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ABSTRACT

Correcting motion artifacts in scientific and medical imaging is important, as they
significantly impact image quality. However, evaluating deep learning-based and
classical motion correction methods remains fundamentally difficult due to the
lack of accessible ground-truth target data. To address this challenge, we study
three evaluation approaches: real-world evaluation based on reference scans, sim-
ulated motion, and reference-free evaluation, each with its merits and shortcom-
ings. To enable evaluation with real-world motion artifacts, we release PMoC3D,
a dataset consisting of unprocessed Paired Motion-Corrupted 3D brain MRI data.
To advance evaluation quality, we introduce MoMRISim, a feature-space metric
trained for evaluating motion reconstructions. We assess each evaluation approach
and find real-world evaluation together with MoMRISim, while not perfect, to
be most reliable. Evaluation based on simulated motion systematically exagger-
ates algorithm performance, and reference-free evaluation overrates oversmoothed
deep learning outputs. Overall, these contributions advance the emerging science
of benchmarking for machine learning based scientific and medical imaging, by
providing datasets, metrics, and systematic evaluations for motion correction.

1 INTRODUCTION

Magnetic resonance imaging (MRI) provides rich anatomical detail but requires long acquisition
times. Even healthy adults struggle to remain still for several minutes, and small head movements
introduce inconsistencies in k-space that lead to blurring, ringing, and spatial misalignment in the
reconstructed images. Motion artifacts can prevent effective diagnosis and may force repeating the
scan (Andre et al., 2015; Slipsager et al., 2020), increasing costs and reducing the reliability of
clinical workflows. Robust motion correction is therefore essential for ensuring dependable MRI
acquisition.

Many recent approaches tackle motion correction retrospectively, estimating and correcting motion
directly from the acquired k-space or reconstructed images without relying on external motion-
tracking hardware. Several works (Haskell et al., 2019; Singh et al., 2022; 2023; Levac et al., 2023)
proposed methods for reconstructing 2D motion-corrupted slices. However, subject motion occurs in
full 3D, making the problem more challenging and clinically relevant. Prior work has shown promis-
ing 3D motion-estimation performance (Johnson & Drangova, 2019; Duffy et al., 2021; Klug et al.,
2024). (Cordero-Grande et al., 2016) introduced a classical alternating-optimization framework for
jointly estimating motion and reconstructing corrupted volumes. (Al-Masni et al., 2022) proposed a
stacked U-Net that performs end-to-end 3D reconstruction without explicit motion modeling. More
recently, (Wu et al., 2025) presented an implicit neural representation method that jointly estimates
motion and reconstructs images in both 2D and 3D MRI.

However, research on 3D motion correction is challenging as the field lacks a standardized evalu-
ation approach for realistically evaluating different approaches. The core issue is that ground-truth
target data is fundamentally difficult or impossible to obtain:

• Real-world motion-corrupted data captures true motion but lacks ground-truth for quanti-
tative assessment. To enable real-world evaluation, one can collect two scans, a motion-
corrupted and a motion-free one, and use the motion-free as a target or ground-truth. How-
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ever, the two scans need to be aligned, require careful pre-processing, and the motion-free
scan might also be slightly motion corrupted.

• Most commonly, evaluation is conducted based on simulated rigid motion artifacts in which
case computing reference-based metrics is straightforward. However, evaluation might be
unrealistic due to the motion simulation. Potential artifacts from non-rigid motion are not
accounted for when simulating motion (Spieker et al., 2024). In addition, data has to be
fully sampled to simulate motion, which is rarely the case for 3D MRI.

• Finally, evaluation can be conducted with reference-free image quality metrics, which avoid
the need for pre-processing or the lack of a realistic reference. However, classical gradient-
based metrics correlate poorly with perceived image quality (Marchetto et al., 2024).

In this work, we advance evaluation of motion reconstruction algorithms by systematically assess-
ing real-world, simulated, and reference-free evaluation, and by providing PMoC3D, a real-world
dataset for evaluation of 3D-motion correction methods.

Our dataset, PMoC3D, consists of raw Paired Motion-Corrupted 3D brain MRI data for enabling
real-word evaluation by comparing reconstructions motion-corrupted data to a reference scan. For
PMoC3D, we collected three motion-corrupted scans of different motion severity each from eight
subjects along with one motion-free scan to use as a reference.

First, we study real-world evaluation with a reference scan based on the PMoC3D dataset by assess-
ing how well reference-based image quality metrics correlate with human assessment. We consider
standard metrics in the pixel-space such as SSIM (Wang et al., 2004) and PSNR (Horé & Ziou,
2010) and feature-space metrics such as DreamSim (Fu et al., 2023), and we additionally propose
a feature-space metric MoMRISim that is trained to align with varying levels of motion severity.
We find that reference-based evaluation using feature-space metrics like MoMRISim correlates well
with human judgments and provides a reliable measure of reconstruction quality. However, under
mild motion, the motion-free reference reconstructions often retain residual artifacts, and in some
cases, mildly motion-corrupted scans reconstructed with motion-correction methods appear visually
cleaner than the reference. This challenges the reliability of reference-based evaluation in mild mo-
tion settings, where simulated data with known ground truth can offer a more meaningful alternative
for evaluation.

Second, we assess evaluation based on simulated motion corruption, and observe that some methods
achieve almost error free reconstructions under the most severe simulated motion, whereas the same
methods exhibit noticeable residual artifacts under severe real-world motion. This is consistent with
findings for other imaging problems, that found simulated data to potentially lead to misleading
conclusions (Shimron et al., 2022).

Third, regarding reference-free evaluation, we propose and consider a vision-language model
(VLM) score. While exhibiting a significantly better alignment with perceived image quality than
classical gradient-based reference-free metrics, we find the VLM score to be biased towards recon-
structions, which are overly smooth but potentially miss anatomical details.

All three considered evaluation methods have shortcomings, but evaluation on real-world paired
datasets such as PMoC3D, when combined with an appropriate feature-based metric such as MoM-
RISim, provides a relatively reliable and meaningful assessment of reconstruction performance un-
der moderate to severe motion.

Overall, these contributions advance the emerging science of benchmarking for machine learning
based scientific and medical imaging, by providing datasets, metrics, and systematic evaluations for
motion correction.

2 THE PMOC3D DATASET FOR REAL-WORLD EVALUATION

We constructed the PMoC3D dataset in order to evaluate accelerated 3D motion correction methods.
PMoC3D is a 3D dataset containing the raw measurement data of scans with real-world motion as
well as corresponding motion-free scans as a target or estimate of the ground-truth.

Previous works relied on evaluation datasets that provide only the processed magnitude im-
ages (Johnson & Drangova, 2019; Duffy et al., 2021; Ganz & Eichhorn, 2022; Li et al., 2024).
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L1(S7 3)
PMAS: -0.23

L1(S5 2)
PMAS: 0.36

L1(S6 2)
PMAS: 1.04

L1(S8 2)
PMAS: 1.40

L1(S2 1)
PMAS: 2.42

Figure 1: Sagittal views and corresponding perceived motion artifact scores (PMAS) of selected
L1-reconstructions from our dataset with varying degrees of motion artifacts ranging from mild
(S7 3, S5 2) to moderate (S6 2) to severe (S8 2, S2 1). These examples highlight the challenges in
reconstructing motion-corrupted scans.

However, approaches that explicitly estimate motion in order to correct for it, require access to the
unprocessed raw data (k-space data) (Cordero-Grande et al., 2016; Klug et al., 2024).

2.1 ACQUIRING PAIRED MOTION-FREE AND MOTION-CORRUPTED DATA

For the PMoC3D dataset we scanned 8 healthy male and female subjects. The study was approved
by the institutional review board and written informed consent was obtained from all participants
prior to data collection (see Ethical Statement at the end of the paper for details). From each subject
we acquired four scans, one motion-free and three motion-corrupted labeled as S{subject} {scan}
with subjects 1, . . . , 8 and scans 0, . . . , 3, where 0 corresponds to the motion-free case. When we
observed artifacts in the scanner’s reconstruction while recording a motion-free scan, we assumed
that the subject has moved and restarted the scan session. We provide access to the corrupted scans
(S3 4, S5 4, S8 4) with involuntary motion resulting in a total of 27 motion-corrupted scans.

Data acquisition. The data was acquired on an Ingenia Elition 3.0T X scanner (Philips Healthcare,
Best, The Netherlands) with the standard 16-channel dStream HeadSpine coil array (of which 13
channels were automatically selected based on SNR). We performed Cartesian 3D T1-weighted
Fast-Gradient-echo (TFE) imaging with a 1mm isotropic resolution and a field of view of 221×170×
256 mm. With kz and kx oversampling of 1.4 and 2.0, the acquisition matrix-size is ky ×kz ×kx =
222× 236× 512.

Data was acquired with undersampling along the phase encoding dimensions ky × kz (axial plane)
with an undersampling factor of µ = 4.94, a densely sampled auto-calibration region of size 37×37
and partial-Fourier sampling with factor 0.85 in the kz direction(see Figure 5 in Appendix B for the
resulting undersampling mask).

We provide access to the full-size k-space data. To reduce the computational cost for evaluating
experiments, we also cropped the data, where we crop along the fully-sampled read-out dimension
kx to the size of the field of view (256) by subsampling every second voxel. The sequence parameters
are in Appendix B.

Sampling trajectory. The Cartesian k-space is acquired within Ns = 52 shots resulting in ky ∗
kz/(µNs) = 222 ∗ 236/(4.94 ∗ 52) = 204 acquired read-out lines per shot. The acquisition of
one shot lasts 1.35s followed by a pause of 1.74s resulting in a total scan duration of 2:40min. The
read-out lines are acquired following a quasi-random sampling trajectory except the 3× 3 center of
the k-space which is acquired at the start of the first shot. Hence, the sampling order varies between
all scans in the dataset.

We chose a random order because it ensures that both low-/high-frequency components are sampled
in every shot which is beneficial for motion estimation (Cordero-Grande et al., 2016; Usman et al.,
2020; Klug et al., 2024).

Sensitivity maps. For each subject, the dataset contains the coil sensitivity maps calculated using
Gyrotools MRecon (LLC) through a calibration scan performed at the beginning of each subject’s
scan session for which the subject was instructed to hold still.
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Table 1: Overview of real-world paired, simulated motion, and reference-free evaluation.
Evaluation
Method

Real-world Paired Simulated Motion Reference-Free

Data Source PMoC3D Calgary Campinas Brain
MRI dataset (Souza et al.,
2018)

PMoC3D

Reference Type Paired reference-free scan Perfect ground truth None

Eval Metrics PSNR, SSIM, DISTS
MoMRISim, ...

PSNR, SSIM TG, AES, VLM scores

Human Alignment High – Low

Limitations Imperfect reference-free
scan

Simulation fails to
reproduce real motion
complexity

• Weak correlation with
human evaluation
• Favors oversmoothed
images

Conclusion Not perfect, but most reli-
able

Overestimate algorithm per-
formance

Unreliable

Motion. Motion corrupted scans are obtained by instructing the subject to perform a motion at one
or more time instances during the scan. The instructions are as follows:

• Slightly turn head left/right and stay/return to origin.
• Nodding: Once up, once down and return to origin.
• Head shaking: Once left, once right and return to origin.
• Move chin towards chest and stay/return to origin.

We instruct to perform a motion slowly if it should be performed slowly as opposed to abruptly. To
generate a diverse dataset containing mild to severe motion artifacts we vary the instructions itself,
when we give them, and how many we give (up to three). The instructions and time stamps are
provided with the data.

2.2 CATEGORIZING MOTION ARTIFACTS IN THE DATA

Stronger motion and more motion events make reconstruction more difficult. To facilitate evaluation
with the PMoC3D dataset, we provide a quantitative measure of human-perceived severity of the
motion artifacts of each of the 24 scans corrupted with voluntary motion.

The score is computed as follows. We first obtain the L1-reconstruction with wavelet regulariza-
tion (Lustig et al., 2008) without any motion correction for each scan (see Appendix D.1 for de-
tails). The L1-reconstruction with wavelet regularization does not account for motion modeling or
correction, allowing us to directly evaluate the severity of motion artifacts in each scan.

Two PhD students with expertise in machine learning and MRI reconstruction performed pairwise
comparisons between the reconstructions, classifying either one to have more or both to have sim-
ilarly severe artifacts. Since PMAS here is used only to categorize the severity of motion arti-
facts in the raw scans, the use of trained non-clinical evaluators is sufficient for this purpose. If
both evaluators agree that reconstruction A has more severe artifacts than B then we assign rate
p(A > B) = 1. If one evaluator judges A to be better and the other finds a similar level, then we
assign p(A > B) = 0.75. If both evaluators find a similar severity level, or one finds one better and
the other the other, we set p(A > B) = 0.5.

Based on these pairwise results we fitted a Bradley–Terry model (Bradley & Terry, 1952) to obtain
a perceived motion artifact score for each scan:

PMAS = argmax
β

∑
i ̸=j

p(i > j) log

(
exp(βi)

exp(βi) + exp(βj)

)
, (1)

where each βi quantitatively represents the severity of motion artifacts for the corresponding vol-
ume; higher values indicate more severe artifacts, and these latent parameters serve as our measure
of perceived motion artifact severity(see Appendix C for more details).
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Figure 1 shows sagittal views of L1-reconstructions from our dataset from left to right in ascend-
ing order according to their perceived motion artifact score. As we can see, the severity of motion
artifacts increases with increasing perceived motion artifact score. Reconstructions S7 3 and S5 2
show mild artifacts, where most brain anatomical details are preserved despite the presence of mi-
nor ringing artifacts. In reconstruction S6 2, the artifacts are more pronounced and obscure finer
details, while in S8 2 and S2 1 the artifacts are severe enough that the brain structures become
barely discernible. These examples illustrate the range of challenges encountered when reconstruct-
ing motion-corrupted scans in our dataset.

3 EVALUATION APPROACHES

Evaluating motion correction in 3D MRI is challenging because we do not have the perfect reference.
We have considered 3 evaluation methods, each with its own strengths and failure modes. Table 1
provides an overview comparison of the three evaluation methods considered in this work.

In the remainder of this section, we describe these three evaluation approaches in detail: real-world
evaluation with a reference scan, evaluation based on simulated motion, and reference-free evalua-
tion. We also discuss standard evaluation metrics and propose two novel metrics for the respective
approaches.

3.1 REAL-WORLD EVALUATION WITH A REFERENCE SCAN

We perform real-world evaluation with our PMoC3D dataset, which consists of paired acquisitions
for each subject. Each subject Si (i=1,. . .,8) undergoes one motion-free scan Si 0 and three motion-
corrupted scans Si j (j=1,2,3). The motion-corrupted scans are categorized into two difficulty levels:
the 8 scans with the lowest perceived motion artifact scores (PMAS) are labeled as mild motion-
corrupted scans, while the remaining scans are classified as moderate and severe. Each baseline
method is applied to each motion-corrupted scan, and the L1 reconstruction of the motion-free scan
is the reference for quantitative scoring.

We preprocess the data to mitigate the challenges of comparing two different acquisitions,
as suggested by the paper (Marchetto et al., 2024). First, using advanced normalization
tools(ANTs) (Tustison et al., 2021) rigidly aligns the motion-corrupted volume to the reference.
Subsequently, a brain mask is generated via BET (Smith, 2002) on the motion-free scan and applied
to both datasets, to focus the evaluation on the anatomical region of interest. Both volumes are mul-
tiplied by the brain mask and normalized to a max value of the 99.9th percentile before computing
scores. After preprocessing, reference-based quality metrics are computed between the corrected
motion-corrupted scans and the L1-based motion-free reference reconstructions (Si 0).

3.2 EVALUATION BASED ON SIMULATED MOTION

We evaluate performance by generating synthetic motion-corrupted, undersampled k-space data
from the fully sampled Calgary Campinas Brain MRI dataset (Souza et al., 2018), and comparing
reconstructions against the original, uncorrupted reference volumes. This has the advantage that we
have accurate ground-truth or target information, and the disadvantage that the motion is synthetic.

A 3-D Cartesian mask with an acceleration factor of 4.9 is applied in the two phase-encoding direc-
tions, replicating the mask geometry used for PMoC3D. Each acquisition is divided into 52 shots
following a random trajectory, again mirroring the paired real-world protocol. Inter-shot head mo-
tion is generated with an event-based framework designed to resemble PMoC3D artifacts. Motion
events follow the instructions in Section 2 (head turning, nodding, etc.) which involve rotations
about the ky-kz and kx-kz axes. To more realistically capture head motion, we introduce random
perturbations to the remaining motion parameters, i.e., the three translational components and the
third rotational axis. These perturbations account for natural subject-specific variability and for the
fact that real-world head rotations often occur around off-center axes rather than the image origin,
resulting in complex motion patterns. Motion severity is controlled by the number of events and
their amplitude:

• Mild: One event with primary motion sampled uniformly from ±5◦ and perturbations up
to ±1◦/mm.
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• Severe: Three events with primary motion sampled uniformly from ±15◦ and perturbations
up to ±5◦/mm.

To match the behavior of our real acquisitions, the simulation parameters are chosen to mirror those
in PMoC3D. Mild motion contains a single event, and severe motion contains three events, consis-
tent with the PMoC3D acquisition protocol. The motion amplitudes were selected based on visual
inspection of the real severe L1 reconstructions to ensure that the simulated artifacts are at least as
challenging as the most corrupted in-vivo scans.

For each baseline, we evaluate performance across ten test volumes. For every volume, we simulate
the two severity levels, and for each level, we draw two independent motion seeds. Reconstructed
volumes are normalized to their 99.9th percentile intensity, after which reference-based metrics are
computed against the fully sampled ground-truth images. While simulated motion offers control-
lable and repeatable conditions, it may oversimplify the motion dynamics in vivo.

3.3 REFERENCE-FREE EVALUATION

In the reference-free setting, each baseline method reconstructs the motion-corrupted scans Si j, for
i in 1,...,8, and j from 1 to 3 on PMoC3D. The reconstructed volumes are first masked to exclude
non-brain regions, consistent with the paired evaluation protocol. Subsequently, the volumes are
then normalized by the 99.9th percentile normalization, matching the normalization used in the
paired evaluation. Because the available motion-free scans cannot serve as true ground truth, the
normalised reconstructions are evaluated directly with a reference-free metric discussed in the next
section.

3.4 EVALUATION METRICS

We first review existing reference-based and reference-free metrics, then introduce our two proposed
metrics: MoMRISim (reference-based) and the VLM score (reference-free).

3.4.1 EXISTING METRICS

Reference-based metrics. We consider standard pixel-wise metrics including Structural Similar-
ity Index (SSIM) (Wang et al., 2004), Peak Signal-to-Noise Ratio (PSNR) (Horé & Ziou, 2010), and
Artifact Power (AP) (Ji et al., 2007). We also consider perceptual metrics, which evaluate image
quality based on high-level visual representations rather than direct pixel-wise comparisons. These
metrics leverage deep learning-based feature extraction to assess structural and perceptual similar-
ity, and have demonstrated strong correlation with radiologists’ assessments (Adamson et al., 2025).
Specifically, we consider Deep Image Structure and Texture Similarity (DISTS) (Ding et al., 2022)
and DreamSim (Fu et al., 2023).

Reference-free metrics. We also investigate reference-free metrics for assessing image quality
without requiring access to a motion-free reference scan. We employ two gradient-based methods,
Average Edge Strength (AES) (Pannetier et al., 2016) and Tenengrad (TG) (Kecskemeti et al., 2018),
which quantify image sharpness and structural clarity.

3.4.2 MOMRISIM FOR REFERENCE-BASED EVALUATION

Existing image-quality metrics struggle to capture motion artifacts in 3D MRI. Pixel-based met-
rics such as PSNR and SSIM exhibit only moderate correlation with human evaluation. Perceptual
metrics are trained to model semantic similarity in natural images, rather than the motion artifacts
in MRI. Moreover, adapting perceptual metrics like DreamSim (Fu et al., 2023) typically requires
large-scale human annotations, which are impractical to collect for subtle 3D motion artifacts. To
overcome these limitations, we propose MoMRISim, a perceptual similarity metric tailored specif-
ically to motion artifacts in 3D MRI. Unlike DreamSim, which is trained on human-labeled natural-
image triplets, MoMRISim utilizes motion severity as a self-supervised signal and is therefore opti-
mized directly for motion artifact discrimination.

Our goal is to learn an encoder f(·) whose feature space reflects motion severity through its distance
to the motion-free reference. In this space, mildly corrupted reconstructions should lie closer to their
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reference than severely corrupted ones. To obtain such an encoder, we train it using triplets consist-
ing of a motion-free reference and two motion-corrupted reconstructions with known simulated
severities. Because the severity ordering in each triplet is exact by construction, the model receives
perfect relative supervision without requiring any human annotations. The encoder is optimized so
that mildly corrupted images are embedded closer to the reference than their more severely corrupted
counterparts. Triplets are constructed by applying synthetic rigid motion of varying severity, defined
following the protocol in paper (Klug et al., 2024), to the fully sampled Calgary Campinas Brain
MRI dataset (Souza et al., 2018). To enhance robustness across reconstruction styles, we randomly
apply either L1- or U-Net-based reconstruction without motion correction, encouraging the encoder
to learn motion–artifact features that are invariant to the two reconstruction pipelines used in this
study.

At evaluation time, the triplet structure is no longer needed: MoMRISim reduces to a standard
reference-reconstruction pair. MoMRISim assigns a motion severity score to reconstruction X rel-
ative to its reference R by computing the cosine distance between their embeddings:

MoMRISim(R,X) = 1− CosineSimilarity
(
f(R), f(X)

)
,

where f(·) is the learned feature extractor. Higher values indicate greater deviation from the refer-
ence and, therefore, more severe motion artifacts. Full training details, including data preparation
and hyperparameters, are provided in Appendix E, with Figure 6 illustrating the triplet-based input
used during training.

3.4.3 VLM SCORE FOR REFERENCE-FREE EVALUATION

Classical gradient-based image quality metrics have been shown to correlate poorly with human
judgments in prior work (Marchetto et al., 2024). Our own experimental results in Appendix G.1
corroborate this finding, highlighting the limitations of these metrics in evaluating motion artifacts
in 3D MRI. To address this, we propose a reference-free VLM score based on prompting a vision-
language model. We evaluate our approach using GPT-4o (OpenAI, 2024; OpenAI et al., 2024),
Qwen2.5-VL-Max (Bai et al., 2025), Med3DVLM (Xin et al., 2025), and M3D-LaMed (Bai et al.,
2024). The models are asked to assign motion artifact severity score ranging from 0 (no motion)
to 3 (severe motion). To enhance robustness, we prompt the model independently five times at a
temperature of 0.5 and compute the final score as the average across all runs. See Appendix F for
details.

4 ASSESSING EVALUATION APPROACHES

In this section, we assess the three evaluation approaches.

4.1 IMPLEMENTATION DETAILS AND BASELINES

We evaluate three motion-reconstruction methods that span the major paradigms used in 3D MRI
motion correction: a classical optimization-based method that relies purely on physics, a hybrid
deep-learning and physics approach, and a fully end-to-end deep learning model that corrects mo-
tion without explicit motion modeling. Covering these three categories allows us to assess metric
performance across fundamentally different reconstruction strategies. Following three motion re-
construction methods are utilized to generate reconstructions for evaluation:

• The classical alternating optimization (AltOpt) (Cordero-Grande et al., 2016) alternately
optimizes the L1–wavelet reconstruction and the motion parameters, updating one while
holding the other fixed.

• The deep learning-based MotionTTT (Klug et al., 2024) relies on a 2D U-net (Ronneberger
et al., 2015) pre-trained to perform motion-free MRI reconstruction. MotionTTT estimates
the 3D motion parameters by optimizing a data-consistency (DC) loss between the network
output and the given motion-corrupted measurements over the motion parameters.

• E2E Stacked U-nets (Al-Masni et al., 2022) is based on a stack of refinement U-nets to
predict the motion-corrected reconstruction slice-wise. The training details are described
in Appendix D.4.
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Figure 2: Rank comparison between PSNR, MoMRISim, and VLM score (GPT-4o) and the per-
ceived motion artifact score (PMAS). Both axes show rank values rather than raw scores. A smaller
rank indicates a better reconstruction. Points lying closer to the diagonal reflect stronger agreement
between a metric’s ordering and the PMAS ordering. MoMRISim shows a strong correlation, PSNR
offers a moderate level, and VLM score(GPT-4o) reflects a low degree of alignment.

MotionTTT and stacked U-nets are both trained on the Calgary Campinas Brain MRI Dataset (Souza
et al., 2018) consisting of T1-weighted 3D motion-free brain scans recorded under a similar setting
as our PMoC3D dataset. For MotionTTT and AltOpt, we estimate six motion parameters (three ro-
tations, three translations) per acquired shot, and perform L1-minimization based on the estimated
motion parameters for the final reconstruction. Shots with motion parameters that have a data con-
sistency (DC) loss above a certain threshold are excluded from the measurements. See Appendix D
for all training details and hyperparameters.

4.2 ASSESSING PAIRED REAL-WORLD EVALUATION

Paired real-world evaluation is challenging because no truly motion-free ground truth exists.
In PMoC3D, the reference volume is acquired in a separate scan and reconstructed via L1-
minimization, and thus is not perfect ground-truth data. Moreover, it might be slightly misaligned
to the motion-corrupted scan even if the motion-free scan had no motion corruption.

Assessing evaluation reliability with a human judge. Because the motion-free volume is not a
perfect ground truth, we evaluate reliability by studying whether the ranking produced by different
metrics measuring similarity of reconstructions and references based on the PMoC3D dataset agree
with human perception.

We performed pairwise comparisons of 250 randomly selected baseline reconstruction pairs, with
a licensed medical doctor judging whether one image exhibited more severe artifacts or both had
similar severity. The resulting preference matrix was fitted with a Bradley-Terry model (details in
Appendix D.1), which yields perceived motion artifact scores (PMAS). To verify the reliability of
PMAS ratings, we also collected a full set of 2,556 pairwise comparisons from a second rater for
inter-rater analysis (which was not used in any subsequent experiments). The resulting PMAS ranks
show strong consistency; see Appendix G.5 for details.

We assessed the association between PMAS and each evaluation metric using Spearman’s rank cor-
relation coefficient. Correlations for PSNR and MoMRISim are displayed in Figure 2; results for
all metrics appear in the Appendix G.1. Figure 2 shows that PSNR and MoMRISim yield rank-
ings consistent with the human judgment (i.e., with the perceived motion artifact scores (PMAS)).
MoMRISim, in particular, attains the highest correlation, which is 0.92. This strong association
demonstrates that our evaluation is a faithful proxy for expert assessment, confirming the reliability
of paired real-world evaluation.

Challenges in the paired real-world evaluation in particular for mild motion. Figure 3 shows
the motion-free reference image and the MotionTTT reconstruction of scan S3 3, which was ac-
quired under mild subject motion, along with the difference of the two images. For this example,
the MotionTTT reconstruction of the mild motion scan is slightly better at parts than the reference
image, which can be seen in the zoomed region: The MotionTTT reconstruction is free of ringing,
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MotionTTT Recon. Reference Difference

Figure 3: Comparison of MotionTTT reconstruction, L1-based motion-free reference, and their
difference image. The left panel shows the MotionTTT reconstruction of subject S3 3, which is a
mild motion scan. The center panel displays the L1 reconstruction of the corresponding motion-free
reference. The right panel presents the difference image between the two reconstructions.

whereas the L1 reconstructed motion-free reference contains faint ring artifacts. Under mild motion,
the corrected image can therefore look better than the reference, which is problematic.

To summarize, although imperfect reference volumes may render paired real-world evaluation em-
pirically unreliable in the mild-motion regime, real-world evaluation is dependable under moderate
to severe motion: when combined with a robust reference-based metric such as MoMRISim, it yields
performance assessments that closely align with human evaluation. Because PMoC3D includes both
instructed and naturally involuntary motion, we also perform an analysis of the involuntary cases.
The results, presented in Appendix G.4.

4.3 ASSESSING SIMULATED MOTION EVALUATION

Evaluation based on simulated motion is popular for its simplicity and since motion-corrupted real-
world data is not required. However, such simulations may not reflect real-world motion artifacts
sufficiently well. We find that evaluation based on simulated data overestimates the performance of
reconstruction methods and can therefore be misleading.

This is easy to see from Figure 4, which contains a severely corrupted real scan from the PMoC3D
dataset as well as a simulated motion with a similar level of motion corruption (as seen in the L1
reconstructions in the figure). It can be seen that the reconstructions of all considered algorithms
are significantly better for simulated data compared to the reconstructions based on the real data.
In addition, Figure 12 in Appendix G.2 compares five simulated cases of severe motion with the
five most severe cases from real-world scans, showing results both with and without motion cor-
rection. The simulated artifacts were designed to be as severe as or more severe than those found
in the real-world data. In all instances, reconstructions from the real-world data retain noticeable
ringing artifacts. In contrast, the reconstructions of simulated data using motion correction appear
consistently clean, with motion artifacts largely eliminated.

Our comparison confirms that, even at comparable levels of artifact severity, reconstructions from
simulated motion consistently appear cleaner than those from real-world motion. This discrepancy
indicates that evaluation approaches restricted to simulation therefore risk systematically overesti-
mating algorithmic progress.

4.4 ASSESSING REFERENCE-FREE EVALUATION

Reference-free evaluation can test for the presence of artifacts, but cannot measure accuracy since
no reference is available. We find that reference-free metrics systematically overestimate the perfor-
mance of the deep learning based method.

To evaluate metric reliability, we examine the correlation between reference-free quality scores and
PMAS. As illustrated in Figure 2, right panel, the reference-free VLM score(GPT-4o) exhibits a
weak correlation with the human judage. Comprehensive results for all reference-free metrics are
reported in Appendix G.1, where consistently low correlations with expert evaluation are observed.
A notable failure case involves certain stacked U-net reconstructions, where the VLM score as-
signs high quality despite PMAS indicating substantial motion artifacts. This discrepancy suggests

9
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Reference MotionTTT AltOpt E2E L1

Simulated
Recon.:

Error w.r.t. refer-
ence

PMoC3D
Recon.:

Error w.r.t. refer-
ence

Figure 4: Comparison of baseline reconstructions on scans with artifacts from both simulation and
the real-world PMOC3D dataset. The first column displays the motion-free reference. Subsequent
columns show the results from MotionTTT, AltOpt, E2E Stacked U-Net, and L1 minimization with-
out motion correction. The error maps, shown below each reconstruction, visualize the difference
relative to the reference.

that reference-free metrics do not reliably align with human perception of artifact severity. In Ap-
pendix G.3, we provide an example where a reference-free metric fails to reflect the quality of a
reconstruction. Although the stacked U-net rated favorably by the metric, the corresponding differ-
ence image reveals substantial loss of anatomical detail. Reference-free evaluation is prone to bias,
particularly for end-to-end deep learning models that suppress artifacts through oversmoothing.

5 CONCLUSION

Reliable evaluation of motion correction algorithms in 3D MRI is fundamentally difficult due to the
absence of good ground truth in real-world data. This paper presents a comprehensive assesment
of three evaluation approaches: real-world evaluation with a reference scan, based on simulated
motion, and reference-free assessment.

To enable real-world evaluation, we introduced the PMoC3D dataset consisting of paired motion-
free and motion-corrupted scans. We find that real-world evaluation is well correlated with human
judgement of reconstruction and is thus relatively reliable. However, for very mild motion, baseline
reconstruction methods can produce better results than the motion-free reference, which potentially
compromises the validity of reference-based evaluation in the mild-motion regime.

Evaluation based on simulated motion can be misleading because simulated motion fails to capture
the full complexity of real-world motion and tends to overestimate performance. However, evalua-
tion based on simulated motion can still be useful for relative comparisons.

Reference-free evaluation can be very biased towards certain reconstructions and is not reliable, as
expected.

10
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Ethical statement. The local institutional review board approved the study in accordance with the
ethical standards of the institutional and/or national research committee and with the 1964 Helsinki
Declaration and its later amendments or comparable ethical standards. Prior informed consent was
obtained from all individual participants.

Reproducibility Statement Acquisition details for the PMoC3D dataset are provided in Section 2
and Appendix B; the dataset will be made publicly available subject to our data usage agree-
ment. The training and inference configurations for the baseline reconstructions are detailed in
Appendix D, and these reconstructions will also be publicly released. Our evaluation methods are
described in Section 3.4, Appendix E, and Appendix F, and the corresponding code is available in
the supplementary materials.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilized LLMs in the following two approaches during this research:

• For Writing Assistance: LLMs were used to refine the grammar and improve the clarity
and readability of this manuscript.

• For Evaluation: As a core component of our methodology, vision-language models (VLMs)
were employed to evaluate motion artifacts. This process is detailed in Section 3.4 and
Appendix F.

B PMOC3D ACQUISITION DETAILS

In Table 2 we provide a list of all relevant sequence parameters used for the acquisition of our
PMoC3D dataset.

Table 2: Sequence parameters of the PMoC3D dataset.
Parameter Value

Sequence 3D T1-TFE
Sampling Cartesian
Flip angle (deg) 8
TR (ms) 6.7
TE (ms) 3.0 (shortest)
TFE prepulse / delay (ms) non-selective invert / 1060 ms
Min. TI delay (ms) 707
TFE factor 204
TFE shots 52
TFE dur. shot / acq (ms) 1742 / 1347
Shot interval (ms) 3000
TFE prepulse delay (ms) 1060
Under-sampling factor 4.94
Half-scan factor Y / Z 1 / 0.85
Number of auto-calibration lines 37
Profile order random
Field of view (FH x AP x RL, mm) 256 x 221 x 170
Acquisition matrix 256 x 221
Fold-over direction AP
Fold-over suppression no
Fat shift direction F
Water-fat shift (pixels) 1.6
Saturation slabs no

Figure 5 illustrates an example from the sampled dataset, including the image volume, its corre-
sponding k-space representation, and the undersampling mask pattern applied along 2 phase encod-
ing directions.

C PERCEIVED MOTION ARTIFACT SCORE DETAILS

In order to evaluate the severity of motion artifacts in the L1 reconstructions, we first shuffle the
reconstructions and conceal their labels. Then, two PhD students with expertise in machine learning
and MRI reconstruction performed pairwise comparisons between the reconstructions of the 24
motion-corrupted scans. If both evaluators agree that reconstruction A has more severe artifacts
than B then we assign rate p(A > B) = 1. If one evaluator judges A to be better and the other finds
a similar level, then we assign p(A > B) = 0.75. If both evaluators find a similar severity level, or
one finds one better and the other the other, we set p(A > B) = 0.5.
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Figure 5: Panel a): schematic visualization of the magnitude of a 3D volume; Panel b): the corre-
sponding 3D k-space data. Panel c): the undersampling masks with the color coding illustrating an
example of a random sampling trajectory indicating which lines along the readout dimension kz are
sampled within the same out of 52 shots.

For the PMAS score described in Section 4.2, which is used to compare reconstruction quality
across different baselines and scans, annotations were performed by a licensed medical doctor. The
evaluation also follows a pairwise comparison protocol. For each pair of reconstructions, if the
annotator judges that reconstruction A exhibits more severe artifacts than B, we assign a rate of
p(A > B) = 1. If the two reconstructions are considered to have similar artifact severity, the win
rate is set to p(A > B) = 0.5.

Based on those pairwise comparisons, we fit a Bradley–Terry model (Bradley & Terry, 1952), which
assigns a latent parameter to each reconstruction. The difference in these parameters indicates which
volume is considered to have more severe motion artifacts. We estimated these parameters by max-
imizing the likelihood function

PMAS = argmax
β

∑
i ̸=j

p(i > j) log

(
exp(βi)

exp(βi) + exp(βj)

)
, (2)

using gradient descent with the Adam optimizer in PyTorch. In this formulation, each βi quantita-
tively represents the severity of motion artifacts for the corresponding volume; higher values indicate
more severe artifacts, and these latent parameters serve as our perceived motion artifact score.

Table 3 presents each motion-corrupted scan’s perceived motion artifact score in the PMoC3D
dataset. Based on the perceived motion artifact score, we categorize the scans into three motion
severity levels as follows:

• Mild Motion: S1 2, S7 3, S7 1, S3 3, S1 3, S4 2, S5 2, S2 3
• Moderate and Severe Motion: S3 2, S4 1, S7 2, S5 3, S6 2, S2 2 ,S8 2, S6 1, S4 3,

S3 1, S5 1, S1 1, S8 1, S6 3, S8 3, S2 1

This classification facilitates a structured analysis of the reconstruction methods’ performance across
varying degrees of motion artifacts.

D HYPERPARAMETER CONFIGURATIONS AND IMPLEMENTATION DETAILS OF
BASELINES

In this Section, we provide further details regarding implementation and hyperparameter configu-
rations used for reconstructing the PMoC3D dataset with classical L1-minimization (Lustig et al.,
2008), alternating optimization similar to (Cordero-Grande et al., 2016), MotionTTT (Klug et al.,
2024) and E2E Stacked U-net (Al-Masni et al., 2022) in Sections 2.2 and 4.1.

D.1 L1-MINIMIZATION

We perform L1-minimization with the mean-squared-error loss function and wavelet regularization.
We use the Haar wavelet implementation of order one from the PyWavelets package (Lee et al.,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Perceived motion artifact score (PMAS) for each motion-corrupted scan in the PMoC3D
dataset. Higher scores indicate more severe motion artifacts.

Scan ID PMAS Scan ID PMAS Scan ID PMAS Scan ID PMAS
S2 1 2.417 S4 3 1.552 S4 1 0.808 S7 1 -0.156
S8 3 2.230 S6 1 1.405 S3 2 0.771 S7 3 -0.231
S6 3 2.197 S8 2 1.400 S2 3 0.485 S1 2 -0.443
S8 1 2.189 S2 2 1.102 S5 2 0.356
S1 1 1.828 S6 2 1.041 S4 2 0.346
S5 1 1.782 S5 3 0.867 S1 3 -0.008
S3 1 1.673 S7 2 0.813 S3 3 -0.057

2019) with PyTorch support through the PyTorch Wavelet Toolbox (Wolter et al., 2024).
We run 40 steps with stochastic gradient descent, a learning rate of 108 and regularization weight
λ = 3× 10−8.

D.2 ALTERNATING OPTIMIZATION

To perform alternating optimization as described in Section 4.1 we run SGD with a learning rate
of 108 and regularization weight λ = 3−8 during the reconstruction steps and a learning rate of
5 × 10−2 during the motion estimation step. In both steps the loss is the MSE between predicted
and given measurement. The optimization process is capped at 500 iterations, but it terminates early
if the difference between the losses of the first and second reconstruction step is less than 0.02.

After alternating optimization we perform L1-minimization from scratch based on the estimated
motion parameters as describe in Section D.1.

D.3 MOTIONTTT

To conduct test-time-training motion estimation with MotionTTT (Klug et al., 2024) we use
the model provided by the authors, which is pre-trained on the Calgary Campinas Brain MRI
Dataset (Souza et al., 2018) for the task of 2D motion-free reconstruction from undersampled MRI.

As outlined in (Klug et al., 2024) the iterative motion estimation can be conducted in three phases,
where during phase 2, motion states pertaining to shots that exhibit a large data consistency (DC)
loss, can be split into several distinct motion states to estimate a more fine-grained motion trajec-
tory during phase 2 and 3. This can improve the reconstruction quality compared to terminating
MotionTTT after phase 1 as potentially less measurements have to be discarded during the DC loss
thresholding before the final reconstruction.

For the PMoC3D dataset we observed no significant difference between the reconstruction quality
of splitting corrupted shots during phase 2 or terminating the optimization after phase 1 and directly
thresholding the corrupted shots from the reconstruction. The number of read-out lines that are
saved from being thresholded during phase 2 lies in the range from 1-5% of the total number of
lines, which appears to be too little to make a visual difference in the reconstruction.

Hence, for the results discussed here we reduce the computational costs of MotionTTT by running
only phase 1, where one motion state (3 rotation and 3 translation parameters) is estimated per
acquired shot. Specifically, we run 80 steps with an initial learning rate of 1.0 reduced by a factor of
2 at steps 50, 60 and 70. All other parameters are set as in (Klug et al., 2024).

For the final reconstruction we run L1-minimization as described in Section D.1 based on the esti-
mated motion parameters, where shots with a DC loss larger than a threshold of 0.70 are excluded
from the reconstruction.

D.4 E2E STACKED U-NET

For the E2E Stacked U-net baseline results we adopt the network design from (Al-Masni et al.,
2022), where we set the number of channels in first layer of both U-nets to 64 resulting in a total
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of 15.9M network parameters. We used instance norm instead of batch norm in our network as we
found it to give more stable results.

We train the model on the slices of 40 volumes from the Calgary Campinas Brain MRI
Dataset (Souza et al., 2018). In every training step one 3D volume is loaded from which the fully
sampled target volume is computed as well as motion-free and motion-corrupted undersampled input
volumes. Then, 20/10 slices are selected randomly from the motion-free/motion-corrupted volumes
in each plane rx×ry , rx×rz and ry×rz together with the corresponding target slices resulting in a
total of 90 input-target pairs per training step. Thus, with a batch size of 10 the network parameters
are updated 9 times per training step and 40 ∗ 9 = 360 times per epoch. We train the model for
200 epochs with the SSIM loss and the Adam optimizer with a learning rate of 6 × 10−4 which is
decayed twice by a factor of 10 at epochs 130 and 170.

We use twice as many slices from the motion-free input to ensure that the network can achieve high
quality reconstructions in the absence of motion. We generate the motion-corrupted volumes based
on the inter-shot motion simulation model from (Klug et al., 2024), where we focus on very mild
motion with either one or two motion events. During a motion event 1-6 randomly selected motion
parameters are set to a value drawn uniformly from either [−1, 1] degrees/mm or [−2, 2] degrees/mm
simulating subject movement in between the recording of two shots. We focus the model training
on mild motion as for more severe artifacts image details are occluded and thus irreversible lost
for reconstruction with an end-to-end approach. Nevertheless, we note that the motion correction
capability of an end-to-end model is specific to the type of motion simulated during training and
hence a more sophisticated motion simulation could benefit the model’s performance in the regime
of mild motion.

E IMPLEMENTATION OF MOMRISIM

We propose a motion MRI similarity(MoMRISim) as a learned perceptual metric to quantify motion-
artifact severity in 3D MRI. The basic idea of the MoMRISim is described in Section 3.4. We are
going to describe the implementation details on this section.

We train on 40 brain volumes from the Calgary Campinas (CC-359) dataset. For each training
volume we apply rigid-body motion corruption to the k-space under 7 randomly sampled severity
levels, where severity definitions-ranging from mild to severe in terms of number of motion events
and rotation/translation perturbation magnitudes, with definitions following (Klug et al., 2024). And
reconstruct each corrupted k-space without motion correction by both an L1-wavelet reconstruction
and a 2D U-Net. This ensures that MoMRISim observes artifact patterns from both classical com-
pressed sensing and deep learning pipelines.

Training samples are triplets
〈
Ref, C1, C2

〉
, where Ref denotes the L1-wavelet reconstruction of

the original motion-free volume, and C1, C2 are reconstructions of the same slice under two distinct
motion severities. For example, if the severity of C1 lower than that of C2, then Ref should be closer
to C1. An example of the triplet is shown in Figure 6.

In each epoch, we construct triplet by enumerating all pairs of reconstructions at two distinct
severity levels among the seven corrupted volumes. And then randomly select one of the three
anatomical planes (axial, coronal, sagittal), sample ten slices per pair, normalize each slice by its
99.9th-percentile intensity, and discard any background-only slices. This yields approximately 7
000 triplets per epoch.

We adapted the same training way as the DreamSim(Fu et al., 2023) to fine-tune the DINO-
vitb16(Caron et al., 2021) visual encoder augmented with LoRA adapters by minimizing a hinge-
ranking loss. The model was optimized with AdamW (learning rate 3.0 × 10−5), LoRA rank 4,
and a batch size of 8, over 40 epochs. Training was conducted on NVIDIA RTX A6000 GPUs and
completed in approximately 90 minutes with 4 workers. The final model achieved a triplet-ranking
accuracy of 0.933 on the training set.
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Severity=3 Reference Severity=6

Figure 6: Example triplet from the MoMRISim training dataset. The left image is corrupted by
motion (severity level 3) and reconstructed using a 2D U-Net. The right image is corrupted by more
severe motion (level 6) and reconstructed with an L1 reconstruction without motion correction. The
center image is a motion-free reconstruction using an L1 reconstruction.

Figure 7: An example input for VLM evaluation, where three slices from sagittal, coronal, and
axial orientations are arranged in a 3x3 grid for assessment.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F IMPLEMENTATION OF VLM SCORE

Vision-language models (VLMs) have found extensive applications across various domains. In this
study, we employ multiple VLMs, each requiring a specific input format. For GPT-4o (OpenAI,
2024; OpenAI et al., 2024) and Qwen2.5-VL-Max (Bai et al., 2025), we arrange three slice images
from three different views into a 3x3 grid as their input. Figure 7 provides an example of this setup.
Since Med3DVLM (Xin et al., 2025) and M3D-LaMed (Bai et al., 2024) support 3D input, we resize
the volume to the desired size for each model’s input.

We evaluated motion artifacts by generating five independent responses for each reconstruction us-
ing a temperature setting of 0.5. Each response is categorized into one of four predefined levels: No
Motion, Mild, Moderate, or Severe, denoted as scores 0, 1, 2, and 3 respectively. The final evalu-
ation score for each instance is calculated as the average of these five categorizations. The prompt
we used is as follows:

**Task:**
Evaluate the severity of motion artifacts in the provided MRI image

using a structured and systematic analysis.
---
### **Evaluation Criteria for MRI Image**
- **No Motion Artifact:** No visible motion artifacts; excellent

diagnostic quality, and minor reconstruction noise is acceptable
.

- **Mild:** The majority of brain details are clearly visible, with
only minor artifacts that do not obscure diagnostic structures;
minimal diagnostic impact, and minor reconstruction noise is

acceptable.
- **Moderate:** Noticeable artifacts that partially obscure

critical diagnostic regions; artifacts significantly impact
diagnostic interpretation.

- **Severe:** Brain structures are predominantly obscured by
artifacts, with only the general shape discernible; diagnosis is
extremely challenging or impossible.

### **Output Template**
**Analyze Brain Structure Visibility**

- Does the image look very smooth, potentially losing
significant detail? *(Important for scoring!)*

- Are all major brain details visible (gyri, sulci, ventricles)?
- Do motion artifacts blur or distort critical brain details?
- Are there regions where brain details are completely lost?

**Assess Artifact Types and Locations**
- Check for ringing effects (where, how severe).
- Identify other motion artifacts (streaking, ghosting) and note

their severity.
**Oversmooth Assessment**

- Does the image look very smooth (like a very high-quality
image)?

- Are there areas with smooth distortions?
- If yes, do you think the image has an oversmoothing problem?

- The primary MRI image shows **[overall assessment]** motion
artifacts. The final precise motion artifact level is: [No
Motion/Mild/Moderate/Severe]

If the severity level is No Motion/Mild: Re-examine the image. Are
all details truly clear? If any structures appear compromised,
consider increasing the severity level.

---
### **Conclusion**
- After rethinking, the primary MRI image shows **[overall

assessment]** motion artifacts, and the details are **. Given
these factors, the final precise motion artifact level is:

Severity Level: [No Motion/Mild/Moderate/Severe]
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Figure 8: Rank comparison of PSNR, SSIM, and AP with the perceived motion artifact score. All
of them show moderate correlation with human judgment.

G ADDITIONAL EXPERIMENT RESULTS

G.1 CORRELATION ANALYSIS BETWEEN PMAS AND METRICS ON PMOC3D
RECONSTRUCTIONS

This section presents the correlation results between the Perceived Motion Artifact Score (PMAS)
and various image quality metrics computed on the PMoC3D reconstructions. The correlations are
the figures for all mild, moderate, and severe situation.

Figure 8 shows the correlation between PMAS and traditional pixel-wise metrics. While these met-
rics generally reflect the expected trend of increasing degradation with higher motion artifacts, their
correlation with PMAS is only moderate. This suggests that pixel-wise metrics have limited sensi-
tivity to perceptual quality differences caused by motion corruption and may not be fully reliable for
evaluating motion-degraded 3D MRI.

Figure 9 presents the correlation between PMAS and feature-based metrics. Overall, these met-
rics show a strong correlation with PMAS. However, DISTS demonstrates a notable failure mode
when evaluating reconstructions from the stacked U-net, consistently assigning them abnormally
low scores. In contrast, both DreamSim and MoMRISim exhibit more stable behavior and higher
alignment with PMAS. Among them, MoMRISim achieves the highest correlation with PMAS,
indicating its robustness in capturing motion artifacts.

Figure 10 and Figure 11 presents the correlation between PMAS and reference-free metrics, which
overall show poor alignment with human judgment. Among the evaluated metrics, the VLM scores
evaluated by GPT-4o get the highest correlation. And the VLM score(GPT-4o) also demonstrates
significantly better alignment with PMAS than TG and AES. These results suggest that while
reference-free metrics are generally less reliable for assessing motion artifacts, the VLM score(GPT-
4o) may offer a alternative when references are unavailable.

G.2 COMPARISON BETWEEN SIMULATED AND REAL-WORLD EVALUATION UNDER SEVERE
MOTION

Figure 12 shows five sets of reconstructions with and without motion correction under severe motion
artifacts, comparing PMoC3D (real) and simulated motion cases. The first two columns show L1
reconstructions without motion correction, which reflect the raw severity of motion artifacts. Both
real and simulated scans display strong artifacts. Notably, the real-world L1 reconstructions still
preserve some anatomical details, while the simulated counterparts often obscure brain structures
entirely-indicating that the simulated artifact severity is comparable to or even greater than that of
real-world scans.

The last two columns present the corresponding MotionTTT reconstructions. In all cases, real-world
data retains noticeable ringing artifacts, with the fifth row showing particularly obvious artifacts. In
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Figure 9: Rank comparison of DISTS, DreamSim, and MoMRISim with the perceived motion
artifact score. All of them show high correlation with human judgment, while the MoMRISim
shows the highest correlation.
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Figure 10: Rank comparison of TG, AES, and VLM Score(GPT-4o) with the perceived motion
artifact score. All of them show poor correlation with human judgment.
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Figure 11: Rank comparison of VLM scores evaluated by GPT-4o, Qwen-VL-Max, Med3DVLM,
and M3D-LaMed with the perceived motion artifact score. All of them show poor correlation with
human judgment.
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Real(L1 noMoCo) Simulate(L1 noMoCo) Real(MotionTTT) Simulate(MotionTTT)

Figure 12: Reconstructions from the PMoC3D (real) and simulated datasets under two reconstruc-
tion methods. The first two columns show L1 reconstructions without motion correction, where
simulated volumes exhibit motion artifacts of similar or greater severity compared to real-world
scans. The last two columns display MotionTTT reconstructions: while real scans retain visible
motion artifacts, simulated volumes are consistently corrected with minor residual artifacts.

contrast, the simulated MotionTTT reconstructions appear consistently clean, with motion artifacts
largely eliminated.

Given that the simulated artifacts are at least as severe as those in real-world scans, the signifi-
cantly better reconstruction quality further confirms that simulation-based evaluation can lead to a
systematic overestimation of reconstruction performance in practical settings.
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TG:0.14
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ence

Figure 13: Baseline reconstructions of scan S4 2, with the difference images and the calculated
reference-free scores.

G.3 FAILURE EXAMPLE OF REFERENCE-FREE EVALUATION

In this section, we present an additional failure case of reference-free evaluation. Figure 13 shows
reconstructions from different baselines along with their corresponding error maps.

As illustrated, the stacked U-Net reconstruction exhibits substantial loss of anatomical detail, as
clearly visible in the error image. This result is qualitatively worse than those produced by Mo-
tionTTT and AltOpt. However, due to its visually smooth appearance, the stacked U-Net receives
comparable scores from TG and AES, despite its degraded quality.

Even the VLM score(GPT-4o) while generally better aligned with human judgment fails in this case,
assigning a near-perfect score to the stacked U-Net reconstruction. This example underscores a key
limitation of reference-free metrics: they can be misled by superficially clean outputs that actually
lack critical structural fidelity.

G.4 RESULTS OF INVOLUNTARY SCANS

Our dataset also includes a small number of involuntary-motion scans. One of these exhibits signif-
icant anatomical misalignment with its reference scan and is therefore excluded from the analysis.
We examine the two involuntary scans in Figure 14, which show their baseline reconstructions and
corresponding error maps relative to the references. The observed artifacts primarily consist of
faint ringing, similar to that seen in voluntary mild-motion cases. After applying reconstruction
methods such as MotionTTT, the resulting image quality is comparable to that of the corresponding
reference-free reconstruction, and no unexpected failure modes are observed.

We also analyzed the metric scores of the reconstructions from the two involuntary scans. Starting
from the 250 expert comparisons used for voluntary-motion volumes, we randomly added 63 addi-
tional pairwise comparisons, including one involving the involuntary reconstructions, and refit the
Bradley–Terry model as described in Section 2.2. We further computed the MoMRISim values for
the same involuntary reconstructions. The resulting rank–rank relationship is shown in Figure 15.
The involuntary scans fall within the normal variability of voluntary motion cases and do not ap-
pear as outliers. This figure indicates that the available involuntary scans do not exhibit abnormal
behavior relative to the voluntary cases.
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Reference MotionTTT AltOpt Stacked U-net L1 (no MoCo)
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Error w.r.t. refer-
ence

S8 4:
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ence

Figure 14: Baseline reconstructions of involuntary motion scans S5 4 and S8 4, with the difference
images and the calculated reference-free scores.
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Figure 15: Rank comparison of MoMRISim with the perceived motion artifact score for both vol-
untary motion and involuntary motion scans.
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Figure 16: Rank comparison of the perceived motion artifact score from 2 raters.
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Figure 17: Rank comparison between MoMRISim and the perceived motion artifact score within
different reconstruction methods.

G.5 INTER-RATER ANALYSIS

To assess the reliability of using a single rater for PMAS, we asked a second evaluator (a PhD
student with extensive experience in motion-corrupted MRI reconstruction) to independently score
all 72 reconstructed volumes. To reduce evaluation noise, this rater performed a full set of pair-
wise comparisons, i.e., 2,556 comparisons covering all reconstruction pairs, and we then fitted a
Bradley–Terry model to obtain PMAS values for the 72 reconstructions. As shown in Figure 17,
the resulting ranking exhibits a very strong Spearman correlation of 0.94 with the medical doctor’s
PMAS. This high agreement demonstrates that PMAS is reproducible and not dependent on a single
rater’s subjective preference.

G.6 WITHIN-METHOD CORRELATION ANALYSIS

Because each scan is reconstructed with multiple methods, a single volume contributes multiple
points in Figure 2. To verify that the observed correlation is not driven by differences between re-
construction pipelines, we also computed correlations within each method separately. As shown in
Figure 17, using the 24 scans reconstructed by each method, the correlations between MoMRISim
and PMAS are 0.87 for AltOpt, 0.81 for MotionTTT, and 0.77 for the Stacked U-Net. The consis-
tently high within-method correlations indicate that MoMRISim reflects motion severity rather than
method-specific variation.
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