). In the latent-diffusion regime, the VAE is more than a
compressor; it is a design lever. Its channel count and frame rate, the choice of prior distribution and
the strength of regularization, and the latent-space geometry they induce (e.g., locality and spectral
bias) materially affect the trainability of the denoising backbone, the speed of convergence, and the
final fidelity achievable under a fixed compute budget. Consequently, contemporary systems often
operate directly in a VAE latent space without extensive discussion of representation design.

2.2 REGULARIZATION OF VAE

VAE regularization significantly shapes the latent space. Starting with LDM(Rombach et al., 2021),
the KL loss has been commonly used to constrain the latent space, assisting in the supervision of
the perceptual model and maximizing channel decoupling, closer to perception. VA-VAE(Yao et al.,
2025) explored various perceptual models in detail. Furthermore, it was discovered that the KL
loss does not necessarily preserve the information most conducive to generation. EQ-VAE(Kouzelis
et al., 2025) and SE(Skorokhodov et al., 2025) proposed constraining the high-frequency compo-
nents of the representation space by aligning to low-frequency information. DITO(Chen et al.,
2025) removes KL divergence and uses noise perturbation as a bottleneck.

2.3 MASKED SELF SUPERVISED LEARNING

Channel regularization in audio VAEs is relatively underexplored, so we draw on insights from
masked self-supervised learning (SSL). Along the time axis, wav2vec (Schneider et al., 2019) and
wav2vec 2.0 (Baevski et al., 2020) predict masked/future spans in a unidirectional setup; subsequent
works emphasize bidirectional context, e.g., HuBERT and BEST-RQ (Chiu et al., 2022) use tem-
poral span masking to predict hidden units from both sides of the context. In the time–frequency
regime, AudioMAE (Huang et al., 2022) and BEATs (Chen et al., 2022) extend masked autoencod-
ing to spectrograms, learning joint time–frequency structure with high-ratio masking, inspired by
the vision MAE framework (He et al., 2021).

Although masked SSL was developed for understanding tasks, its representations are now widely
used in generation pipelines: w2v-BERT (Chung et al., 2021) style semantic units are adopted as
intermediate targets/tokens in AudioLM-like systems (Liu et al., 2024); HuBERTHsu et al. (2021)
representations supervise the first stage in MusicFlow (Prajwal et al., 2024); and features derived
from AudioMAE are used as semantic guidance (Liu et al., 2024). Because SSL focuses on semantic
representation rather than exact reconstruction, many systems employ a two-stage design: learn
semantic tokens with SSL, then map semantics to acoustic latents. Recent work further distills SSL
features into tokenizers/codecs to stabilize generative training (Ye et al., 2025; Ahasan et al., 2024).

3 SPECTRAL BIAS AND LOCALITY OF LATENT SPACE

How do spectral distributions differ between real-world audio representations and VAE latents, and
how do these differences affect diffusion model convergence? In Section 3.1 we analyze the spectral
statistics of Mel features and VAE latents, showing that Mel features exhibit a power-law spec-
tral bias, whereas VAE latents deviate from this trend with disproportionately large high-frequency
components. In Section 3.2 we relate these phenomena to latent locality, showing via correlation
structure that Mel features are more locally correlated than VAE latents, especially as latent dimen-
sionality grows.

3.1 POWER-LAW SPECTRAL BIAS

The data distribution shapes both the forward noising process and the learned reverse dynamics of
diffusion models (Ho et al., 2020) and is fruitfully examined through its spectral statistics (Wang &
Pehlevan, 2025). Power-law structure is ubiquitous across natural signals-images (Torralba & Oliva,
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(e) 64dim+LAFA

Figure 3: Channel correlation heat maps of different features. (a–e) show pairwise channel correla-
tions for Mel-spectrograms and VAEs. As the VAE channel dimension increases, channel locality
decreases and deviates from the Mel-spectrogram structure. LAFA, illustrated on the 64-dim VAE,
restores locality in the latent space. Locality is quantified by the Local Predictability Index (LPI):
(a) Mel-spectrogram, LPI = 0.42; (b) 32-dim VAE, LPI = 0.26; (c) 64-dim VAE, LPI = 0.10; (d)
128-dim VAE, LPI = 0.09; (e) 64-dim VAE + LAFA, LPI = 0.30.

2003), audio(Torralba & Oliva, 2003), and video (Attias & Schreiner, 1997) and prior work reports
a power-law spectral bias in Mel (Haro et al., 2012a; Dieleman, 2024). In contrast, the spectral
properties of compressed waveform latents remain underexplored.

We estimate the spectral decay exponent by fitting a power law to the latent power spectrum. Con-
cretely, given the radially averaged spectrum S(f), we discard the DC bin, move to log–log coordi-
nates, and perform a least-squares linear fit logS(f) ≈ −α log f + b; the slope α is reported as the
spectral decay exponent. A complete description of the power spectrum computation is provided in
the Appendix C.

For Mel features, X is the log-magnitude spectrogram (time ×Mel), and we compute the 2-D DFT
and radial averaging per clip to obtain S(f), where low f reflects slow variations over time and Mel
and high f captures fine fluctuations; for VAE latents, X is the (time × channel) latent map, and we
apply the same 2-D DFT and radial averaging independently for each batch item to obtain S(f) in
the same way.

We analyze the frequency profiles of SAO-type VAEs trained for 1M steps, which is a regime where
latent standard deviation and validation metrics stabilize. For each model we average spectra over
200 clips and multiple temporal windows. Figure 2 compares Mel space and VAE latents: (i) Mel
features follow a power law with α ≈ 2 for both amplitude and aggregate variance across windows;
(ii) VAE latents exhibit comparatively inflated high-frequency mass, increasingly deviating from the
power-law slope as the channel count grows.

With an isotropic N (0, I) prior, increasing the channel count gives the encoder more axes along
which to distribute information while remaining close to a factorized prior. The optimization there-
fore favors decorrelated, near-independent channels, yielding rapidly varying features across chan-
nels and elevating graph-high-frequency components. This complicates the latent geometry and, we
hypothesize, undermines the desired coarse-to-fine learning dynamics in diffusion.

3.2 LOCALITY OF LATENT SPACE

We posit that channel locality—nearby channels carrying related information—helps preserve the
power-law spectral bias characteristic of natural signals.

Local Predictability Index (LPIλ) For each channel c, predict it from its ±r neighbors(where
r = ⌈λC⌉) using ridge regression over all samples. Higher LPIλ indicates more local redundancy.

Definition. With latents z ∈ RB×C×T , flatten samples N = B ·T . For each c,

LPIλ(z) =
1

C

C−1∑
c=0

R2
(
zc ← {zc−r, . . . , zc−1, zc+1, . . . , zc+r}

)
, r = ⌈λC⌉.

Using 200 samples, with λ as 0.06, we compute channel-wise correlations and plot channel-
correlation heat maps. Figure 3 shows: i) Mel features exhibit strong local correlation along the
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Mel-bin axis. ii) A 32-dimensional VAE attains the highest LPI, with a block-local structure most
reminiscent of Mel. iii) As channel count increases, VAE correlations diminish and LPI drops.

Due to compression pressure from the reconstruction loss, lower-dimensional latents enforce heavier
feature reuse across nearby channels, promoting locality. Higher-dimensional latents reduce redun-
dancy by decorrelating channels to represent distinct factors, which improves pure compression
but degrades locality and disrupts the latent manifold’s smooth structure-undesirable for continuous
semantics and for stable, hierarchical generation in diffusion models.

4 METHOD

Motivated by the observations in Section 3, we introduce LAFA, a plug-in bottleneck that reshapes
an existing VAE’s latent bottleneck using channel-mask modeling. In masked autoencoders (MAE),
a context encoder processes masked inputs and a decoder predicts the masked latents. Unlike clas-
sical MAEs that mask the origin signal, LAFA masks latent space, directly learning pressure toward
abstract latent structure while avoiding costly training on brittle waveform details. Figure 4 outlines
the approach.

4.1 CHANNEL-MASK MODELING

Along the time axis, audio exhibits strong short-range temporal dependencies. Along the channel
axis, however, pronounced locality typically arises only under high compression (see Section 3.2).
In higher-dimensional VAEs, channels tend to decorrelate, yielding a brittle, highly oscillatory latent
geometry that complicates generative prediction. To increase locality and regularity across channels,
we impose a mask-modeling task on the channel axis.

Mask ratio and spatial distribution are critical for self-supervised efficiency. If the mask ratio is too
small, the task is trivial and the encoder learns little (Bardes et al., 2024; Song et al., 2025). If masks
are uniformly scattered point-wise across channels, a decoder can rely on near-neighbor interpola-
tion, again weakening pressure to learn abstract structure. Inspired by BERT-style span masking, we
replace uniform per-channel masking with contiguous masked spans, forcing the decoder to rely on
distant channels and thereby strengthening channel-wise locality in the learned representation.

Specifically, we let C be the channel dimension and ρ ∈ (0, 1) the target mask ratio. The total
masked length is Lmask =

⌊
ρC

⌋
. Then, sample a span count M ∼ Uniform{1, . . . ,m}. m is the

hyperparameter of the max span count. Partition Lmask into M spans with random lengths that sum
to Lmask, each truncated to at most ⌈Lmask/M⌉. Start indices are randomly placed while there is no
overlap between spans. This stochasticity prevents the encoder from overfitting to a fixed masking
pattern.

Following Evans et al. (2025), we optionally impose a causal attention mask along the channel
index, encouraging reliance on global context while enforcing a monotone ordering over channels.
In addition, the model masks all channels with a certain probability. This training strategy allows
the model to learn unconditional generation and achieve better generalization.

4.2 THEORETICAL ANALYSIS OF SPAN MASKING

Proposition 1 Let S be a circulant low-pass with DFT H(k). For masks M that zero a uniformly
random length w contiguous span and inpainting AMz = Mz + (I −M)Sz, the expected pretext
loss equals

EM∥AMz − z∥2 =

C−1∑
k=0

λk|zk|2, λk ≈
w

C
|1−H(k)|2,

i.e., a frequency-weighted quadratic form that penalizes high channel frequencies.

Proof of Proposition 1 Let channels be a cyclic 1-D grid of length C; at each time t we work with
z ∈ RC . A mask M is diagonal with 1 on observed (unmasked) entries and 0 on a contiguous span
of length w. A (linearized) inpainting map is AM so that

ẑ ≈ AMz, L = EM∥AMz − z∥22 = z⊤Γz, Γ := EM

[
(AM − I)⊤(AM − I)

]
⪰ 0.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ViT 
Encoder

Rectified 
Flow 

Decoder

VAE 
latents

VAE 
Encoder

VAE 
Decoder

M

M

Predicted 
flowNoise

❄ ❄

ViT
latents

(i) Span Mask

M Masked Channel ❄ Frozen

M M M

Channel Size  C

Span 0 Span 1

(ii) Causal Mask

M MM M

     0         1         …    Lmask

Cross-attention

Figure 4: LAFA Architecture and Masking Strategy. Left: training pipeline. A frozen VAE encoder
maps audio to latents; contiguous channel spans M are (optionally causally) masked and fed to a ViT
encoder, whose output conditions a rectified-flow decoder via cross-attention to inpaint the masked
channels. A frozen VAE decoder then reconstructs the audio. Right: illustration of span masking
and causal masking along the channel axis.

Thus, training the encoder minimizes Ex[z(x)
⊤Γz(x)], i.e., it suppresses the eigendirections of Γ

with large eigenvalues. If Γ is diagonal in the channel-DFT basis, then the eigenvectors are the
channel Fourier modes and the eigenvalues are frequency weights.

Let S be a fixed circulant smoothing operator (e.g., moving average of width r or a triangular
smoother). Define the inpainting:

AMz = Mz + (I −M)Sz ⇒ AM − I = (I −M)(S − I).

Then
Γ = EM

[
(I −M)(S − I)⊤(S − I)(I −M)

]
.

For span locations drawn uniformly over the ring, EM [I−M ] = pI with p = w/C, and by rotational
symmetry the expectation above is circulant. A standard calculation (or replacing (I −M) by its
mean pI which becomes exact as spans are uniformly distributed over many steps) yields the tight
approximation

Γ ≈ p(S − I)⊤(S − I).

Since S is circulant, it has DFT response H(k). Therefore the DFT basis vectors uk are eigenvectors
of Γ with eigenvalues

λk ≈ p|1−H(k)|2.

Key property. For any low-pass S, |H(k)| is close to 1 at small k and decays with k. Hence
|1−H(k)| is small near k = 0 and large at high k. So high channel frequencies are penalized more,
pushing the clean latent distribution toward channel-smooth signals. Hence longer spans (w larger)
amplify the preference for smooth (low-k) latents.

4.3 MODEL ARCHITECTURE

LAFA augments a pretrained VAE with: i) a ViT-style latent encoder operating on masked channels
and ii) a Rectified Flow latent decoder.

Encoder A frozen VAE encoder maps a stereo waveform x ∈ RT×2 to latents Z ∈ RN×C , where
N is the latent frame count and C the channel dimension. Latents are mapped to hidden dim through
Linear layer, and then position embedding is added to latents.The ViT encoder consumes the masked
latents Z̃ and outputs contextual representations h ∈ RN×H .

Decoder Referring to the original MAE, using the VIT decoder and trained with MSE, the recon-
structed audio is blurry, with blurred harmonics. We attribute this to the blurring nature of the MSE
loss and the high mask ratio. In contrast, LAFA uses flow matching as the reconstruction objective
and can achieve reconstruction results close to the original VAE at high mask ratios. in latent space,
conditioned on h via cross-attention. Let Z0 denote the clean latents and ε ∼ N (0, I). We sample
t ∼ U [0, 1] and form Zt = (1 − t)Z0 + t ε. The decoder predicts the vector fields U = ε − Z0

conditioned on (Zt, h, t).

6
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Table 1: Generation performance on SongDescriber and AudioCaps. Stage I toggles LAFA fine-
tuning of the SAO-VAE latents (SAO-VAE = vanilla; + LAFA = with LAFA). Stage II trains a
Diffusion Transformer with either v-pred (v-parameterization) or RF (rectified flow).

Stage II
Model / Objective

Stage I SongDescriber (Music) AudioCaps (Sound)

CLAPscore ↑ KLPaSST ↓ FDopenl3 ↓ CLAPscore ↑ KLPaSST ↓ FDopenl3 ↓

DiT-SAO / v-pred SAO-VAE 0.32 0.63 134.73 0.25 2.94 104.35
+ LAFA 0.34 0.55 102.24 0.29 2.64 94.38

DiT-SAO / RF SAO-VAE 0.35 0.59 122.78 0.22 2.84 94.35
+ LAFA 0.35 0.59 92.26 0.26 2.58 83.08

DiT-ETTA / v-pred SAO-VAE 0.34 0.72 149.26 0.17 2.52 110.25
+ LAFA 0.34 0.63 140.35 0.17 2.20 93.93

Training Objective We use the standard rectified-flow loss

LRF =
∥∥Û − (ε− Z0)

∥∥2
2
, Û = Dec(Zt; h, t).

By predicting masked channels in latent space, LAFA pushes the encoder toward higher-level, se-
mantically coherent structure, while delegating low-level detail reconstruction to the frozen VAE
decoder. This division of labor preserves locality and spectral regularity in the latent geometry,
which we find beneficial for downstream diffusion training and convergence.

5 EXPERIMENTS

Data We train all models on open-source audio from FreeSound (FSD) and FMA. Following the
Creative-Commons (CC) filtering protocol used in SAO, we start from a list of 486,493 CC-licensed
recordings and remove overlaps to ensure no copyrighted content enters training. This yields a
corpus of 436,602 recordings (6,207 h): 6,353 recordings from FMA (444 h) and 430,249 from
FSD (5,763 h), all under CC-0, CC-BY, or CC-Sampling+.

Evaluation We evaluate latent audio diffusion models with three complementary metrics: i)
FDOpenL3 (lower is better): a Fréchet distance computed on OpenL3 embeddings, assessing overall
realism and distributional closeness to references. ii) KLPaSST (lower is better): KL divergence be-
tween PaSST tag posteriors of generated and reference audio, measuring semantic correspondence.
iii) CLAP score (higher is better): text–audio similarity from a Contrastive Language–Audio Pre-
training model, measuring prompt adherence. For sound generation, we evaluate on AudioCaps; for
music generation, on Song Describer. For reconstruction, we report STFT error, mel-spectrogram
error, and FD metrics computed on the same evaluation sets.

5.1 TRAINING DETAILS

VAE bottleneck (LAFA) We train on 30 sec stereo audio chunks; clips shorter than 30 sec are
padded with a training-time mask to maintain efficiency. We adopt SAO as the base waveform VAE
(widely used in recent open-source systems) and fine-tune our LAFA module for 600k steps with
batch size 64 and learning rate 5e-5.

Diffusion transformers (DiTs) All DiTs are trained for 1M steps. For ablation studies, we train
each model for 250k steps unless otherwise stated. i) SAO-style DiT (v-objective): 24 layers, 24
heads, width 1536. Conditioning signals include text (T5-base encoder), timing (for variable-length
synthesis), and diffusion timestep (sinusoidal embeddings). Conditioning is injected via cross-
attention (text, timing) and/or prepended tokens (timing, timestep). ii) ETTA-style DiT: adopts
AdaLN timestep conditioning; zero-initializes the final projection to match the VAE latent mean;
uses GELU (tanh approximation) and rotary position embeddings (RoPE) with base 16,384.

5.2 BOOSTING DIT CONVERGENCE

We evaluate LAFA as a drop-in enhancement to an existing waveform VAE by comparing SAO-VAE
with and without LAFA, across both diffusion objectives and architectures. As shown in Table 1,
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Table 2: Generation performance on AudioCaps (higher ↑ / lower ↓ is better). † Contains AudioCaps
in training data. ∗Fine-tuned on AudioCaps.

Stage II Stage I Channels/sr CLAPscore ↑ KLPaSST ↓ FDopenl3 ↓

Ground truth – – 0.50 – –

AudioLDM2 † MelVAE 2/16kHz 0.41 1.76 178.53
TANGO2 † MelVAE 1/16kHz 0.45 1.09 189.15
SAO SAO-VAE 2/44.1kHz 0.28 2.25 82.65
DiT-SAO SAO-VAE + LAFA 2/44.1kHz 0.26 2.58 83.08
DiT-SAO-FT-AC∗ SAO-VAE + LAFA 2/44.1kHz 0.41 1.76 64.72

Table 3: Generation performance on SongDescriber. We use MusicGen-large and AudioLDM2-
music as the comparison open-source baselines. ∗ denotes training on in-house data.

Stage II Stage I Channels/sr CLAPscore ↑ KLPaSST ↓ FDopenl3 ↓

Ground truth – – 0.36 – –

MusicGen∗ Encodec 1/32kHz 0.30 0.51 178.70
AudioLDM2 MelVAE 2/16kHz 0.31 0.66 286.24
SAO SAO-VAE 2/44.1kHz 0.36 0.61 119.53
DiT-SAO SAO-VAE + LAFA 2/44.1kHz 0.35 0.59 79.32

LAFA improves generation performance under both v-prediction and rectified flow, with rectified
flow further offering superior training efficiency on audio and music generation. For diffusion archi-
tectures, LAFA consistently accelerates DiT convergence. Although DiT-ETTA is strong in its orig-
inal setting, our experiments—trained on 430k samples versus over 1M in the original work—show
that DiT-ETTA does not surpass DiT-SAO under limited data.

We also compare LAFA against state-of-the-art baselines. On AudioCaps (Table 2), training-data
mismatch (Appendix B) prevents our DiT-SAO baseline from matching the official checkpoint, but
LAFA still improves generation quality and matches SOTA FD. After finetuning on AudioCaps,
LAFA yields substantial gains in CLAP and KL, outperforming AudioLDM2 under matched data. In
music generation (Table 3), LAFA-augmented latents achieve better FD than open-source baselines,
indicating that LAFA unlocks additional latent capacity. With more training data, CLAP scores will
further improve (Appendix E), consistent with the scaling of text–audio alignment.

5.3 BALANCING INDUCTIVE BIAS AND HIGH COMPRESSION

To verify that LAFA does not degrade reconstruction quality, we evaluate both sound and music
(Table 4) by comparing ground-truth and reconstructed audio using standard metrics: STFT dis-
tance, Mel distance, and SI-SDR (via the auraloss library (Steinmetz & Reiss, 2020), with default
settings). The results show that the flow latent decoder predicts clean latents with reconstruction
quality comparable to the original SAO-VAE across datasets. LAFA can introduce slight temporal
misalignment relative to the ground truth, which mildly increases alignment-sensitive metrics such
as STFT distance. However, perceptual evaluations in Appendix F confirm that LAFA does not
compromise perceived reconstruction quality.

5.4 ABLATION STUDIES

Our goal is to introduce Mel-like spectral bias in the VAE latent space. In order to clarify the
contribution of every parts in LAFA, we conduct ablation studies as follows.

Component-wise Ablation of Mask Strategy. We perform a component-wise ablation to assess
the effect of LAFA’s two masking designs: a causal mask, which imposes a monotonic channel or-
dering so that earlier channels predict later ones, and a span mask, which acts as a low-pass filter
along this sequence. Using SongDescriber generation results at 50k training steps (where the DiT
has converged), Table 5 shows that both masks are crucial. Using only the causal mask leads to
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Table 4: Reconstruction performance on SongDescriber and AudioCaps. Lower is better for all
metrics. Meldis and STFTdis denote Mel and STFT distances, respectively.

Model Sampling rate Frame rate Channel size SongDescriber (Music) AudioCaps (Sound)

Meldis ↓ STFTdis ↓ Meldis ↓ STFTdis ↓

AudioLDM 16kHz 25.0Hz 8× 16 0.97 1.43 1.49 1.31
SAO-VAE 44.1kHz 21.5Hz 64 0.77 1.29 0.75 0.86

+ LAFA 44.1kHz 21.5Hz 64 0.82 1.26 0.98 1.37

Table 5: Ablation Study in Mask Strategy. Results shows that both causal and span mask contributes
to the LAFA benefits, removing either of them causes a significant generation quality drop.

Causal Mask Span Mask CLAPscore ↑ KLPaSST ↓ FDopenl3 ↓

✓ 0.28 0.68 176.04
✓ 0.29 0.64 119.42

✓ ✓ 0.30 0.63 95.38

a skewed latent space in which earlier channels carry disproportionately more information, which
is misaligned with the channel-agnostic nature of diffusion. Using only the span mask, without
any ordering constraint on channels, weakens local correlations and hampers inpainting and en-
coder–decoder training, despite slightly smoothing the latent space. Combining both masks yields
clear improvements, reducing FD from 168.69 to 95.38, indicating that their joint use is necessary.

Design Choice of Latent Decoder. To predict the clean latent after masking, we employ a rectified-
flow latent decoder, which iteratively refines the latent variables and reduces the training-inference
gap. To assess its contribution, we replace the rectified-flow decoder with a standard ViT decoder
trained with an MSE loss on the masked latents. Even in this setting, the ViT encoder produces
latents that outperform the vanilla VAE baseline, improving FD from 168.69 to 126.27 and indicating
that the masking strategy alone benefits the latent geometry. However, under the same masking
scheme, using the rectified-flow denoising decoder further reduces FD to 114.50. This suggests that
the flow-based decoder further purifies the latent distribution, aligns it more closely with the VAE
latent manifold, and enhances audio fidelity.

30 50 70 100
Mask ratio (%)

120

140

160

FD
 

170.17

134.98

116.28 115.50VAE baseline

Figure 5: Masking ratio. Generation
quality increases monotonically with
the masking ratio. The y-axis reports
FD on SongDescriber.

Hyperparameter Study. The masking ratio p is the
key hyperparameter in our masking strategy, as it deter-
mines the maximum span length Lmask = p × channel
dim. At each step, we uniformly sample a mask length
from [0, Lmask] and apply span masks along the channel
axis. Our ablations on the masking ratio show that: (1)
at p = 0.3, LAFA does not yet exhibit a clear advantage
than VAE baseline in audio generation, but the generation
quality consistently improves as p increases; (2) the best
performance is achieved at p = 1.0. This aligns with our
theoretical analysis in Section 4.2, where larger masked
spans impose a stronger penalty on high-frequency com-
ponents, yielding smoother latents that are better suited
for diffusion modeling.

Flow Decoder Inference Steps. We employ a flow-
based latent decoder to predict clean latents, whose iter-
ative sampling alleviates the train–inference mismatch of conventional VAE decoders. To study the
effect of the number of inference steps in the rectified flow decoder on generation quality, we vary
the number of steps and report the results in Table 7. As the number of inference steps increases,
the FD consistently decreases from 102.24 to 96.57, while CLAP and KL remain nearly unchanged.
This indicates that the denoising decoder enhances overall perceptual audio quality without altering
the semantic content of the generations. In practice, we adopt 2 steps for all generation experiments
in this paper, as it provides a favorable trade-off between inference efficiency and generation quality.

9
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Table 6: Ablation Study on Latent Decoder. Starting from the SAO-VAE baseline, we replace the
LAFA latent decoder with a ViT decoder and compare both variants against LAFA. The results show
that the masking strategy alone refines the latent space, while the denoise decoder further enhances
generation quality through iterative sampling.

Model CLAPscore ↑ KLPaSST ↓ FDopenl3 ↓

baseline(SAO-VAE) 0.27 0.79 168.69
+LAFA w/ ViT Decoder 0.33 0.71 126.27
+LAFA w/ Denoise Decoder 0.29 0.69 114.50

Table 7: Inference steps of the Flow Latent Decoder. The largest improvement in reconstruction
quality occurs when increasing the number of steps from 1 to 2, while the generation quality contin-
ues to improve as the number of inference steps increases.

Steps MSE↓ Meldis↓ CLAPscore ↑ KLPaSST ↓ FDopenl3 ↓

1 0.29 1.75 0.34 0.55 102.24
2 0.31 1.64 0.35 0.55 101.54
10 0.41 1.58 0.35 0.57 98.84

100 0.49 1.60 0.34 0.55 96.57

Experiments on latent dimensionality. To assess the generalizability of LAFA, we train SAO-
VAEs with 64 and 128 dimensional latents. Although the 128-dim VAE is expected to yield better
generation quality due to its higher reconstruction fidelity(see Appendix D), its latent space exhibits
stronger high-frequency components (as observed in Figure 2), which imposes a heavier modeling
burden on the DiT; consequently, its FD deteriorates from 175.57 in 64-dim to 313.68. Applying
LAFA to both models, we observe that (1) LAFA provides consistent gains over the vanilla VAE for
both 64 and 128 dimensions—particularly for the 128-dim case, where FD is reduced from 313.68
to 207.57, a 34% improvement, indicating that LAFA suppresses high-frequency components and
makes the latent space more amenable to diffusion modeling; and (2) the 128-dim + LAFA model
still does not surpass the 64-dim + LAFA variant. We attribute this to the increased complexity of
modeling a larger latent space under the current LAFA capacity. Scaling up LAFA (Esser et al.,
2024) is a promising direction for future work.

Table 8: Generalizability across latent dimensionality. 64d/128d denote VAE latent dimensionalities
of 64 and 128, respectively. LAFA yields consistent improvements at both latent sizes, indicating
that its benefits hold across different continuous-latent configurations.

Model CLAPscore ↑ KLPaSST ↓ FDopenl3 ↓

SAO-VAE-64d 0.21 1.02 175.57
SAO-VAE-64d + LAFA 0.24 0.90 154.95
SAO-VAE-128d 0.18 1.12 313.68
SAO-VAE-128d + LAFA 0.20 0.85 207.57

6 CONCLUSION

This paper addresses the trade-off between the efficiency of waveform VAEs and the beneficial
power-law spectral bias of Mel-spectrograms for audio diffusion. We show that VAE latents lack
channel-wise locality, injecting excess high-frequency energy that conflicts with diffusion’s coarse-
to-fine dynamics. To address this, we introduce LAFA, a masked VAE bottleneck that reshapes
latents via channel-span masking, effectively acting as a low-pass filter in the channel-frequency
domain. LAFA accelerates Diffusion Transformer convergence and attains state-of-the-art or com-
petitive audio and music generation performance without sacrificing reconstruction fidelity.
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Martı́n Haro, Joan Serrà, Álvaro Corral, and Perfecto Herrera. Power-law distribution in encoded
mfcc frames of speech, music, and environmental sound signals. In Proceedings of the 21st
International Conference on World Wide Web, pp. 895–902, 2012b.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked au-
toencoders are scalable vision learners. CoRR, abs/2111.06377, 2021. URL https://arxiv.
org/abs/2111.06377.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851, 2020. URL https:
//arxiv.org/abs/2006.11239.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. CoRR, abs/2106.07447, 2021. URL https://arxiv.org/abs/
2106.07447.

Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wojciech Galuba, Florian
Metze, and Christoph Feichtenhofer. Masked autoencoders that listen. Advances in Neural Infor-
mation Processing Systems, 35:28708–28720, 2022.

Qingqing Huang, Daniel S. Park, Tao Wang, Timo I. Denk, Andy Ly, Nanxin Chen, Zhengdong
Zhang, Zhishuai Zhang, Jiahui Yu, Christian Frank, Jesse Engel, Quoc V. Le, William Chan,
Zhifeng Chen, and Wei Han. Noise2music: Text-conditioned music generation with diffu-
sion models. arXiv preprint arXiv:2302.03917, 2023. doi: 10.48550/arXiv.2302.03917. URL
https://arxiv.org/abs/2302.03917.

Theodoros Kouzelis, Ioannis Kakogeorgiou, Spyros Gidaris, and Nikos Komodakis. Eq-vae:
Equivariance regularized latent space for improved generative image modeling. arXiv preprint
arXiv:2502.09509, 2025.

Matthew Le, Apoorv Vyas, Bowen Shi, Brian Karrer, Leda Sari, Rashel Moritz, Mary Williamson,
Vimal Manohar, Yossi Adi, Jay Mahadeokar, et al. Voicebox: Text-guided multilingual universal
speech generation at scale. Advances in neural information processing systems, 36:14005–14034,
2023.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Pro-
ceedings of Machine Learning Research, pp. 21450–21474. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/liu23f.html.

Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Qiao Tian, Yuping Wang, Wenwu
Wang, Yuxuan Wang, and Mark D Plumbley. Audioldm 2: Learning holistic audio generation
with self-supervised pretraining. IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, 32:2871–2883, 2024.

Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. Diffsinger: Singing voice synthesis
via shallow diffusion mechanism. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pp. 11020–11028, 2022.

KR Prajwal, Bowen Shi, Matthew Lee, Apoorv Vyas, Andros Tjandra, Mahi Luthra, Baishan Guo,
Huiyu Wang, Triantafyllos Afouras, David Kant, et al. Musicflow: Cascaded flow matching for
text guided music generation. arXiv preprint arXiv:2410.20478, 2024.

Severi Rissanen, Markus Heinonen, and Arno Solin. Generative modelling with inverse heat dissi-
pation. arXiv preprint arXiv:2206.13397, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. CoRR, abs/2112.10752, 2021. URL
https://arxiv.org/abs/2112.10752.

12

https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2106.07447
https://arxiv.org/abs/2106.07447
https://arxiv.org/abs/2302.03917
https://proceedings.mlr.press/v202/liu23f.html
https://proceedings.mlr.press/v202/liu23f.html
https://arxiv.org/abs/2112.10752


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Evan Ruzanski and V Chandrasekar. Scale filtering for improved nowcasting performance in a
high-resolution x-band radar network. IEEE transactions on geoscience and remote sensing, 49
(6):2296–2307, 2011.

Flavio Schneider, Ojasv Kamal, Zhijing Jin, and Bernhard Schölkopf. Moûsai: Text-to-music
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A DECLARATION OF LLM USAGE

We used large language models (LLMs) only as general-purpose assistive tools for grammar pol-
ishing, minor rephrasing, and LaTeX formatting suggestions. All technical content ideas, methods,
theory, experiments, hyperparameters, and analysis—was written and verified by the authors. We
are fully responsible for the paper.

B MUSIC TRAIN DATA ORGANIZATION AND REPRODUCIBILITY

We construct natural-language prompts for text-to-music training from FMA metadata. SAO doesn’t
release their captions of training data, but only give the organization strategy for the original music
metas, we follow their guide to construct the captions, which presented in the Appendix B, but
maybe a concern for the mismatched performance.

Following Stable Audio Open, we sample a random subset of the fields year, genre, album, title, and
artist, concatenate them into a prompt, shuffle the field order, and randomly vary casing. For half of
the examples we retain field labels and join with commas; for the other half we join the values only.
Unlike Stable Audio Open, we always keep the genre field, as it most directly characterizes musical
content.

C ESTIMATING SPECTRAL DECAY IN LATENT SPACE

Specifically, we conduct spectral analysis as follows: Let T and C denote the numbers of time
steps and channels, respectively, and let X ∈ RT×C . Denote by X̂[kt, kc] the 2-D discrete Fourier
transform (DFT) of X with the DC component at (0, 0) and frequency indices

kt ∈ {−s⌊T/2⌋, . . . , ⌈T/2⌉ − 1}, kc ∈ {−⌊C/2⌋, . . . , ⌈C/2⌉ − 1}.

Define the 2-D power spectrum P (kt, kc) =
∣∣X̂[kt, kc]

∣∣2.

We use the radially averaged power spectrum (RAPSD) as implemented in pysteps library1, follow-
ing the method of Ruzanski & Chandrasekar (2011). Let l = max(T,C) and, for each integer radius
r ∈ {0, 1, . . . , ⌊l/2⌋}, define the ring

Rr =
{
(kt, kc) : round

(√
k2t + k2c

)
= r

}
.

We associate each ring with a normalized radial frequency

f =
r

l
∈
[
0, 1

2

]
,

and define the one-dimensional (radially averaged) spectrum by

S(f) ≡ 1

|Rr|
∑

(kt,kc)∈Rr

P (kt, kc).

Given the radially frequency S(f), we discard the DC bin and work with log–frequency coordinates
ℓ = log f . After interpolating S(f) onto an equally spaced log grid {ℓ̃j}Jj=1, we fit

logS(ℓ̃j) ≈ −αℓ̃j + b

by least squares. The slope α estimates the spectral decay exponent, with

S(f) ∝ f−α

1https://github.com/pySTEPS/pysteps
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D RECONSTRUCTION OF DIFFERENT VAES

We train SAO-VAEs with different latent dimensionalities and evaluate their reconstruction per-
formance on SongDescriber, as in Table 9. As expected, increasing the latent capacity improves
reconstruction fidelity, with both Mel distance and STFT distance decreasing monotonically. How-
ever, although one might anticipate the best generation performance at 128 dimensions, this is not
the case (Section 8). Higher-dimensional latents introduce stronger high-frequency components to
preserve fine-grained audio details (Figure 2) and reduce locality in the latent space (Figure 3),
which increases the burden on the generative model. LAFA is specifically designed to mitigate this
reconstruction–generation trade-off.

Table 9: Reconstruction of different SAO-VAEs on SongDescriber.

Model Meldis ↓ STFTdis

SAO-VAE-32d 0.93 1.22
SAO-VAE-64d 0.75 1.09
SAO-VAE-128d 0.59 0.94

E INFLUENCE OF DATA ON CLAP PERFORMANCE

We evaluate generation performance under a fixed prompt construction strategy while varying the
amount of training data, as in Table10. As the dataset size increases from 90k to 430k examples, the
CLAP score improves from 0.31 to 0.35. These results indicate that CLAP performance depends
not only on caption quality but also on the volume of training data.

Table 10: CLAP scores on SongDescriber with varying amounts of training data. The scores improve
consistently as the pretraining corpus is scaled up.

Training data CLAPscore ↑

90k 0.31
430k 0.35

F MORE RECONSTRUCTION PERFORMANCE OF LAFA

LAFA may exhibit slight temporal misalignment with the ground-truth audio due to the rectified-
flow latent decoder: the predicted latent can reconstruct audio that is perceptually similar but not
sample-aligned, which leads to higher errors on temporal alignment metrics such as STFT distance.
However, when evaluated with perceptual metrics such as Tjandra et al. (2025), LAFA does not
compromise reconstruction quality. Its perceptual fidelity matches that of the vanilla WaveVAE and
significantly surpasses MelVAE.

Table 11: Perceptual Quality of VAEs on AudioCaps.

Model CE ↑ CU ↑ PC ↑ PQ ↑

AudioLDM 3.38 4.89 3.28 5.52
SAO-VAE 3.47 4.84 3.50 5.68
+ LAFA 3.48 4.86 3.43 5.70

G VISUALIZATION OF VAE CHANNELS

To assess whether information is evenly distributed across latent channels—or whether some chan-
nels are crucial while others are redundant, we perform a residual visualization experiment. Given a
latent representation z ∈ RB×C×T , we systematically ablate each channel and examine its effect on
reconstruction. Specifically, for each channel c ∈ {1, . . . , C}, we replace the corresponding latent
activations with Gaussian noise of small variance, while keeping the remaining channels unchanged.
The perturbed latent code is then decoded back into waveform space.
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Figure 6: Residual Information of each channel in 32dim VAE

From the reconstructed waveform, we compute the difference with respect to the ground-truth signal
in the mel-spectrogram domain. These residual mel-spectrograms capture the contribution of each
channel to the reconstruction. By arranging the residuals across all channels in a grid, we obtain
a visual map of channel-wise effects, where stronger and more structured residuals indicate chan-
nels encoding salient information, whereas weak or noise-like residuals suggest redundant or noisy
channels.
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