
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#19

ECCV
#19

Multi-CryoGAN: Reconstruction of Continuous

Conformations in Cryo-EM Using Generative

Adversarial Networks

Anonymous ECCV submission

Paper ID 19

Abstract. We propose a deep-learning-based reconstruction method for
cryo-electron microscopy (Cryo-EM) that can model multiple conforma-
tions of a nonrigid biomolecule in a standalone manner. Cryo-EM pro-
duces many noisy projections from separate instances of the same but
randomly oriented biomolecule. Current methods rely on pose and con-
formation estimation which are ine�cient for the reconstruction of con-
tinuous conformations that carries valuable information. We introduce
Multi-CryoGAN, which sidesteps the additional processing by casting
the volume reconstruction into the distribution matching problem. By
introducing a manifold mapping module, Multi-CryoGAN can learn con-
tinuous structural heterogeneity without pose estimation nor clustering.
We also give a theoretical guarantee of recovery of the true conforma-
tions. Our method can successfully reconstruct 3D protein complexes on
synthetic 2D Cryo-EM datasets for both continuous and discrete struc-
tural variability scenarios. Multi-CryoGAN is the first model that can
reconstruct continuous conformations of a biomolecule from Cryo-EM
images in a fully unsupervised and end-to-end manner.

Keywords: Cryo-EM, Inverse problem, Image reconstruction, Genera-
tive Adversarial Networks, Continuous protein conformations

1 Introduction

The determination of the structure of nonrigid macromolecules is an important
aspect of structural biology and is fundamental in our understanding of biological
mechanisms and in drug discovery [3]. Among other popular techniques such as
X-ray crystallography and nuclear magnetic resonance spectroscopy, Cryo-EM
has emerged as a unique method to determine molecular structures at unprece-
dented high resolutions. It is widely applicable to proteins that are di�cult to
crystallize or have large structures. Cryo-EM produces a large number (from
104 to 107) of tomographic projections of the molecules dispersed in a frozen so-
lution. The reconstruction of 3D molecular structures from these data involves
three main challenges: possible structural heterogeneity of the molecule, random
locations and orientations of the molecules in the ice, and an extremely poor
signal-to-noise ratio (SNR), which can be as low as to -20 dB (Figure 1). In fact,
the reconstruction of continuously varying conformations of a nonrigid molecule
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Fig. 1: Reconstruction task of Cryo-EM. Many samples of a biomolecule (which
may exhibit continuously varying conformations) are frozen in vitreous ice. These
are then imaged/projected using an electron beam to get 2D micrographs. The
2D images containing projection of a single sample are then picked out (black-
box). The task then is to reconstruct the conformations of the biomolecule from
these measurements.

is still an open problem in the field [6, 17]. A solution would considerably enhance
our understanding of the functions and behaviors of many biomolecules.

Most current methods [18, 19] find the 3D structure by maximizing the like-
lihood of the data. They employ an iterative optimization scheme that alterna-
tively estimates the distribution of poses (or orientations) and reconstructs a 3D
structure until a criterion is satisfied (Figure 2(a)). To address the structural
variability of protein complexes, these methods typically use discrete clustering
approaches. However, the pose estimation and clustering steps are computation-
ally heavy and include heuristics. This makes these methods ine�cient when the
molecule has continuous variations or a large set of discrete conformations.

Recently, two deep-learning-based reconstruction methods that require no
prior-training nor additional training data have been introduced. On one hand,
CryoDRGN [26] uses a variational auto-encoder (VAE) to model continuous
structural variability, avoiding the heuristic clustering step. It is a likelihood-
based method that requires pose estimation using an external routine like a
branch-and bound-method [18]. This additional processing step can complicate
the reconstruction procedure and limit the flexibility of the model. On the other
hand, Gupta et al. [10] have recently proposed CryoGAN. It addresses the prob-
lem under a generative adversarial framework [8]. CryoGAN learns to reconstruct
a 3D structure whose randomly projected 2D Cryo-EM images match the ac-
quired data in a distributional sense (Figure 2(b)). Due to this likelihood-free
characteristic, CryoGAN does not require any additional processing step such
as pose estimation, while it can be directly deployed on the Cryo-EM measure-
ments. This largely helps simplify the reconstruction procedure. However, its
application is limited to the reconstruction of a single conformation.



090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV
#19

ECCV
#19

ECCV-20 submission ID 19 3

Fig. 2: Schematic overview of the reconstruction methods in Cryo-EM. (a) Cur-
rent methodels; (b) CryoGAN; (c) proposed method (Multi-CryoGAN).

In this paper, we combine the advantages of CryoDRGN and CryoGAN. We
propose an unsupervised deep-learning-based method, called Multi-CryoGAN.
It can reconstruct continuously varying conformations of a molecule in a truly
standalone and likelihood-free manner. Using a convolutional neural network
(CNN), it directly learns a mapping from a latent space to the 3D conformation
distribution. Unlike current methods, it requires no calculation of pose or con-
formation estimation for each projection, while it has the capacity to reconstruct
low-dimensional but complicated conformation manifolds [11].

Using synthetic Cryo-EM data as our benchmark, we show that our method
can reconstruct the conformation manifold for both continuous and discrete con-
formation distributions. In the discrete case, it also reconstructs the correspond-
ing probabilities. To the best of our knowledge, this is the first standalone method
that can construct whole manifold of the biomolecule conformations.

2 Related Work

Traditional Cryo-EM Image Reconstruction. A detailed survey of the
classical methods is provided in [21, 22]. Most of them fall into the maximum-
likelihood (ML) framework and rely on either expectation-maximization (ML-
EM) [19] or gradient descent (the first stage of [18]). In the context of het-
erogeneous conformation reconstruction, a conjugate-gradient descent is used
to estimate the volume covariance matrix [1]. The eigendecomposition of this
matrix contains information about the conformation distribution which is then
input to the ML framework. In [5], a conformation manifold is generated for each
group of projections with similar poses. This data-clustering approach assumes
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orientation rather than structural heterogeneity to be the dominant cause for
variations among the projection images, a strong constraint. In addition, the re-
construction of 3D movies from multiple 2D manifolds can be computationally
expensive. In another method, Moscovich et al. [16] compute the graph Lapla-
cian eigenvectors of the conformations using covariance estimation. In [14], the
problem of heterogeneous reconstructions is reformulated as the search for a
homogeneous high-dimensional structure that represents all the states, called a
hypermolecule, which is characterized by a basis of hypercomponents. This al-
lows for reconstruction of high-dimensional conformation manifolds but requires
assumptions on the variations of the conformations as a prior in their Bayesian
formulation.

One of the main drawbacks of these methods is that they require marginaliza-
tion over the space of poses for each projection image, which is computationally
demanding and potentially inaccurate. In addition, because they rely on 3D
clustering to deal with structural variations of protein complexes, these meth-
ods become ine�cient for a large set of discrete conformations and struggle to
recover a continuum of conformations.

Deep Learning for Cryo-EM Reconstructions. In addition to CryoDRGN
and CryoGAN that have already been discussed in the introduction, there is a
third described in [15]. It uses a VAE and a framework based on a generative
adversarial network (GAN) to learn the latent distribution of the acquired data.
This representation is then used to estimate the orientation and other important
parameters for each projection image.

Deep Learning to Recover a 3D Object from 2D Projections. The im-
plicit or explicit recovery of 3D shapes from 2D views is an important problem in
computer vision. Many deep-learning algorithms have been proposed for this [7,
24, 23]. Taking inspiration from compressed sensing, Bora et al. [4] have recently
introduced a GAN framework that can recover an original distribution from the
measurements through a forward model. While these approaches would in princi-
ple be applicable, they consider a forward model that is too simple for Cryo-EM,
where a contrast transfer function (CTF) must be taken into account and where
the noise is orders of magnitude stronger (e.g. with a typical SNR of -10 ot -20
dB.

3 Background and Preliminaries

3.1 Image-Formation Model

The aim of Cryo-EM is to reconstruct the 3D molecular structure from the
measurements {y1

data

, . . . ,yQ
data

}, where Q is typically between 104 to 107. Each
measurement yq 2 RN⇥N is given by

yq = Ccq ⇤ StqP✓q| {z }
H'q

{xq}+ nq, (1)

where
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– xq 2 RN⇥N⇥N is a separate instance of the 3D molecular structure;
– nq 2 RN⇥N is the noise;
– H'q is the measurement operator which depends on the imaging parameters

'q = (✓q, tq, cq) 2 R8 and involves three operations.
• The term P✓q{xq} is the tomographic projection of xq rotated by ✓q =

(✓q
1

, ✓q
2

, ✓q
3

).
• The operator Stq shifts the projected image by tq = (tq

1

, tq
2

). This shift
arises from o↵-centered particle picking.

• The Fourier transform of the resulting image is then modulated by the
CTF Ĉcq with defocus parameters cq = (dq

1

, dq
2

,↵q
ast

) and thereafter
subjected to inverse Fourier Transform.

For more details, please see Supplementary: Image Formation in [10]. The chal-
lenge of Cryo-EM is that, for each measurement yq, the structure xq and the
imaging parameters (✓q, tq) are unknown, the CTF is a band pass filter with
multiple radial zero frequencies that incur irretrievable loss of information, and
the energy of the noise is multiple times (⇠10 to 100 times) that of the signal
which corresponds to SNRs of -10 to -20 dB. In the homogeneous case (single
conformation), all xq are identical. But in the heterogeneous case (multiple con-
formations), each xq represents a di↵erent conformation of the same biomolecule.

Stochastic Modeling. We denote the probability distribution over the con-
formation landscape by p

conf

(x) from which a conformation xq is assumed to
be sampled from. We assume that the imaging parameters and the noise are
sampled from known distributions p' = p✓ptpc and pn, respectively. For a given
conformation distribution p

conf

(x), this stochastic forward model induces a dis-
tribution over the measurements which we denote by p(y). We denote by pdata

conf

(x)
the true conformation distribution from which the data distribution p

data

(y) is
acquired such that {y1

data

, . . . ,yQ
data

} ⇠ p
data

(y). The distribution pdata
conf

(x) is
unknown and needs to be recovered.

The classical methods are likelihood-based and rely on the estimation of
imaging parameters (✓q, tq) (or a distribution over them) and of the conforma-
tion class for each measurement image yq. This information is then utilized to
reconstruct the multiple discrete conformations. Our method, in contrast, is built
upon the insight that, to recover pdata

conf

(x) it is su�cient to find a pgen
conf

(x) whose
corresponding measurement distribution p

gen

(y) is equal to p
data

(y) (see The-
orem 1). This does away with pose (or distributions over the poses) estimation
and conformation clustering for each measurement.

3.2 CryoGAN

Our scheme is extension of the CryoGAN [10] method, which is applicable only
for the homogeneous case pdata

conf

(x) = �(x � x
data

), where x
data

is the true 3D
structure. CryoGAN tackles the challenge by casting the reconstruction problem
as a distribution-matching problem (Figure 2(b)). More specifically, it learns to
reconstruct the 3D volume x⇤ whose simulated projection set (measurement
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Fig. 3: Schematic illustration of Multi-CryoGAN and its components. (a) Con-
formation manifold mapper; (b) CryoGAN.

distribution) is most similar to the real projection data in a distributional sense,
such that

x⇤ = argmin
x

WD(p
data

(y)||p
gen

(y;x)). (2)

Here, p
gen

(y;x) is the distribution generated from the Cryo-EM physics simu-
lator and WD refers to the Wasserstein distance [25]. This goal is achieved by
solving the min-max optimization problem:

x⇤ = argmin
x

max
D�:kD�kL1

(Ey⇠pdata(y)[D�(y)]� Ey⇠pgen(y;x)[D�(y)])

| {z }
WD(pdata(y)||pgen(y;x))

, (3)

where D� is a neural network with parameters � that is constrained to have
Lipschitz constant kD�kL  1 [9] (Figure 3(b)). Here, D� learns to di↵erentiate
between the real projection y and the simulated projectionH'{x} and scores the
realness of given samples. As the discriminative power of D� becomes stronger
(maximization) and the underlying volume estimate x is updated accordingly
(minimization), p

data

(y) and p
gen

(y;x) become indistinguishable so that the
algorithm recovers x⇤ = x

data

.

4 Method

4.1 Parameterization of the Conformation Manifold

CryoGAN successfully reconstructs the volumetric structure of a protein by find-
ing a single volume x that explains the entire set of projections, which is ade-
quate when all the imaged particles are identical (homogeneous case). However,
in reality, many biomolecules have nonrigid structures, which carry vital infor-
mation. To address this, we introduce a manifold-learning module G� that uses
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Algorithm 1: Samples from the generated distribution p
gen

(y;G�).

Input: latent distribution pz; angle distribution p✓; translation distribution
pt; CTF parameters distribution pc; noise distribution pn

Output: Simulated projection ygen

1. Sample z ⇠ pz.
2. Feed z into generator network to get x = G�(z).
3. Sample the imaging parameters ' = [✓, t, c].
– Sample the Euler angles ✓ = (✓1, ✓2, ✓3) ⇠ p✓.
– Sample the 2D shifts t = (t1, t2) ⇠ pt.
– Sample the CTF parameters c = (d1, d2, ↵ast) ⇠ pc.

4. Sample the noise n ⇠ pn.
5. Generate ygen = H'x+ n based on (8).
return ygen

a CNN with learnable weights � (Figure 3 (a)). Sampling from p
conf

(x) is then
equivalent to getting G�(z), where z is sampled from a prior distribution. There-
fore, y ⇠ p

gen

(y) is obtained by evaluating H'{G�(z)}+ n, where (n, z,') are
sampled from their distributions (see Algorithm 1 and Figure 3). To explicitly
show this dependency to G� , we hereafter denote the generated distribution of
projection data by p

gen

(y;G�).

4.2 Optimization Scheme

We now find G�⇤ such that the distance between p
data

(y) and p
gen

(y;G�) is
minimized, which results in the min-max optimization problem [2]

G�⇤ = argmin
G�

WD(p
data

(y)||p
gen

(y; G�)) (4)

= argmin
G�

max
D�:kD�kL1

(Ey⇠pdata [D�(y)]� Ey⇠pgen(y;G�)
[D�(y)])

| {z }
WD(pdata(y)||pgen(y;G�)

. (5)

As will be discussed in Theorem 1, the global minimizer G�⇤ of (5) indeed
captures the true conformation landscape p

conf

(x), which is achieved when D�

is no longer able to di↵erentiate the samples from p
data

(y) and p
gen

(y;G�⇤).
It is crucial to note the di↵erence between Multi-CryoGAN and conventional

generative adversarial frameworks [8]. In the latter, G directly outputs the sam-
ples from p

gen

(y), whereas ours outputs the samples x from the conformation
distribution p

conf

(x) whose stochastic projections are the samples of p
gen

(y).
The conventional schemes only helps one to generate samples which are similar
to the real data but does not recover the underlying conformation landscape.
Our proposed scheme includes the physics of Cryo-EM, which ties p

gen

(y) with
the conformation landscape p

conf

(x) and is thus able to recover it (See Theorem
1 in Section 6).
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Algorithm 2: Reconstruction of multiple conformations using Multi-
CryoGAN.

Input: Dataset {y1
data, . . . ,y

Q
data}; training parameters: number of steps k to

apply to the discriminator and penalty parameter �
Output: A mapping G from the latent space to the 3D conformation space.
for ntrain training iterations do
for k steps do
– sample from real data: {y1

data, . . . ,y
B
data}.

– sample from generated data: {y1
gen, . . . ,y

B
gen} ⇠ pgen(y;G�) (see Algorithm 1).

– sample from {1, . . . ,B} ⇠ U[0, 1].
– compute yb

int = b · yb
batch + (1� b) · yb

gen for all b 2 {1, . . . , B}.
– update the discriminator D� by gradient ascent on the loss (5) complemented

with the gradient penalty term from [9].

end

– sample generated data: {y1
gen, . . . ,y

B
gen} ⇠ pgen(y;G�) (see Algorithm 1).

– update the Generator G� by gradient descent on the loss (5).

end
return G�⇤

5 Experiments and Results

We evaluate the performance of the proposed algorithm on synthetic datasets ob-
tained from a protein with multiple conformations. We synthesize two datasets:
one continuum of configurations and one where the particles can only take a dis-
crete number of states. During reconstruction, no assumption is made of their
continuous or discrete nature, which suggests that our method is capable of
learning di↵erent conformation distribution behaviors.

Dataset. For each dataset, we generate 100,000 simulated projections from the
in vivo conformation variation of the heat-shock protein Hsp90. The Coulomb
density maps of each conformation are created by the code provided in [20] with
slight modifications. The conformation variation of this protein is represented
by the bond-angle �, which describes the work cycle of the molecule, where the
two subunits continuously vary between fully closed (� = 0�, protein database
entry 2cg9 ) and fully opened (� = 20�). We sample � ⇠ Uniform (0�, 20�) for
the continuous case and � ⇠ 20� ⇤ Bernoulli (0.75) for the discrete case. Here,
Uniform (a, b) is the uniform distribution between a and b, and Bernoulli (p)
denotes the Bernoulli distribution with parameter p. A conformation is generated
with (32⇥ 32⇥ 32) voxels, where the size of each voxel is 5 Å. A 2D projection
with random orientation of this conformation is obtained ((32⇥32) image, Figure
4b). The orientation is sampled from a uniform distribution over SO(3). Then,
the CTF is applied to this projection image with a defocus uniformly sampled
between [1.0 µm, 2.0 µm], assuming that the horizontal and vertical defocus
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values are the same and there is no astigmatism. Translations/shifts are disabled
in these experiments. Finally, Gaussian noise was added to the CTF-modulated
images, resulting in an SNR of approximately -10 dB.

Implementation Details. The reconstruction of the conformation is done by
solving (5) using Algorithm 2. For both continuous and discrete conformations,
we use the same distribution pz ⇠ Uniform (z

0

, z
1

), where z
0

, z
1

2 R32⇥32⇥32

are randomly chosen from Uniform(0, 0.025) and fixed throughout the process.
Thus, we do not impose any prior knowledge whether the landscape is continuous
or discrete. As we shall see later, this latent distribution is su�ciently rich to
represent the variation of interest in the synthetic datasets. The architecture of
D, G, and training details are provided in the supplementary material.

Metric. We deploy two metrics based on Fourier-Shell Correlation (FSC). The
FSC between two structures x

1

and x
2

is given by

FSC(!,x
1

,x
2

) =
hV!

ˆx1
,V!

ˆx2
i

kV!
ˆx1
kkV!

ˆx2
k (6)

where V!
ˆx is the vectorization of the shell of x̂ at radius ! and x̂ is the 3D

Fourier transform of x. As first metric, we use the FSC between a reconstructed
conformation and the corresponding ground truth conformation. This metric
encapsulates the structural quality of an individual reconstructed conformation.

To evaluate the landscape of the conformations, we propose a second metric
that we call the matrix M 2 RL⇥L of FSC cross conformations (FSCCC). Its
entries are given by

M[m,n] = AreaFSC(xm,xn) =

Z

0<!!c

FSC(!,xm,xn)d! (7)

where xm and xn are samples in the reconstructed conformation manifold and
!c is the normalized Nyquist frequency. We determine it for the reconstructed
landscape by setting xm = G�⇤((1 � ↵m) ⇤ z

0

+ ↵m ⇤ z
1

) where ↵m = (m/L)
for m 2 {0, . . . , L}. The matrix M encapsulates how similar xm is compared to
other structures xn across the manifold (M[m,n] is proportional to the similarity
between xm and xn), hence allowing for a visualization of the manifold.

For the continuous conformation, it is useful to compare the FSCCC of our
reconstructions with that of the ground truth. To that end, we also evaluate
M[m,n] when xm corresponds to the bond-angle � = 20�(m/L), where m 2
{0, . . . , L}. In our experiments, we used L = 20 for all FSCCC calculations.

5.1 Continuous Conformations

We give in Figure 4 a qualitative comparison between the ground truth confor-
mation variation, as the angle � goes from 0� to 20�, and the reconstructions
G(�⇤)(z), where z = (1 � ↵)z

0

+ z
1

and ↵ goes from 0 to 1. Our method suc-
cessfully reconstructs a manifold that exhibits smooth continuous conformation
variation (Figure 4(a)), where the input parameter ↵ has direct control over
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Fig. 4: Continuous conformations experiment. (a) Comparison between the
ground truth conformation manifold and the reconstructed conformation mani-
fold G⇤(z) where z = (1� ↵)z

0

+ ↵z
1

, ↵ 2 [0, 1]. (b, left-column) Clean projec-
tions of random samples from the ground truth and reconstructed manifold; (b,
right-column) their CTF-modulated and noise-corrupted projection. These are
the real and generated samples that are fed to D�. (c) Ground truth with angles
0� and 20�, and the reconstruction corresponding to the endpoints in the latent
space. (d) The FSC between them.

the bond-angle for the reconstruction. This shows that not only the true con-
formation landscape has been captured, but its factor of variation has been
meaningfully encoded by the latent variables z. The similarity between simu-
lated projections and the ground truth data in Figure 4(b) suggests that the
algorithm has achieved p

data

= p
gen

. Moreover, their underlying distributions of
noiseless projections are also similar, in accordance to the property discussed in
Theorem 1.

We also evaluate the structural quality of reconstruction for certain repre-
sentative individual conformations. In Figure 4(c), the extreme conformations
for the ground truth � = 0� and � = 20� and the reconstructions ↵ = 0 and
↵ = 1 are shown. Their FSC plot reach the value 0.5 after the normalized fre-
quency of 0.25, so that at least half of the Nyquist resolution is achieved (Figure
4(d)). All these results are further confirmed by the very similar FSCCC ma-
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Fig. 5: The FSC cross-conformation (FSCCC) matrix in (7). (a) Continuous con-
formation with (left) ground truth and (right) reconstruction. It shows that the
reconstructed conformations smoothly vary (without forming clusters) similar
to the ground truth case. (b) Discrete conformation case with (left) ideal recon-
struction and (right) obtained reconstruction. The ideal reconstruction describes
the case where 25% and 75% of latent space would have mapped to the two dis-
tinct conformations without any transitions. The obtained reconstruction case
can be seen to be very similar to the ideal case with 25% and 70% being the
latent space occupied by the two conformations.

trix for ground truth and reconstruction in Figure 5(a). This implies that the
reconstruction manifold successfully approximates the continuous ground truth.

5.2 Discrete Conformations

We present in Figure 6 the reconstruction results for the discrete case, where our
proposed method successfully recovers not only the conformations but also their
probabilities. About 70% of the reconstructed landscape matches the configura-
tion for � = 20�, while 25% matches � = 0�. The remaining 5% of the landscape
corresponds to a relatively abrupt transition between them. This suggests that
our model distribution p

conf

(x) closely follows the ground truth Bernoulli distri-
bution. This is further supported in Figure Figure 5(b), where the reconstructed
FSCCCmatrix greatly resembles the ideal reconstruction case. Ideally, one would
expect the two conformations to occupy 25% and 75% of the latent space without
having any transition conformations. The structural quality of these two recov-
ered configurations with respect to the corresponding ground truth are given
in Figure 6(b). Their FSC show that at least half of the Nyquist resolution is
achieved (Figure 6(c)).

The FSCCC reconstruction matrix (Figure 5(b)) validates the fact that the
reconstructed structures cluster into two main conformations. We use it to deter-
mine the probabilities of these cluster/conformations. We determine the prob-
ability of a conformation using its first and last row (similarity of the confor-
mations with respect to the extreme conformations). We consider that a con-
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Fig. 6: Discrete conformations experiment. (a) Comparison between the ground
truth (GT) taking only two conformations with probability 0.25 and 0.75 and
the reconstructed conformations G�⇤(z), where z = (1� ↵)z

0

+ ↵z
1

, ↵ 2 [0, 1].
(b) The GT with bond angles 0� and 20� and their reconstruction. (c) FSC of
the structures in (b).

formation xn belongs to the first cluster/conformation if M[0, n] > 0.5 and
M[20, n] < 0.5. If the case is reversed (M[0, n] < 0.5 and M[20, n] > 0.5), then
it belongs to the second cluster/conformation. Otherwise, it is considered as
a transitioning conformation. This yields that the first 25% and the last 70%
structures cluster together to form the � = 0� and � = 20� conformations,
respectively, and the middle 5% are the transitioning conformations.

6 Theoretical Guarantee of Recovery

Our experiments illustrate that enforcing a match between the distribution of the
simulated measurements and that of the data is su�cient to reconstruct the true
conformations. We now prove this mathematically. For the homogeneous case,
the proof is already discussed in [10, Theorem 1] which we now extend to the
heterogeneous case. We switch to a continuous-domain formulation of the Cryo-
EM problem while noting that the result is transferable to the discrete-domain
as well, albeit with some discretization error.

Notations and Preliminaries. We denote by L
2

(R3) the space f 3D structures
f : R3 ! R with finite energy kfkL2 < 1. The imaging parameters ' are
assumed to lie in B ⇢ R8. We denote by L

2

(R2) the space of 2D measurements
with finite energy. Each individual continuous-domain Cryo-EM measurement
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y 2 L
2

(R2) is given by

y = H'{f}+ n, (8)

where f 2 L
2

(R3) is some conformation of the biomolecule sampled from the
probability measure P̃

conf

on L
2

(R3), the imaging parameters ' are sampled
from p', and n is sampled from the noise probability measure Pn on L

2

(R2).
We define [f ] := {rA{f} : rA 2 O} as the set of all the rotated-reflected

versiond of f . There, O is the set of all the rotated-reflected versions over
L
2

(R3). We define the space
P

L
2

(R3) = L
2

(R3)/O as the quotient space
of the shapes. For any P̃

conf

defined over L
2

(R3), an equivalent P
conf

exists
over

P
L
2

(R3). Since we are interested only in the shape of conformations of
the biomolecule, we will only focus on recovering P

conf

. We denote by  the
probability measure on B 2 R8. The measure  is associated to the density
function p'. Both of these induce a probability measure P

clean

on the space
L2

2

= {f : R3 ! R2 s.t. kfkL2 < 1} through the forward operator. This is
given by P

clean

[A] = (P
conf

⇥  )[([f ],') 2 (
P

L
2

⇥ B) : H'f 2 A] for any Borel
measure set A 2 L

2

(R2). We denote P
meas

as the probability measure of the
noisy measurements.

Theorem 1. Let Pdata

conf

and Pgen

conf

be the true and the reconstructed conformation
probability measures on the quotient space of 3D structures

P
L
2

(R3), respec-
tively. We assume that they are atomic and that they are supported only on
nonnegative-valued shapes. Let Pdata

meas

and Pgen

meas

be the probability measures of
the noisy Cryo-EM measurements obtained from Pdata

conf

and Pgen

conf

, respectively.
Make the following physical assumptions:

1. the noise probability measure Pn is such that its characteristic functional
vanishes nowhere in its domain and that its sample n is pointwise-defined
everywhere;

2. the distributions p✓, pt, and pc are bounded;
3. for any two c

1

, c
2

⇠ pc, c1 6= c
2

, the CTFs Ĉc1 and Ĉc2 share no common
zero frequencies.

Then, it holds that
Pdata

meas

= Pgen

meas

) Pdata

conf

= Pgen

conf

. (9)

Proof. We first prove that Pdata

meas

= Pgen

meas

) Pdata

clean

= Pgen

clean

. Note that, due to
the independence of clean measurements and noise, we have that

P̂data

meas

= P̂data

clean

P̂n

P̂gen

meas

= P̂gen

clean

P̂n. (10)

From the assumption that P̂n is nonzero everywhere, we deduce that P̂data

clean

=

P̂gen

clean

. This proves the first step.
To prove the next step, we invoke Theorem 4 in [10] which states that any

two probability measures P1

clean

and P2

clean

that correspond to Dirac probability
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measures P1

conf

and P2

conf

on
P

L
2

(R3), respectively, are mutually singular (zero
measure of the common support) if and only if the latter are distinct. We denote
the relation of mutual singularity by ?.

Since Pdata

conf

is an atomic measure (countable weighted sum of distinct Dirac
measures), the corresponding Pdata

clean

is composed of a countable sum of mutually
singular measures. The same is true for Pgen

clean

since it is equal to Pdata

clean

.

We proceed by contradiction. We denote by Supp{P} the support of the mea-
sure P. Assume that Supp{Pdata

conf

} 6= Supp{Pgen

conf

}. Let us define S
1

= Supp{Pgen

conf

}\
Supp{Pdata

conf

}C . For any [f ] 2 S
1

, we denote by Pf
clean

its noiseless probability mea-
sure. Since f 2 S

1

, it is distinct from any constituent Dirac measure in Pdata

conf

.

Therefore, by using [10, Theorem 4], Pf
clean

is mutually singular to each of the

constituent mutually singular measures of Pdata

clean

, implying that Pf
clean

?Pdata

clean

.

From Supp{Pf

clean

} ⇢ Supp{Pgen

clean

}, it follows that Pdata

clean

6= Pgen

clean

, which
raises a contradiction. Therefore, the set S

1

is empty. The same can be proved for
the set S

2

= Supp{Pgen

conf

}C\Supp{Pdata

conf

}. Therefore, Supp{Pgen

conf

} = Supp{Pdata

conf

},
which means that the location of their constituent Dirac measures are the same.
To maintain Pdata

clean

= Pgen

clean

, the weight of their constituent Dirac measures have
to be the same, too. This concludes the proof.

In essence, Theorem 1 claims that a reconstructed manifold of conformations
recovers the true conformations if its measurements match the acquired data in
a distributional sense. Though the result assumes the true conformation land-
scape to be discrete (atomic measure), it holds for an infinite number of discrete
conformations which could be arbitrarily close/similar to each other and is thus
relevant to continuously varying conformations. We leave the proof of the latter
case to future works.

7 Conclusion

We have introduced a novel algorithm named Multi-CryoGAN. It can recon-
struct the 3D continuous conformation manifold of a protein from a su�ciently
rich set of 2D Cryo-EM data. By matching the simulated Cryo-EM projections
with the acquired data distribution, Multi-CryoGAN naturally learns to generate
a set of 3D conformations in a likelihood-free way. This allows us to reconstruct
both continuous and discrete conformations without any prior assumption on the
conformation landscape, data preprocessing steps, nor external algorithms such
as pose estimation. Our experiments shows that Multi-CryoGAN successfully
recovers the molecular conformation manifold, including the underlying distri-
bution. We believe that, with a better incorporation of state-of-the art GAN ar-
chitectures [13, 12], Multi-CryoGAN could become an e�cient and user-friendly
method to reconstruct heterogeneous biomolecules in Cryo-EM.
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the analysis of continuous conformational variability of biological macromolecules
by electron microscopy. Acta Crystallographica Section F: Structural Biology Com-
munications 75(1), 19–32 (2019)

23. Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Sunkavalli, K., Martin-
Brualla, R., Simon, T., Saragih, J., Nießner, M., et al.: State of the art on neural
rendering. arXiv preprint arXiv:2004.03805 (2020)

24. Tulsiani, S., Efros, A.A., Malik, J.: Multi-view consistency as supervisory signal
for learning shape and pose prediction. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2897–2905 (2018)

25. Villani, C.: Optimal transport: old and new, vol. 338. Springer Science & Business
Media (2008)

26. Zhong, E.D., Bepler, T., Berger, B., Davis, J.H.: Cryodrgn: Reconstruction of
heterogeneous structures from cryo-electron micrographs using neural networks.
bioRxiv (2020)


