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ABSTRACT

3D Gaussian Splatting (GS) has emerged as a powerful representation for high-
quality scene reconstruction, offering compelling rendering quality. However, the
training process of GS often suffers from slow convergence due to inefficient den-
sification and suboptimal spatial distribution of Gaussian primitives. In this work,
we present a comprehensive analysis of the split and clone operations during the
densification phase, revealing their distinct roles in balancing detail preservation
and computational efficiency. Building upon this analysis, we propose a global-to-
local densification strategy, which facilitates more efficient growth of Gaussians
across the scene space, promoting both global coverage and local refinement. To
cooperate with the proposed densification strategy and promote sufficient diffu-
sion of Gaussian primitives in space, we introduce an energy-guided coarse-to-fine
multi-resolution training framework, which gradually increases resolution based
on energy density in 2D images. Additionally, we dynamically prune unnecessary
Gaussian primitives to speed up the training. Extensive experiments on MipNeRF-
360, Deep Blending, and Tanks & Temples datasets demonstrate that our approach
significantly accelerates training—achieving over 2x speedup with fewer Gaussian
primitives and superior reconstruction performance.

1 INTRODUCTION

Reconstructing high-quality 3D representations from unordered image collections remains a fun-
damental challenge in computer vision and graphics. Neural radiance fields (NeRF) Mildenhall
et al. (2020) have revolutionized this domain through their implicit scene representation paradigm,
combining deep learning with volumetric rendering to achieve unprecedented view synthesis qual-
ity Oechsle et al. (2021); Park et al. (2021); Wang et al. (2021); Yariv et al. (2021). Despite these
successes, the computational demands of ray-based volumetric rendering present critical limitations.
The requirement for dense spatial sampling along viewing rays significantly hinders both train-
ing convergence and rendering efficiency. Recent advancements in 3D reconstruction have high-
lighted 3D Gaussian Splatting (3DGS) Kerbl et al. (2023) as a promising technique for high-fidelity
scene modeling. By representing scenes as collections of anisotropic Gaussian primitives, plenty of
works Waczynska et al. (2024); Yan et al. (2024); Yang et al. (2024) based on the 3DGS achieve
impressive visual quality with explicit geometric distribution and efficient rendering pipelines. How-
ever, there still exists an urgent requirement for computational efficiency improvements to deploy 3D
Gaussian Splatting on resource-constrained devices or enable its practical application in real-time
reconstruction and dynamic modeling scenarios where training time constitutes a critical bottle-
neck Cong et al. (2025); Javed et al. (2024); Tan et al. (2024).

Based on the 3DGS pipeline, several recent approachesChen et al. (2025); Fang & Wang (2024a);
Hanson et al. (2024); Mallick et al. (2024) have pursued optimization acceleration from the perspec-
tives of geometric distribution, optimizer, and multi-resolution and so on. Taming 3DGS Mallick
et al. (2024) makes each tile uses a parallelization scheme over the 2D splats instead of pixels. Mini-
splatting Fang & Wang (2024a) utilizes depth to achieve efficient reinitialization of the Gaussian
primitives from the perspective of spatial geometry. EDC Deng et al. (2024) proposes a long-axis
split operation and a pruning strategy to efficiently control the Gaussian densification. DashGaus-
sian Chen et al. (2025) introduce a resolution scheduler and a primitive scheduler to accelerate the
training time.
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In this work, we systematically analyze the bottlenecks in 3D Gaussian Splatting reconstruction,
particularly focusing on inefficient spatial spread and redundant Gaussian primitives during opti-
mization. We reveal that the split operation takes charge of the global spread while the clone op-
eration governs the local refinement (cf. Table 1 and Fig. 3). Then We identify clone operations
in the early stage as the primary cause of excessive Gaussian clustering during optimization, where
redundant primitives aggregate while contributing minimally to reconstruction fidelity (cf. Fig. 2).
To address these limitations, we propose a global-to-local strategy that decouples split and clone
across densification phases.

We further design a energy-aware multi-resolution training strategy to facilitate this global-to-local
optimization strategy. Specifically, we promote Gaussian primitives’ global spread with split opera-
tion at the lower resolution and suppress clone operations. This prevents premature local clustering
and ensures efficient scene coverage. Only when transitioning to full-resolution training do we rein-
troduce clone operations to refine high-frequency details. Additionally, we integrates an opacity
pruning strategy with a adaptive threshold to remove the unnecessary Gaussian primitives. The
pipeline is shown in Fig. 1. By jointly utilizing the proposed approaches, our method achieves
an approximately 2× acceleration in training speed compared to baseline implementations, with a
comparable or even better reconstruction quality. In summary, our contributions are as follows:

• We first reveal the split takes charge of the global spread and the clone governs the local
refinement and propose a global-to-fine densification to accelerate the optimization.

• We introduce a energy-aware multi-resolution framework to promote the global-to-fine
densification for further acceleration.

• Comprehensive experiments conducted on three datasets demonstrate that our method
achieves an approximately 2× speedup over the baseline, while maintaining or even en-
hancing the performance.

2 RELATED WORKS

2.1 3D GAUSSIAN SPLATTING

3D Gaussian Splatting Kerbl et al. (2023) has emerged as a compelling approach for 3D scene re-
construction, enabling real-time rendering while preserving photorealistic quality. Unlike implicit
neural fields (e.g., NeRF Mildenhall et al. (2020)) that rely on computationally intensive ray march-
ing for volume rendering, 3DGS formulates scenes as collections of anisotropic Gaussian primitives
with full covariance matrices. This explicit representation allows efficient tile-based rasterization
through differentiable projection and alpha blending, bypassing the limitations of neural rendering
pipelines.

In recent years, there has been a surge in research efforts that have pushed forward the technologi-
cal frontiers of 3DGS across multiple domains, with particularly transformative impacts on human
avatar generation Cha et al. (2024); Jiang et al. (2024); Lyu et al. (2024); Zielonka et al. (2025),
Autonomous Driving Chen et al. (2024); Hess et al. (2024); Lei et al. (2025); Zhou et al. (2024), and
photorealistic scene renderings Chao et al. (2024); Cheng et al. (2024); Xie et al. (2024); Xu et al.
(2024).

2.2 ACCELERATION FOR 3DGS OPTIMIZATION

Although the rendering speed of 3D Gaussian Splatting is much faster than that of NeRF, it still
takes tens of minutes to complete the rendering of a scene on a high-performance GPU. Plenty of
subsequent works accelerated the optimization process from the perspectives of optimization strate-
gies, the number of Gaussian spheres, etc. Taming 3DGS Mallick et al. (2024) reformulates the
original per-pixel parallelization into per-splat parallel backpropagation, significantly accelerating
the optimization process of 3D Gaussian Splatting and establishing a strong baseline for follow-
ing research. Mini-Splatting Fang & Wang (2024b) saves the training time and memory cost by
maintaining the most important primitive for each pixel through depth reinitialization. Speedy-
Splat Hanson et al. (2024) calculates a precise tile allocation of Gaussians when projected to the
2D image planes and prunes a fixed high proportion of Gaussians in specific iterations. Meanwhile,
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reducing the resolution of renderings in the optimization stage is also a promising option for acceler-
ation. EAGLES Girish et al. (2023) adopts several schedules for gradually increasing the resolution
empirically. From the perspective of the frequency domain, DashGaussian Chen et al. (2025) de-
signs a resolution scheduler and a primitive scheduler to efficiently reconstruct the scene from low
frequency to high frequency.

However, these methods adopt the default densification strategy and do not explore the actual roles
of split and clone. A similar work EDC Deng et al. (2024) replaced the clone operation with a
proposed long-axis split based on AbsGS Ye et al. (2024) with limited improvement of training
speed. In contrast, our methods analyze the behaviors of the split and clone operations and propose
a global-to-local densification strategy to facilitates efficient growth of Gaussians across the scene.
Then we design an energy-guided coarse-to-fine multi-resolution training framework to cooperate
with the proposed densification strategy.

3 PRELIMINARY

3D Gaussian Splatting 3DGS Kerbl et al. (2023) represents 3D scenes through anisotropic Gaus-
sian primitives and demonstrates state-of-the-art performance in both visual quality and rendering
efficiency. Each Gaussian primitive Gi is formally defined by five core contributions: spatial position
ui ∈ R3, opacity αi, orthogonal rotation matrix Ri ∈ R3×3, diagonal scaling matrix Si ∈ R3×3,
and spherical harmonics (SH) coefficients for view-dependent color representation. The Gaussian
distribution is mathematically expressed as:

Gi(x) = exp

(
−1

2
(x− ui)

TΣ−1
i (x− ui)

)
, (1)

where Σi = RiSiS
T
i R

T
i ensures positive semi-definiteness. For real-time rendering, Gaussian

primitives are projected onto the 2D image plane with the Jacobian affine approximation. Given
camera extrinsic parameters W and projection matrix Jacobian J , the 2D covariance in screen
space becomes Σ′

i = JWΣiW
TJT . The final pixel color C(p) is computed via alpha compositing

of depth-sorted Gaussians:

C(p) =
∑
i∈Np

ciσi

i−1∏
j=1

(1− σj), σi = αiG′
i(p), (2)

where ci denotes SH-evaluated color and Np indexes visible Gaussians at pixel p. The model is
optimized using a hybrid loss combining L1 and structural similarity (i.e., D-SSIM term):

Ltotal = (1− λ)∥I − Î∥1 + λLD-SSIM(I, Î), (3)

with default weight λ = 0.2, where I and Î denote ground truth and rendered images, respectively.

During the densification stage, the norm of the average position gradient of each Gaussian primitive
is calculated every 100 iterations. If the gradient norm exceeds a predefined threshold, the corre-
sponding Gaussian primitive will either be split or cloned. Specifically, if the maximum scale of the
Gaussian exceeds a given scale threshold, it will be split into smaller components; otherwise, it is
simply cloned with the same parameters.

4 METHODOLOGY

In this section, we present how the proposed method reduces optimization complexity to acceler-
ate 3D Gaussian Splatting, while preserving rendering quality without compromise. In Sec. 4.1,
we analyze the distinct behaviors of the split and clone operations and proposes a global-to-local
densification strategy to improve optimization efficiency. In Sec. 4.3, we introduce a coarse-to-fine
multi-resolution scheme based on the energy density in 2D images to better support the proposed
densification strategy. In Sec. 4.4, we adopt an adaptive opacity threshold to better balance the
trade-off between training efficiency and rendering quality.

4.1 GLOBAL-TO-LOCAL DENSIFICATION

3
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Figure 1: Pipeline of the global-to-local and
coarse-to-fine densification.

To achieve the 3D reconstruction using the
Gaussian Splatting, split and clone operations
are applied simultaneously during the densifi-
cation stage to densify and spread the Gaus-
sian primitives spatially. We dig into the dif-
ferences between the these two operations and
claims two statements neglected by preview re-
searches: 1. The split operation takes charge of
the diffusion of the Gaussian primitives in space
(cf. Sec. 4.1.1); 2. The number of Gaussian
primitives produced by clone is much higher
than that produced by split (cf. Sec. 4.1.2).

4.1.1 SPATIAL DIFFUSION

In this section, we prove that the spatial diffusion is predominantly governed by the split operation,
whereas the clone operation contributes to local feature refinement. We first revealed that the clone
operation is the cause of the cluster phenomenon observed in Mini-Splatting Fang & Wang (2024a),
which can be alleviated by our methods.

We regard the points extracted by structure from motion (SFM) for initialization as the parent points.
Each newly generated Gaussian maintains a one-to-one correspondence with its parent point. During
the optimization, We equip each Gaussian primitive with three more attributes: original position,
split count, and clone count. The original position stores the initial coordinates of its parent point and
the split/clone count quantify cumulative split/clone operations executed with respect to its parent
point during optimization. After optimization, we classify Gaussians into three categories: split-
dominated (split > clone), clone-dominated (clone > split), and equal (split = clone). Specifically,
Gaussian GA undergoes split to produce GB , and GB clones to produce GC . Consequently, the parent
point of GC is GA and GC belongs to the equal category. We compute average Euclidean distances
between final positions and initial positions of each gaussian for each category. As shown in Table 1,
the average displacement distances across three datasets show that split-dominated Gaussians exhibit
displacements around twenty times greater than clone-dominated countparts, demonstrating that
spatial expansion is primarily driven by split operations. The camera extent is 1.1 times the radius
of the smallest sphere covering all camera positions defined in the 3D Gaussian Splatting. It is
regarded as a measurement representing the size of the scene. The displacement of clone-dominated
primitives is less than 2% of the scene size, so we argue that the clone operation is mainly responsible
for local refinement, while the split operation takes charge of the global diffusion.

Table 1: Average displacement distances for split-dominated, clone-dominated and equal primitives
before and after optimization.

Category MipNeRF-360 Barron et al. (2022) Deep Blending Hedman et al. (2018) Tanks & Temples Knapitsch et al. (2017)

split-dominated 2.42 0.75 2.40
clone-dominated 0.09 0.15 0.10

equal 0.17 0.23 0.15

camera extent 5.16 7.79 6.65

We present qualitative comparisons of Gaussian distributions across three densification strategies:
(1) the standard adaptive approach from 3D Gaussian Splatting that dynamically selects splits/clones
based on Gaussian scale, versus (2) split-only and (3) clone-only variants where all densification
operations are enforced to use a single type. As shown in Fig. 2, clone-only version intensifies the
local cluster phenomenon of the gaussian primitives (cf. bicycle frame and decoration on the wall)
and fails to spread the Gaussian primitives, leading to a blurry rendering output due to insufficient
spatial distribution (cf. houses in the distance of bicycle scene). Although the split-only variant
produces a more uniform spatial distribution compared to other approaches, the complete lack of
any clone operation prevents it from efficiently adapting to fine-grained scene details. As a result, it
requires a significantly larger number of Gaussian primitives to adequately fit the scene, ultimately
leading to a reconstruction quality that remains inferior to that of the baseline.

4
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Figure 2: Visualization of the distribution of Gaussian primitives (left) and the rendered images
(right) after optimization .

Figure 3: The number of Gaussian primitives generated through split and clone operations and the
ratio of clone to split during the densification stage.

In summary, both quantitative results and qualitative visual analysis indicate that the split operation
primarily takes charge of the global distribution of Gaussian primitives, while the clone operation is
mainly responsible for the local refinement.

4.1.2 SPLIT-CLONE RATIO

We present quantitative analysis of Gaussian primitive evolution during the densification phase in
3D Gaussian Splatting. As demonstrated in Fig. 3, approximately 80% of new primitives originate
from cloning operations rather than splitting. To fit the rendering error caused by the opacity reset
performed every 3k steps, both splits and clones were increased simultaneously. Subsequently, as
the optimization progresses, the number of splits begins to decline, while the number of clones
continues to rise. Comprehensive results across multiple scenes from different datasets confirm this
trend.

According to the discover in the previous section, we argue that the local refinement at early densi-
fication phase cannot reduce the rendering error through clone operations, resulting in a persistently
high gradient. As a result, a large number of Gaussian primitives are repeatedly cloned, causing
computational redundancy and failing to improve the rendering quality.

These findings suggest two key implications: First, the majority of primitive growth stems from
clone operations that may not contribute meaningfully to representation capacity in early stage.
Second, the observed trend indicates potential for algorithmic optimization through adaptive densi-
fication strategies that can achieve computational efficiency with comparable performance.

4.2 GLOBAL-TO-LOCAL FRAMEWORK

Qualitative and quantitative experiments have proved that the clone operation used for local re-
finement has led to the generation of a large number of redundant Gaussian primitives, which is
unnecessary for the optimization of the scene reconstruction in the early stage. Leveraging the em-
pirically observed inverse correlation between Gaussian density and computational efficiency, We
implement a two-phase densification framework: global spread and local refinement. At the first
phase, we only apply the split operation to achieve fast and effective spatial distribution, leveraging
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minimal Gaussian counts to minimize redundant computation on localized details. In the second
phase, both the split and clone operations are employed. Given that a satisfactory spatial distribution
has already been established, the clone operation enables efficient local refinement. The proposed
phased training strategy can reduce training time by optimizing a substantially smaller number of
primitives in the first phase.

To further enhance the effectiveness of the global-to-local densification process, we propose a
coarse-to-fine multi-resolution scheduler based on the energy density in 2D images, which is elabo-
rated in the following section. This approach eliminates the need for manually defining the boundary
between the two phases.

4.3 COARSE-TO-FINE MULTI-RESOLUTION DENSIFICATION

The optimization of 3D Gaussian Splatting is conducted by projecting Gaussian primitives from 3D
space to 2D pixel plane, where the rendering error is computed to update both their spatial distri-
bution and attribute parameters. During the global spread phase of densification, we aim for a fast
and efficient coverage of the target scene volume, without overemphasizing the reconstruction of
fine image details at this early stage. Therefore, using full-resolution images for supervision can
lead to unnecessary computational consumption and suboptimal behavior. Specifically, each pixel
corresponds to a small 3D voxel, which encourages Gaussians primitives to converge prematurely
to local optima by overfitting to individual pixels, thereby limiting their spatial expansion. Further-
more, when a large Gaussian projects to a large number of pixels, the accumulated gradient vectors
may cancel each other out due to opposing vector directions in space, resulting in a small gradient
error below the threshold and preventing further split operations Ye et al. (2024).

Inspired by frequency analysis techniques in 2D image processing and DashGaussian Chen et al.
(2025), we propose a coarse-to-fine training strategy based on energy density to mitigate the afore-
mentioned issues. Specifically, during the global spread phase, we train with downsampled images
to enable efficient spatial diffusion of Gaussian primitives. Once a sufficient scene coverage is at-
tained, we switch to full-resolution supervision for the local refinement phase, allowing accurate
reconstruction of high-frequency image content.

We analyze the image energy distribution in frequency domain to design an adaptive resolution
scheduling mechanism. Given an input image I ∈ RH×W×C , we compute its energy spectrum
through Fourier transform: E(I) =

√
ℜ(F(I))2 + ℑ(F(I))2, where F(·),ℜ, andℑ denotes 2D

FFT, real part and imaginary part in frequency domain, and E(·) calculates the energy density.

For multi-resolution analysis, we define a downscaling operator Dr(·) that reduces spatial dimen-
sions by factor r using bilinear interpolation with anti-aliasing:

Ir = Dr(I) = Bilinear(I, scale = 1/r) (4)

The energy density across resolutions is quantified as:
Er = ∥E(Ir)∥1 · r2 (5)

where the scaling term r2 normalizes energy values across different resolutions. Our resolution
scheduler dynamically allocates training iterations based on energy ratios as follows:

Tr = Round((Er/E1) ·Tdensify), r ∈ A (6)

where A = {1, 2, ...,K} denotes candidate scale factors, and Tr,Tdensify represents the allocated
iteration at r-scaled resolution and total densification iteration. The training proceeds from coarsest
(r = K) to finest (r = 1) resolution following reversed order. For scale factor r, the training starts
at Tr+1 and end at Tr. This energy-aware strategy ensures optimal balance between global scene
coverage at early phases and detail reconstruction in later phases.

4.4 ADAPTIVE OPACITY PRUNING

To prove the optimization stuck with floaters close to input cameras and unjustified increase in the
Gaussian density, 3DGS Kerbl et al. (2023) reset the opacity of all Gaussians primitives with an
opacity value greater than 0.01 to 0.01, and prune those with opacities below this threshold. How-
ever, numerous Gaussians exhibit minimal visibility contribution and add little to rendered outputs,
a fixed small threshold is suboptimal for pruning unnecessary Gaussians during optimization.
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Figure 4: Qualitative comparison between our method and prior 3DGS approaches, along with the
corresponding ground truth images from test viewpoints.

To maintain an efficient and compact Gaussian distribution during optimization, we implement an
adaptive opacity threshold with a upper limit to prune these visually insignificant and redundant
primitives. Let α ∈ RN denote the opacity vector of all N Gaussian primitives. We first sort α in
ascending order to obtain αsorted, where the k-th element satisfies:

τk = αsorted[k], k = ⌊N · p⌋ (7)
Here, p ∈ (0, 1) controls the pruning ratio. The adaptive opacity threshold τ is then determined with
a upper limit τu as:

τ = min (τk, τu) (8)
This pruning operation with the dual-constrained threshold effectively eliminates redundant Gaus-

sians while preserving structurally important primitives.

Table 2: Quantitative evaluation comparing the proposed method with existing 3DGS optimization
works. We report SSIM, PSNR (dB), LPIPS, number of Gaussian Primitives and training time
(mins). The proposed method achieves superior performance with much less time cost.

Method MipNeRF-360 Barron et al. (2022) Deep Blending Hedman et al. (2018) Tanks & Temples Knapitsch et al. (2017)
SSIM ↑ PSNR ↑ LPIPS ↓ NGS ↓ Time ↑ SSIM ↑ PSNR ↑ LPIPS ↓ NGS ↓ Time ↑ SSIM ↑ PSNR ↑ LPIPS ↓ NGS ↓ Time ↑

3DGS Kerbl et al. (2023) 0.8263 27.72 0.2016 2.578 M 25.01 0.9075 29.44 0.2381 2.475 M 23.32 0.8471 23.62 0.1772 1.576 M 15.80
Mini-splatting Fang & Wang (2024a) 0.8325 27.56 0.2011 0.493 M 18.21 0.9085 30.01 0.2409 0.555 M 15.51 0.8467 23.45 0.1804 0.301 M 10.54

3DGS-accel Mallick et al. (2024) 0.8213 27.57 0.2095 2.331M 11.18 0.9027 29.54 0.2537 2.394M 8.16 0.8460 23.58 0.1756 1.550M 7.73
EDC Deng et al. (2024) 0.8342 27.86 0.1964 1.253M 10.41 0.9093 29.92 0.2415 0.623M 7.57 0.8496 23.98 0.1771 0.570M 6.68

DashGaussian Chen et al. (2025) 0.8261 27.90 0.2084 2.081M 6.34 0.9026 30.01 0.2511 1.955M 5.12 0.8468 23.95 0.1824 1.198M 5.57

Ours 0.8257 27.79 0.2136 1.469M 5.33 0.9094 30.05 0.2540 1.272M 4.54 0.8461 24.06 0.1891 0.867M 4.10

5 EXPERIMENTS

Datasets and metrics. We perform experiments on three real-world datasets: MipNeRF-360 Bar-
ron et al. (2022), Deep Blending Hedman et al. (2018) and Tanks&Temples Knapitsch et al. (2017).
Following the default data pre-processing in the 3D Gaussian Splatting Kerbl et al. (2023), we initial-
ize the Gaussian primitives with the point clouds extracted from the structure from motion (SFM).
we selected one out of every eight images to evaluate the average peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM) Wang et al. (2004) and learned perceptual image patch similarity
(LPIPS) Zhang et al. (2018). Additionally, we report the number of Gaussian primitives and average
training time (in minutes) on each dataset to prove the efficiency of the proposed method.

Implementation details We build our method upon the open-source accelerated version of 3DGS
code base. Following Kerbl et al. (2023), we train our models for 30K iterations across all scenes.
We extend the iteration of densification Tdensify to 25K and set the default max scale factor K,
pruning ratio p, and pruning upper limit τu to 8, 0.03 and 0.05, respectively. To encourage efficient
spatial diffusion of Gaussian primitives, we keep the positional learning rate constant during training
with downsampled resolutions and reduce it after restoring full resolution. All experiments are
conducted on an NVIDIA GeForce RTX 3090 GPU with a AMD EPYC 7413 24-Core processor
CPU to ensure a fair comparison.
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5.1 QUANTITATIVE RESULTS

As shown in Table 2, We report the comparison with the state-of-the-art (SOTA) 3DGS recon-
struction methods, i.e., 3DGS Kerbl et al. (2023), 3DGS-accel1, EDC Deng et al. (2024), mini-
splatting Fang & Wang (2024a), and DashGaussian Chen et al. (2025) in Table 2 in terms of training
time, the number of Gaussian primitives and standard visual quality metrics. It is worth noting that
mini-splatting is built upon 3DGS, whereas EDC and DashGaussian are based on 3DGS-accel. As
DashGaussian is not publicly available, we re-implement it based on the methodology described in
the paper to serve as the state-of-the-art baseline for comparison.

Compared to the 3DGS-accel, our approach demonstrates a significant 2× speedup with 40% fewer
Gaussian primitives across all three datasets. Thanks to the proposed efficient global-to-local opti-
mization and energy-aware multi-resolution densification strategies , our method not only improves
computational efficiency but also enhances reconstruction quality. Specifically, it achieves an aver-
age improvement of +0.004 in SSIM and +0.31 dB in PSNR , while maintaining strong perceptual
fidelity with only a negligible 0.0049 increase in LPIPS. In comparison to existing SOTA methods,
our approach achieves the fastest convergence speed while preserving competitive rendering quality.

Table 3: Comparison to Msv2 within 18K opti-
mization iterations.

Method SSIM ↑ PSNR ↑ LPIPS ↓ NGS↓ Time ↑
MSv2 Fang & Wang (2024b) 0.8206 27.35 0.2149 0.618 M 3.55

Ours-18K 0.8237 27.65 0.2137 1.085 M 3.47

MSv2 Fang & Wang (2024b) is an ex-
tended version of mini-splatting Fang & Wang
(2024a), which adopts an aggressive densifi-
cation strategy and limits the optimization of
Gaussian primitives to 18K iterations. For a fair
comparison, we also train our proposed method
for 18K iteration, with 15K iterations allocated to densification. Results on the MipNeRF-360
dataset, as shown in Table 3, demonstrates that our method achieves a better performance with a
less training time.

5.2 QUALITATIVE RESULTS

The qualitative performance is displayed as rendered images in Fig. 4. These results align well with
the quantitative results provided in Table 2.

Figure 5: Qualitative results for small and distant
object reconstruction.

Our method achieves comparable or even bet-
ter rendering quality with a less training time.
Besides, due to the efficient diffusion of the
Gaussian primitives in space, our method en-
ables accurate reconstruction of small objects
(i.e., lamp bulbs) and produces clear renderings
for distant views (i.e., remote house), shown in
Fig. 5. Although the limited projected 2D pixel
coverage of small and distant objects prevents
the improvement from being clearly reflected in
the quantitative metrics, the visual results high-
light practical benefits that go beyond numeri-
cal measurements. These findings underscore
the effectiveness and real-world applications of
the proposed method.

5.3 ABLATION STUDIES

We use the 3DGS-accel Mallick et al. (2024) as our backbone framework and individually integrate
each densification method to systematically explore their respective effects on rendering quality
and optimization speed. Our experiments are conducted on the MipNeRF-360 dataset Barron et al.
(2022), as it comprehensively includes both indoor and outdoor scenes.

03DGS-accel denotes the application of efficient per-splat backpropagation and sparse Adam optimizer from
taming 3DGS Mallick et al. (2024) to 3DGS Kerbl et al. (2023).
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Global-to-local densification We adopt the same configurations as the 3DGS-accel and use itera-
tion T2 (refer to eqn. 6) as the boundary between the global spread and local refinement.

Coarse-to-fine densification Following the Sec. 4.3, we calculate the number of iterations for
different resolution of each scene. The impact is evaluated with and without global-to-fine strategy.

Table 4: Ablation studies of the proposed method
on the MipNeRF-360. G2L and C2F denote
global-to-local and coarse-to-fine densification.

Method SSIM ↑ PSNR ↑ LPIPS ↓ NGS↓ Time ↑
3DGS-accel 0.8213 27.57 0.2095 2.331 M 11.18

+ G2L 0.8066 27.47 0.2235 1.887 M 8.46
+ C2F 0.8246 27.84 0.2202 2.018 M 7.56

+ G2L + C2F 0.8176 27.75 0.2203 1.853 M 6.95
+Pruning 0.8211 27.56 0.2234 1.685 M 9.21

Full 0.8257 27.79 0.2136 1.469M 5.33

As shown in Tab. 4, the global-to-local strat-
egy reduces computational cost but slightly de-
grades image quality. In contrast, the coarse-
to-fine densification improves PSNR and main-
tains low LPIPS, while also reducing compu-
tational overhead. Combining both global-to-
local and coarse-to-fine components further op-
timizes efficiency without significant loss in
quality. We also test the effect of adaptive opac-
ity pruning by applying it to 3DGS-accel. It
can reduces limited computational cost but in-
troduces a minor trade-off in image quality. Ultimately, the full model achieves the lowest optimiza-
tion time with superior performance than baseline. These findings underscore the efficacy of our
method in enhancing both the visual fidelity and computational efficiency.

Table 5: Ablation studies of the densification iter-
ation Tdensify.
Tdensify SSIM ↑ PSNR ↑ LPIPS ↓ NGS↓ Time ↑
15 K 0.8272 27.81 0.2115 1.476 M 6.14
20 K 0.8268 27.79 0.2141 1.426 M 5.73
25K 0.8257 27.79 0.2136 1.469 M 5.33

Hyperparameters We evaluate the impact of
various hyperparameters on actual training ef-
ficiency and final reconstruction quality, in-
cluding densification iteration Tdensify (25K) in
Tab. 5, pruning ratio p (0.03) and pruning up-
per limit τu (0.05) in Tab. 6. The numbers in
parentheses denote the default values.

Table 6: Ablation studies of the pruning hyperpa-
rameters.

p τu SSIM ↑ PSNR ↑ LPIPS ↓ NGS↓ Time ↑
fixed τ = 0.01 0.8272 27.86 0.2098 1.682 M 7.04

0.01 0.05 0.8295 27.88 0.2112 1.524 M 5.74
0.03 0.05 0.8257 27.79 0.2136 1.469 M 5.33
0.05 0.05 0.8235 27.68 0.2168 1.412 M 5.24

0.03 0.01 0.8291 28.04 0.2081 1.812 M 6.84
0.03 0.05 0.8257 27.79 0.2136 1.469 M 5.33
0.03 0.10 0.8185 27.59 0.2277 1.286 M 4.80

A smaller Tdensify indicates that densification is
completed earlier, leaving more iterations for
full-precision optimization. However, this typi-
cally leads to increased computational cost with
only marginal performance improvement. For
opacity pruning, a lower pruning ratio p and
a lower pruning upper limit τu preserve more
Gaussian primitives with small opacity values,
which in turn increases computational over-
head. In contrast, an aggressive pruning may
lead to excessive removal of informative primitives, leading to a noticeable decline in reconstruction
quality. Overall, there exists a trade-off between training efficiency and rendering fidelity.

6 CONCLUSION AND LIMITATIONS

In this paper, we present a simple but efficient approach to accelerate 3D Gaussian Splatting for
efficient 3D scene reconstruction by decomposing the densification. Through systematic analysis,
we reveal that split operations primarily govern global spatial spread of Gaussian primitives, while
clone operations focus on local refinement. Leveraging this insight, we propose a global-to-local
densification strategy that decouples split and clone operations across training phases, enabling ef-
ficient scene coverage followed by detail-preserving refinement. Subsequenctly, we introduce an
energy-guided coarse-to-fine multi-resolution framework and a dynamic pruning mechanism to fur-
ther enhance acceleration. Numerous experiments across three real-world datasets highlight the ef-
fectiveness of our strategy in balancing computational efficiency with high-fidelity rendering. This
paper aim at a training acceleration and does not address the inherent blur issue in 3DGS, which
stems from insufficient gradient accumulation of big Gaussians. We will consider how to design a
reasonable gradient threshold to achieve better renderings.
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