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Abstract

The expected cost (EC) is one of the main classification metrics introduced in statistical
and machine learning books. It is based on the assumption that, for a given application of
interest, each decision made by the system has a corresponding cost which depends on the
true class of the sample. An evaluation metric can then be defined by taking the expectation
of the cost over the data. Two special cases of the EC are widely used in the machine learning
literature: the error rate (one minus the accuracy) and the balanced error rate (one minus
the balanced accuracy or unweighted average recall). Other instances of the EC can be useful
for applications in which some types of errors are more severe than others, or when the
prior probabilities of the classes differ between the evaluation data and the use-case scenario.
Surprisingly, the general form for the EC is rarely used in the machine learning literature.
Instead, alternative ad-hoc metrics like the F-beta score and the Matthews correlation
coefficient (MCC) are used for many applications. In this work, we argue that the EC is
superior to these alternative metrics, being more general, interpretable, and adaptable to
any application scenario. We provide both theoretically-motivated discussions as well as
examples to illustrate the behavior of the different metrics.

1 Introduction

During the development of machine learning systems, the model architecture, hyperparameters, training
approaches, and other system characteristics, are determined based on the performance measured on a
validation set. After development, the performance of the resulting system is reported using a separate
evaluation set. In both of these steps it is essential that the metric used to evaluate performance be reflective
of the needs of the application of interest. In this work, we focus on the study and comparison of metrics
that are designed to evaluate classification systems that produce a single categorical label per sample based
only on the information extracted from that sample. While systems trained for this task can sometimes be
used for other purposes, like ranking of samples or producing an interpretable score of each class, the metrics
needed to evaluate such systems are out of the scope of this work.1

One of the most widely used metrics for the evaluation of categorical decisions is the total error rate or,
equivalently, the accuracy, which is equal to one minus the total error rate. These metrics assume that all
errors are equally costly regardless of the true class of the sample. In some applications, though, like those
involving medical (Ashby & Smith, 2000; Kornak & Lu, 2011), biometric (Van Leeuwen & Brümmer, 2007;
Gonzalez-Rodriguez, 2014), or business and economic decisions (Harsanyi, 1978; Berger, 2013), the costs
may be extremely different across error types. In those cases, alternative ad-hoc metrics like the F-beta
score (Rijsbergen, 1979) or the Matthews correlation coefficient (MCC) (Matthews, 1975), are often used for
evaluation. In this work, we argue that the expected cost (EC), a decades-old generalization of the error
rate (Savage, 1972), can be successfully used in all classification scenarios where categorical decisions are

1Ranking systems that eventually produce categorical decisions by labelling the top M samples as being from the target class
are also outside of the scope of this paper, since the resulting label for each sample is not based only on that sample but on the
scores for other samples under evaluation.
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made and where the severity of an error depends only on the true class of the sample and the decision made2.
Other metrics designed for this scenario, like the F-beta score or the MCC can be seen as ad-hoc substitutes
for the EC, offering no advantages and various disadvantages over this metric.

The EC is based on a simple general assumption: given a certain use-case scenario a numerical value can
be assigned to each combination of true class h and decision d, reflecting the cost incurred by the user of
the system when making decision d for a sample of class h (Elkan, 2001; Berger, 2013; Savage, 1972). As
various authors have argued, optimizing the EC is the principled way to make rational decisions (Good, 1952;
Peterson, 2009; Dyrland et al., 2022). Once costs are defined for the application of interest, a principled way
to measure the performance of a classification system is to take the expectation of the cost over the data.
This process results in the EC metric, which is also sometimes called expected prediction error (Hastie et al.,
2001), or expected loss (Bishop, 2006), and is equivalent to the negative expected utility (DeGroot, 1970;
Bernardo & Smith, 1994). Note that, while the EC definition is very simple, the set of costs it relies upon are
sometimes difficult to define given a certain application of interest (Kahneman, 2011; Dyrland et al., 2022).
Yet, as we discuss in this work, costs are also implicitly involved in all alternative classification metrics. The
benefit of the EC is that the costs are selected explicitly rather than being obscured within the metric’s
definition.

The EC is used in statistical learning as the loss to be minimized when making decisions based on posterior
probabilities using Bayes decision theory (Hastie et al., 2001; Bishop, 2006). Yet, this metric can be used
to evaluate classification systems regardless of how decisions are made (Hernández-Orallo et al., 2012) and,
hence, it is not constrained to the evaluation of systems that produce posterior probabilities. The error
rate and the balanced error rates which correspond to one minus the accuracy and balanced accuracy (or
unweighted average recall), respectively, are, in fact, special cases of the EC which are widely used in the
literature to assess performance of categorical decisions. Further, the general form of the EC with unequal
costs has been widely adopted by the speech processing community as an evaluation metric for the tasks of
speaker verification and language recognition (see, e.g., Brümmer, 2010; Brümmer et al., 2021; Van Leeuwen
& Brümmer, 2007; Greenberg et al., 2020), where it is called detection cost function (DCF). The DCF is the
metric of choice for the periodic evaluations organized by NIST.3 Other than for these tasks, though, we are
not aware of other applications for which the general form of the EC is used as standard practice. While
some papers stand out proposing the use of EC for medical tasks (Ashby & Smith, 2000; Kornak & Lu, 2011;
Godau et al., 2023), they are exceptions in a literature where various other metrics are used instead (Hicks
et al., 2022). Interestingly, the EC has been recently highlighted as a “so far uncommon” metric with many
desirable features in (Maier-Hein et al., 2024), a new paper on metrics for medical image analysis written by
an international consortium of experts.

In this work, we review and compare the EC with other more widely-used classification metrics in the machine
learning literature. Our study is related to a recent work by Dyrland et al. (2022) who similarly argued in
favor of the use of a decision theoretical metric (expected utility, in their case) and against ad-hoc metrics
like the F-beta and the MCC, showing empirical evidence on synthetic data that these alternative metrics
do not correspond to an expected utility. In this work, we provide a thorough analysis of the EC which
complements the work by Dyrland et al. (2022) in various aspects. First, we explain how the EC can be used
under various different scenarios, including the case of unequal error severity, the case where the decisions do
not coincide with the classes (e.g., when the system has an “abstain from choosing a class” option), and the
case where the class priors in the evaluation data differ from the one expected in practice. We propose to
address the latter case, quite common in some disciplines, by allowing the class priors to be parameters of the
metric instead of being defined by the class frequencies in the evaluation data, as in all standard classification
metrics. This allows us to manipulate the priors when needed, setting them to the ones that are expected at
deployment. With this generalization of the EC, it is also possible to see the balanced error rate as a special
case of the EC obtained when the costs depend on the class priors. We also introduce the normalized EC
(NEC), a more interpretable version of the EC obtained by dividing the EC by the EC of the best naive
system. Finally, we compare the EC with alternative classification metrics, like the F-beta score and the

2In some scenarios, the cost of an error depends on characteristics other than just the true class of the sample (e.g., Zadrozny
& Elkan, 2001), or are determined by the end user after deployment. Such scenarios are out of the scope of this paper.

3http://www.nist.gov/ itl/iad/mig/sre.cfm
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MCC, both empirically, like Dyrland et al. though with alternative visualizations and including results in real
datasets, but also theoretically by finding the relationship between the expressions. Based on this comparison,
we argue that the EC is superior to those metrics, being more intuitive and flexible, having a theoretical
framework for making optimal decisions, and having useful properties that facilitate its interpretation. The
code used to compute all metrics and generate all plots and tables in this paper is available as suplemental
material. We hope this work will encourage the machine learning community to embrace this valuable but
underused metric.

2 The expected cost (EC)

The EC is defined as a generalization of the probability of error for cases in which errors cannot be considered
to have equally-severe consequences. In the context of decision theory, the EC is used as the function to
be minimized in order to make optimal decisions when the system outputs posterior probabilities. See, for
example, the work by Bishop (2006, Section 1.5), Hastie et al. (2001, Section 2.4), Duda et al. (2001, Section
2.2), Elkan (2001), DeGroot (1970), Dyrland et al. (2022), and Savage (1972). Yet, EC can be used to assess
performance of any classification system, regardless of how categorical decisions are made or whether they
make such decisions based on posterior probabilities or some other type of score. The EC is the expectation
of a cost function which assigns a numerical penalty to each combination of the true class of the sample, h,
and decision made by the system, d. Since we assume that both h and d are categorical, this cost function
can be specified by a matrix with components C(h, d), which represent the cost we believe that the system
should incur for making decision d when the true class of the samples was h.

The assignment of costs for each type of error is not necessarily trivial. For example, it may not be easy
to decide exactly how much more costly it should be to treat a person for a certain pathology they do not
have than for a person suffering from the pathology to go untreated. Selecting the costs usually requires
knowledge of the application and should be done in consultation with field experts. The issue of cost selection
is discussed at length, both in general and for specific families of applications, for example, by Raiffa (1970b);
Russell & Norvig (2010); Kahneman (2011); Hunink et al. (2014); Dyrland et al. (2022). Yet, while the
difficulty in selecting costs may seem a disadvantage of the EC, it is important to note that the trade-off
between different types of error is encoded in every classification metric (this issue is discussed in Sections 3
and 4). The advantage of the EC over other metrics is that the trade-off is explicit and transparent. Hence,
instead of letting the metric choose the trade-off for us, we can make our best effort in choosing costs that
are, at least approximately, relevant for our task of interest. Further, when the costs are not perfectly defined
and are instead given by a (discrete or continuous) distribution of cost matrices, it is still appropriate to use
the EC as metric with costs given by the expectation of the cost matrix with respect to that distribution
(Dyrland et al., 2022; Raiffa, 1970a).

In some scenarios, the selection of costs may be facilitated by allowing the cost matrix to include a combination
of positive and negative costs (a negative cost would be equivalent to a utility) or to define, instead, utility
matrices, where bad decisions correspond to negative values and good decisions to positive ones. Utility
matrices can be converted into cost matrices by multiplying them by minus one. Hence, the analysis can be
restricted to cost matrices without loss of generality. Further, for every cost matrix with entries C ′(h, d), a new
cost matrix equivalent to the original one can be created with entries given by C(h, d) = C ′(h, d)−mind C ′(h, d).
The equivalence is in the sense that systems would be ranked in the same way by both costs matrices (DeGroot,
1970; Dyrland et al., 2022; Brümmer, 2010). The normalized costs are non-negative and the best decision for
each class has a cost of zero, which often facilitates the analyses. In this work it is assumed that all costs
matrices have been normalized in this way.

In this work, as generally done in the machine learning literature, the expectation is computed with respect
to the empirical distribution in the test data, i.e., as an average of the cost over the test samples. Given a test
set {(h1, d1), . . . , (hN , dN )}, where ht ∈ H = {H1, . . . , HK} are the true labels and dt ∈ D = {D1, . . . , DM }
are the system’s decisions for sample t, the EC is given by:

EC = 1
N

N∑
t=1

C(ht, dt) (1)
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where C(ht, dt) is the cost incurred on sample t with true class ht and system’s decision dt. This expression
can be rewritten as:

EC = 1
N

K∑
i=1

M∑
j=1

cijNij =
K∑

i=1

M∑
j=1

cijPiRij (2)

where cij = C(Hi, Dj), Rij = Nij/Ni∗ is the fraction of samples from class Hi for which the system made
decision Dj , with Ni∗ =

∑
j Nij being the number of samples of class Hi in the test set, and where Pi = Ni∗/N

is the empirical estimate of the prior probability of class Hi in the evaluation data. The first expression in this
equation is derived by using the fact that the cost is the same for each combination of class Hi and decision
Dj . Hence, the summation over the samples in Equation (1) can be converted to a (double) summation
over every combination of i and j by multiplying the corresponding cost by the number of samples for that
combination of class and decision, Nij .

The second expression for the EC in Equation (2) allows for a useful generalization. While Pi is originally
given by Ni∗/N , it can potentially be changed arbitrarily. This allows us to set the priors so that they coincide
with those we expect to see when the system is deployed which, in many applications, do not necessarily
coincide with those observed in the evaluation data. Rather than forcing the evaluation data to have the
priors we expect to see in practice, which would imply downsampling or upsampling the data, we can simply
use those priors when computing the cost and use the evaluation data as-is to compute the Rij values. This
advantage of the EC has been highlighted by (Godau et al., 2023), where the authors show the benefits of
using an EC metric with the priors determined based on the deployment data rather than on the evaluation
data.

Further, note that in the definition of the EC the set of possible decisions do not need to coincide with the
set of classes. Rather than being the predicted class labels, the decisions may be the actions that could be
taken based on the information in the input sample (Duda et al., 2001, Section 1.3.12). Hence, the EC allows
for the evaluation of more general classification systems than other classification metrics like the F-beta score
or the MCC, which assume that the set of decisions corresponds to the set of possible class labels. Consider,
for example, a (simplified) medical scenario where a doctor needs to make a decision based on an MRI of the
brain of a patient that may or may not have a tumor. The decisions made by the doctor do not necessarily
need to be one of the two classes (patient does/does not have a tumor). They could instead be the actions
that the doctor could take based on the MRI image which could be, for example: “perform surgery”, “send
home”, “do more tests”. A cost for each combination of true class and decision can then be selected based on
the severity of each type of error. Internally, the system can make decisions in order to optimize the resulting
EC, as explained in Section 2.3. The “do more test” decision would be taken in cases in which the system
was not certain enough about the class of the sample to make a decision to operate or send the patient home.

Once a specific EC is selected for evaluation according to the needs of the task of interest, it may seem
appropriate to train the classification model to optimize that same metric. Unfortunately, while using the EC
for evaluation of performance of categorical decision is as trivial as computing the confusion matrix, using this
metric as an objective function for model optimization is not as simple. This is because the EC, as any metric
computed on categorical decisions, is not differentiable with respect to the scores. Nevertheless, relaxations
of these metrics can be used to turn them into differentiable functions that approximate the original metrics,
enabling their use as objective function during optimization. This has been done, for example, for the Fβ

(Huang et al., 2015) and for the DCF which, as mentioned in the introduction, is a binary version of the
EC used in speaker verification (Ramoji et al., 2020; Mingote et al., 2019). The use of classification metrics
for the purpose of model optimization is outside of the scope of this paper where we focus on their use for
system evaluation.

2.1 Normalized expected cost

As explained above, any cost or utility matrix can be mapped to an equivalent cost matrix with cij ≥ 0, and
at least one cij = 0 for each class Hi. The minimum value for any EC with these properties is 0, attained for
a perfect system that always chooses a decision with cost 0 for each sample. The maximum value that EC
can take, though, depends on the costs and priors used to compute it. This makes it hard to assess whether a
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certain value of EC is good or bad. For this reason, it is convenient to compute a normalized version of the
EC (NEC) given by:

NEC = EC
ECnaive

where ECnaive = min
ȷ̂

K∑
i=1

ci ȷ̂ Pi (3)

The value used for normalization is the EC for the best naive system that does not have access to the input
sample and, hence, always makes the same decision ȷ̂. The system is free to choose ȷ̂ to optimize the EC
for the chosen costs and priors. The expression for ECnaive can be easily derived by considering that, for a
system that always makes the same decision ȷ̂, Rij is 0 for all j ̸= ȷ̂ and 1 for j = ȷ̂. Plugging those values
of Rij in Equation (2) we find that the EC for that system is

∑K
i=1 ci ȷ̂ Pi. The minimum over all possible

decisions ȷ̂ is the EC of the best naive system.

For the special case where there are two possible true labels (K = 2) and two possible decisions (M = 2),
and we assume that c11 = c22 = 0, the NEC reduces to:

NEC = c12P1R12 + c21P2R21

min(c12P1, c21P2) =
{

α R12 + R21 if α ≥ 1
R12 + α−1 R21 otherwise

where α = c12P1

c21P2
(4)

Hence, in this scenario, there is only one free parameter to choose in the NEC. All combinations of priors and
costs that lead to the same α correspond to the same metric.

The NEC metric has an essential property: While its value can be larger than 1, this only happens for systems
that are worse than a naive system. In particular, a system with NEC larger than 1 can be trivially improved
upon by replacing it with one that always makes the same least-costly decision ȷ̂. Yet, discarding the system
is usually not necessary. For systems that first generate a score for each class and then make decision based
on those scores, a NEC larger than 1 indicates that the decision stage was not properly optimized. In the
binary case, optimization of the decision stage can be achieved by simply tuning the decision threshold. The
problem of optimizing the decision stage for a certain EC of choice is discussed in Section 2.3.

2.2 Error rate and accuracy

The standard error rate (also called total error or probability of error) is given by:

ER = 1
N

K∑
i=1

K∑
j=1|j ̸=i

Nij (5)

Comparing this equation with Equation (2) we can see that the ER is a particular case of EC obtained when
M = K, and cij = 1 for i ̸= j and cij = 0 for i = j, which we will call the “0-1 cost matrix”. Further, since
the accuracy is given by one minus the ER, we can see that accuracy is also just a trivial function of one
specific case of EC.

In the ER computation, errors from all classes are weighted equally. Hence, when the classes are highly
imbalanced, the ER and the accuracy become somewhat insensitive to the performance in the minority classes.
For this reason, when errors in the detection of the minority classes are considered more severe than those in
the majority classes, the balanced ER (BER), also known as weighted ER, is used as metric instead of the
ER. Alternatively, the balanced accuracy, given by one minus the balanced ER, sometimes called unweighted
average recall (UAR), is also commonly used in these scenarios. The BER is defined as the average of the ER
values per class. That is:

BER = 1
K

K∑
i=1

1
Ni∗

K∑
j=1|j ̸=i

Nij = 1
K

K∑
i=1

K∑
j=1|j ̸=i

Rij . (6)

This expression coincides with the EC when M = K and the costs are selected such that cij = N/(KNi∗) =
1/(KPi) for i ̸= j and cij = 0 for i = j. As a consequence of setting the costs this way, all error rates (Rij
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for i ̸= j) have the same influence on the final metric. Note that by deriving the balanced error rate as a
special case of the EC we can see exactly what is being assumed when we compute this metric: that the cost
for each type of error is given by the inverse of the frequency of the true class of the sample.

The general form of EC offers greater flexibility than these two special cases of the standard and balanced
error rates, allowing us to accommodate scenarios in which the errors are neither all equally costly nor as
costly as the inverse of the prior for each class. The EC allows us to think of each type of error independently
and set their cost according to their severity.

2.3 Optimal decisions

Most modern classifiers are composed of two stages, one that generates posterior probabilities for the classes
and a second one that makes the categorical decisions based on those posteriors. The EC and NEC can be used
to assess the quality of decisions made with any strategy, like the threshold tuning approach commonly used
for the two-class setting. Yet, a unique advantage of these metrics is that the optimal decisions for systems
that produce posterior probabilities can also be obtained in closed form. The decisions that theoretically
optimize the EC are called Bayes decisions (Hastie et al., 2001; Bishop, 2006; Peterson, 2009). Given an EC
determined by a specific cost matrix cij the Bayes decision for a sample x is given by:

dB(x) = arg min
ȷ̂

K∑
i=1

ci ȷ̂ P (Hi|x) (7)

where P (Hi|x) is the posterior probability for class Hi given sample x as produced in an internal stage of our
classifier.

One important condition needs to be satisfied for Bayes decisions to be optimal: the posteriors used to
make the decisions need to be well calibrated. Loosely speaking, for well-calibrated posteriors, 90% of the
times the posterior for a certain class h is 0.9, the true class is h. For a formal definition of calibration,
please refer, for example, to the works by DeGroot & Fienberg (1983); Brümmer (2010); Filho et al. (2023).
Unfortunately, good calibration is not always achieved by modern classifiers mostly due to overfitting of the
parameters to the training data, which results in overconfident posteriors (Guo et al., 2017). Fortunately,
though, calibration quality can usually be easily fixed, if needed, by doing post-hoc calibration on the output
of the classifier (Filho et al., 2023). The topic of calibration is out of the scope of this paper, but it is covered
at length in the publications cited above and many others. The repository provided with this work includes
tools for assessing and fixing calibration.

Assuming our classifier is calibrated, either inherently so or after adding a post-hoc calibration stage, the EC
provides us with an elegant approach for making optimal decisions, even for the multi-class case. In fact, as
discussed in Appendix A, the argmax decisions so widely used in the machine learning literature correspond
to the Bayes decisions for the EC defined with the 0-1 cost matrix, i.e., the error rate (notably, this method
is generally used without verifying whether the calibration condition is satisfied). Making Bayes decisions for
a general EC of choice is as simple as implementing Equation (7). In Section 4, we show examples on making
Bayes decisions for various EC metrics.

To summarize, the EC offers a unique advantage over other classification metrics in that, when well-calibrated
posterior probabilities are available, decisions can be made in a principled way using Bayes decision theory.
Alternatively, if well-calibrated posteriors are not available, decisions can be made with any of the approaches
used for other metrics, like threshold tuning.

3 Other classification metrics

In this section we describe some of the most common classification metrics in the machine learning literature
and compare them to the EC metric. We also describe the area under the ROC curve (AUC) and the equal
error rate (EER). These metrics are not strictly classification metrics in the sense considered in this work,
since they do not evaluate the quality of categorical decisions but of the scores that would eventually be
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used to make such decisions after choosing one specific threshold. Yet, we include them in this section for
completeness since they are widely used in the machine learning classification literature.

3.1 F-beta score

The F-beta score, here Fβ , is defined as one minus a metric called effectiveness, which was first introduced
in (Rijsbergen, 1979). The Fβ is probably one of the most widely used metrics for binary classification in
modern machine learning literature, alongside accuracy and error rate. For example, in the SuperGLUE
benchmark4 of natural language processing (NLP) tasks, out of 10 tasks, 3 use the Fβ (one uses MCC and
the rest use accuracy). The SQuAD benchmark5 for question-answering has two metrics, one of which is Fβ .
The IEMOCAP benchmark6 for emotion recognition is evaluated with (weighted, micro or macro) Fβ as well
as accuracy. The slot-filling SLURP benchmark7 for spoken language understanding uses Fβ . The Fβ is also
widely used in medical imaging, where it is called Dice coefficient (Taha & Hanbury, 2015), in opinion mining
(Wang et al., 2019), and for epileptic seizure detection (Siddiqui et al., 2020). These are just a few examples
from a long list of tasks where the Fβ is selected for evaluation of performance, highlighting the wide spread
use of this metric.

The Fβ assumes that there are only two classes, that the set of decisions coincides with the set of classes
(K = M = 2 and D = H), and that the problem is not symmetric; one of the classes is taken as the class of
interest to be detected. Here, we will take the class of interest to be class H2. Fβ is defined as follows:

Fβ = (1 + β2) Precision Recall
β2 Precision + Recall where

Precision = N22/N∗2

Recall = N22/N2∗
(8)

Replacing those values for the precision and recall, we get:

Fβ = (1 + β2)N22

(1 + β2)N22 + β2N21 + N12
(9)

Fβ takes values between 0 and 1. Larger values indicate better performance, contrary to the EC for which
larger values indicate worse performance. For this reason, in order to compare Fβ with EC, it is convenient
to work with 1 − Fβ , which is given by:

1 − Fβ = β2N21 + N12

(1 + β2)N22 + β2N21 + N12
= β2R21P2 + R12P1

β2P2 + R∗2
(10)

where R∗2 = N∗2/N is the fraction of samples in the evaluation set that are labelled as class H2. The
numerator in this expression is the EC for the binary case when costs for mistakes are given by c12 = 1 and
c21 = β2, which we will call ECβ2 :

ECβ2 = β2R21P2 + R12P1. (11)

We can now express 1 − Fβ as a function of ECβ2 and its normalized version:

1 − Fβ = ECβ2

β2P2 + R∗2
= min(β2P2, P1) NECβ2

β2P2 + R∗2
(12)

That is, 1 − Fβ is proportional to ECβ2 with a scaling factor given by the inverse of β2P2 + R∗2. The
relationship between Fβ and ECβ2 was shown through simulations by Dyrland et al. (2022, Figures 2 and 3),
who also discuss the inadequacy of Fβ as a classification metric. Below, we analyze Equation (12) theoretically,
sheding light into the issues that make Fβ a poor classification metric.

The first factor in the right-hand side of Equation (12) is independent of the system, it only depends on
the prior of class H2 in the evaluation dataset, P2. When comparing different systems on the same dataset

4https://super.gluebenchmark.com/leaderboard
5https://rajpurkar.github.io/SQuAD-explorer/
6https://paperswithcode.com/sota/emotion-recognition-in-conversation-on
7https://paperswithcode.com/sota/slot-filling-on-slurp
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(or on different datasets with the same class priors) P2 is fixed.8 The second term in the denominator in
Equation (12), R∗2, is the percentage of samples that are labeled by the system as being of class H2. Given
two systems with the same value for ECβ2 , Fβ will favor the one that detects more samples as being from
class H2, regardless of whether they are correctly or incorrectly classified (examples of this behavior will
be given in Section 4). This is an odd thing to reward: having more samples from class H2 detected is not
beneficial in itself. If, for the application of interest, detecting the samples from class H2 is more important
than detecting the samples of class H1, the principled approach for defining a metric is to use an EC which
penalizes errors in samples from class H2 more than errors in samples of class H1 (i.e., setting c21 > c12).

As for the EC, we can compute the best Fβ that would correspond to a naive system that always outputs the
same decision. If the system always chooses class H1, Fβ = 0 since N22 = 0. On the other hand, if the system
always chooses class H2, the recall is 1 and the precision is equal to the prior of class H2, P2, which results
in Fβ = (1 + β2)P2/(β2P2 + 1). This is the value of Fβ for the best naive system. Any system with an Fβ

worse than this value should be considered ineffective. Since the Fβ for the best naive system depends on P2,
a given value of Fβ should be interpreted differently depending on the dataset. A value of F1 of 0.4 is much
better than chance for a dataset with P2 = 0.01 which would have a naive F1 of 0.02, but only just above
chance for a dataset with P2 = 0.2 for which the naive F1 is 0.333. While it would be possible to normalize
the Fβ to make it more readily interpretable, as far as we know, this is never done in the literature.

Finally, note that, unlike for the EC where, as long as the scores are calibrated, the optimal decisions can be
made with Bayes decision theory, as far as we know there is no equivalent decision theory for the Fβ . For the
specific scenario for which the Fβ is defined, which corresponds to binary classification with one decision
per class, decisions can be made by thresholding and the optimal threshold can be obtained empirically
using development data. Note, though, that, even for perfectly calibrated scores, the optimal threshold for
Fβ will depend on the system under evaluation through R∗2 rather than being fixed, as for the EC. Since
every threshold corresponds to the best threshold for a certain EC, we can interpret an Fβ that is minimized
at a specific threshold as being equivalent to the EC that is optimized at that same threshold: they are
equivalent in the sense that both metrics reach their optimum value for the same threshold. Hence, if the
optimal threshold for Fβ changes for each system, the implicit costs assigned to each type of error also change.
This means that Fβ optimizes for a different trade off between error types depending on the system under
evaluation. This is, in our view, an undesirable characteristic for a metric. We will see examples of this
behavior in Section 4.1.1.

In summary, the Fβ has several issues that make it a suboptimal metric: 1) it is restricted to scenarios with
two classes and two decisions, 2) the interpretation of its value depends on the priors of the dataset, 3) the
effective costs being optimized depend on the system under evaluation rather than being determined by the
needs of the application, and 4) it cannot be optimized theoretically. All of these problems are solved by the
NEC metric.

3.2 Matthews correlation coefficient

The Matthews correlation coefficient (MCC) was first introduced by Matthews (1975) for comparison of
chemical structures, later proposed as a metric for binary classification by Baldi et al. (2000), and finally
generalized to the multi-class case by Gorodkin (2004). In this section we will consider the binary version
since this is enough to show its flaws as classification metric. Chicco & Jurman (2020) argue that MCC is
the most informative single score to establish the quality of a binary classifier that outputs hard decisions.
EC is not considered as an option in that paper. As we discuss below, we believe EC is superior to MCC as a
metric for classification performance.

8Note that values of Fβ across datasets with different priors are not comparable to each other. In particular, the Fβ computed
on a certain evaluation dataset is not a good predictor of the Fβ that will be obtained during deployment if the priors between
the two sets differ. This scenario can be addressed in a principled way with the EC by setting the priors in Equation (2) to
those that are expected during deployment (Godau et al., 2023).
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As the Fβ , the MCC assumes that the set of decisions is the same as the set of classes. For the binary case
MCC is defined as follows:

MCC = N11N22 − N12N21√
(N11 + N21)(N11 + N12)(N22 + N12)(N22 + N21)

(13)

After some manipulations and using Rij = Nij/Ni∗, we get

MCC =
√

N1∗N2∗

N∗1N∗2
(1 − (R12 + R21)) =

√
P2(1 − P2)

R∗2(1 − R∗2) (1 − NECb) (14)

where NECb = R12 + R21 is the normalized BER (this can be seen by dividing Equation (6) by the BER of
the naive systems which is 0.5 for the binary case). As for the Fβ , the relationship between MCC and ECβ2

was shown through simulations by Dyrland et al. (2022, Figures 2 and 3). Here, we analyze the relationship
theoretically.

From Equation (14) we see that when the NECb is larger than 1, which, as explained in Section 2.1, happens
when the system is worse than the best naive system, the MCC is negative. Further, we can see that MCC
and 1 − NECb differ by the square root factor. The numerator in this factor is fixed, it does not depend on
the system, only on the priors (see footnote 8, which also applies to the MCC). The denominator, on the
other hand, does depend on the system and is largest when R∗2 = 0.5 and smaller as the decisions become
more imbalanced (i.e., as R∗2 approaches 0 or 1). Hence, the factor will grow as the decisions become more
imbalanced, making MCC larger in absolute value. For two systems with the same NECb < 1, MCC will
favor the one with larger imbalance in the decisions. As discussed with respect to Fβ , this behavior does
not seem reasonable since the frequency with which a system makes a certain decision is not a good or
bad quality in itself. As the Fβ , the MCC effectively optimizes for a different trade off between error types
depending on the system under evaluation. Finally, also as for Fβ , as far as we know, the MCC does not
have a corresponding decision theory and needs to be optimized empirically.

3.3 Net benefit

Net benefit, a metric used in binary classification for some medical applications (Vickers et al., 2016; Riley
et al., 2021; Cowley et al., 2019), is defined as:

NB = N22

N
− p

1 − p

N12

N
(15)

where p is a parameter of the metric called threshold probability for reasons that are explained below. We
can rewrite this expression as follows:

NB = P2R22 − p

1 − p
P1R12 = P2 − (P2R21 + p

1 − p
P1R12) (16)

where we used the following equalities: PiRij = Nij/N and R22 + R21 = 1. The term in parenthesis in
this equation is the EC when the number of labels and decisions is 2 (K = M = 2) and c21 = 1, and
c12 = p/(1 − p). We can then express NB as a function of the corresponding normalized EC, which we will
call NECp:

NB = P2 − min
(

P2,
p

1 − p
P1

)
NECp (17)

Hence, while NB is an affine function of a NEC, making them equivalent for ranking systems, the NB looses
the interpretability of the NEC given by the fact that a NEC of 1.0 indicates that the system has the same
performance as a naive system. For this reason, we believe the normalized EC is preferable to the NB.

NB’s single parameter p is defined in such a way that it coincides with the optimal threshold for this metric.
We can see this by first noting that the optimal threshold for NB is the same as the optimal threshold for
NECp (NB is maximized when NECp is minimized). The threshold for NECp is given by Equation (24) with
c21 = 1, and c12 = p/(1 − p) resulting in t = p, which explains the fact that this parameter is called threshold
probability.

9
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3.4 LR+

The likelihood ratio for positive results, usually called LR+, is commonly used in diagnostic testing (Pauker
& Kassirer, 1975; Šimundić, 2009). As for Fβ and NB, it is used for non-symmetric binary classification
problems where one of the classes is the class of interest. It is given by:

LR+ = sensitivity
1 − specificity (18)

where, if we assume class H2 is the class of interest, sensitivity = R22 and specificity = R11. LR+ is always
positive and the larger its value, the better the system.

We can write LR+ as a function of a NEC value using the fact that R22 + R21 = 1, and R11 + R12 = 1:

LR+ = 1 − R21

R12
= 1 − NECb

R12
+ 1 (19)

where NECb = R12 + R21 as defined in Section 3.2. So, given two systems with the same NECb, the LR+
will favor the one with lower R12. Just like for Fβ and MCC, the optimal threshold for LR+ and, hence, the
effective costs for which the metric optimizes, will depend on the system’s characteristics (this time, through
R12). We see no reason to prefer this metric over the EC where, if favoring lower values of R12 is desired, one
can directly and explicitly set c12 > c21 to the actual costs needed for the application.

3.5 Specificity at a target sensitivity

Another approach for measuring performance of binary classification systems, most commonly used in medical
diagnosis tasks, is to fix the sensitivity (or recall, or, in our terminology, R22) to some pre-defined value and
report the specificity (R11) corresponding to the threshold that results in that value of sensitivity (Bickelhaupt
et al., 2018; Chan et al., 2002; Goldbaum et al., 2002; Qin et al., 2019). Sometimes the opposite is done, fixing
the specificity and reporting sensitivity (Souza et al., 2010). These metrics are used when the application of
interest imposes a certain target sensitivity or specificity below which the system would be unacceptable.
It compares systems by forcing them to operate at that exact level of the target metric and comparing the
other metric at that threshold. For concreteness, here we will discuss the first approach where the sensitivity
is fixed at a target value and the specificity is reported, calling it SP@SE, though the discussion directly
applies to the alternative metric.

SP@SE, while intuitive and easy to explain, has a number of problems. First, consider the scenario where
a development dataset is used to compute SP@SE for a fixed sensitivity of 0.95, which corresponds to a
certain threshold tdev. Now, when this threshold is used on a new dataset, the sensitivity will most likely no
longer be exactly 0.95. What is the value of SP@SE for this new dataset? It is not the specificity at the tdev
threshold because the sensitivity at that threshold is not the target value. We could, instead, set it to be the
specificity for a new threshold t′

dev for which the sensitivity is 0.95 in the new dataset. The problem with this
latter approach is that it does not address the practical scenario in which the threshold is determined during
development and used without change to make decisions on new data. A second problem with this metric is
that, just like Fβ and MCC, it implicitly considers a different set of costs for every system under evaluation
since the decision threshold depends on the system. Finally, a third issue with this metric is that it forces all
systems to operate at the minimum acceptable sensitivity. When comparing various systems with each other,
better systems could potentially operate at better sensitivity values and still achieve good specificity. Yet,
this metric does not allow us to adapt the threshold to obtain a better trade off between the two types of
error when possible.

In some applications, though, it is important to impose a minimum value of sensitivity. The approach we
recommend for these cases is to use a NEC as defined in Equation (4), where the α is determined using
some baseline system to achieve (approximately) the desired target sensitivity at the Bayes threshold for the
corresponding EC. In this way, we translate the original requirement on sensitivity to a metric that can be
used to compare systems with each other, select thresholds, and evaluate performance on different datasets
without the problems described above related to SP@SE. As an added benefit, this approach makes explicit
the implicit assumption on the costs that come with the selected target sensitivity. To find what the ratio of
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costs corresponding to the selected α is, we simply observe that c12/c21 = αP2/P1, where the priors are those
corresponding to the development set. We can then analyze whether the ratio that resulted from setting
the sensitivity to the selected target value is, indeed, reasonable for the task. Say, for example, that we are
setting the sensitivity to 0.95 because we believe it is very important to never miss a sample of class H2. Now,
after finding the corresponding α we observe that the ratio of costs for which that sensitivity is achieved for
our data and system is c12/c21 = 2. That is, for the desired operating point with sensitivity equal to 0.95 we
are, implicitly, assigning more weight to the errors on class H1 than to those of class H2. Upon seeing this,
we might decide the selected target sensitivity was, in fact, not a good choice.

3.6 Area under the curve and equal error rate

Two very common metrics used to evaluate binary classification systems are the area under the ROC curve
(AUC) (Bradley, 1997) and the equal error rate (EER) (Brümmer et al., 2021). These metrics, unlike all other
metrics covered in this paper which evaluate categorical decisions, evaluate the quality of the scores. The
assumption made by these metrics is that the decisions will be made by thresholding, but no commitment
to a specific threshold is made. Under this assumption, two types of curves can be created by sweeping a
threshold, making categorical decisions for each case, and computing the resulting Rij values:

• Receiver Operating Characteristic (ROC) curves, which correspond to R22 versus R12

• Recall vs Precision (PR) curve, which correspond to R22 vs N22/N∗2.

For each of these two curves, the area under the curve (AUC) can be obtained as a summary metric. Further,
from the ROC we can find the threshold for which R12 equals R21 = 1 − R22. The value of R12 at this
threshold is called Equal Error Rate (EER). Interestingly, there is a very close tie between the EER and
the total error rate (EC for the 0-1 cost matrix) computed over Bayes decisions: this EC is upper bounded
by min(EER, P1, P2) (Brümmer et al., 2021), as long as calibration is perfect. If calibration is not perfect,
this EC can grow without bound, while EER will not. Note that the EER has the same problem as SP@SE:
the threshold used to compute it needs to be obtained on the evaluation data itself, resulting in a metric
that does not reflect the final performance of a system for which the threshold is determined during the
development process.

The ROC and PR curves and the resulting AUCs are invariant to monotonic transformations of the scores
since every threshold in the original space corresponds to a new threshold in the transformed space with
the same Rij values. As a consequence, these metrics do not assess the effect of threshold selection in
the final performance of the system, implicitly assuming instead that the optimal threshold would always
be selected. Further, the AUCs do not reflect the performance that a classification system used to make
categorical decisions will have in practice since such systems need to commit to one specific threshold instead
of integrating over all possible thresholds.

Hence, while AUC may be a useful metric during the early stages of development, at some point a developer
working on a system that will be used to make categorical decisions for a certain application should commit
to a specific set of costs that reflect the needs of that application. If the application for which the system
will be used is unknown during development or the costs cannot be determined ahead of deployment, then
the system needs to be optimized for any possible threshold. In this case, using AUC as a metric would be
appropriate, assuming that the threshold for each application can be effectively determined empirically using
some development data. Alternatively, in that scenario, performance can be assessed using strictly proper
scoring rules (SPSRs) which evaluate the quality of the scores as posterior probabilities (Gneiting & Raftery,
2007). A system developed to have low expected SPSR can be thresholded with the Bayes threshold without
the need to tune the threshold for each new set of costs.

Finally, note that the AUC and EER metrics cannot be naturally generalized to the multi-class case, or to
binary cases with more than two decisions. Hence, when the task has more than two classes or decisions,
these metrics are not applicable.
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3.7 Multi-class metrics

All the metrics described in this section until this point are originally designed for binary classification. For
the multi-class case, the most common metrics in the machine learning literature are accuracy and balanced
accuracy which, as we saw in Section 2.2, are one minus special cases of the EC. Other metrics often used for
the multi-class case rely on mapping the original multi-class classification problem into a collection of binary
classification problems – a task called multi-label classification (Tsoumakas & Katakis, 2007) – where each
binary problem consists of detecting one of the classes. By turning the multi-class problem into a set of binary
classification problems, an essential restriction of the multi-class classification task is ignored: the fact that
exactly one label should be assigned per class instead of multiple labels as for the multi-label classification
task. This mapping, though, enables the use of metrics given by summaries of binary classification metrics.
The macro Fβ is computed as the average of the Fβ value over each of the binary classifiers. The Fβ of
macro averages of precision and recall (sometimes also called macro Fβ , producing a good deal of confusion as
discussed by Opitz & Burst (2019)) is computed using Equation (8) with the precision and recall calculated
as averages over the per-class precision and recall for each of the binary detectors (Grandini et al., 2020).
These two metrics inherit all the problems of the binary Fβ discussed in Section 3.1. Finally, the Fβ of micro
averages of precision and recall is also given by Equation (8), but with the precision and recall computed
using the total number of true positives (N22), false positives (N12) and false negatives (N21) across all classes
(Zhang & Zhou, 2013). This version of the Fβ , when computed on the output of a multi-class classification
system where only one of the binary classifiers can be active for each sample, turns out to be identical to the
accuracy (Grandini et al., 2020).

One of the advantages of the EC is that it directly and naturally addresses the multi-class classification task.
While the simplest way to define an EC for the multi-class case is to set all the costs to 1, as in the total
error rate, or to 1 over the priors, as in the balanced error rate, many problems benefit from the more general
definition of the cost matrix. For example, in some scenarios one class may be more important than the
others, requiring higher costs. Further, an abstain decision may be included with its corresponding set of costs
for each true class. One of the advantages of using the EC for the multi-class case is that, as explained in
Section 2.3, the EC comes with a principled decision theory for making optimal decisions based on classifiers
that output posterior probabilities. This is particularly useful for the multi-class case (or when the number of
decisions is larger than two) where threshold tuning is not an option. We illustrate the use of the EC for the
multi-class case in Section 4.1.2.

4 Empirical comparison

In this section we illustrate and further discuss the concepts explained in the previous sections using empirical
results, focusing on comparing the EC with the most widely used metrics in the literature. The first section
shows results on various simulated datasets which allow us to create an arbitrarily large number of samples
so that conclusions are not affected by noisy results, and to manipulate the system performance to highlight
the different points we wish to discuss. The second section shows results on various real datasets for speech,
image, and natural language processing tasks, illustrating how the wrong choice of metric can negatively
affect development decisions and highlighting the limitations of the standard metrics.

4.1 Results on simulated datasets

The procedure for generating the simulated scores is described in detail in Appendix C. Briefly, 100,000
samples are generated with an imbalanced prior distribution, with P1 = 0.8 and equal prior for the rest of
the classes. Samples for each class are drawn from a Gaussian distribution where the mean are separated by
1.0 and the standard deviation is 0.2, unless otherwise indicated. Then, perfectly calibrated posteriors are
obtained using the known distribution and priors for each class.

4.1.1 Comparison of metrics for a two-class dataset

Figure 1 shows results for the 2-class dataset for F1, MCC, and three different NEC with c12 = 1 and c21 = c
set to 1, 4, and 16. Since P1 = 0.8, the NEC with c = 4 corresponds to the normalized balanced error
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Figure 1: Comparison of metrics for a simulated dataset with Gaussian per-class distributions and P1 = 0.8.
The subindex in the NEC values indicates the value of c21, while c12 is 1.0 in all cases. The first plot shows
the distribution of the log odds for each class scaled by the prior probability of the class. The other three
plots show various metrics as a function of the log odds decision threshold. The dashed lines are included
only to aid visualization of the various points highlighted in the discussion.

rate, NECb = R12 + R21 (this can be verified by plugging these costs and priors in Equation (4)). The left
plot in the figure shows the distribution of log posterior odds, log(P (H2|x)/P (H1|x)), for each of the two
classes. The rest of the plots show the behaviour of different metrics as a function of the decision threshold.
The decisions are made by comparing the log odds score for each sample with the corresponding threshold,
labelling the sample as class H2 if the score is larger than the threshold and as class H1 otherwise. For each
threshold we can then obtain the Nij counts needed to compute all metrics. The dashed lines in these plots
correspond to specific decision thresholds discussed below and are included to ease visualization of the metric
values for those thresholds.

The second plot in Figure 1 shows a comparison between one minus F1 and NEC1, which are related by
Equation (12). The fraction of samples labelled as class H2 for each threshold, R∗2 is also shown. The figure
highlights two thresholds: the one that minimizes 1 − F1 and another one that results in the same value of
NEC1. As discussed in Section 3.1, between two systems with the same NEC1, the F1 prefers the one with
a larger R∗2, effectively giving more cost to the errors in class H2 by favoring systems that produce more
detections of this class. Concretely, given the threshold to for which F1 is minimized in a certain dataset, an
equivalent NEC for which the Bayes threshold for the log odds is to can be defined by using Equation (25) in
the Appendix, setting c12 = 1 and c21 = e−to . For the example in Figure 1, the NEC that would lead to the
same optimal threshold as the F1 (to = −0.60) is the one with c21 = 1.8. That is, in this case, optimizing F1
is equivalent to optimizing NEC assuming that errors in samples of class H2 are 1.8 times more costly than
those in samples of class H1. The problem is that this cost is not explicitly selected by the user of the metric
and, instead, depends on the distribution of the scores under evaluation.

Figure 2 illustrates the dependency on the scores of the effective costs corresponding to F1. The figure shows
the F1 and two NEC for two different sets of scores: (1) the same scores used for Figure 1, and (2) a new set of
scores obtained using the same procedure as for the first but changing the standard deviation for the features
from 0.20 to 0.06, simulating a better system. We can see that the F1 is optimized at a different threshold for
both datasets, corresponding to an equivalent c21 of 1.8 for the original dataset, as discussed above, and an
equivalent cost of 1.0 for the easier dataset (with c12 always fixed at 1.0). Hence, the F1 effectively optimizes
for a different trade-off between error types depending on the system under evaluation. On the other hand,
since both datasets are well-calibrated, the Bayes threshold for each of the NECs (Appendix A.2) optimizes
the corresponding NEC. This, we believe, is one of the strongest arguments to prefer the EC over the Fβ (the
analysis above was done for F1 but holds for any Fβ). For EC the costs can be explicitly selected and the
optimal threshold for calibrated posteriors can be determined theoretically as a function of the costs. On the
other hand, for Fβ , the costs are implicit and depend on factors that are outside of our control making the
optimal threshold and the effective costs vary across systems.

The third plot in Figure 1 shows one minus MCC and the NEC value with c = 4, along with R∗2. The MCC
and this NEC are related by Equation (14). The figure highlights two thresholds: the one that optimizes
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Figure 2: F1 and two NEC metrics with c12 = 1 and c21 indicated as a subindex, for two different datasets.
In the left plot, the metrics are computed for the same dataset as in Figure 1. In the right plot they are
computed on an easier dataset (note the change in the limits in the y axis). The two NEC are selected to
use the effective cost corresponding to F1 for each of the two datasets. For the easier dataset (right), the
best threshold for F1 coincides with the Bayes threshold for NEC1.0. For the harder dataset (left), the best
threshold for F1 coincides with the Bayes threshold for NEC1.8.

MCC and a second one that results in the same value of NEC4 as the first one. Comparing the values of
MCC across these two threshold, we can observe the behavior explained in Section 3.2: among two thresholds
that are equivalent in terms of NEC4, the MCC prefers the one that results in a more imbalanced R∗2. Again,
as for Fβ , the optimal threshold for MCC is determined, in part, by the value of R∗2. As a consequence,
also as for Fβ , the equivalent cost implicit in the MCC depends on the system under evaluation giving us no
explicit control over the trade-off between types of errors.

Finally, the fourth plot in Figure 1 compares the two NECs from the middle plots with each other and with a
third NEC with a larger c21. The Bayes threshold for NECc is given by log(1/c) (see Equation (25) in the
Appendix): larger values of c21 move the threshold to the left decreasing the error rate for class H2 and
increasing it for class H1. Note that, as mentioned in Section 2.3, the Bayes threshold is only optimal if the
scores are well-calibrated. If this is not the case, the threshold can be tuned empirically, as usually done for
any other metric. Alternatively, a calibration stage can be added to the system enabling the use of Bayes
thresholds (Filho et al., 2023). In any case, the EC allows us to explicitly select the relative cost between the
different error types which directly and transparently affects the resulting metric values and, when the scores
are calibrated, the corresponding optimal threshold.

4.1.2 Comparison of ECs for a 10-class dataset

In this section we illustrate the use of the EC for a 10-class problem. We compare EC and NEC obtained
with the following cost matrices: 1) the 0-1 matrix (C01) which corresponds to the error rate, 2) a matrix
with cij = 1/(KPi) for i ̸= j (CinvP) which corresponds to the balanced error rate, 3) the C01 matrix
with the last row multiplied by 100, representing a use case where errors in the last class are much more
costly than errors in other classes (Cimb), 4) the C01 matrix with an additional column corresponding to
an abstention decision, with cost of 0.05 for all classes (Cabs1), and 5) as Cabs1 but with an abstention
cost of 0.3 for all classes (Cabs2). Table 1 shows the EC and NEC results for these cost matrices for three
methods for making categorical decisions: 1) choosing always the best naive decision for each cost matrix, 2)
making “argmax” decisions, i.e., choosing the class with the largest score for each sample, regardless of the
cost matrix (for this row, decisions are the same for all cost matrices), and 3) making the Bayes decisions
corresponding to each cost matrix using Equation (7).

Comparing the last two lines in this table we see that, as theory shows, Bayes decisions result in better
performance than argmax decisions, except for the C01 matrix for which Bayes decisions are the argmax
decisions and, hence, those two results are the same. Further, the table highlights the benefit of normalization.
While the EC might be misleadingly low for some cost matrices due to the imbalanced priors and the selected
cost values, the NEC solves this problem by using the EC of the best naive system as baseline with which to
normalize, resulting in a more interpretable metric.
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Table 1: EC and NEC for various costs matrices defined in Section 4.1.2 for systems that make the best
naive decision (the decision made by this system is indicated in parenthesis under the cost matrix name),
argmax decisions, and Bayes decisions. The accuracy and balanced accuracy can be obtained as one minus
the EC for C01 and CinvP, respectively. For the two cost matrices with an abstain decision, the percentage
of abstain decisions made by the system is also listed (abs).

C01 CinvP Cimb Cabs1 Cabs2
Naive Decision −→ (class H1) (any class) (class H10) (abstain) (class H1)
Decision algorithm EC NEC EC NEC EC NEC EC NEC abs EC NEC abs

Naive 0.20 1.00 0.90 1.00 0.98 1.00 0.05 1.00 100 0.20 1.00 0
Argmax 0.06 0.32 0.28 0.31 0.36 0.37 0.06 1.29 0 0.06 0.32 0
Bayes 0.06 0.32 0.23 0.26 0.08 0.08 0.02 0.35 25 0.06 0.28 7

The best naive decision depends on the cost matrix as determined by Equation (3). For C01, the class with
the largest prior, H1, is the least-costly naive decision. For CinvP, all decisions are equally good due to the
way the costs are defined. For Cimb, the least costly decision is H10 due to the large cost assigned to errors in
that class. Finally, the least-costly decision for Cabs1 is to abstain, while for Cabs2 it is H1 (see Appendix B
for the expression for Bayes decisions and for the best naive decisions for the Cabs cost matrices). Looking
at the percentage of abstention decisions made for those two matrices using the Bayes decision algorithm,
for Cabs1 which has a lower abstention cost than Cabs2, the algorithm makes more abstention decisions.
Finally, we can see that while the lower abstention cost in Cabs1 results in a lower EC value than for Cabs2,
the NEC shows the opposite trend. This happens because the best naive system is different for both costs
resulting in different baselines for both ECs.

Note that the scores used for these simulated experiments are, by design, perfectly calibrated, so Bayes
decisions are optimal in this dataset. In practice, this might not be the case for a certain dataset of interest.
Unlike in the scenario of the previous section where we could simply tune a threshold instead of using Bayes
decision theory, for the multi-class case or, more generally, when the number of decisions is larger than 2,
tuning the decision regions is not trivial (though attempts have been made in this direction, e.g., by O'Brien
et al. (2008)). In those scenarios, we recommend making sure that the system outputs are well-calibrated
(Filho et al., 2023) and then applying Bayes decision theory as done in this section.

4.2 Results on real datasets

In this section, we show results on real datasets for a number of different tasks corresponding to speech,
image and natural language processing tasks. The datasets and systems used to generate the scores studied
in this section are described in Appendix D. For each system, we show two sets of results obtained on the
raw scores as they come out of the system, and on calibrated scores. The calibrated scores are obtained
with linear logistic regression using 5-fold cross-validation on the test data. Finally, for some datasets, we
show results for resampled versions where some of the classes are downsampled to obtain a dataset with
priors different from the original ones to show the effect this change has on the metrics. The details on the
calibration process and the priors for each dataset are listed in Appendix D.

Table 2 shows the results on all these datasets for three NECs, accuracy (ACC), two multi-class extensions of
the F1, and, for the binary cases, the standard binary F1, AUC and EER. The multi-class extensions of the
F1 are the average of the F1 over all classes (MC1) and the F1 of the average recall and precision (MC2) (see
Section 4.1.2). To facilitate comparisons, for those metrics that increase as performance improves (AUC,
ACC, and the three F1), we report one minus the metric value. Decisions for the three NEC metrics are
made using Bayes decision theory. For all three F1s and ACC, decisions are made with the argmax approach,
i.e., by selecting the class with the highest score, as is usually done in the literature. For AUC and EER
decisions are not made since those metrics evaluate scores rather than categorical decisions.

Comparing the results on raw and calibrated scores we can see that AUC and EER are insensitive to the linear
logistic calibration applied in these experiments since, as explained in Section 3.6, these metrics are invariant
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to monotonic transformations of the scores. The small variation in AUC and EER results observed in some
cases after calibration is due to the cross-validation approach, which results in different transformations being
applied to different subsets of the data. We can also see that, as explained in Section 3.6, when the scores are
calibrated, the EER value is (approximately, since we are dealing with limited-size datasets) an upper bound
for the EC value corresponding to the C01 cost (1-ACC) (see brown entries in the table).

Results across versions of the same dataset with different priors (SST2, SITW, IEMOCAP, and AGNEWS)
illustrate how the variation in priors can greatly affect the NEC values for C01 and Cimb, as well as F1 and
ACC (cyan entries highlight those comparisons for SST2 and AGNews for calibrated scores). On the other
hand, AUC and EER are (again, approximately, since we are dealing with limited-size datasets) unaffected
by the priors. Further, for the calibrated systems, the NEC for CinvP is also (approximately) unaffected.
This is, in fact, exactly was this cost matrix is designed to do. Its costs are determined for each dataset as
the inverse of the priors so that the final metric is immune to the priors in the dataset as long as the scores
are calibrated and Bayes decisions are made or the threshold is determined by optimizing the metric on a
development set. A more general version of this type of cost matrix designed to be independent of the priors
of the evaluation set was used by Godau et al. (2023) to address the problem of tasks where the priors in
deployment are different from the priors in the development data.

Comparing the three flavors of F1 with each other we can see that they are often quite different (see, for
example, the blue entries in Table 2). The difference stems in part from the fact that, while the binary
F1 prioritizes one of the classes, the multi-class versions are symmetric across classes. Yet, despite both
multi-class versions being symmetric in the classes, they differ from each other and they can even lead to
contradicting conclusions, as discussed by Opitz & Burst (2019). Importantly, none of the F1 variants (or,
more generally, Fβ variants) offers direct control on the trade off between error types, like the EC does.
Hence, there is no principled way to select between the different variants based on the needs of the task.
Further, we can see that the multi-class F1 metrics sometimes degrade after calibration (see SITW-Res1,
SITW-Res2, IEMOCAP and some of the CIFAR results – two of these examples are marked in orange in the
table). These results illustrate the fact that argmax decisions are not necessarily optimal for the multi-class
F1 metrics, even if the scores are perfectly calibrated since, if making argmax decisions with calibrated scores
was optimal, no other way of making decisions would lead to better results.9 The fact that, in some cases,
using the raw scores to make argmax decisions leads to better results than using the calibrated scores implies
that a better decision strategy exists, and, hence, argmax decisions from calibrated scores are not guaranteed
to optimize these metrics. As far as we know, there is no principled way to optimize decisions for these
metrics other than empirical optimization. This, though, is very rarely done for the multi-class case given
the difficulty involved in optimizing decision regions in more than one dimension. In contrast, if scores are
calibrated, for every NEC metric there is a corresponding decision strategy that is guaranteed to be optimal.

Finally, a general observation from Table 2 is that systems can be ranked differently depending on the metric
used to rank them. For example, while calibration improves the Cimb NEC value for CIFAR10 Resnet20
system, it does not affect the other NECs or the ACC, and it actually degrades the multi-class F1 metrics
(see red entries in the table). This also holds for the other two systems on CIFAR10. Also, comparing results
of the Resnet20 and Vgg19 calibrated scores for the CIFAR10 and CIFAR100 datasets we can see that Vgg19
is better than Resnet20 for both datasets in terms of all metrics except Cimb NEC, for which the Resnet20
system is slightly better (see green entries and corresponding rows for CIFAR10). If Cimb NEC was the
metric of interest for this task (i.e., if errors in class 10 costed 100 times more than errors on other classes),
then assessing the system performance based on ACC or one of the F1 could lead to suboptimal development
decisions. For example, in this case, using ACC would lead us to conclude that calibration is not necessary
and that the Vgg19 system is better than the Resnet20 system. In contrast, for Cimb NEC, the metric that
reflects the needs of the task, calibration gives a gain and Resnet20 is slightly better than Vgg19, having
the additional advantage of being 100 times smaller (see Appendix D). These are just some examples that
highlight the importance of selecting an appropriate metric for the scenario of interest, a task that is greatly
facilitated by the EC metric.

9This is also true for the binary F1 metric, as can be seen in Figure 1 where the optimal threshold for F1 is not the one that
corresponds to argmax decisions (which is zero in the logit domain).
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Table 2: Various metrics on real scores for different speech, image and natural language processing datasets.
We report three NEC values, EER, 1-ACC, 1-F1 for three version of F1, and 1-AUC (lower values are better
for all cases). Note that 1-ACC corresponds to the EC for C01 (EC values are not shown in the table to
reduce clutter). The term ‘ResN’ in some of the dataset names identifies a resampled version of a dataset
(see Table 3). The colored entries highlight comparisons discussed in the text.

NEC 1-ACC 1-F1 1-AUC EER
Dataset System proc C01 CinvP Cimb MC1 MC2 Bin

SST2
GPT2-4sh raw 0.996 0.992 1.000 0.497 0.667 0.667 0.332 0.048 0.116

cal 0.226 0.225 0.921 0.113 0.486 0.329 0.115 0.048 0.116

GPT2-0sh raw 0.828 0.826 1.000 0.414 0.667 0.667 0.294 0.072 0.152
cal 0.310 0.308 0.907 0.155 0.571 0.363 0.156 0.072 0.152

SST2-Res1 GPT2-0sh raw 1.931 0.991 1.000 0.579 0.769 0.769 0.493 0.074 0.159
cal 0.451 0.306 1.150 0.135 0.595 0.379 0.238 0.074 0.158

SST2-Res2 GPT2-0sh raw 3.298 1.000 1.000 0.660 0.833 0.833 0.625 0.077 0.150
cal 0.526 0.305 1.071 0.105 0.597 0.380 0.294 0.079 0.155

SITW XvPLDA raw 0.324 0.071 0.095 0.002 0.415 0.295 0.167 0.002 0.021
cal 0.306 0.043 0.062 0.002 0.302 0.236 0.166 0.002 0.022

SITW-Res1 XvPLDA raw 0.195 0.070 0.181 0.019 0.098 0.090 0.107 0.002 0.022
cal 0.117 0.044 0.126 0.012 0.154 0.134 0.059 0.002 0.022

SITW-Res2 XvPLDA raw 0.192 0.103 0.352 0.038 0.056 0.054 0.106 0.002 0.022
cal 0.083 0.045 0.166 0.017 0.121 0.108 0.042 0.002 0.022

FVCAUS XvPLDA raw 3.915 0.315 0.362 0.067 0.566 0.362 0.662 0.000 0.001
cal 0.012 0.003 0.005 0.000 0.017 0.016 0.006 0.000 0.001

CIFAR-1vsO Resnet20 raw 0.420 0.055 0.055 0.004 0.223 0.187 0.223 0.003 0.022
cal 0.430 0.041 0.041 0.004 0.312 0.239 0.230 0.003 0.023

CIFAR-2vsO Resnet20 raw 0.700 0.150 0.151 0.007 0.327 0.262 0.368 0.013 0.056
cal 0.560 0.108 0.109 0.006 0.393 0.289 0.346 0.013 0.056

IEMOCAP W2V2 raw 0.504 0.434 0.839 0.349 0.567 0.445 - - -
cal 0.494 0.428 0.804 0.342 0.661 0.489 - - -

IEMOCAP-Res1 W2V2 raw 0.498 0.457 0.665 0.340 0.632 0.460 - - -
cal 0.471 0.435 0.620 0.322 0.598 0.442 - - -

AGNEWS GPT2-0sh raw 0.780 0.780 1.015 0.585 0.897 0.694 - - -
cal 0.378 0.378 1.179 0.283 0.769 0.567 - - -

AGNEWS-Res1 GPT2-0sh raw 0.742 0.946 0.998 0.497 0.992 0.714 - - -
cal 0.277 0.365 0.584 0.186 0.423 0.336 - - -

CIFAR10

Resnet20 raw 0.082 0.082 0.273 0.074 0.087 0.085 - - -
cal 0.083 0.083 0.184 0.075 0.126 0.116 - - -

Vgg19 raw 0.068 0.068 0.357 0.061 0.064 0.064 - - -
cal 0.069 0.069 0.186 0.062 0.093 0.087 - - -

RepVgg-a2 raw 0.053 0.053 0.169 0.047 0.053 0.052 - - -
cal 0.052 0.052 0.129 0.047 0.073 0.069 - - -

CIFAR100

Resnet20 raw 0.315 0.315 0.357 0.312 0.319 0.314 - - -
cal 0.317 0.317 0.351 0.314 0.329 0.321 - - -

Vgg19 raw 0.264 0.264 0.465 0.261 0.260 0.258 - - -
cal 0.266 0.266 0.358 0.263 0.271 0.260 - - -

RepVgg-a2 raw 0.227 0.227 0.351 0.225 0.230 0.223 - - -
cal 0.228 0.228 0.341 0.226 0.229 0.223 - - -
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5 Conclusions

In this work we focus on the problem of evaluating the quality of categorical decisions generated by a machine
learning classifier. We argue that the expected cost (EC), a classic evaluation function proposed decades ago,
should be the primary metric to assess the performance of categorical decisions for a certain application of
interest. The EC is based on the simple assumption that each decision made by the system can be assigned a
cost which depends on the true class of the sample. The expectation of the cost over the data can then be
used as a metric to assess the performance of a system. The EC can be customized to any application for
which categorical decisions are required by adapting the costs, and optionally the class priors, according to
the needs of the application.

While two special cases of the EC, the error rate and the balanced error rate are widely used in the machine
learning literature, its general form is only rarely leveraged. Instead, metrics like the Fβ score or the MCC
are used for applications in which the error rate is deemed inadequate for performance assessment. This is
often the case in applications with large class imbalance and where errors in the minority class are considered
more important than those in the majority class. In this work, we argue that the EC is a better metric than
these alternatives for having the following important characteristics:

• The EC is defined based on the simple and general assumption that each combination of true class
and decision can be assigned a corresponding fixed cost. In contrast, for other classification metrics,
the trade-off between different types of error cannot be directly controlled.

• The class prior distribution can be considered a parameter of the metric. This is useful in cases in
which the priors in the evaluation data do not coincide with those expected at deployment.

• Both binary and multi-class classification systems can be evaluated in a principled way with the EC,
using the same general expression.

• Unlike other classification metrics, the EC does not assume that the set of possible decisions is the
set of classes. Instead, the decisions can be the actions that may be taken by the user of the system.

• When normalized by the EC of the best naive systems for the selected costs and priors, the resulting
metric is easily interpretable as a relative value with respect to the performance of the best naive
system.

• Optimization of categorical decisions can be done using Bayes decision theory as long as the system
scores are well-calibrated, eliminating the need for ad-hoc solutions. Alternatively, though, when
calibrated scores are not available, the decision strategy can be based on threshold or region tuning,
as for any other classification metric.

The need to choose costs may seem like a drawback of the EC compared to other metrics like the F1 score or
the MCC which have no parameters to select. Yet, is it important to note that, while these alternative metrics
do not explicitly require the selection of costs, they effectively impose a trade off between different types
of error. This is easy to see for the binary case, where decisions are made by thresholding, by noting that
the threshold that optimizes a metric for a certain set of scores is the Bayes threshold for some EC. Hence,
optimizing the original metric is equivalent to optimizing the related NEC. Effective costs are implicitly
considered in the optimization. Yet, those costs are selected without our control and, to make things worse,
they depend on the system under evaluation. The EC, on the other hand, allows for an explicit choice of
costs. Once the costs are chosen, the trade-off between different types of errors is fixed and transparent and
does not depend on the system under evaluation. While the costs may be hard to specify in some cases, we
argue that having control over them is better than letting the metric implicitly choose them.

In conclusion, we argue that the EC, or its normalized version, should be the preferred metric for evaluating
categorical decisions for a given application of interest. This work is accompanied by a python library of
methods to compute the EC, along with utility methods for making Bayes decisions and calibrating scores.
The code includes notebooks that produce the results in this paper. We hope this work will facilitate the
wider adoption by the machine learning community of this classic, simple, and well-motivated metric.
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A Special cases of Bayes decisions theory

In this section we discuss two special cases of Bayes decision theory, the argmax rule with is obtained when
the cost function is given by the 0-1 cost matrix, and the thresholding rule obtained for the binary case with
only two decisions.

A.1 The 0-1 cost matrix

A special scenario of Bayes decision theory applied to the EC arises when the cost matrix is the 0-1 square
matrix given by one minus the identity matrix. In this case, the EC reduces to the error rate or one minus
the accuracy (see Section 2.2). The Bayes decisions for this EC can be obtained by replacing cij = 0 for i = j
and cij = 1 for i ̸= j in Equation (7) in Section 2.3, which gives:

dB(x) = arg min
ȷ̂

K∑
i=1|i ̸=ȷ̂

P (i|x) (20)

= arg min
ȷ̂

1 − P (ȷ̂ |x) (21)

= arg max
ȷ̂

P (ȷ̂ |x). (22)

This is the standard argmax decision rule used in most of the literature in machine learning for making
decisions in a multi-class setting. We can now see that this rule is optimal for the 0-1 cost matrix. For any
other cost matrix, the general expression in Equation (7) should be used to make decisions.
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A.2 Binary classification with two decisions

Another special case of Bayes decision theory corresponds to binary classification when the cost matrix is
square (i.e., when there is only two possible decisions) with zeros in the diagonal. This is the simplest and
most common case in which there is one correct zero-cost decision for each class. In that case, Bayes decisions
reduce to:

dB(x) =
{

H2, if c12P (H1|x) < c21P (H2|x)
H1, otherwise

(23)

Using the fact that P (H2|x) = 1 − P (H1|x), this rule becomes:

dB(x) =
{

H2, if P (H2|x) > t

H1, otherwise
where t = c12/(c12 + c21) = 1/(1 + c21/c12) (24)

Sometimes we prefer to work with posterior log odds because the logarithm mitigates numerical precision
problems and because their distributions are nicer for plotting (see an example in Figure 1 of the main text).
When using log odds as scores, the decision rule becomes:

dB(x) =
{

H2, if log(P (H2|x)/P (H1|x)) > tlogodds

H1, otherwise
where tlogodds = log(c12/c21) (25)

In summary, for binary classification with one zero-cost decision per class, Bayes decisions simply consist of
comparing the posterior for one of the classes, or some function of the posteriors, like the logodds, with a
specific threshold which is a function of the ratio between the two costs. While to optimize metrics like the
Fβ or MCC we need to sweep a threshold and choose the best one for that metric, for the EC we simply need
to plug the costs into Equation (24) or (25) to get the optimal threshold.

Note that, as discussed in the main text, Bayes decisions are optimal as long as the classifier is calibrated for
the selected cost. If this is not the case, for the binary case above, the threshold can be tuned as for any
other metric. For the general case, including multi-class cases or binary cases with more than two decisions
(non-square cost matrix), the posteriors can be calibrated to enable the use of Bayes decision theory (Filho
et al., 2023).

B Cost matrices with an abstention option

Finally, we derive the expression for the Bayes decisions when the set of decisions is given by
{H1, . . . , HK , abstain}, the list of classes plus an abstain decision, and the cost matrix has the following form:

C = [1 − I α1] (26)

where I is the identity matrix, so that 1− I is the 0-1 cost matrix with a cost of 0 in the diagonal and a cost of
1 elsewhere, and where α1 is a vector of ones multiplied by a scalar α which determines the cost of abstention,
set to be equal for all classes. Replacing these costs in Equation (7) we get the following expression:

dB(x) = arg min
ȷ̂

K∑
i=1

ci ȷ̂ P (Hi|x) = arg min
ȷ̂

{∑K
i=1|i ̸=ȷ̂ P (Hi|x) = 1 − P (Hȷ̂|x), if ȷ̂ ̸= abstain∑K
i=1 αP (Hi|x) = α, if ȷ̂ = abstain

(27)

Or, equivalently:

dB(x) = arg max
ȷ̂

{
P (Hȷ̂|x), if ȷ̂ ̸= abstain
1 − α, if ȷ̂ = abstain

(28)

Hence, the system will abstain if all the posteriors output by the system are smaller than 1 − α.
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We can now easily derive the expression for the best naive decision which is the Bayes decision when the
system outputs always the prior probability of each class in place of the posteriors10. Doing that, we obtain:

dnaive = arg max
ȷ̂

{
Pȷ̂, if ȷ̂ ̸= abstain
1 − α, if ȷ̂ = abstain

(29)

Hence, the best naive decision is to abstain when all priors are smaller than 1 − α. For our multiclass
experiments in Section 4 where P1 = 0.8 and Pi = 0.022 for i ̸= 1, the best naive decision is to abstain for
Cabs1 where 1 − α = 0.95, but not for Cabs2, where 1 − α = 0.7. In that case, the best decision is H1, which
has a prior of 0.8.

C Simulated datasets for experiments

Here we describe the procedure used to create simulated datasets for the experiments in this paper. Given a
number of classes K, a prior for class H1 of P1, and a per-class standard deviation σ, which are taken as a
parameters of the simulation, we proceeded as follows:

1. Set the class priors to P1 for class H1, and Pi = (1 − P1)/(K − 1) for classes 2 through K. In our
experiments, P1 is set to 0.8.

2. Set the total number of samples, N = 100, 000 and determined the number of samples for each class,
Ni as the closest integer to NPi.

3. Generated Ni samples using a unidimensional Gaussian distribution N (µi, σ2), with mean µi = i − 1
and standard deviation σ. We take this to be the xt, the input features for each sample.

4. Computed the likelihoods for each class for each generated sample according to the class distributions
used to draw these samples, i.e., p(x|Hi) ∼ N (µi, σ2).

5. Finally, we computed the posteriors as:

P (Hi|x) = p(x|Hi) Pi

p(x) = p(x|Hi) Pi∑
j p(x|Hj) Pj

. (30)

where the p(x|h) are the likelihoods computed in step 4 and Pi is the prior for class Hi defined in
step 1. With this procedure, the posteriors are perfectly calibrated for the test data.

The value of σ was set to 0.20 for all results in this work, except for those in Figure 2 where two datasets are
used, one with σ = 0.20 and an easier one with σ = 0.05.

D Real datasets for experiments

For the experiments with real datasets in Section 4.2, we use a variety of datasets from speech, image, and
natural language processing tasks.

SST2 (Socher et al., 2013) is a natural language processing dataset where the task is to decide whether
a certain text has positive or negative sentiment. AGNEWS (Gulli, 2005; Zhang et al., 2015) is another
natural language processing dataset where the task is to classify news into 4 different classes. The scores
for these datasets were produced with the GPT-2 model using the code provided in https://github.com/
LautaroEst/efficient-reestimation using zero-shot prompts.

SITW (McLaren et al., 2016) and FVCAUS (Morrison et al., 2015; 2012) are two speaker verification datasets
where the task is to decide whether two audio samples belong to the same speaker or not. To obtain scores

10Note that this same procedure can be used to arrive at the general expression for the EC of the best naive system, Equation (3)
in Section 2.1, which was derived in a different way in that section.
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Table 3: Number of classes, number of samples, and class priors for each dataset included in our experiments.

Dataset #Classes #Samples Priors

SST2 2 1821 0.50 0.50
SST2-Res1 2 1301 0.70 0.30
SST2-Res2 2 1140 0.80 0.20
SITW 2 721788 0.99 0.01
SITW-Res1 2 36580 0.90 0.10
SITW-Res2 2 18290 0.80 0.20
FVCAUS 2 114072 0.98 0.02
CIFAR-1vsO 2 10000 0.99 0.01
CIFAR-2vsO 2 10000 0.99 0.01
IEMOCAP 4 5473 0.20 0.29 0.31 0.20
IEMOCAP-Res1 4 3483 0.32 0.32 0.32 0.05
AGNEWS 4 7600 0.25 0.25 0.25 0.25
AGNEWS-Res1 4 5757 0.33 0.33 0.33 0.01
CIFAR10 10 10000 0.10 for all classes
CIFAR100 100 10000 0.01 for all classes

for these two datasets, we ran an X-vector PLDA system using the code provided in [hidden to preserve
anonymity].

IEMOCAP is a speech processing dataset where the task is to classify each speech sample into a set
of emotions: angry, happy, sad, and neutral. The scores were downloaded from https://github.com/
habla-liaa/ser-with-w2v2/tree/master/experiments/w2v2PT-fusion.

Finally, CIFAR10 and CIFAR100 are two image processing datasets where the task is to classify the object
in an image into one of 10 or 100 classes, respectively. The scores for these datasets were obtained using
the code available in https://github.com/chenyaofo/image-classification-codebase. We run three
models for each of the two datasets: resnet20, vgg19, and repvgg_a2. These models have approximately 0.27
million, 20 million, and 27 million parameters, respectively.

From the CIFAR100 Resnet20 scores, we also created binary classification tasks for the detection of one
specific class versus all others, using the score provided by the system for that class and 1 minus that score
for the “other” class. We call these scores CIFAR-XvsO, where X identifies the target class.

For all sets of scores, we show the results for the raw scores, as they come out of the system, and for scores
calibrated with a logistic regression model. This model maps the logarithm of the raw posteriors generated
by the systems using the following expression:

ŝ = softmax(α log(s) + β) (31)

where s is the vector of raw posteriors, ŝ is the calibrated vector of posteriors, α is scalar and β is a vector.
The parameters α and β were trained by minimizing the cross-entropy. In this work, the models were trained
and the scores generated using a 5-fold cross-validation approach on the test data.

Resampled versions of some of the datasets, identified by a suffix ResN are also used to achieve different
priors from the ones in the original dataset. Table 3 shows the priors and total number of samples for all the
datasets used in Section 4.2.
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