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Abstract

Activation patching is a standard method in mechanistic interpretability for lo-
calizing the components of a model responsible for specific behaviors, but it is
computationally expensive to apply at scale. Attribution patching offers a faster,
gradient-based approximation, yet suffers from noise and reduced reliability in
deep, highly non-linear networks. In this work, we introduce Relevance Patching
(RelP), which replaces the local gradients in attribution patching with propagation
coefficients derived from Layer-wise Relevance Propagation (LRP). LRP propa-
gates the network’s output backward through the layers, redistributing relevance to
lower-level components according to local propagation rules that ensure properties
such as relevance conservation or improved signal-to-noise ratio. Like attribution
patching, RelP requires only two forward passes and one backward pass, main-
taining computational efficiency while improving faithfulness. We validate RelP
across a range of models and tasks, showing that it more accurately approximates
activation patching than standard attribution patching, particularly when analyzing
residual stream and MLP outputs in the Indirect Object Identification (IOI) task.
For instance, for MLP outputs in GPT-2 Large, attribution patching achieves a
Pearson correlation of 0.006, whereas RelP reaches 0.956, highlighting the im-
provement offered by RelP. Additionally, we compare the faithfulness of sparse
feature circuits identified by RelP and Integrated Gradients (IG), showing that RelP
achieves comparable faithfulness without the extra computational cost associated
with IG. Code is available at https://github.com/FarnoushRJ/RelP.git.

1 Introduction

Recent advances in machine learning continue to rely on transformer-based language models, which
achieve remarkable performance across a wide range of tasks. Given their widespread adoption,
understanding the internal mechanisms of these models is an important challenge for improving our
ability to interpret, trust, and control them.

To address this challenge, the fields of eXplainable Artificial Intelligence (XAI) [1, 2] and, more
recently, mechanistic interpretability [3, 4] have emerged, aiming to reveal the decision-making pro-
cesses of such complex architectures. Early efforts in XAI focused on developing feature attribution
methods, often visualized as heatmaps, to highlight relevant features in classification models. As
state-of-the-art models have grown more complex, approaches that extend beyond input explanations
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Figure 1: Pearson correlation coefficient (PCC) between activation patching and attribution patching
(AtP) or relevance patching (RelP), computed over 100 IOI prompts for three GPT-2 model sizes
(Small, Medium, Large), two Pythia models (70M, 410M), two Qwen2 models (0.5B, 7B), and
Gemma2-2B. A higher value of PCC represents higher alignment with activation patching results.

have become increasingly important for uncovering their internal strategies. This has motivated
a shift toward exploring the complex internal structure of neural networks through methods such
as concept-based interpretability [5, 6], higher-order explanations [7, 8, 9], and circuit discovery
[3, 10]. Herein, a central goal of interpretability research is the reliable localization of specific
model components responsible for particular functions, algorithms or behaviors [3, 4, 11, 12, 13]. To
identify components that are causally involved in inference, mechanistic interpretability has proposed
activation patching, also known as causal mediation analysis [14, 15, 16]. Activation patching
replaces the activations of selected components in an original input with those from a patch input,
allowing direct causal testing of the contribution of a component to the model’s output.

As these patching-based interventions are computationally expensive, it is challenging to scale them,
especially for larger models. To improve efficiency, attribution patching [17] was introduced as a fast
gradient-based approximation to activation patching. Using gradients to estimate the influence of each
component on the model’s output, attribution patching significantly reduces the computational cost
compared to traditional perturbation-based approaches. However, this efficiency comes at the expense
of robustness and accuracy, particularly in deep models like state-of-the-art LLMs [18]. This issue
is not unique to attribution patching. Many gradient-based attribution methods [19, 20, 21, 22, 23]
suffer from a lack of robustness in large networks, often due to noisy and unreliable gradients [24]
that undermine the quality of explanations [25, 26, 27].

Alternative attribution methods have been proposed to overcome these limitations. One of the
most widely used methods is Layer-wise Relevance Propagation (LRP) [28], developed within the
theoretical framework of Deep Taylor Decomposition (DTD) [29]. LRP works by propagating the
model’s output backward through the network, redistributing the relevance of each component to its
inputs according to layer-specific propagation rules. These rules are designed to enforce desirable
properties such as conservation of total relevance, sparsity of explanations, and robustness to noise.

Building on these insights, we propose Relevance Patching (RelP), a technique that replaces local
gradients in attribution patching with propagation coefficients achieved using LRP. RelP enables
more faithful localization of influential components in large models, without sacrificing scalability.
Similar to attribution patching, RelP requires two forward passes and one backward pass. We
demonstrate the effectiveness of RelP in the context of the Indirect Object Identification task, showing
that it consistently outperforms attribution patching across a range of architectures and model sizes,
including GPT-2 {Small, Medium, Large} [30], Pythia-{70M, 410M} [31], Qwen2-{0.5B, 7B}
[32], and Gemma2-2B [33], with the strongest gains on the residual stream and MLP outputs. In
addition, we apply RelP to recover sparse feature circuits responsible for Subject–Verb Agreement
in the Pythia-70M model. Compared to Integrated Gradients [21], RelP demonstrates comparable
faithfulness in identifying meaningful circuits while also offering greater computational efficiency.
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2 Related Works

Activation and Attribution Patching Techniques Activation patching is a causal mediation
technique that tests the role of model components by replacing activations from an original run with
those from a patch run [34, 35]. It has been widely used in interpretability studies [15, 36, 37, 38],
with variants such as causal tracing, which perturbs activations with Gaussian noise [16], and
path patching, which extends interventions to multi-step computation paths [39, 40]. To improve
efficiency, attribution patching (AtP) uses gradient-based attribution instead of full interventions,
requiring only two forward passes and one backward pass [17], and AtP* further enhances reliability
while maintaining scalability [18]. Building on this line of work, we propose Relevance Patching
(RelP), which also targets efficiency but replaces the local gradients in attribution patching with
propagation coefficients computed using Layer-wise Relevance Propagation (LRP) [28], improving
faithfulness to activation patching while maintaining the computational advantages of AtP.

Circuit Analysis Circuit analysis methods aim to uncover subnetworks that drive particular model
behaviors. Activation patching, used in ACDC [41], identifies critical edges in the computation graph
but is computationally expensive. It has been scaled to large models [42] and adapted to study the
effects of fine-tuning [43]. Sparse Autoencoders (SAEs) offer an alternative by learning disentangled,
interpretable latent features [44, 45]. Methods such IFR [46] and EAP [47] instead use gradient-based
attributions to perform circuit discovery in a more efficient way. Finally, attribution-guided pruning
with LRP has been shown to support both circuit discovery and model compression [48]. Our
proposed Relevance Patching (RelP) also builds on LRP but stays within the patching framework,
providing faithful and efficient attribution that approximates activation patching.

Gradient-Based and Propagation-Based Attribution Methods Local gradients have long been
used to explain the behavior of non-linear models [23]. Through backpropagation, they enable
the efficient computation of saliency maps [28, 49], which have been extensively studied in the
context of vision models. Saliency maps derived from raw gradients [49] capture the sensitivity of
model predictions to small perturbations in input features. When these gradients are scaled by the
corresponding input values, they yield Gradient×Input [22] explanations. Grad-CAM [20] aggregates
class-specific gradients over the final convolutional feature maps, yielding coarse but discriminative
heatmaps. Since raw gradients are often noisy, SmoothGrad [19] averages saliency maps over random
perturbations, PathwayGrad [50] finds a sub-network (pathway) critical for the output and propagates
gradients through that pathway, and Integrated Gradients [21] integrates along a baseline-to-input
path to mitigate saturation and enforce key attribution axioms. Beyond gradient-based methods,
propagation-based approaches such as LRP [28] and DeepLIFT [51] redistribute the model’s output
backward through the network using local propagation rules, which can offer more faithful attribution.
For a comprehensive review of explanation methods and attribution techniques, see [1, 2, 52, 53].

3 Background

From Activation to Attribution Patching LetM : X → RV be a decoder-only transformer model
that maps an input sequence x ∈ X := {1, ..., V }T to a vector of output logits over a vocabulary
of size V . We represent the model as a directed computation graph G = (N,E), where each node
n ∈ N corresponds to a distinct model component, and each edge (n1, n2) ∈ E represents a direct
computational dependency. The activation of a component n when processing input x is denoted
n(x).

Let D be a distribution over prompt pairs (xoriginal, xpatch), where xoriginal is a representative task
sample that captures the behavior of interest, and xpatch serves as a reference input used to introduce
counterfactual perturbations for causal intervention. A metric L : RV → R quantifies the output
behavior of the model.

The causal contribution c(n) of a component n ∈ N is defined as the expected effect of replacing its
activation in the original input with the corresponding activation from the patch input, i.e.,

c(n) := E(xoriginal,xpatch)∼D [L (M(xoriginal | do(n← n(xpatch))))− L (M(xoriginal))] . (1)
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This definition follows the causal intervention framework, where do(n← n(xpatch)) denotes over-
writing the activation of n with its value under the patch input. Evaluating c(n) directly for all
n ∈ N is computationally prohibitive for large-scale models, motivating the development of efficient
approximation methods such as attribution patching (AtP) [17]:

ĉAtP(n) := E(xoriginal,xpatch)∼D

[
(n(xpatch)− n(xoriginal))

⊤ ∂L(M(xoriginal))

∂n

∣∣∣∣
n=n(xoriginal)

]
. (2)

AtP (Eq. 2) approximates the effect of replacing component n’s activation from the original input
with that from the patch input, without explicitly running the patched model, by leveraging gradients.

Layer-wise Relevance Propagation (LRP) Layer-wise Relevance Propagation (LRP) [28] is a
framework for interpreting neural network predictions. The central idea is to assign a relevance
scoreR to each component or input feature, quantifying its contribution to the model’s output or to
any metric defined from the output. These relevance scores are then propagated backward through
the network according to layer-specific rules. The propagation follows the principle of relevance
conservation [28, 29], ensuring that the total relevance at each layer is completely redistributed to the
preceding layer, ultimately attributing the chosen metric to the input features.

To formalize this process, let a(l−1)
i with i ∈ {1, ..., n} denote the activations in layer l − 1. These

activations serve as inputs to a layer represented by f (l) : Rn → Rm, resulting in outputs a
(l)
j ,

j ∈ {1, ...,m}. A local first-order Taylor expansion around a reference point ã(l−1) expresses each
output as

f
(l)
j (a(l−1)) ≈

∑
i

J
(l)
ji a

(l−1)
i + b̃

(l)
j , J

(l)
ji =

∂f
(l)
j

∂a
(l−1)
i

∣∣∣∣∣
ã(l−1)

.

Here, J (l)
ji is the local Jacobian, describing how activations a(l−1)

i influences outputs a(l)j , while b̃
(l)
j

collects constant terms and approximation errors.

This decomposition motivates the LRP redistribution step. Each component j in layer l is assigned
a relevance score R(l)

j , which is redistributed to its inputs in proportion to their contributions to
the activation of component j. Here, this redistribution from upper-layer activations to component
i is expressed through a propagation coefficient ρi, which aggregates the contributions from all
connected upper-layer components j. The relevance of component i in layer l − 1 is then given by

R(l−1)
i = a

(l−1)
i ρi.

The propagation coefficient ρi depends on the local Jacobian J (l), the activations a(l−1), and the
relevance scores at layer l (i.e.,R(l)). Intuitively, ρi acts as a filter that determines which parts of the
input activations are considered relevant.

The layer-wise redistribution of relevance can be repeated until the input layer is reached or stopped at
an intermediate layer of interest. The procedure begins with an initial relevance signalR(L)

c , typically
defined using a metric computed from the model outputs, commonly the logit of the true, predicted,
or any target class c at the output layer [28, 29]. Contrastive approaches have also been proposed,
which explain the difference between class logits to highlight features that strongly influence changes
in the model’s prediction [26, 54].

4 RelP: Relevance Patching for Mechanistic Analysis

Gradient-based attribution methods have been extensively studied in the XAI literature [19, 20, 21, 22,
23]. Despite their simplicity and model-agnostic applicability, these methods often face challenges
when applied to large neural networks due to noisy and less reliable gradients [25, 27]. LRP mitigates
these shortcomings by propagating the network’s outputM(x), or any metric L defined from the
output, backward through the network in a structured and theoretically grounded manner. Depending
on the layers in a given model architecture, different propagation rules have been proposed. These
rules are typically derived from gradient analyses of model components [26, 29, 55], with specific
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Propagation Rules for Transformers

Layer Propagation Rule Implementation Trick

LayerNorm / RMSNorm LN-rule [26] yi =
xi−E[x]

[
√

ϵ+Var[x]]const.

GELU / SiLU Identity-rule [55] x⊙ [Φ(x)]const.
Linear 0-rule, ϵ-rule, or γ-rule [52] –
Attention AH-rule [26] yj =

∑
i xi[Aij ]const.

Multiplicative Gate Half-rule [55, 57] 0.5 · (x⊙g(x))+0.5 · [(x⊙g(x))]const.

Table 1: A summary of propagation rules for Transformer layers. Components marked with
[]const. are treated as constants, typically using .detach() in PyTorch. In this table, x and y
denote the input and output of a layer, respectively, and A represents the attention weights.

choices guided by common desiderata for explanations, such as sparsity, reduced noise, and relevance
conservation [52, 56].

Specialized propagation rules have been developed to handle diverse nonlinear components (e.g.,
activation functions, attention mechanisms, normalization layers) and architectural nuances across
deep network families [7, 8, 27, 52, 55, 57, 58]. An overview of relevant rules for transformer models
is shown in Table 1.

As attribution patching relies on gradients to approximate the effect of substituting hidden activations
(“patching in”), it is also susceptible to the noise and approximation errors inherent to gradient-
based attribution methods, particularly in very large models [24, 29]. To address this, we introduce
Relevance Patching (RelP).

Formally, RelP follows the structure of standard attribution patching (AtP). In AtP, the contribution of
a component is computed as the dot product between the change in its activation, caused by replacing
the original input with a patch input, and the gradient of the metric L with respect to that component,
evaluated at the original input. RelP modifies this procedure by substituting the gradient term with
the LRP-derived propagation coefficient (introduced in Section 3) for that component. The resulting
contribution score is defined as

ĉRelP(n) := E(xoriginal,xpatch)∼D

[
(n(xpatch)− n(xoriginal))

⊤
ρ(L(M(xoriginal)))

∣∣∣
n(xoriginal)

]
= E(xoriginal,xpatch)∼D

[
RRelP(L(M(xoriginal)))

∣∣∣
n(xoriginal)

]
, (3)

where ρ(L(M(xoriginal))) and RRelP(L(M(xoriginal))) denote, respectively, the propagation coeffi-
cient and the relevance score for component n.

RelP preserves the efficiency of attribution patching while improving faithfulness. Unlike Marks
et al. [44], which relies on Integrated Gradients [21] for more accurate approximations at higher
computational cost, RelP provides scalable and faithful localization of influential components.

Propagation Rules Table 1 summarizes the propagation rules applicable to core components of
transformer architectures. As discussed in Section 3, relevance conservation is a key property in LRP,
ensuring that the sum of relevance scores is preserved across layers. This prevents relevance from
being lost or artificially introduced during propagation. Many of the specialized rules in Table 1 are
designed to address situations where this property could fail, and are often derived from gradient
analyses of individual model components.

In attention heads, attention outputs depend on inputs directly and via attention weights Aij , which
are also input-dependent. Correlations between these terms can break conservation and the AH-rule
preserves it by treating Aij as constants, effectively linearizing the heads [26]. LayerNorm’s centering
and variance-based scaling can cause “relevance collapse”, which the LN-rule mitigates this by
treating (

√
ϵ+Var[x])−1 as constant, allowing the operation to be seen as linear and preserving
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IOI Templates

Template # Sentence Template

1 Then, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT] to [A].
2 When, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT] to [A].
3 After [B] and [A] went to the [PLACE], [B] gave a [OBJECT] to [A].

Table 2: Templates used for generating the IOI samples.

conservation [26]. For multiplicative gates, the Half-rule splits relevance equally to avoid spurious
doubling [55, 57]. Activation functions (e.g., GELU, SiLU) can disrupt conservation since their output
is a nonlinear transformation of the input, the Identity-rule addresses this by treating the non-linear
component as constant [55]. For linear layers, the 0-rule is equivalent to Gradient ×Input [22]. The
ϵ-rule and γ-rule extend the 0-rule, the ϵ-rule is applied when sparsity and noise reduction are desired,
while the γ-rule is used when it is preferable to emphasize positive contributions over negative ones
[52]. For additional rules specifically tailored to transformers, we refer the readers to [26, 27, 59].

5 Experiments

We evaluate the effectiveness of RelP by benchmarking it against attribution patching (AtP), on the
Indirect Object Identification (IOI) task, across three GPT-2 variants (Small, Medium, and Large), two
Pythia models (70M and 410M), two Qwen2 models (0.5B and 7B), and Gemma2-2B. Furthermore,
we assess RelP’s ability to recover sparse feature circuits underlying Subject–Verb Agreement in the
Pythia-70M model, comparing its performance against Integrated Gradients (IG) as a more accurate
gradient-based baseline. Additional details of our experimental setup are provided in Appendix A.

5.1 Evaluating RelP on the IOI Task

The objective of this experiment is to evaluate how well attribution patching (AtP) and relevance
patching (RelP) approximate the ground-truth effects captured by activation patching (AP) on the
IOI task. This task involves determining which entity in a sentence functions as the indirect object,
typically the recipient or beneficiary of the direct object.

To enable controlled evaluations, we construct 100 prompt pairs. Each pair consists of an original
prompt (with the correct indirect object) and a patch variant in which the subject and indirect object
are swapped, keeping all other tokens the same. All prompts are generated from structured templates
[10] (Table 2) to ensure consistency across examples. We define the metric L as the difference in
logits between the original and patch targets. The methods RelP, AtP, and AP are each applied to
the residual stream, attention outputs, and MLP outputs. Since the resulting attribution scores are
computed across hidden dimensions, we aggregate them by summing over these dimensions. To
quantify how well AtP and RelP approximate AP, we compute the Pearson correlation coefficient
(PCC) between their results and those of AP.

The results of this experiment are presented in Figure 1. As shown, RelP consistently outperforms AtP
in a range of architectures and model sizes, including GPT-2 {Small, Medium, Large}, Pythia-{70M,
410M}, Qwen2-{0.5B, 7B}, and Gemma2-2B. The performance gap is especially pronounced in
the MLP output and residual stream analyses. Detailed numerical results are listed in Table 5 in
Appendix B.

Qualitative differences between AtP and RelP are also visible in Figure 2. Nanda [17] suggests
that attribution patching fails notably in the residual stream, primarily due to its large activations
and the nonlinearity introduced by LayerNorm, which significantly disrupts the underlying linear
approximation. It also performs poorly on MLP0, since this layer in GPT-2 Small functions as
an “extended embedding”, and Nanda [17] has shown that linear approximations in this layer may
become unstable, leading to misleading insights. As can be seen in Figure 2, the RelP results align
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Figure 2: Qualitative comparison showing how accurately relevance patching (RelP) and attribution
patching (AtP) approximate the effects of activation patching in GPT-2 Small. RelP shows notably
better alignment in the residual stream and at MLP0, where AtP’s estimates are less reliable.

more closely with those from activation patching, especially when considering the residual stream
and MLP outputs (e.g., MLP0). Further qualitative results are provided in Appendix C.

Overall, we find that the proposed method, RelP, consistently achieves strong correlations with
activation patching and is often clearly superior to standard attribution patching. This underscores
the effectiveness of the tailored propagation rules in the LRP framework, which provide a reliable
and computationally efficient approximation of the computationally expensive activation patching
method across models and components commonly studied in mechanistic interpretability research.

5.2 Sparse Feature Circuits for Subject-Verb Agreement

Sparse feature circuits are small, interconnected groups of interpretable features that jointly drive
specific behaviors in language models. Analyzing these circuits allows us to understand how models
combine meaningful components to solve tasks, offering insight into the underlying mechanisms
behind their decisions. In this experiment, we aim to uncover feature circuits involved in the subject-
verb agreement task, a linguistic evaluation that tests a model’s ability to correctly match a verb’s
inflection (e.g., singular or plural) to the grammatical number of its subject.
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Figure 3: Faithfulness and completeness scores for circuits, evaluated on held-out data. Faint lines
show individual circuits for structures from Table 3, while the bold lines indicate the average across
all structures. An ideal circuit has a faithfulness score of 1 and a completeness score of 0. While
Integrated Gradients (IG) requires multiple integration steps (steps=10 in this experiment), RelP
achieves comparable faithfulness scores without any additional computational cost.

Subject-Verb Agreement Templates

Template Type Example xoriginal Example Output Metric

Within Relative Clause (RC) The athlete that the managers p(likes)− p(like)
Across Relative Clause (RC) The athlete that the managers like p(do)− p(does)
Across Prepositional Phrase
(PP)

The secretaries near the cars p(has)− p(have)

Table 3: These templates involve contrastive pairs of inputs that differ only in the grammatical
number of the subject, with the model’s task being to choose the appropriate verb inflection.

To identify and analyze these circuits, we use features discovered using sparse autoencoders (SAEs),
which provide fine-grained, human-interpretable units. We follow [44] and use their SAEs trained
on Pythia-70M language model and their sparse features in our experiments. These sparse features
serve as the fundamental units for circuit analysis. To assess their influence on the model’s output,
Marks et al. [44] employed efficient linear approximations of activation patching, such as Integrated
Gradients (IG), to estimate the contributions of individual features and their interactions. Although
IG provides greater faithfulness than attribution patching, it requires multiple forward and backward
passes, resulting in higher computational cost. Our experiments show that RelP achieves faithfulness
on par with attribution patching, without incurring additional computational overhead.

We use three templatic datasets (Table 3), where tokens at the same positions serve similar roles,
allowing us to average node and edge effects across examples while retaining positional information.
Consistent with [44], we assess the identified sparse feature circuits using faithfulness and com-
pleteness evaluation metrics [10]. Additionally, we compare our sparse feature circuits with neuron
circuits, constructed by applying the same discovery method directly to individual neurons rather
than to SAE features, serving as a baseline for evaluation.

Faithfulness measures how much of the model’s original performance is captured by the discovered
circuit, relative to a baseline where the entire model is mean-ablated. It is calculated as L(C)−L(∅)

L(M)−L(∅) ,
whereL(C) is the metric when only the circuit C is active, L(∅) is the metric of the fully mean-ablated
model, and L(M) is the metric of the full model.

Completeness evaluates how much of the model’s behavior is not explained by the discovered
circuit. It is defined as the faithfulness of the circuit’s complement, (M\C). In other words, if the
complement of the circuit still explains a lot of the behavior, then the original circuit is not complete
in capturing the mechanism.
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We report faithfulness scores for feature and neuron circuits as the node threshold TN is varied
(Figure 3). The threshold keeps only nodes with contribution scores above TN , retaining the most
relevant ones. Consistent with [44], small feature circuits explain most of the model’s behavior: in
Pythia-70M, about 100 features account for the majority of performance, whereas roughly 1,500
neurons are needed to explain half.

SAE error nodes summarize reconstruction errors in the SAE, making them fundamentally different
from single neurons. To analyze their impact, we evaluate faithfulness after removing all SAE error
nodes, as well as those originating from attention and MLP modules. Consistent with findings by
Marks et al. [44], we observe that removing residual stream SAE error nodes severely disrupts model
performance, whereas removing MLP and attention error nodes has a less pronounced effect.

Notably, the circuits identified by our RelP method achieve faithfulness scores comparable to those
obtained with IG, while offering greater computational efficiency. In our experiments, IG requires 10
integration steps, increasing computational overhead. In contrast, RelP matches the efficiency of AtP,
requiring only two forward passes and one backward pass, while achieving faithfulness scores on par
with IG. In the case of neuron circuits and feature circuits without attention/MLP errors, we observe
an improvement in the faithfulness of RelP compared to IG. This combination of faithfulness and
efficiency makes RelP a more effective and practical approach for uncovering sparse feature circuits
in large language models.

Following [44], we also evaluate completeness (Figure 3) and observe that ablating only a few nodes
from feature circuits can drastically reduce model performance, whereas hundreds of neurons are
needed for a similar effect for Pythia. This highlights the efficiency of the identified sparse feature
circuits in capturing critical model behavior, as well as the usefulness of RelP in locating them.

6 Conclusion

In this paper, we introduced Relevance Patching (RelP) as an enhancement over the standard attribu-
tion patching method. RelP preserves the overall algorithmic structure of attribution patching while
replacing its local gradient signal with the propagation coefficient derived from Layer-wise Relevance
Propagation (LRP). This modification enables RelP to more accurately approximate the causal effects
captured by activation patching, while remaining computationally efficient.

In our experiments on the Indirect Object Identification task, we demonstrated that RelP exhibits
stronger alignment with activation patching across residual stream, attention, and MLP outputs
compared to attribution patching. Furthermore, in comparing sparse feature circuits identified by
RelP and Integrated Gradients (IG), we showed that RelP achieves comparable faithfulness without
incurring the additional computational cost associated with IG. Our study thus demonstrates that
methods developed for feature attribution can be effectively integrated into mechanistic interpretability,
helping to advance our understanding of modern foundation models.

7 Limitations and Future Work

Applying RelP to localize relevant model components requires choosing appropriate rules within
the LRP framework, which introduces some model-specific overhead compared to model-agnostic
attribution methods. In our experiments, RelP consistently outperformed attribution patching on
residual stream and MLP outputs, while gains for attention outputs were smaller. This suggests that
a deeper analysis of gradient structure in self-attention, combined with more careful rule selection,
could improve attribution faithfulness. Prior works have examined these challenges in the context of
input-level feature attribution [26, 27, 55], but systematic studies of internal layers remain limited.
For our experiments, we used small- and medium-scale open-access models, which allow full access
to internals and gradients. The tasks were chosen to match standard circuit analysis benchmarks,
relying on predefined original–patch input pairs and single-token prediction metrics. As a result,
circuit discovery was limited to moderately complex behaviors. Extending RelP to more challenging
settings, such as free-form text generation or scenarios without known counterfactual inputs, remains
an important direction for future work.
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A Experimental Details

A.1 LRP Implementation

We applied the LN-rule [26] for LayerNorm/RMSNorm, the Identity-rule [55] for nonlinear activation
functions, and the LRP-0 rule [52] for linear transformations. The Half-rule [55, 57] was applied
only to the Qwen2 model family and Gemma2-2B, as other models used in our experiments did not
include multiplicative gating operations. No attention-specific rule (e.g., AH-rule) was used. Full
details are given in Table 4.

Propagation Rule GPT-2 Family Pythia Family Qwen2 Family Gemma2-2B

LN-rule [26] ✓ ✓ ✓ ✓
Identity-rule [55] ✓ ✓ ✓ ✓
0-rule [52] ✓ ✓ ✓ ✓
Half-rule [55, 57] × × ✓ ✓
AH-rule [26] × × × ×

Table 4: Propagation rules applied in our LRP implementation across different model families. A
green tick (✓) indicates that the rule was applied, while a red cross (×) indicates that it was not used.

A.2 Further Details on Subject-Verb Agreement Experiment

In this experiment, we used 300 samples, structured according to Table 3, for circuit discovery, and
100 held-out samples for evaluating faithfulness and completeness. Consistent with [44], the first
one-third of each circuit was excluded from evaluation, since components in early model layers
are typically responsible for processing specific tokens, which may not consistently appear across
training and test splits.

B Quantitative results

The exact numerical values corresponding to the IOI experiment, visualized in Figure 1, are reported
in Table 5.

Residual Stream Attention Outputs MLP Outputs

Model AtP RelP (ours) AtP RelP (ours) AtP RelP (ours)

GPT-2 small 0.753 0.968 0.979 0.962 0.195 0.992
GPT-2 medium 0.671 0.884 0.961 0.982 0.551 0.993
GPT-2 large 0.740 0.853 0.461 0.965 0.006 0.956
Pythia-70M 0.728 0.898 0.981 0.986 0.507 0.967
Pythia-410M 0.695 0.874 0.879 0.903 0.501 0.948
Qwen2-0.5B 0.684 0.922 0.933 0.965 0.717 0.981
Qwen2-7B 0.230 0.549 0.395 0.569 0.471 0.622
Gemma2-2B 0.391 0.769 0.942 0.956 0.910 0.952

Table 5: Pearson correlation coefficient (PCC) between activation patching and attribution patching
(AtP) or relevance patching (RelP), computed over 100 IOI prompts for three GPT-2 model sizes
(Small, Medium, Large), two Pythia models (70M, 410M), two Qwen2 models (0.5B, 7B), and
Gemma2-2B. A higher value of PCC represents higher alignment with activation patching results.

C Further Qualitative Results

In Section 5, we presented the qualitative differences between AtP and RelP for the GPT-2 Small
model. In this section, we extend our analysis by providing additional experimental results for
other models. It is evident that RelP provides a more accurate approximation to activation patching,
particularly for the residual stream and MLP outputs.
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Figure 4: Qualitative comparison showing how accurately relevance patching (RelP) and attribution
patching (AtP) approximate the effects of activation patching in GPT-2 Large. RelP shows notably
better alignment in the residual stream and at MLP0, where AtP’s estimates are less reliable.
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Figure 5: Qualitative comparison showing how accurately relevance patching (RelP) and attribution
patching (AtP) approximate the effects of activation patching in Pythia-410M. RelP shows notably
better alignment in the residual stream and at MLP0, where AtP’s estimates are less reliable.
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