

000 001 002 003 004 005 DECOMPOSING DENSIFICATION IN GAUSSIAN SPLAT- 006 TING FOR FASTER 3D SCENE RECONSTRUCTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 3D Gaussian Splatting (GS) has emerged as a powerful representation for high-
028 quality scene reconstruction, offering compelling rendering quality. However, the
029 training process of GS often suffers from slow convergence due to inefficient den-
030 sification and suboptimal spatial distribution of Gaussian primitives. In this work,
031 we present a comprehensive analysis of the split and clone operations during the
032 densification phase, revealing their distinct roles in balancing detail preservation
033 and computational efficiency. Building upon this analysis, we propose a global-to-
034 local densification strategy, which facilitates more efficient growth of Gaussians
035 across the scene space, promoting both global coverage and local refinement. To
036 cooperate with the proposed densification strategy and promote sufficient diffu-
037 sion of Gaussian primitives in space, we introduce an energy-guided coarse-to-fine
038 multi-resolution training framework, which gradually increases resolution based
039 on energy density in 2D images. Additionally, we dynamically prune unnecessary
040 Gaussian primitives to speed up the training. Extensive experiments on MipNeRF-
041 360, Deep Blending, and Tanks & Temples datasets demonstrate that our approach
042 significantly accelerates training—achieving over 2x speedup with fewer Gaussian
043 primitives and superior reconstruction performance.
044
045

1 INTRODUCTION

046 Reconstructing high-quality 3D representations from unordered image collections remains a fun-
047 damental challenge in computer vision and graphics. Neural radiance fields (NeRF) Mildenhall
048 et al. (2020) have revolutionized this domain through their implicit scene representation paradigm,
049 combining deep learning with volumetric rendering to achieve unprecedented view synthesis qual-
050 ity Oechsle et al. (2021); Park et al. (2021); Wang et al. (2021); Yariv et al. (2021). Despite these
051 successes, the computational demands of ray-based volumetric rendering present critical limitations.
052 The requirement for dense spatial sampling along viewing rays significantly hinders both train-
053 ing convergence and rendering efficiency. Recent advancements in 3D reconstruction have high-
054 lighted 3D Gaussian Splatting (3DGS) Kerbl et al. (2023) as a promising technique for high-fidelity
055 scene modeling. By representing scenes as collections of anisotropic Gaussian primitives, plenty of
056 works Waczynska et al. (2024); Yan et al. (2024); Yang et al. (2024) based on the 3DGS achieve
057 impressive visual quality with explicit geometric distribution and efficient rendering pipelines. How-
058 ever, there still exists an urgent requirement for computational efficiency improvements to deploy 3D
059 Gaussian Splatting on resource-constrained devices or enable its practical application in real-time
060 reconstruction and dynamic modeling scenarios where training time constitutes a critical bottle-
061 neck Cong et al. (2025); Javed et al. (2024); Tan et al. (2024).
062

063 Based on the 3DGS pipeline, several recent approaches Chen et al. (2025); Fang & Wang (2024a);
064 Hanson et al. (2024); Mallick et al. (2024) have pursued optimization acceleration from the perspec-
065 tives of geometric distribution, optimizer, and multi-resolution and so on. Taming 3DGS Mallick
066 et al. (2024) makes each tile uses a parallelization scheme over the 2D splats instead of pixels. Mini-
067 splatting Fang & Wang (2024a) utilizes depth to achieve efficient reinitialization of the Gaussian
068 primitives from the perspective of spatial geometry. EDC Deng et al. (2024) proposes a long-axis
069 split operation and a pruning strategy to efficiently control the Gaussian densification. DashGaus-
070 sian Chen et al. (2025) introduce a resolution scheduler and a primitive scheduler to accelerate the
071 training time.
072
073

054 In this work, we systematically analyze the bottlenecks in 3D Gaussian Splatting reconstruction,
 055 particularly focusing on inefficient spatial spread and redundant Gaussian primitives during
 056 optimization. We reveal that the split operation takes charge of the global spread while the clone
 057 operation governs the local refinement (cf. Table 1 and Fig. 3). Then We identify clone operations
 058 in the early stage as the primary cause of excessive Gaussian clustering during optimization, where
 059 redundant primitives aggregate while contributing minimally to reconstruction fidelity (cf. Fig. 2).
 060 To address these limitations, we propose a global-to-local strategy that decouples split and clone
 061 across densification phases.

062 We further design a energy-aware multi-resolution training strategy to facilitate this global-to-local
 063 optimization strategy. Specifically, we promote Gaussian primitives’ global spread with split opera-
 064 tion at the lower resolution and suppress clone operations. This prevents premature local clustering
 065 and ensures efficient scene coverage. Only when transitioning to full-resolution training do we rein-
 066 troduce clone operations to refine high-frequency details. Additionally, we integrates an opacity
 067 pruning strategy with a adaptive threshold to remove the unnecessary Gaussian primitives. The
 068 pipeline is shown in Fig. 1. By jointly utilizing the proposed approaches, our method achieves
 069 an approximately 2 \times acceleration in training speed compared to baseline implementations, with a
 070 comparable or even better reconstruction quality. In summary, our contributions are as follows:
 071

- 072 • We first reveal the split takes charge of the global spread and the clone governs the local
 073 refinement and propose a global-to-fine densification to accelerate the optimization.
- 074 • We introduce a energy-aware multi-resolution framework to promote the global-to-fine
 075 densification for further acceleration.
- 076 • Comprehensive experiments conducted on three datasets demonstrate that our method
 077 achieves an approximately 2 \times speedup over the baseline, while maintaining or even en-
 078 hancing the performance.

079 2 RELATED WORKS

080 2.1 3D GAUSSIAN SPLATTING

081 3D Gaussian Splatting Kerbl et al. (2023) has emerged as a compelling approach for 3D scene re-
 082 construction, enabling real-time rendering while preserving photorealistic quality. Unlike implicit
 083 neural fields (e.g., NeRF Mildenhall et al. (2020)) that rely on computationally intensive ray march-
 084 ing for volume rendering, 3DGS formulates scenes as collections of anisotropic Gaussian primitives
 085 with full covariance matrices. This explicit representation allows efficient tile-based rasterization
 086 through differentiable projection and alpha blending, bypassing the limitations of neural rendering
 087 pipelines.

088 In recent years, there has been a surge in research efforts that have pushed forward the technologi-
 089 cal frontiers of 3DGS across multiple domains, with particularly transformative impacts on human
 090 avatar generation Cha et al. (2024); Jiang et al. (2024); Lyu et al. (2024); Zielonka et al. (2025),
 091 Autonomous Driving Chen et al. (2024); Hess et al. (2024); Lei et al. (2025); Zhou et al. (2024), and
 092 photorealistic scene renderings Chao et al. (2024); Cheng et al. (2024); Xie et al. (2024); Xu et al.
 093 (2024).

094 2.2 ACCELERATION FOR 3DGS OPTIMIZATION

095 Although the rendering speed of 3D Gaussian Splatting is much faster than that of NeRF, it still
 096 takes tens of minutes to complete the rendering of a scene on a high-performance GPU. Plenty of
 097 subsequent works accelerated the optimization process from the perspectives of optimization strate-
 098 gies, the number of Gaussian spheres, etc. Taming 3DGS Mallick et al. (2024) reformulates the
 099 original per-pixel parallelization into per-splat parallel backpropagation, significantly accelerat-
 100 ing the optimization process of 3D Gaussian Splatting and establishing a strong baseline for follow-
 101 ing research. Mini-Splatting Fang & Wang (2024b) saves the training time and memory cost by
 102 maintaining the most important primitive for each pixel through depth reinitialization. Speedy-
 103 Splat Hanson et al. (2024) calculates a precise tile allocation of Gaussians when projected to the
 104 2D image planes and prunes a fixed high proportion of Gaussians in specific iterations. Meanwhile,
 105 106 107

108 reducing the resolution of renderings in the optimization stage is also a promising option for acceleration.
 109 EAGLES Girish et al. (2023) adopts several schedules for gradually increasing the resolution
 110 empirically. From the perspective of the frequency domain, DashGaussian Chen et al. (2025) de-
 111 signs a resolution scheduler and a primitive scheduler to efficiently reconstruct the scene from low
 112 frequency to high frequency.

113 However, these methods adopt the default densification strategy and do not explore the actual roles
 114 of split and clone. A similar work EDC Deng et al. (2024) replaced the clone operation with a
 115 proposed long-axis split based on AbsGS Ye et al. (2024) with limited improvement of training
 116 speed. In contrast, our methods analyze the behaviors of the split and clone operations and propose
 117 a global-to-local densification strategy to facilitates efficient growth of Gaussians across the scene.
 118 Then we design an energy-guided coarse-to-fine multi-resolution training framework to cooperate
 119 with the proposed densification strategy.

3 PRELIMINARY

123 **3D Gaussian Splatting** 3DGS Kerbl et al. (2023) represents 3D scenes through anisotropic Gaus-
 124 sian primitives and demonstrates state-of-the-art performance in both visual quality and rendering
 125 efficiency. Each Gaussian primitive \mathcal{G}_i is formally defined by five core contributions: spatial position
 126 $\mathbf{u}_i \in \mathbb{R}^3$, opacity α_i , orthogonal rotation matrix $\mathbf{R}_i \in \mathbb{R}^{3 \times 3}$, diagonal scaling matrix $\mathbf{S}_i \in \mathbb{R}^{3 \times 3}$,
 127 and spherical harmonics (SH) coefficients for view-dependent color representation. The Gaussian
 128 distribution is mathematically expressed as:

$$\mathcal{G}_i(\mathbf{x}) = \exp \left(-\frac{1}{2}(\mathbf{x} - \mathbf{u}_i)^T \Sigma_i^{-1}(\mathbf{x} - \mathbf{u}_i) \right), \quad (1)$$

132 where $\Sigma_i = \mathbf{R}_i \mathbf{S}_i \mathbf{S}_i^T \mathbf{R}_i^T$ ensures positive semi-definiteness. For real-time rendering, Gaussian
 133 primitives are projected onto the 2D image plane with the Jacobian affine approximation. Given
 134 camera extrinsic parameters \mathbf{W} and projection matrix Jacobian \mathbf{J} , the 2D covariance in screen
 135 space becomes $\Sigma'_i = \mathbf{J} \mathbf{W} \Sigma_i \mathbf{W}^T \mathbf{J}^T$. The final pixel color $\mathcal{C}(\mathbf{p})$ is computed via alpha compositing
 136 of depth-sorted Gaussians:

$$\mathcal{C}(\mathbf{p}) = \sum_{i \in \mathcal{N}_p} \mathbf{c}_i \sigma_i \prod_{j=1}^{i-1} (1 - \sigma_j), \quad \sigma_i = \alpha_i \mathcal{G}'_i(\mathbf{p}), \quad (2)$$

140 where \mathbf{c}_i denotes SH-evaluated color and \mathcal{N}_p indexes visible Gaussians at pixel \mathbf{p} . The model is
 141 optimized using a hybrid loss combining \mathcal{L}_1 and structural similarity (i.e., D-SSIM term):

$$\mathcal{L}_{\text{total}} = (1 - \lambda) \|\mathbf{I} - \hat{\mathbf{I}}\|_1 + \lambda \mathcal{L}_{\text{D-SSIM}}(\mathbf{I}, \hat{\mathbf{I}}), \quad (3)$$

144 with default weight $\lambda = 0.2$, where \mathbf{I} and $\hat{\mathbf{I}}$ denote ground truth and rendered images, respectively.

146 During the densification stage, the norm of the average position gradient of each Gaussian primitive
 147 is calculated every 100 iterations. If the gradient norm exceeds a predefined threshold, the corre-
 148 sponding Gaussian primitive will either be split or cloned. Specifically, if the maximum scale of the
 149 Gaussian exceeds a given scale threshold, it will be split into smaller components; otherwise, it is
 150 simply cloned with the same parameters.

4 METHODOLOGY

154 In this section, we present how the proposed method reduces optimization complexity to acceler-
 155 ate 3D Gaussian Splatting, while preserving rendering quality without compromise. In Sec. 4.1,
 156 we analyze the distinct behaviors of the split and clone operations and proposes a global-to-local
 157 densification strategy to improve optimization efficiency. In Sec. 4.3, we introduce a coarse-to-fine
 158 multi-resolution scheme based on the energy density in 2D images to better support the proposed
 159 densification strategy. In Sec. 4.4, we adopt an adaptive opacity threshold to better balance the
 160 trade-off between training efficiency and rendering quality.

4.1 GLOBAL-TO-LOCAL DENSIFICATION

To achieve the 3D reconstruction using the Gaussian Splatting, split and clone operations are applied simultaneously during the densification stage to densify and spread the Gaussian primitives spatially. We dig into the differences between the these two operations and claims two statements neglected by previous researches: 1. The split operation takes charge of the diffusion of the Gaussian primitives in space (cf. Sec. 4.1.1); 2. The number of Gaussian primitives produced by clone is much higher than that produced by split (cf. Sec. 4.1.2).

4.1.1 SPATIAL DIFFUSION

In this section, we prove that the spatial diffusion is predominantly governed by the split operation, whereas the clone operation contributes to local feature refinement. We first revealed that the clone operation is the cause of the cluster phenomenon observed in Mini-Splatting Fang & Wang (2024a), which can be alleviated by our methods.

We regard the points extracted by structure from motion (SFM) for initialization as the parent points. Each newly generated Gaussian maintains a one-to-one correspondence with its parent point. During the optimization, We equip each Gaussian primitive with three more attributes: *original position*, *split count*, and *clone count*. The original position stores the initial coordinates of its parent point and the split/clone count quantify cumulative split/clone operations executed with respect to its parent point during optimization. After optimization, we classify Gaussians into three categories: split-dominated (split > clone), clone-dominated (clone > split), and equal (split = clone). Specifically, Gaussian \mathcal{G}_A undergoes split to produce \mathcal{G}_B , and \mathcal{G}_B clones to produce \mathcal{G}_C . Consequently, the parent point of \mathcal{G}_C is \mathcal{G}_A and \mathcal{G}_C belongs to the equal category. We compute average Euclidean distances between final positions and initial positions of each gaussian for each category. As shown in Table 1, the average displacement distances across three datasets show that split-dominated Gaussians exhibit displacements around twenty times greater than clone-dominated counterparts, demonstrating that spatial expansion is primarily driven by split operations. The camera extent is 1.1 times the radius of the smallest sphere covering all camera positions defined in the 3D Gaussian Splatting. It is regarded as a measurement representing the size of the scene. The displacement of clone-dominated primitives is less than 2% of the scene size, so we argue that the clone operation is mainly responsible for local refinement, while the split operation takes charge of the global diffusion.

Table 1: Average displacement distances for split-dominated, clone-dominated and equal primitives before and after optimization.

Category	MipNeRF-360 Barron et al. (2022)	Deep Blending Hedman et al. (2018)	Tanks & Temples Knapitsch et al. (2017)
split-dominated	2.42	0.75	2.40
clone-dominated	0.09	0.15	0.10
equal	0.17	0.23	0.15
camera extent	5.16	7.79	6.65

We present qualitative comparisons of Gaussian distributions across three densification strategies: (1) the standard adaptive approach from 3D Gaussian Splatting that dynamically selects splits/ clones based on Gaussian scale, versus (2) split-only and (3) clone-only variants where all densification operations are enforced to use a single type. As shown in Fig. 2, clone-only version intensifies the local cluster phenomenon of the gaussian primitives (cf. bicycle frame and decoration on the wall) and fails to spread the Gaussian primitives, leading to a blurry rendering output due to insufficient spatial distribution (cf. houses in the distance of bicycle scene). Although the split-only variant produces a more uniform spatial distribution compared to other approaches, the complete lack of any clone operation prevents it from efficiently adapting to fine-grained scene details. As a result, it requires a significantly larger number of Gaussian primitives to adequately fit the scene, ultimately leading to a reconstruction quality that remains inferior to that of the baseline.

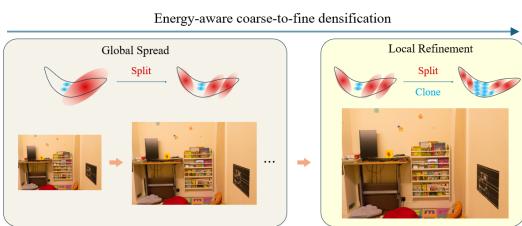


Figure 1: Pipeline of the global-to-local and coarse-to-fine densification.

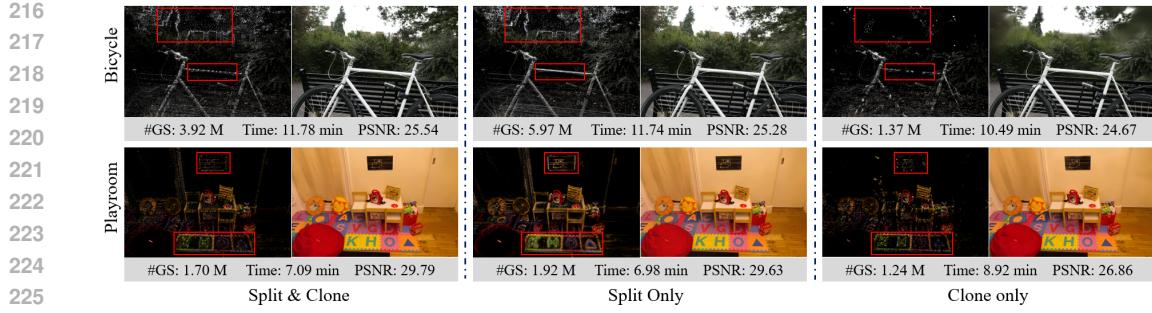


Figure 2: Visualization of the distribution of Gaussian primitives (left) and the rendered images (right) after optimization .

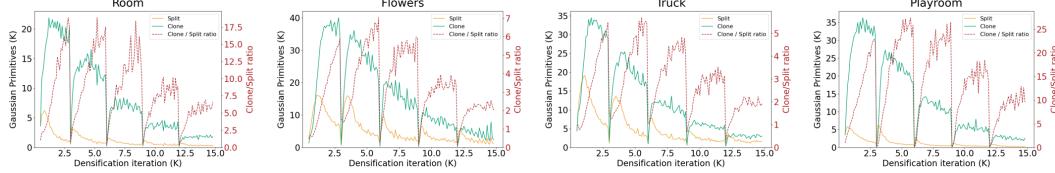


Figure 3: The number of Gaussian primitives generated through split and clone operations and the ratio of clone to split during the densification stage.

In summary, both quantitative results and qualitative visual analysis indicate that the split operation primarily takes charge of the global distribution of Gaussian primitives, while the clone operation is mainly responsible for the local refinement.

4.1.2 SPLIT-CLONE RATIO

We present quantitative analysis of Gaussian primitive evolution during the densification phase in 3D Gaussian Splatting. As demonstrated in Fig. 3, approximately 80% of new primitives originate from cloning operations rather than splitting. To fit the rendering error caused by the opacity reset performed every 3k steps, both splits and clones were increased simultaneously. Subsequently, as the optimization progresses, the number of splits begins to decline, while the number of clones continues to rise. Comprehensive results across multiple scenes from different datasets confirm this trend.

According to the discover in the previous section, we argue that the local refinement at early densification phase cannot reduce the rendering error through clone operations, resulting in a persistently high gradient. As a result, a large number of Gaussian primitives are repeatedly cloned, causing computational redundancy and failing to improve the rendering quality.

These findings suggest two key implications: First, the majority of primitive growth stems from clone operations that may not contribute meaningfully to representation capacity in early stage. Second, the observed trend indicates potential for algorithmic optimization through adaptive densification strategies that can achieve computational efficiency with comparable performance.

4.2 GLOBAL-TO-LOCAL FRAMEWORK

Qualitative and quantitative experiments have proved that the clone operation used for local refinement has led to the generation of a large number of redundant Gaussian primitives, which is unnecessary for the optimization of the scene reconstruction in the early stage. Leveraging the empirically observed inverse correlation between Gaussian density and computational efficiency, We implement a two-phase densification framework: global spread and local refinement. At the first phase, we only apply the split operation to achieve fast and effective spatial distribution, leveraging

270 minimal Gaussian counts to minimize redundant computation on localized details. In the second
 271 phase, both the split and clone operations are employed. Given that a satisfactory spatial distribution
 272 has already been established, the clone operation enables efficient local refinement. The proposed
 273 phased training strategy can reduce training time by optimizing a substantially smaller number of
 274 primitives in the first phase.

275 To further enhance the effectiveness of the global-to-local densification process, we propose a
 276 coarse-to-fine multi-resolution scheduler based on the energy density in 2D images, which is elabo-
 277 rated in the following section. This approach eliminates the need for manually defining the boundary
 278 between the two phases.

280 4.3 COARSE-TO-FINE MULTI-RESOLUTION DENSIFICATION

281 The optimization of 3D Gaussian Splatting is conducted by projecting Gaussian primitives from 3D
 282 space to 2D pixel plane, where the rendering error is computed to update both their spatial distri-
 283 bution and attribute parameters. During the global spread phase of densification, we aim for a fast
 284 and efficient coverage of the target scene volume, without overemphasizing the reconstruction of
 285 fine image details at this early stage. Therefore, using full-resolution images for supervision can
 286 lead to unnecessary computational consumption and suboptimal behavior. Specifically, each pixel
 287 corresponds to a small 3D voxel, which encourages Gaussians primitives to converge prematurely
 288 to local optima by overfitting to individual pixels, thereby limiting their spatial expansion. Further-
 289 more, when a large Gaussian projects to a large number of pixels, the accumulated gradient vectors
 290 may cancel each other out due to opposing vector directions in space, resulting in a small gradient
 291 error below the threshold and preventing further split operations Ye et al. (2024).

292 Inspired by frequency analysis techniques in 2D image processing and DashGaussian Chen et al.
 293 (2025), we propose a coarse-to-fine training strategy based on energy density to mitigate the afore-
 294 mentioned issues. Specifically, during the global spread phase, we train with downsampled images
 295 to enable efficient spatial diffusion of Gaussian primitives. Once a sufficient scene coverage is at-
 296 tained, we switch to full-resolution supervision for the local refinement phase, allowing accurate
 297 reconstruction of high-frequency image content.

298 We analyze the image energy distribution in frequency domain to design an adaptive resolution
 299 scheduling mechanism. Given an input image $\mathbf{I} \in \mathbb{R}^{H \times W \times C}$, we compute its energy spectrum
 300 through Fourier transform: $\mathcal{E}(\mathbf{I}) = \sqrt{\Re(\mathcal{F}(\mathbf{I}))^2 + \Im(\mathcal{F}(\mathbf{I}))^2}$, where $\mathcal{F}(\cdot)$, \Re , and \Im denotes 2D
 301 FFT, real part and imaginary part in frequency domain, and $\mathcal{E}(\cdot)$ calculates the energy density.

302 For multi-resolution analysis, we define a downscaling operator $\mathcal{D}_r(\cdot)$ that reduces spatial dimen-
 303 sions by factor r using bilinear interpolation with anti-aliasing:

$$305 \mathbf{I}_r = \mathcal{D}_r(\mathbf{I}) = \text{Bilinear}(\mathbf{I}, \text{scale} = 1/r) \quad (4)$$

306 The energy density across resolutions is quantified as:

$$308 \mathcal{E}_r = \|\mathcal{E}(\mathbf{I}_r)\|_1 \cdot r^2 \quad (5)$$

309 where the scaling term r^2 normalizes energy values across different resolutions. Our resolution
 310 scheduler dynamically allocates training iterations based on energy ratios as follows:

$$311 \mathbf{T}_r = \text{Round}((\mathcal{E}_r / \mathcal{E}_1) \cdot \mathbf{T}_{\text{densify}}), r \in \mathcal{A} \quad (6)$$

312 where $\mathcal{A} = \{1, 2, \dots, K\}$ denotes candidate scale factors, and \mathbf{T}_r , $\mathbf{T}_{\text{densify}}$ represents the allocated
 313 iteration at r -scaled resolution and total densification iteration. The training proceeds from coarsest
 314 ($r = K$) to finest ($r = 1$) resolution following reversed order. For scale factor r , the training starts
 315 at \mathbf{T}_{r+1} and end at \mathbf{T}_r . This energy-aware strategy ensures optimal balance between global scene
 316 coverage at early phases and detail reconstruction in later phases.

318 4.4 ADAPTIVE OPACITY PRUNING

319 To prove the optimization stuck with floaters close to input cameras and unjustified increase in the
 320 Gaussian density, 3DGS Kerbl et al. (2023) reset the opacity of all Gaussians primitives with an
 321 opacity value greater than 0.01 to 0.01, and prune those with opacities below this threshold. How-
 322 ever, numerous Gaussians exhibit minimal visibility contribution and add little to rendered outputs,
 323 a fixed small threshold is suboptimal for pruning unnecessary Gaussians during optimization.

Figure 4: Qualitative comparison between our method and prior 3DGS approaches, along with the corresponding ground truth images from test viewpoints.

To maintain an efficient and compact Gaussian distribution during optimization, we implement an adaptive opacity threshold with a upper limit to prune these visually insignificant and redundant primitives. Let $\alpha \in \mathbb{R}^N$ denote the opacity vector of all N Gaussian primitives. We first sort α in ascending order to obtain α_{sorted} , where the k -th element satisfies:

$$\tau_k = \alpha_{\text{sorted}}[k], \quad k = \lfloor N \cdot p \rfloor \quad (7)$$

Here, $p \in (0, 1)$ controls the pruning ratio. The adaptive opacity threshold τ is then determined with a upper limit τ_u as:

$$\tau = \min(\tau_k, \tau_u) \quad (8)$$

This pruning operation with the dual-constrained threshold effectively eliminates redundant Gaussians while preserving structurally important primitives.

Table 2: Quantitative evaluation comparing the proposed method with existing 3DGS optimization works. We report SSIM, PSNR (dB), LPIPS, number of Gaussian Primitives and training time (mins). The proposed method achieves superior performance with much less time cost.

Method	MipNeRF-360 Barron et al. (2022)				Deep Blending Hedman et al. (2018)				Tanks & Temples Knapitsch et al. (2017)							
	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	$N_{GS} \downarrow$	Time \uparrow	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	$N_{GS} \downarrow$	Time \uparrow	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	$N_{GS} \downarrow$	Time \uparrow	
3DGS Kerbl et al. (2023)	0.8263	27.72	0.2016	2.578 M	25.01	0.9075	29.44	0.2381	2.475 M	23.32	0.8471	23.62	0.1772	1.576 M	15.80	
Mini-splatting Fang & Wang (2024a)	0.8325	27.56	0.2011	0.493 M	18.21	0.9085	30.01	0.2409	0.555 M	15.51	0.8467	23.45	0.1804	0.301 M	10.54	
3DGS-accel Mallick et al. (2024)	0.8213	27.57	0.2095	2.331 M	11.18	0.9027	29.54	0.2537	2.394 M	8.16	0.8460	23.58	0.1756	1.550 M	7.73	
EDC Deng et al. (2024)	0.8342	27.86	0.1964	1.253 M	10.41	0.9093	29.92	0.2415	0.623 M	7.57	0.8496	23.98	0.1771	0.570 M	6.68	
DashGaussian Chen et al. (2025)	0.8261	27.90	0.2084	2.081 M	6.34	0.9026	30.01	0.2511	1.955 M	5.12	0.8468	23.95	0.1824	1.198 M	5.57	
Ours	0.8257	27.79	0.2136	1.469 M	5.33	0.9094	30.05	0.2540	1.272 M	4.54	0.8461	24.06	0.1891	0.867 M	4.10	

5 EXPERIMENTS

Datasets and metrics. We perform experiments on three real-world datasets: MipNeRF-360 Barron et al. (2022), Deep Blending Hedman et al. (2018) and Tanks&Temples Knapitsch et al. (2017). Following the default data pre-processing in the 3D Gaussian Splatting Kerbl et al. (2023), we initialize the Gaussian primitives with the point clouds extracted from the structure from motion (SFM). we selected one out of every eight images to evaluate the average peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) Wang et al. (2004) and learned perceptual image patch similarity (LPIPS) Zhang et al. (2018). Additionally, we report the number of Gaussian primitives and average training time (in minutes) on each dataset to prove the efficiency of the proposed method.

Implementation details We build our method upon the open-source accelerated version of 3DGS code base. Following Kerbl et al. (2023), we train our models for 30K iterations across all scenes. We extend the iteration of densification T_{densify} to 25K and set the default max scale factor K , pruning ratio p , and pruning upper limit τ_u to 8, 0.03 and 0.05, respectively. To encourage efficient spatial diffusion of Gaussian primitives, we keep the positional learning rate constant during training with downsampled resolutions and reduce it after restoring full resolution. All experiments are conducted on an NVIDIA GeForce RTX 3090 GPU with a AMD EPYC 7413 24-Core processor CPU to ensure a fair comparison.

378
379

5.1 QUANTITATIVE RESULTS

380
381
382
383
384
385
386

As shown in Table 2, We report the comparison with the state-of-the-art (SOTA) 3DGS reconstruction methods, i.e., 3DGS Kerbl et al. (2023), 3DGS-accel¹, EDC Deng et al. (2024), mini-splatting Fang & Wang (2024a), and DashGaussian Chen et al. (2025) in Table 2 in terms of training time, the number of Gaussian primitives and standard visual quality metrics. It is worth noting that mini-splatting is built upon 3DGS, whereas EDC and DashGaussian are based on 3DGS-accel. As DashGaussian is not publicly available, we re-implement it based on the methodology described in the paper to serve as the state-of-the-art baseline for comparison.

387
388
389
390
391
392
393

Compared to the 3DGS-accel, our approach demonstrates a significant $2\times$ speedup with 40% fewer Gaussian primitives across all three datasets. Thanks to the proposed efficient global-to-local optimization and energy-aware multi-resolution densification strategies , our method not only improves computational efficiency but also enhances reconstruction quality. Specifically, it achieves an average improvement of +0.004 in SSIM and +0.31 dB in PSNR , while maintaining strong perceptual fidelity with only a negligible 0.0049 increase in LPIPS. In comparison to existing SOTA methods, our approach achieves the fastest convergence speed while preserving competitive rendering quality.

394
395
396
397
398
399
400
401
402

MSv2 Fang & Wang (2024b) is an extended version of mini-splatting Fang & Wang (2024a), which adopts an aggressive densification strategy and limits the optimization of Gaussian primitives to 18K iterations. For a fair comparison, we also train our proposed method for 18K iteration, with 15K iterations allocated to densification. Results on the MipNeRF-360 dataset, as shown in Table 3, demonstrates that our method achieves a better performance with a less training time.

403
404

5.2 QUALITATIVE RESULTS

405

The qualitative performance is displayed as rendered images in Fig. 4. These results align well with the quantitative results provided in Table 2.

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Our method achieves comparable or even better rendering quality with a less training time. Besides, due to the efficient diffusion of the Gaussian primitives in space, our method enables accurate reconstruction of small objects (i.e., lamp bulbs) and produces clear renderings for distant views (i.e., remote house), shown in Fig. 5. Although the limited projected 2D pixel coverage of small and distant objects prevents the improvement from being clearly reflected in the quantitative metrics, the visual results highlight practical benefits that go beyond numerical measurements. These findings underscore the effectiveness and real-world applications of the proposed method.

423
424

5.3 ABLATION STUDIES

425
426
427
428
429
430

We use the 3DGS-accel Mallick et al. (2024) as our backbone framework and individually integrate each densification method to systematically explore their respective effects on rendering quality and optimization speed. Our experiments are conducted on the MipNeRF-360 dataset Barron et al. (2022), as it comprehensively includes both indoor and outdoor scenes.

¹3DGS-accel denotes the application of efficient per-splat backpropagation and sparse Adam optimizer from taming 3DGS Mallick et al. (2024) to 3DGS Kerbl et al. (2023).

Table 3: Comparison to Msv2 within 18K optimization iterations.

Method	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	$N_{GS} \downarrow$	Time \uparrow
MSv2 Fang & Wang (2024b)	0.8206	27.35	0.2149	0.618 M	3.55
Ours-18K	0.8237	27.65	0.2137	1.085 M	3.47

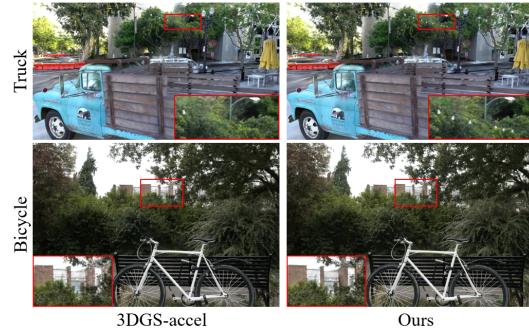


Figure 5: Qualitative results for small and distant object reconstruction.

432 **Global-to-local densification** We adopt the same configurations as the 3DGS-accel and use iteration
 433 T_2 (refer to eqn. 6) as the boundary between the global spread and local refinement.
 434

436 **Coarse-to-fine densification** Following the Sec. 4.3, we calculate the number of iterations for
 437 different resolution of each scene. The impact is evaluated with and without global-to-fine strategy.
 438

439 As shown in Tab. 4, the global-to-local strategy reduces computational cost but slightly de-
 440 grades image quality. In contrast, the coarse-
 441 to-fine densification improves PSNR and main-
 442 tains low LPIPS, while also reducing compu-
 443 tational overhead. Combining both global-to-
 444 local and coarse-to-fine components further op-
 445 timizes efficiency without significant loss in
 446 quality. We also test the effect of adaptive opa-
 447 city pruning by applying it to 3DGS-accel. It
 448 can reduces limited computational cost but in-
 449 troduces a minor trade-off in image quality. Ulti-
 450 mately, the full model achieves the lowest optimiza-
 451 tion time with superior performance than baseline.
 452 These findings underscore the efficacy of our
 453 method in enhancing both the visual fidelity and computational efficiency.

454 **Hyperparameters** We evaluate the impact of
 455 various hyperparameters on actual training ef-
 456 ficiency and final reconstruction quality, in-
 457 cluding densification iteration T_{densify} (25K) in
 458 Tab. 5, pruning ratio p (0.03) and pruning up-
 459 per limit τ_u (0.05) in Tab. 6. The numbers in
 460 parentheses denote the default values.

461 A smaller T_{densify} indicates that densification is
 462 completed earlier, leaving more iterations for
 463 full-precision optimization. However, this typi-
 464 cally leads to increased computational cost with
 465 only marginal performance improvement. For
 466 opacity pruning, a lower pruning ratio p and
 467 a lower pruning upper limit τ_u preserve more
 468 Gaussian primitives with small opacity values,
 469 which in turn increases computational over-
 470 head. In contrast, an aggressive pruning may
 471 lead to excessive removal of informative primitives, leading to a noticeable decline in reconstruc-
 472 tion quality. Overall, there exists a trade-off between training efficiency and rendering fidelity.

473 6 CONCLUSION AND LIMITATIONS

474 In this paper, we present a simple but efficient approach to accelerate 3D Gaussian Splatting for
 475 efficient 3D scene reconstruction by decomposing the densification. Through systematic analysis,
 476 we reveal that split operations primarily govern global spatial spread of Gaussian primitives, while
 477 clone operations focus on local refinement. Leveraging this insight, we propose a global-to-local
 478 densification strategy that decouples split and clone operations across training phases, enabling ef-
 479 ficient scene coverage followed by detail-preserving refinement. Subsequently, we introduce an
 480 energy-guided coarse-to-fine multi-resolution framework and a dynamic pruning mechanism to fur-
 481 ther enhance acceleration. Numerous experiments across three real-world datasets highlight the ef-
 482 fectiveness of our strategy in balancing computational efficiency with high-fidelity rendering. This
 483 paper aim at a training acceleration and does not address the inherent blur issue in 3DGS, which
 484 stems from insufficient gradient accumulation of big Gaussians. We will consider how to design a
 485 reasonable gradient threshold to achieve better renderings.

Table 4: Ablation studies of the proposed method on the MipNeRF-360. G2L and C2F denote global-to-local and coarse-to-fine densification.

Method	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	$N_{GS} \downarrow$	Time \uparrow
3DGS-accel	0.8213	27.57	0.2095	2.331 M	11.18
+ G2L	0.8066	27.47	0.2235	1.887 M	8.46
+ C2F	0.8246	27.84	0.2202	2.018 M	7.56
+ G2L + C2F	0.8176	27.75	0.2203	1.853 M	6.95
+Pruning	0.8211	27.56	0.2234	1.685 M	9.21
Full	0.8257	27.79	0.2136	1.469M	5.33

454 Ultimately, the full model achieves the lowest optimiza-
 455 tion time with superior performance than baseline.
 456 These findings underscore the efficacy of our
 457 method in enhancing both the visual fidelity and computational efficiency.

Table 5: Ablation studies of the densification iteration T_{densify} .

T_{densify}	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	$N_{GS} \downarrow$	Time \uparrow
15 K	0.8272	27.81	0.2115	1.476 M	6.14
20 K	0.8268	27.79	0.2141	1.426 M	5.73
25K	0.8257	27.79	0.2136	1.469 M	5.33

Table 6: Ablation studies of the pruning hyperpa-
 454 rameters.

p	τ_u	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	$N_{GS} \downarrow$	Time \uparrow
fixed $\tau = 0.01$		0.8272	27.86	0.2098	1.682 M	7.04
0.01	0.05	0.8295	27.88	0.2112	1.524 M	5.74
0.03	0.05	0.8257	27.79	0.2136	1.469 M	5.33
0.05	0.05	0.8235	27.68	0.2168	1.412 M	5.24
0.03	0.01	0.8291	28.04	0.2081	1.812 M	6.84
0.03	0.05	0.8257	27.79	0.2136	1.469 M	5.33
0.03	0.10	0.8185	27.59	0.2277	1.286 M	4.80

455 Table 6: Ablation studies of the pruning hyperpa-
 456 rameters.

486 REFERENCES
487

- 488 Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
489 360: Unbounded anti-aliased neural radiance fields. In *Proceedings of the IEEE/CVF conference*
490 *on computer vision and pattern recognition*, pp. 5470–5479, 2022.
- 491 Hyunsoo Cha, Inhee Lee, and Hanbyul Joo. Perse: Personalized 3d generative avatars from a single
492 portrait. *arXiv preprint arXiv:2412.21206*, 2024.
- 493 Brian Chao, Hung-Yu Tseng, Lorenzo Porzi, Chen Gao, Tuotuo Li, Qinbo Li, Ayush Saraf, Jia-
494 Bin Huang, Johannes Kopf, Gordon Wetzstein, et al. Textured gaussians for enhanced 3d scene
495 appearance modeling. *arXiv preprint arXiv:2411.18625*, 2024.
- 496 Youyu Chen, Junjun Jiang, Kui Jiang, Xiao Tang, Zhihao Li, Xianming Liu, and Yinyu Nie. Dash-
497 gaussian: Optimizing 3d gaussian splatting in 200 seconds. *arXiv preprint arXiv:2503.18402*,
498 2025.
- 499 Ziyu Chen, Jiawei Yang, Jiahui Huang, Riccardo de Lutio, Janick Martinez Esturo, Boris Ivanovic,
500 Or Litany, Zan Gojcic, Sanja Fidler, Marco Pavone, et al. Omnidre: Omni urban scene reconstruc-
501 tion. *arXiv preprint arXiv:2408.16760*, 2024.
- 502 Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao, Wei Yin, Yuexin Ma, Wenping Wang, and
503 Xuejin Chen. Gaussianpro: 3d gaussian splatting with progressive propagation. In *Forty-first*
504 *International Conference on Machine Learning*, 2024.
- 505 Wenyan Cong, Hanqing Zhu, Kevin Wang, Jiahui Lei, Colton Stearns, Yuanhao Cai, Dilin Wang,
506 Rakesh Ranjan, Matt Feiszli, Leonidas Guibas, et al. Videolifter: Lifting videos to 3d with fast
507 hierarchical stereo alignment. *arXiv preprint arXiv:2501.01949*, 2025.
- 508 Xiaobin Deng, Changyu Diao, Min Li, Ruohan Yu, and Duanqing Xu. Efficient density control for
509 3d gaussian splatting. *arXiv preprint arXiv:2411.10133*, 2024.
- 510 Guangchi Fang and Bing Wang. Mini-splatting: Representing scenes with a constrained number
511 of gaussians. In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler,
512 and GÜl Varol (eds.), *Computer Vision - ECCV 2024 - 18th European Conference, Milan, Italy,
513 September 29–October 4, 2024, Proceedings, Part LXXVII*, volume 15135 of *Lecture Notes in
514 Computer Science*, pp. 165–181. Springer, 2024a. doi: 10.1007/978-3-031-72980-5_10. URL
515 https://doi.org/10.1007/978-3-031-72980-5_10.
- 516 Guangchi Fang and Bing Wang. Mini-splatting2: Building 360 scenes within minutes via aggressive
517 gaussian densification. *arXiv preprint arXiv:2411.12788*, 2024b.
- 518 Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. EAGLES: efficient accelerated 3d gaussians
519 with lightweight encodings. *CoRR*, abs/2312.04564, 2023. doi: 10.48550/ARXIV.2312.04564.
520 URL <https://doi.org/10.48550/arXiv.2312.04564>.
- 521 Alex Hanson, Allen Tu, Geng Lin, Vasu Singla, Matthias Zwicker, and Tom Goldstein. Speedy-
522 splat: Fast 3d gaussian splatting with sparse pixels and sparse primitives. *arXiv preprint*
523 *arXiv:2412.00578*, 2024.
- 524 Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel J. Bros-
525 tow. Deep blending for free-viewpoint image-based rendering. *ACM Trans. Graph.*, 37(6):257,
526 2018. doi: 10.1145/3272127.3275084. URL [https://doi.org/10.1145/3272127.
527 3275084](https://doi.org/10.1145/3272127.3275084).
- 528 Georg Hess, Carl Lindström, Maryam Fatemi, Christoffer Petersson, and Lennart Svensson. Splatad:
529 Real-time lidar and camera rendering with 3d gaussian splatting for autonomous driving. *arXiv*
530 *preprint arXiv:2411.16816*, 2024.
- 531 Saqib Javed, Ahmad Jarrar Khan, Corentin Dumery, Chen Zhao, and Mathieu Salzmann. Temporally
532 compressed 3d gaussian splatting for dynamic scenes. *arXiv preprint arXiv:2412.05700*, 2024.
- 533 Yuheng Jiang, Zhehao Shen, Yu Hong, Chengcheng Guo, Yize Wu, Yingliang Zhang, Jingyi Yu, and
534 Lan Xu. Robust dual gaussian splatting for immersive human-centric volumetric videos. *ACM*
535 *Transactions on Graphics (TOG)*, 43(6):1–15, 2024.

- 540 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139:1–139:14, 2023. doi: 10.1145/3592433. URL <https://doi.org/10.1145/3592433>.
- 541
- 542
- 543 Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking large-scale scene reconstruction. *ACM Transactions on Graphics (ToG)*, 36(4):1–13, 2017.
- 544
- 545
- 546 Xiaohan Lei, Min Wang, Wengang Zhou, and Houqiang Li. Gaussnav: Gaussian splatting for visual navigation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.
- 547
- 548
- 549 Weijie Lyu, Yi Zhou, Ming-Hsuan Yang, and Zhixin Shu. Facelift: Single image to 3d head with view generation and gs-lrm. *arXiv preprint arXiv:2412.17812*, 2024.
- 550
- 551 Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Francisco Vicente Carrasco, Markus Steinberger, and Fernando De la Torre. Taming 3dgs: High-quality radiance fields with limited resources. *CoRR*, abs/2406.15643, 2024. doi: 10.48550/ARXIV.2406.15643. URL <https://doi.org/10.48550/arXiv.2406.15643>.
- 552
- 553
- 554
- 555 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), *Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part I*, volume 12346 of *Lecture Notes in Computer Science*, pp. 405–421. Springer, 2020. doi: 10.1007/978-3-030-58452-8_24. URL https://doi.org/10.1007/978-3-030-58452-8_24.
- 556
- 557
- 558
- 559
- 560
- 561
- 562 Michael Oechsle, Songyou Peng, and Andreas Geiger. UNISURF: unifying neural implicit surfaces and radiance fields for multi-view reconstruction. In *2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021*, pp. 5569–5579. IEEE, 2021. doi: 10.1109/ICCV48922.2021.00554. URL <https://doi.org/10.1109/ICCV48922.2021.00554>.
- 563
- 564
- 565
- 566
- 567
- 568 Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 5865–5874, 2021.
- 569
- 570
- 571 Bin Tan, Rui Yu, Yujun Shen, and Nan Xue. Planarsplatting: Accurate planar surface reconstruction in 3 minutes. *arXiv preprint arXiv:2412.03451*, 2024.
- 572
- 573
- 574 Joanna Waczynska, Piotr Borycki, Sławomir Konrad Tadeja, Jacek Tabor, and Przemysław Spurek. Games: Mesh-based adapting and modification of gaussian splatting. *CoRR*, abs/2402.01459, 2024. doi: 10.48550/ARXIV.2402.01459. URL <https://doi.org/10.48550/arXiv.2402.01459>.
- 575
- 576
- 577
- 578 Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction. In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 27171–27183, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/e41e164f7485ec4a28741a2d0ea41c74-Abstract.html>.
- 579
- 580
- 581
- 582
- 583
- 584
- 585 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612, 2004.
- 586
- 587
- 588 Tao Xie, Xi Chen, Zhen Xu, Yiman Xie, Yudong Jin, Yujun Shen, Sida Peng, Hujun Bao, and Xiaowei Zhou. Envgs: Modeling view-dependent appearance with environment gaussian. *arXiv preprint arXiv:2412.15215*, 2024.
- 589
- 590
- 591
- 592 Jiacong Xu, Yiqun Mei, and Vishal Patel. Wild-gs: Real-time novel view synthesis from unconstrained photo collections. *Advances in Neural Information Processing Systems*, 37:103334–103355, 2024.
- 593

- 594 Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang, Haiyang Sun, Kun Zhan, Xianpeng Lang,
 595 Xiaowei Zhou, and Sida Peng. Street gaussians for modeling dynamic urban scenes. *CoRR*,
 596 abs/2401.01339, 2024. doi: 10.48550/ARXIV.2401.01339. URL <https://doi.org/10.48550/arXiv.2401.01339>.
- 598 Chen Yang, Sikuang Li, Jiemin Fang, Ruofan Liang, Lingxi Xie, Xiaopeng Zhang, Wei Shen, and
 599 Qi Tian. Gaussianobject: Just taking four images to get A high-quality 3d object with gaussian
 600 splatting. *CoRR*, abs/2402.10259, 2024. doi: 10.48550/ARXIV.2402.10259. URL <https://doi.org/10.48550/arXiv.2402.10259>.
- 602 Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces.
 603 In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
 604 man Vaughan (eds.), *Advances in Neural Information Processing Systems 34: Annual Confer-
 605 ence on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
 606 tual*, pp. 4805–4815, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/25e2a30f44898b9f3e978b1786dcd85c-Abstract.html>.
- 607 Zongxin Ye, Wenyu Li, Sidun Liu, Peng Qiao, and Yong Dou. Absgs: Recovering fine details in 3d
 608 gaussian splatting. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp.
 609 1053–1061, 2024.
- 610 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 611 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on
 612 computer vision and pattern recognition*, pp. 586–595, 2018.
- 613 Hongyu Zhou, Jiahao Shao, Lu Xu, Dongfeng Bai, Weichao Qiu, Bingbing Liu, Yue Wang, Andreas
 614 Geiger, and Yiyi Liao. Hugs: Holistic urban 3d scene understanding via gaussian splatting.
 615 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 616 21336–21345, 2024.
- 617 Wojciech Zielezniak, Stephan J Garbin, Alexandros Lattas, George Kopanas, Paulo Gotardo, Thabo
 618 Beeler, Justus Thies, and Timo Bolkart. Synthetic prior for few-shot drivable head avatar inver-
 619 sion. *arXiv preprint arXiv:2501.06903*, 2025.
- 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647