LISTENS LIKE MEL: BOOSTING LATENT AUDIO DIFFU-SION WITH CHANNEL LOCALITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Latent representations critically shape diffusion-based audio generation. We observe that Mel-spectrograms exhibit an approximate power-law spectrum that aligns with diffusion's coarse-to-fine denoising, whereas waveform variational autoencoder (VAE) latents are nearly equal intensity along the channel axis. We introduce channel-span masking, which in expectation behaves like a rectangular window across channels and thus a low-pass filter in the channel-frequency domain, increasing channel locality. The induced locality steepens latent spectral slopes toward a power-law distribution and leads to up to 4x faster convergence of Diffusion Transformer (DiT) training on audio generation tasks, while maintaining reconstruction fidelity and compression. Experimental results show that the model performs comparably to, or better than, competitive baselines under the same conditions. Our code and checkpoint are available at https://anonymous.4open.science/r/lafa-F2A2.

1 Introduction

The Mel-spectrograms has long been the representation of choice for audio generation tasks, especially when incorporated with diffusion models (Le et al., 2023; Forsgren & Martiros, 2022; Liu et al., 2022; Zhu et al., 2023). This preference seems unusual in deep learning, where hand-crafted features are typically overshadowed by learnable counterparts, yet Mel-spectrograms offer two key advantages. First, it enjoys promising interpretability with semantic richness; Second, it is capable to represent frequency components in decibel scale, aligning with human perceptual biases and the inductive priors of generative models.

Diffusion models usually follow a coarse-to-fine synthesis paradigm(Rissanen et al., 2022; Falck et al., 2025). Natural images exhibit approximate power-law power spectral density (PSD) of the form $1/f^{\alpha}$, and a similar regularity has also been ob-

Figure 1: Comparison of convergence speed between a vanilla VAE and a VAE with LAFA, using SAO-DiT and ETTA-DiT on the SongDescriber dataset.

served in Mel-spectrograms(Haro et al., 2012b). Under Gaussian noising, the forward process preferentially corrupts high frequencies below long frequency components, enabling the reverse process to reconstruct low-frequency structures first and progressively add fine details. This spectral ordering complements Mel's inherent low-frequency emphasis, directing diffusion capacity to regions most sensitive to human perception.

However, in long-form audio generation scenarios, high-resolution Mel-spectrograms are often required for high-fidelity reconstruction, *e.g.* 44.1 kHz, which poses challenges for existing generative models. Latent diffusion models mitigate this by leveraging VAEs to map signals to compact latent spaces, enabling efficient denoising(Rombach et al., 2022). Yet, as shown in Figure 3, we observe that compressed audio latents often exhibit amplified high-frequency energy along the channel axis, possibly deviating from the Mel power-law bias and also undermining the spectral autoregression

Figure 2: (a) Power spectral density (PSD) of Mel spectrogram vs. VAE latent. Mel exhibits a power-law decay along the channel axis, whereas VAE latent retain more high-frequency energy. (b) PSD of SAO-VAE latent vs. LAFA latent: LAFA suppresses high-frequency components, yielding a PSD closer to a Mel spectrogram.

essential for diffusion models. This motivates us to pursue the elaborate design of a representation that unifies mel-like structural inductive bias with VAE compression efficiency.

We conduct a visualization-based analysis of VAE latents and find that certain channels encode pure noise, which not only degrades reconstruction fidelity but also introduces high-entropy information that hinders diffusion modeling. This phenomenon becomes more pronounced as the channel dimensionality increases, suggesting that larger-capacity VAEs do not necessarily yield better generative performance.

Mask modeling has been widely used as a self-supervised learning strategy to enhance latent encoders. Typically, masking is applied along the time axis for audio, or on patches for images and videos. The task requires the decoder to reconstruct masked tokens from neighboring unmasked tokens, thereby encouraging the encoder to produce smoother latents that facilitate prediction.

Motivated by this insight, we introduce **Latent Flow MAE** (LAFA), a 55M-parameter lightweight VAE bottleneck. Specifically, we apply span masking along the latent channel dimension, with a causal mask to impose monotonic order along the channel axis. Our experiments show that this approach improves local correlations across channels, revealing structured locality in the latent representation. Theoretically, we demonstrate that mask modeling functions as a low-pass filter in the spectral domain. We show that channel-span masking acts as a rectangular window in the channel axis, equivalent to a convolution in the frequency domain.

Contributions. (i) Analysis. We provide the first systematic study of the channel axis in audio VAEs, framing it as an object of geometric and spectral design for diffusion. To our knowledge, this is the first theoretical treatment of mask modeling as a low-pass filter. (ii) Method. We propose LAFA, a simple and plug-in VAE bottleneck that performs masked latent modeling with a flow-based latent decoder, producing clean latents for downstream training. LAFA combines the spectral bias of Mel-spectrograms with the compression capacity of a VAE, serving as an advanced alternative to Mel features. (iii) Empirics. We present comprehensive evaluations on audio and music generation tasks. LAFA improves sampling quality, accelerates DiT convergence by 4×, and generalizes effectively across DiT architectures and diffusion objectives.

2 Background

2.1 TEXT TO AUDIO SYSTEM

Non-autoregressive (NAR) systems generate in parallel and model signals more globally via iterative refinement in diffusion models. Spectrogram-space models (e.g., Riffusion (Forsgren & Martiros,

2022), MusicLDM (Chen et al., 2023)) denoise directly in the time–frequency domain, while latent-diffusion systems first compress audio into a continuous latent with a variational autoencoder (VAE) and perform denoising there before decoding to waveform, as in AudioLDM(Liu et al., 2023), AudioLDM2 (Liu et al., 2024), Stable Audio Open (Evans et al., 2025), Noise2Music (Huang et al., 2023), Moûsai (Schneider et al., 2023), and two-stage pipelines like MusicFlow that bridge semantic units to acoustic latents (Prajwal et al., 2024). In the latent-diffusion regime, the VAE is more than a compressor; it is a design lever. Its channel count and frame rate, the choice of prior distribution and the strength of regularization, and the latent-space geometry they induce (e.g., locality and spectral bias) materially affect the trainability of the denoising backbone, the speed of convergence, and the final fidelity achievable under a fixed compute budget. Consequently, contemporary systems often operate directly in a VAE latent space without extensive discussion of representation design; we defer detailed choices for representation shaping (such as the VAE bottleneck and masked objectives) to our background on VAEs and masked self-supervised learning. VAE bottleneck and masked objectives) are discussed in our background on VAEs.

2.2 REGULARIZATION OF VAE

VAE regularization significantly shapes the latent space. Starting with LDM(Rombach et al., 2021), the KL loss has been commonly used to constrain the latent space, assisting in the supervision of the perceptual model and maximizing channel decoupling, closer to perception. VA-VAE(Yao et al., 2025) explored various perceptual models in detail. Furthermore, it was discovered that the KL loss does not necessarily preserve the information most conducive to generation. EQ-VAE(Kouzelis et al., 2025) and SE(Skorokhodov et al., 2025) proposed constraining the high-frequency components of the representation space by aligning to low-frequency information. DITO(Chen et al., 2025) removes KL divergence and uses noise perturbation as a bottleneck.

2.3 MASKED SELF SUPERVISED LEARNING

Channel regularization in audio VAEs is relatively underexplored, so we draw on insights from masked self-supervised learning (SSL). Along the *time* axis, wav2vec (Schneider et al., 2019) and wav2vec 2.0 (Baevski et al., 2020) predict masked/future spans in a *unidirectional* setup; subsequent works emphasize *bidirectional* context, e.g., HuBERT and BEST-RQ (Chiu et al., 2022) use temporal span masking to predict hidden units from both sides of the context. In the *time-frequency* regime, AudioMAE (Huang et al., 2022) and BEATs (Chen et al., 2022) extend masked autoencoding to spectrograms, learning joint time-frequency structure with high-ratio masking, inspired by the vision MAE framework (He et al., 2021).

Although masked SSL was developed for understanding tasks, its representations are now widely used in generation pipelines: w2v-BERT (Chung et al., 2021) style semantic units are adopted as intermediate targets/tokens in AudioLM-like systems (Liu et al., 2024); HuBERTHsu et al. (2021) representations supervise the first stage in MusicFlow (Prajwal et al., 2024); and features derived from AudioMAE are used as semantic guidance (Liu et al., 2024). Because SSL focuses on semantic representation rather than exact reconstruction, many systems employ a *two-stage* design: learn semantic tokens with SSL, then map semantics to acoustic latents. Recent work further distills SSL features into tokenizers/codecs to stabilize generative training (Ye et al., 2025; Ahasan et al., 2024).

AudioMAE compares masking patterns (Time, Frequency, Time+Frequency, Unstructured) and reports that *Unstructured* masking excels on classification benchmarks (Huang et al., 2022). However, this finding does not directly transfer to dense generation, where frame-level fidelity and local continuity are crucial. Classification typically averages frame representations before the classifier, whereas generation must reconstruct fine-grained structure. Moreover, the combinatorics of joint time-frequency masking impose different optimization pressures than masking along a single axis. These observations motivate *channel-axis* masking and ordering—in our case, to directly shape VAE latents in a way that is better aligned with downstream diffusion.

3 SPECTRAL BIAS AND LOCALITY OF LATENT SPACE

How do spectral distributions differ between real-world audio representations and VAE latents, and how do these differences affect diffusion model convergence? In Section 3.1 we analyze the spectral

statistics of Mel features and VAE latents, showing that Mel features exhibit a power-law spectral bias, whereas VAE latents deviate from this trend with disproportionately large high-frequency components. In Section 3.2 we relate these phenomena to latent locality, showing via correlation structure that Mel features are more locally correlated than VAE latents, especially as latent dimensionality grows.

3.1 POWER-LAW SPECTRAL BIAS

The data distribution shapes both the forward noising process and the learned reverse dynamics of diffusion models (Ho et al., 2020) and is fruitfully examined through its spectral statistics (Wang & Pehlevan, 2025). Power-law structure is ubiquitous across natural signals-images (Torralba & Oliva, 2003), audio(Torralba & Oliva, 2003), and video (Attias & Schreiner, 1997) and prior work reports a power-law spectral bias in Mel (Haro et al., 2012a; Dieleman, 2024). In contrast, the spectral properties of compressed waveform latents remain underexplored.

Specifically, we conduct spectral analysis as follows: Let T and C denote the numbers of time steps and channels, respectively, and let $X \in \mathbb{R}^{T \times C}$. Denote by $\widehat{X}[k_t, k_c]$ the 2-D discrete Fourier transform (DFT) of X with the DC component at (0,0) and frequency indices

$$k_t \in \{-s \lfloor T/2 \rfloor, \dots, \lceil T/2 \rceil - 1\}, \qquad k_c \in \{-\lfloor C/2 \rfloor, \dots, \lceil C/2 \rceil - 1\}.$$

Define the 2-D power spectrum $P(k_t, k_c) = |\widehat{X}[k_t, k_c]|^2$.

Let $l = \max(T, C)$ and, for each integer radius $r \in \{0, 1, \dots, \lfloor l/2 \rfloor\}$, define the ring

$$\mathcal{R}_r = \{ (k_t, k_c) : \text{round}(\sqrt{k_t^2 + k_c^2}) = r \}.$$

We use the radial frequency (Ruzanski & Chandrasekar, 2011)

$$f = \frac{r}{l} \in \left[0, \frac{1}{2}\right],$$

Given the radially frequency S(f), we discard the DC bin and work with log-frequency coordinates $\ell = \log f$. After interpolating S(f) onto an equally spaced log grid $\{\tilde{\ell}_j\}_{j=1}^J$, we fit

$$\log S(\tilde{\ell}_j) \approx -\alpha \tilde{\ell}_j + b$$

by least squares. The slope α estimates the spectral decay exponent, with

$$S(f) \propto f^{-\alpha}$$

For Mel features, X is the log-magnitude spectrogram (time \times Mel), and we compute the 2-D DFT and radial averaging per clip to obtain S(f), where low f reflects slow variations over time and Mel and high f captures fine fluctuations; for VAE latents, X is the (time \times channel) latent map, and we apply the same 2-D DFT and radial averaging independently for each batch item to obtain S(f) in the same way.

We analyze the frequency profiles of SAO-type VAEs trained for 1M steps, which is a regime where latent standard deviation and validation metrics stabilize. For each model we average spectra over 200 clips and multiple temporal windows. Figure 3 compares Mel space and VAE latents: (i) Mel features follow a power law with $\alpha \approx 2$ for both amplitude and aggregate variance across windows; (ii) VAE latents exhibit comparatively inflated high-frequency mass, increasingly deviating from the power-law slope as the channel count grows.

With an isotropic $\mathcal{N}(0,I)$ prior, increasing the channel count gives the encoder more axes along which to distribute information while remaining close to a factorized prior. The optimization therefore favors decorrelated, near-independent channels, yielding rapidly varying features across channels and elevating graph-high-frequency components. This complicates the latent geometry and, we hypothesize, undermines the desired coarse-to-fine learning dynamics in diffusion.

Figure 3: Locality of different Latents

3.2 LOCALITY OF LATENT SPACE

We posit that channel locality—nearby channels carrying related information—helps preserve the power-law spectral bias characteristic of natural signals.

Local Predictability Index (LPI_{λ}) For each channel c, predict it from its $\pm r$ neighbors(where $r = \lceil \lambda C \rceil$) using ridge regression over all samples. Higher LPI_{λ} indicates more local redundancy.

Definition. With latents $z \in \mathbb{R}^{B \times C \times T}$, flatten samples $N = B \cdot T$. For each c,

$$LPI_{\lambda}(z) = \frac{1}{C} \sum_{c=0}^{C-1} R^{2} \Big(z_{c} \leftarrow \{z_{c-r}, \dots, z_{c-1}, z_{c+1}, \dots, z_{c+r} \} \Big), \qquad r = \lceil \lambda C \rceil.$$

Using 200 samples, with λ as 0.06, we compute channel-wise correlations and plot channel-correlation heat maps. Figure 3 shows: i) Mel features exhibit strong local correlation along the Mel-bin axis. ii) A 32-dimensional VAE attains the highest LPI, with a block-local structure most reminiscent of Mel. iii) As channel count increases, VAE correlations diminish and LPI drops.

Due to compression pressure from the reconstruction loss, lower-dimensional latents enforce heavier feature reuse across nearby channels, promoting locality. Higher-dimensional latents reduce redundancy by decorrelating channels to represent distinct factors, which improves pure compression but degrades locality and disrupts the latent manifold's smooth structure-undesirable for continuous semantics and for stable, hierarchical generation in diffusion models.

4 METHOD

Motivated by the observations in Section 3, we introduce LAFA, a plug-in bottleneck that reshapes an existing VAE's latent bottleneck using channel-mask modeling. In masked autoencoders (MAE), a context encoder processes masked inputs and a decoder predicts the masked latents. Unlike classical MAEs that mask the origin signal, LAFA masks latent space, directly learning pressure toward abstract latent structure while avoiding costly training on brittle waveform details. Figure 4 outlines the approach.

4.1 Channel-Mask Modeling

Along the time axis, audio exhibits strong short-range temporal dependencies. Along the channel axis, however, pronounced locality typically arises only under high compression (see Section 3.2). In higher-dimensional VAEs, channels tend to decorrelate, yielding a brittle, highly oscillatory latent geometry that complicates generative prediction. To increase locality and regularity across channels, we impose a mask-modeling task on the channel axis.

Mask ratio and spatial distribution are critical for self-supervised efficiency. If the mask ratio is too small, the task is trivial and the encoder learns little (Bardes et al., 2024; Song et al., 2025). If masks are uniformly scattered point-wise across channels, a decoder can rely on near-neighbor interpolation, again weakening pressure to learn abstract structure. Inspired by BERT-style span masking, we replace uniform per-channel masking with contiguous masked spans, forcing the decoder to rely on distant channels and thereby strengthening channel-wise locality in the learned representation.

Specifically, we let C be the channel dimension and $\rho \in (0,1)$ the target mask ratio. The total masked length is $L_{\text{mask}} = \lfloor \rho \, C \rfloor$. Then, sample a span count $M \sim \text{Uniform}\{1,\ldots,m\}$. m is the hyperparameter of the max span count. Partition L_{mask} into M spans with random lengths that sum to L_{mask} , each truncated to at most $\lceil L_{\text{mask}}/M \rceil$. Start indices are randomly placed while there is no overlap between spans. This stochasticity prevents the encoder from overfitting to a fixed masking pattern.

Following Evans et al. (2025), we optionally impose a causal attention mask along the channel index, encouraging reliance on global context while enforcing a monotone ordering over channels. In addition, the model masks all channels with a certain probability. This training strategy allows the model to learn unconditional generation and achieve better generalization.

4.2 THEORETICAL ANALYSIS OF SPAN MASKING

Proposition 1 Let S be a circulant low-pass with DFT H(k). For masks M that zero a uniformly random length w contiguous span and inpainting $A_Mz=Mz+(I-M)Sz$, the expected pretext loss equals

$$\mathbb{E}_M ||A_M z - z||^2 = \sum_{k=0}^{C-1} \lambda_k |z_k|^2, \qquad \lambda_k \approx \frac{w}{C} |1 - H(k)|^2,$$

i.e., a frequency-weighted quadratic form that penalizes high channel frequencies.

Proof of Proposition 1 Let channels be a cyclic 1-D grid of length C; at each time t we work with $z \in \mathbb{R}^C$. A mask M is diagonal with 1 on observed (unmasked) entries and 0 on a contiguous span of length w. A (linearized) inpainting map is A_M so that

$$\hat{z} \approx A_M z, \qquad \mathcal{L} = \mathbb{E}_M \|A_M z - z\|_2^2 = z^\top \Gamma z, \quad \Gamma := \mathbb{E}_M \big[(A_M - I)^\top (A_M - I) \big] \succeq 0.$$

Thus, training the encoder minimizes $\mathbb{E}_x[z(x)^{\top}\Gamma z(x)]$, i.e., it suppresses the eigendirections of Γ with large eigenvalues. If Γ is diagonal in the channel-DFT basis, then the eigenvectors are the channel Fourier modes and the eigenvalues are frequency weights.

Let S be a fixed circulant smoothing operator (e.g., moving average of width r or a triangular smoother). Define the inpainting:

$$A_M z = Mz + (I - M)Sz \Rightarrow A_M - I = (I - M)(S - I).$$

Then

$$\Gamma = \mathbb{E}_M [(I - M)(S - I)^{\top} (S - I)(I - M)].$$

For span locations drawn uniformly over the ring, $\mathbb{E}_M[I-M]=pI$ with p=w/C, and by rotational symmetry the expectation above is circulant. A standard calculation (or replacing (I-M) by its mean pI which becomes exact as spans are uniformly distributed over many steps) yields the tight approximation

$$\Gamma \approx p(S-I)^{\top}(S-I).$$

Since S is circulant, it has DFT response H(k). Therefore the DFT basis vectors u_k are eigenvectors of Γ with eigenvalues

$$\lambda_k \approx p|1 - H(k)|^2$$
.

Key property. For any low-pass S, |H(k)| is close to 1 at small k and decays with k. Hence |1-H(k)| is small near k=0 and large at high k. So high channel frequencies are penalized more, pushing the clean latent distribution toward channel-smooth signals. Hence longer spans (w larger) amplify the preference for smooth (low-k) latents.

4.3 Model Architecture

LAFA augments a pretrained VAE with: i) a ViT-style latent encoder operating on masked channels and ii) a Rectified Flow latent decoder.

Encoder A frozen VAE encoder maps a stereo waveform $x \in \mathbb{R}^{T \times 2}$ to latents $Z \in \mathbb{R}^{N \times C}$, where N is the latent frame count and C the channel dimension. Latents are mapped to hidden dim through

Figure 4: **LAFA architecture.** A frozen VAE encoder maps audio to latents; we mask contiguous *channel spans* (M) with an optional causal mask and encode them with a ViT encoder. Its output conditions a rectified-flow decoder via cross-attention to inpaint the masked channels, and a frozen VAE decoder reconstructs audio. Channel-span masking strengthens channel locality and induces a low-pass bias along channels.

Linear layer, and then position embedding is added to latents. The ViT encoder consumes the masked latents \tilde{Z} and outputs contextual representations $h \in \mathbb{R}^{N \times H}$.

Decoder Referring to the original MAE, using the VIT decoder and trained with MSE, the reconstructed audio is blurry, with blurred harmonics. We attribute this to the blurring nature of the MSE loss and the high mask ratio. In contrast, LAFA uses flow matching as the reconstruction objective and can achieve reconstruction results close to the original VAE at high mask ratios. in latent space, conditioned on h via cross-attention. Let Z_0 denote the clean latents and $\varepsilon \sim \mathcal{N}(0, I)$. We sample $t \sim \mathcal{U}[0,1]$ and form $Z_t = (1-t)Z_0 + t\varepsilon$. The decoder predicts the vector fields $U = \varepsilon - Z_0$ conditioned on (Z_t, h, t) .

Training Objective We use the standard rectified-flow loss

$$\mathcal{L}_{RF} = \|\hat{U} - (\varepsilon - Z_0)\|_2^2, \quad \hat{U} = \text{Dec}(Z_t; h, t).$$

By predicting masked channels in latent space, LAFA pushes the encoder toward higher-level, semantically coherent structure, while delegating low-level detail reconstruction to the frozen VAE decoder. This division of labor preserves locality and spectral regularity in the latent geometry, which we find beneficial for downstream diffusion training and convergence.

5 EXPERIMENTS

Data We train all models on open-source audio from FreeSound (FSD) and FMA. Following the Creative-Commons (CC) filtering protocol used in SAO, we start from a list of 486,493 CC-licensed recordings and remove overlaps to ensure no copyrighted content enters training. This yields a corpus of 436,602 recordings (6,207 h): 6,353 recordings from FMA (444 h) and 430,249 from FSD (5,763 h), all under CC-0, CC-BY, or CC-Sampling+.

Evaluation We evaluate latent audio diffusion models with three complementary metrics: i) FD_{OpenL3} (lower is better): a Fréchet distance computed on OpenL3 embeddings, assessing overall realism and distributional closeness to references. ii) KL_{PaSST} (lower is better): KL divergence between PaSST tag posteriors of generated and reference audio, measuring semantic correspondence. iii) CLAP score (higher is better): text–audio similarity from a Contrastive Language–Audio Pretraining model, measuring prompt adherence. For sound generation, we evaluate on AudioCaps; for music generation, on Song Describer. For reconstruction, we report STFT error, mel-spectrogram error, and FD metrics computed on the same evaluation sets.

5.1 Training details

VAE bottleneck (LAFA) We train on 30 sec stereo audio chunks; clips shorter than 30 sec are padded with a training-time mask to maintain efficiency. We adopt SAO as the base waveform VAE (widely used in recent open-source systems) and fine-tune our LAFA module for 600k steps with batch size 64 and learning rate 5e-5.

Table 1: Generation performance on AudioCaps (higher \uparrow / lower \downarrow is better). *Fine-tuned on AudioCaps.

Stage II	Stage I	Channels/sr	$CLAP_{score} \uparrow$	$KL_{PaSST}\downarrow$	$FD_{openl3}\downarrow$
Ground truth	_	_	0.50	_	_
AudioLDM2	MelVAE	2/16kHz	0.41	1.76	178.53
TANGO2	MelVAE	1/16kHz	<u>0.45</u>	<u>1.09</u>	189.15
SAO	SAO-VAE	2/44.1kHz	0.28	2.25	82.65
DiT-SAO	SAO-VAE + LAFA	2/44.1kHz	0.26	2.58	83.08
DiT-SAO-FT-AC*	SAO-VAE + LAFA	2/44.1kHz	0.41	1.76	<u>64.72</u>

Table 2: Generation performance on SongDescriber. We use MusicGen-large and AudioLDM2-music as the comparison open-source baselines. * denotes training on in-house data.

Stage II	Stage I	Channels/sr	CLAP _{score} ↑	$KL_{PaSST}\downarrow$	$FD_{openl3} \downarrow$
Ground truth	_	-	0.36	-	-
MusicGen*	Encodec	1/32kHz	0.30	<u>0.51</u>	178.70
AudioLDM2	MelVAE	2/16kHz	0.31	0.66	286.24
SAO	SAO-VAE	2/44.1kHz	$\frac{0.36}{0.35}$	0.61	119.53
DiT-SAO	SAO-VAE + LAFA	2/44.1kHz		0.59	<u>79.32</u>

Diffusion transformers (DiTs) All DiTs are trained for 1M steps. For ablation studies, we train each model for 250k steps unless otherwise stated. i) SAO-style DiT (v-objective): 24 layers, 24 heads, width 1536. Conditioning signals include text (T5-base encoder), timing (for variable-length synthesis), and diffusion timestep (sinusoidal embeddings). Conditioning is injected via cross-attention (text, timing) and/or prepended tokens (timing, timestep). ii) ETTA-style DiT: adopts AdaLN timestep conditioning; zero-initializes the final projection to match the VAE latent mean; uses GELU (tanh approximation) and rotary position embeddings (RoPE) with base 16,384.

5.2 BOOSTING DIT CONVERGENCE

We evaluate LAFA as a drop-in enhancement to an existing waveform VAE by comparing SAO-VAE with and without LAFA. As summarized in Table 1, LAFA consistently improves FD_{OpenL3} and KL_{PaSST} for sound generation, indicating more realistic samples with closer semantic alignment to references; CLAP score likewise increases, reflecting better prompt following. The gains hold across DiT variants and transfer to music generation in Table 2. Notably, LAFA-augmented latents achieve superior FD_{OpenL3} to opensource baselines under limited training data, demonstrating that LAFA unlocks additional capacity in latent diffusion. With more training data, CLAP score further improves (see in Appendix), consistent with the model's text–audio alignment scaling.

Furthermore, we conduct experiments on both diffusion objectives and diffusion architectures. For the diffusion objectives, the results indicate that LAFA improves generation performance under both v-prediction and rectified flow, with rectified flow in particular demonstrating superior training efficiency across audio and music generation tasks. For the diffusion architectures, the findings show that LAFA accelerates the convergence of DiT models, underscoring its potential for enhancing generalization across diverse architectures. While DiT-ETTA reports strong performance in its original work due to an improved model design, our experiments—trained with a smaller dataset of 430k samples compared to their over 1M samples—reveal that DiT-ETTA does not outperform DiT-SAO under limited data conditions.

5.3 BALANCING INDUCTIVE BIAS AND HIGH COMPRESSION

To verify that LAFA does not compromise reconstruction quality, we evaluate both sound and music at Table 4) by comparing ground-truth and reconstructed audio using established metrics: STFT distance, Mel distance, and SI-SDR (as implemented in the auraloss library (Steinmetz & Reiss, 2020), with default parameters). Results show that the flow latent decoder accurately predicts clean

Table 3: Generation performance on SongDescriber and AudioCaps. **Stage I** toggles LAFA fine-tuning of the SAO-VAE latents (SAO VAE = vanilla; + LAFA = with LAFA). **Stage II** trains a Diffusion Transformer with either v-pred (DDPM v-parameterization) or RF (rectified flow).

Stage II	Stage I	SongDescriber (Music)			AudioCaps (Sound)		
Model / Objective		CLAP _{score} ↑	$KL_{PaSST} \downarrow$	FD _{openl3} ↓	$\overline{\text{CLAP}_{\text{score}} \uparrow}$	$KL_{PaSST} \downarrow$	FD _{openl3} ↓
DiT-SAO / v-pred	SAO-VAE	0.32	0.63	134.73	0.25	2.94	104.35
	+ LAFA	0.34	0.55	102.24	0.29	2.64	94.38
DiT-SAO / RF	SAO-VAE	0.35	0.59	122.78	0.22	2.84	94.35
	+ LAFA	0.35	0.59	92.26	0.26	2.58	83.08
DiT-ETTA / v-pred	SAO-VAE	0.34	0.72	149.26	0.17	2.52	110.25
	+ LAFA	0.34	0.63	140.35	0.17	2.20	93.93

Table 4: Reconstruction performance on SongDescriber (music) and AudioCaps (sound). Lower is better for all metrics. Mel_{dis} and $STFT_{dis}$ denote Mel and STFT distances, respectively.

Model	Sampling rate	Frame rate	Channel size	SongDes	criber (Music)	AudioCaps (Sound)	
				$Mel_{dis} \downarrow$	$STFT_{dis} \downarrow$	$Mel_{dis} \downarrow$	$STFT_{dis} \downarrow$
AudioLDM	16kHz	25.0Hz	8 × 16	0.97	1.43	1.49	1.31
SAO-VAE	44.1kHz	21.5Hz	64	<u>0.77</u>	1.29	<u>0.75</u>	<u>0.86</u>
+ LAFA	44.1kHz	21.5Hz	64	0.82	<u>1.26</u>	0.98	1.37

latents, achieving reconstruction quality comparable to the original SAO-VAE across datasets. Furthermore, the waveform VAE yields higher fidelity than Mel-based baselines (e.g., AudioLDM's MelVAE), even at 44.1 kHz resolution. These findings demonstrate that end-to-end waveform autoencoding can preserve high-fidelity audio under strong compression, and that LAFA's inductive bias does not undermine reconstruction performance.

6 CONCLUSION

This paper addresses the trade-off between the efficiency of waveform VAEs and the beneficial power-law spectral bias of Mel-spectrograms for audio diffusion. We find that the lack of channel-wise locality in VAE latents leads to excessive high-frequency energy, which misaligns with the coarse-to-fine behaviour of diffusion models. To resolve this, we introduce LAFA, a lightweight bottleneck module that reshapes the latent space using contiguous channel-span masking. Theoretically, we demonstrate that this strategy acts as a low-pass filter in the channel-frequency domain, suppressing these problematic high-frequency components. Empirically, LAFA significantly accelerates Diffusion Transformer convergence and achieves state-of-the-art or competitive performance on sound and music generation benchmarks without sacrificing reconstruction fidelity. By improving the fundamental structure of the latent space, our work highlights the importance of designing latent geometries with explicit spectral and local biases, suggesting a promising direction for representation learning in generative models across various modalities.

REFERENCES

Md Mubtasim Ahasan, Md Fahim, Tasnim Mohiuddin, AKM Rahman, Aman Chadha, Tariq Iqbal, M Ashraful Amin, Md Mofijul Islam, and Amin Ahsan Ali. Dm-codec: Distilling multimodal representations for speech tokenization. *arXiv preprint arXiv:2410.15017*, 2024.

Hagai Attias and Christoph E. Schreiner. Temporal low-order of natural sounds. In Advances in Neural Information Processing 9. 1997. URL https://papers.neurips.cc/paper/ volume 1262-temporal-low-order-statistics-of-natural-sounds.pdf.

- Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework for self-supervised learning of speech representations. *Advances in neural information processing systems*, 33:12449–12460, 2020.
 - Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mahmoud Assran, and Nicolas Ballas. Revisiting feature prediction for learning visual representations from video. *arXiv preprint arXiv:2404.08471*, 2024. doi: 10.48550/arXiv.2404.08471. URL https://arxiv.org/abs/2404.08471.
 - Ke Chen, Yusong Wu, Haohe Liu, Marianna Nezhurina, Taylor Berg-Kirkpatrick, and Shlomo Dubnov. Musicldm: Enhancing novelty in text-to-music generation using beat-synchronous mixup strategies. *arXiv preprint arXiv:2308.01546*, 2023. doi: 10.48550/arXiv.2308.01546. URL https://arxiv.org/abs/2308.01546.
 - Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel Tompkins, Zhuo Chen, and Furu Wei. Beats: Audio pre-training with acoustic tokenizers. *arXiv preprint arXiv:2212.09058*, 2022.
 - Yinbo Chen, Rohit Girdhar, Xiaolong Wang, Sai Saketh Rambhatla, and Ishan Misra. Diffusion autoencoders are scalable image tokenizers. *arXiv preprint arXiv:2501.18593*, 2025.
 - Chung-Cheng Chiu, James Qin, Yu Zhang, Jiahui Yu, and Yonghui Wu. Self-supervised learning with random-projection quantizer for speech recognition. In *International Conference on Machine Learning*, pp. 3915–3924. PMLR, 2022.
 - Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng Chiu, James Qin, Ruoming Pang, and Yonghui Wu. W2v-bert: Combining contrastive learning and masked language modeling for self-supervised speech pre-training. In 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 244–250. IEEE, 2021.
 - Sander Dieleman. Diffusion is spectral autoregression. https://sander.ai/2024/09/02/spectral-autoregression.html, September 2024. Blog post.
 - Zach Evans, Julian D. Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Stable audio open. In *ICASSP 2025 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE, 2025. doi: 10.1109/ICASSP49660.2025.10888461.
 - Fabian Falck, Teodora Pandeva, Kiarash Zahirnia, Rachel Lawrence, Richard Turner, Edward Meeds, Javier Zazo, and Sushrut Karmalkar. A fourier space perspective on diffusion models. *arXiv preprint arXiv:2505.11278*, 2025.
 - Seth Forsgren and Hayk Martiros. Riffusion stable diffusion for real-time music generation. https://www.riffusion.com/about, 2022. Accessed: 2025-09-19.
 - Martín Haro, Joan Serrà, Álvaro Corral, and Perfecto Herrera. Power-law distribution in encoded mfcc frames of speech, music, and environmental sound signals. In *Proceedings of the 21st International Conference on World Wide Web Companion (WWW '12 Companion)*, pp. 849–856. ACM, 2012a. doi: 10.1145/2187980.2188220.
 - Martín Haro, Joan Serrà, Álvaro Corral, and Perfecto Herrera. Power-law distribution in encoded mfcc frames of speech, music, and environmental sound signals. In *Proceedings of the 21st International Conference on World Wide Web*, pp. 895–902, 2012b.
 - Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked autoencoders are scalable vision learners. *CoRR*, abs/2111.06377, 2021. URL https://arxiv.org/abs/2111.06377.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in Neural Information Processing Systems*, volume 33, pp. 6840–6851, 2020. URL https://arxiv.org/abs/2006.11239.
 - Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked prediction of hidden units. *CoRR*, abs/2106.07447, 2021. URL https://arxiv.org/abs/2106.07447.

- Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wojciech Galuba, Florian Metze, and Christoph Feichtenhofer. Masked autoencoders that listen. *Advances in Neural Information Processing Systems*, 35:28708–28720, 2022.
 - Qingqing Huang, Daniel S. Park, Tao Wang, Timo I. Denk, Andy Ly, Nanxin Chen, Zhengdong Zhang, Zhishuai Zhang, Jiahui Yu, Christian Frank, Jesse Engel, Quoc V. Le, William Chan, Zhifeng Chen, and Wei Han. Noise2music: Text-conditioned music generation with diffusion models. *arXiv preprint arXiv:2302.03917*, 2023. doi: 10.48550/arXiv.2302.03917. URL https://arxiv.org/abs/2302.03917.
 - Theodoros Kouzelis, Ioannis Kakogeorgiou, Spyros Gidaris, and Nikos Komodakis. Eq-vae: Equivariance regularized latent space for improved generative image modeling. *arXiv* preprint *arXiv*:2502.09509, 2025.
 - Matthew Le, Apoorv Vyas, Bowen Shi, Brian Karrer, Leda Sari, Rashel Moritz, Mary Williamson, Vimal Manohar, Yossi Adi, Jay Mahadeokar, et al. Voicebox: Text-guided multilingual universal speech generation at scale. *Advances in neural information processing systems*, 36:14005–14034, 2023.
 - Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 21450–21474. PMLR, 2023. URL https://proceedings.mlr.press/v202/liu23f.html.
 - Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Qiao Tian, Yuping Wang, Wenwu Wang, Yuxuan Wang, and Mark D Plumbley. Audioldm 2: Learning holistic audio generation with self-supervised pretraining. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 32:2871–2883, 2024.
 - Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. Diffsinger: Singing voice synthesis via shallow diffusion mechanism. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pp. 11020–11028, 2022.
 - KR Prajwal, Bowen Shi, Matthew Lee, Apoorv Vyas, Andros Tjandra, Mahi Luthra, Baishan Guo, Huiyu Wang, Triantafyllos Afouras, David Kant, et al. Musicflow: Cascaded flow matching for text guided music generation. *arXiv preprint arXiv:2410.20478*, 2024.
 - Severi Rissanen, Markus Heinonen, and Arno Solin. Generative modelling with inverse heat dissipation. *arXiv preprint arXiv:2206.13397*, 2022.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. *CoRR*, abs/2112.10752, 2021. URL https://arxiv.org/abs/2112.10752.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 - Evan Ruzanski and V Chandrasekar. Scale filtering for improved nowcasting performance in a high-resolution x-band radar network. *IEEE transactions on geoscience and remote sensing*, 49 (6):2296–2307, 2011.
 - Flavio Schneider, Ojasv Kamal, Zhijing Jin, and Bernhard Schölkopf. Moûsai: Text-to-music generation with long-context latent diffusion. *arXiv preprint arXiv:2301.11757*, 2023. doi: 10.48550/arXiv.2301.11757. URL https://arxiv.org/abs/2301.11757.
 - Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsupervised pre-training for speech recognition. *arXiv preprint arXiv:1904.05862*, 2019.
 - Ivan Skorokhodov, Sharath Girish, Benran Hu, Willi Menapace, Yanyu Li, Rameen Abdal, Sergey Tulyakov, and Aliaksandr Siarohin. Improving the diffusability of autoencoders, 2025. URL https://arxiv.org/abs/2502.14831. ICML 2025.

- Yakun Song, Jiawei Chen, Xiaobin Zhuang, Chenpeng Du, Ziyang Ma, Jian Wu, Jian Cong, Dongya Jia, Zhuo Chen, Yuping Wang, Yuxuan Wang, and Xie Chen. Magicodec: Simple masked gaussian-injected codec for high-fidelity reconstruction and generation. *arXiv* preprint arXiv:2506.00385, 2025. doi: 10.48550/arXiv.2506.00385. URL https://arxiv.org/abs/2506.00385.
- Christian J. Steinmetz and Joshua D. Reiss. auraloss: Audio focused loss functions in PyTorch. In *Digital Music Research Network One-day Workshop (DMRN+15)*, 2020.
- Antonio Torralba and Aude Oliva. Statistics of natural image categories. *Network: Computation in Neural Systems*, 14(3):391–412, 2003. URL https://stacks.iop.org/Network/14/391.
- Binxu Wang and Cengiz Pehlevan. An analytical theory of spectral bias in the learning dynamics of diffusion models. *arXiv preprint arXiv:2503.03206*, 2025. doi: 10.48550/arXiv.2503.03206. URL https://arxiv.org/abs/2503.03206.
- Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization dilemma in latent diffusion models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15703–15712, 2025.
- Zhen Ye, Xinfa Zhu, Chi-Min Chan, Xinsheng Wang, Xu Tan, Jiahe Lei, Yi Peng, Haohe Liu, Yizhu Jin, Zheqi Dai, et al. Llasa: Scaling train-time and inference-time compute for llama-based speech synthesis. *arXiv preprint arXiv:2502.04128*, 2025.
- Ge Zhu, Yutong Wen, Marc-André Carbonneau, and Zhiyao Duan. Edmsound: Spectrogram based diffusion models for efficient and high-quality audio synthesis. *arXiv preprint arXiv:2311.08667*, 2023.

A DECLARATION OF LLM USAGE

We used large language models (LLMs) only as general-purpose assistive tools for grammar polishing, minor rephrasing, and LaTeX formatting suggestions. All technical content ideas, methods, theory, experiments, hyperparameters, and analysis—was written and verified by the authors. We are fully responsible for the paper.

B MUSIC TRAIN DATA ORGANIZATION AND REPRODUCIBILITY

We construct natural-language prompts for text-to-music training from FMA metadata. Following Stable Audio Open, we sample a random subset of the fields year, genre, album, title, and artist, concatenate them into a prompt, shuffle the field order, and randomly vary casing. For half of the examples we retain field labels and join with commas; for the other half we join the values only. Unlike Stable Audio Open, we always keep the genre field, as it most directly characterizes musical content.

C VISUALIZATION OF VAE CHANNELS

To assess whether information encoding is evenly distributed across latent channels, we perform a residual visualization experiment. Given a latent representation $z \in \mathbb{R}^{B \times C \times T}$, we systematically ablate each channel and examine its effect on reconstruction. Specifically, for each channel $c \in \{1,\ldots,C\}$, we replace the corresponding latent activations with Gaussian noise of small variance, while keeping the remaining channels unchanged. The perturbed latent code is then decoded back into waveform space.

From the reconstructed waveform, we compute the difference with respect to the ground-truth signal in the mel-spectrogram domain. These residual mel-spectrograms capture the contribution of each channel to the reconstruction. By arranging the residuals across all channels in a grid, we obtain a visual map of channel-wise effects, where stronger and more structured residuals indicate channels encoding salient information, whereas weak or noise-like residuals suggest redundant or noisy channels.

Figure 5: Residual Information of each channel in 32dim VAE