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Abstract

Multimodal learning is an essential paradigm for addressing complex real-world
problems, where individual data modalities are typically insufficient for accurately
solving a given modelling task. While various deep learning approaches have
successfully addressed these challenges, their reasoning process is often opaque;
limiting the capabilities for a principled explainable cross-modal analysis and
any domain-expert intervention. In this paper, we introduce SHARCS (SHARed
Concept Space) – a novel concept-based approach for explainable multimodal
learning. SHARCS learns and maps interpretable concepts from different heteroge-
neous modalities into a single unified concept-manifold, which leads to an intuitive
projection of semantically similar cross-modal concepts. We demonstrate that
such an approach can lead to inherently explainable task predictions while also
improving downstream predictive performance. Moreover, we show that SHARCS
can operate and significantly outperform other approaches in practically significant
scenarios, such as retrieval of missing modalities and cross-modal explanations.
Our approach is model agnostic and easily applicable to different types (and num-
ber) of modalities, thus advancing the development of effective, interpretable, and
trustworthy multimodal approaches.

1 Introduction

Deep learning (DL) approaches for multimodal learning attain high performance by blending in-
formation from different data sources [22, 14]. However, the opaque reasoning of DL models [24]
hinders the human ability to better understand the relationships in the data across modalities, which
is imperative for safety-critical domains such as healthcare and biology, where this may often lead
to novel insights and discoveries. To address this issue, many self-explainable methods were released
[13, 28, 1, 2], offering an effective solution to bridge this knowledge gap. These methods can extract
intuitive and human-readable explanations, and some even facilitate interaction with human experts,
enabling a deeper understanding of the problem. However, they are often limited to single data
modalities. A recent line of research focuses explicitly on developing or adapting existing methods for
multimodal settings [23]. While relevant, they are typically tailored for specific multimodal scenar-
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Figure 1: SHARCS (SHARed Concept Space): for each modality i, the concept encoder module gi
produces a local concept embedding ci. SHARCS then maps local concept embeddings into a shared
concept representation si. To generate a semantically meaningful shared space, SHARCS minimises
the distance between shared concepts of similar objects from different modalities. Finally, the label
predictor f takes as input the concatenation of all shared concepts si to solve the task at hand.

ios [26], provide only local explanations [19, 15] or generate explanations for just one of the modalities
[11] using an extra modality, thus failing to provide a general solution to multimodal problems.

In this paper, we introduce SHARCS (SHARed Concept Space), a novel interpretable concept-based
approach (described in Section 2) designed to address general multimodal tasks. Our experiments
(Section 3) demonstrate on four common data modalities (tabular, text, image, and graph data) that
SHARCS (i) outperforms unimodal models and matches the task performance of existing baselines
on challenging multimodal settings, (ii) attains high task accuracy even when a modality is missing,
(iii) generates intuitive concept-based explanations for task predictions, and (iv) generates simple
concept-based explanations for a data modality using the concepts emerging from other modalities,
allowing human experts to uncover hidden cross-modal connections.

2 SHARCS: SHARed Concepts Space

SHARCS combines information from diverse data sources during training, emphasizing the integra-
tion of high-level, interpretable concept representations (as defined by Ghorbani et al. [7]), as opposed
to traditional uninterpretable embeddings [24]. This approach facilitates intuitive concept-based ex-
planations and enables experts to explore the interrelationships between data modalities. In SHARCS,
for example, a red ball is represented as a multimodal concept with a consistent representation in the
shared space across input modalities (e.g., image, text, etc.).

Local concepts Figure 1 depicts SHARCS applied to two data modalities. The model utilizes concept
encoders g1, . . . , gn, each for a modality i = 1, . . . , n, mapping inputs to local concepts. Modality-
specific architectures ϕ1, . . . , ϕn map inputs to latent concept representations. To convert latent
concepts into a local concept space, we use batch scaling ⊛ : Rb×k → Rk (with batch size b) and a
sigmoid activation function σ : R → [0, 1], resulting in gi = σ◦⊛◦ϕi. Batch rescaling before sigmoid
activation triggers a concept when its representation significantly differs from others in the batch:

ci,m = σ
(
ϕi(xi,m) ⊛

j∈Bi,m

ϕi(xi,j)
)−1

(1)

Here, Bi,m is the m-th batch’s sample indexes, ⊛ represents permutation-invariant batch rescaling
(e.g., batch normalization), and ci decipts local concepts for the i-th modality. They can be used
to understand how local concepts combine into the shared concept space, offering another level of
interpretability of the model.

Shared concepts SHARCS then maps the local concepts ci into a shared concept space. To this end,
SHARCS applies a modality-specific set of concept encoders h1, . . . , hn mapping local concepts
ci ∈ C ⊆ [0, 1]k into a set of shared concept embeddings si ∈ S ⊆ [0, 1]t of size t i.e., hi : Ci → S.
Shared concept encoders resemble the structure of local encoders applying batch rescaling and a
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sigmoid activation on top of learnable parametric functions ψ1, . . . , ψn:

si,m = σ
(
ψi(ci,m) ⊛

i=1,...,n ∧ j∈Bi,m

ψi(ci,j)
)−1

(2)

Thanks to this operation, our model blends information from different data modalities into the same
space, enabling the generation of unified concept manifolds.

Task prediction. Finally, the model concatenates the shared concepts si from each modality and uses
them to solve the task at hand. To solve the task, a label predictor function f : Sn → Y maps the
shared concepts to a downstream task space Y ⊆ Rl: ŷm = f

(
s1,m

∣∣ . . . ∣∣sn,m)
where the symbol |

represents the concatenation operation. We provide more details about SHARCS in Appendix A.

Learning process SHARCS integrates information from diverse data modalities into a unified vector
space. However, concept encoders can learn different concepts for various tasks, potentially causing
overlap in the shared vector space. To address this, we introduce an additional term in the loss
function L, promoting semantic coherence by connecting concepts from different modalities:

L(y, ŷ, s) = T (y, ŷ) +
λ

|M |
∑

(i,q)∈M⊆({1,...,n}
2 )

∣∣∣∣si − sq
∣∣∣∣
2

(3)

where λ ∈ R is a hyperparameter that controls the strength of our semantic regularization, T is a
task-specific loss function (such as cross-entropy), M is a subset of all possible pairs of modalities({1,...,n}

2

)
, and ||si − sq||2 represents the Euclidean norm between the shared representation of the

same sample in the two different modalities i and q. In our solution, we randomly draw samples
to compute the semantic regularisation loss at every iteration. Notably, a SHARCS-based model
is flexible and can be configured differently, such as adding local tasks with modality-specific
loss functions or employing various learning mechanisms like End-to-end, Sequential, and Local
pre-training (cf. Appendix A.2).

Unimodal and Multimodal Explanations: SHARCS offers concept-based explanations, distinguish-
ing it from existing multimodal models. Like unimodal unsupervised concept-based models [7],
SHARCS assigns semantic meaning to concepts through visualization. It does this by highlighting
examples with the highest or lowest concept values (concept active or inactive) in the shared space,
eliminating the need for external algorithms. Prototypes of a concept can be retrieved in modality i by
selecting samples with the highest (lowest) shared concept representation during training. Moreover,
SHARCS can offer semantic context for an input sample by identifying the samples in the shared
space that share the same concepts. This visualization helps identify relevant sample clusters with
shared characteristics, providing insights into why these examples are classified similarly.

Cross-Modal Explanations & handling missing modalities: SHARCS goes beyond unimodal
interpretability by enabling cross-modal explanations. Using an input sample from one modality, it re-
trieves similar examples from other modalities based on shared concept space proximity. Additionally,
SHARCS can visualize how a concept in one modality is interpreted in another by displaying samples
with the highest (lowest) values of that concept across all shared spaces. This further translates to
another benefit: SHARCS can effectively handles missing modalities by approximating the repre-
sentation from a reference modality. It identifies the closest shared concept in the reference modality
and approximates the missing representation. This allows SHARCS to process inputs with missing
modalities efficiently. Additional details on each of these properties can be found in the Appendix A.1

3 Experiments

Our central hypothesis is that SHARCS allows for an efficient, accurate and interpretable multimodal
learning. To address these aspects, we design our experiments along two main points: i) Multi-
modal generalisation performance - Through a series of experiments, we first evaluate SHARCS’
capabilities for multimodal learning in different practically-relevant scenarios. Then, we compare
SHARCS performance to unimodal and multimodal baselines, some of which are not interpretable; ii)
Interpretability - We qualitatively showcase SHARCS capabilities for learning semantically plausible,
explainable and consistent (multimodal) concepts.

We evaluate our hypotheses on four multimodal tasks, each leveraging a pair of multimodal datasets
such as tabular, image, graph, and text data. The four multimodal, or global, tasks are designed such
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that the models need to leverage both modalities in order to provide correct predictions. Models
that will learn only from one of the modalities will be able to solve a partial (local) single-modality
task but will typically exhibit random performance on the global multimodal task. Furthermore, we
test the interpretability of SHARCS and its ability to cope with real-world scenarios when a modality
is missing. Further details of the experiments, dataset and model details, baselines and metrics used
are in the Appendix B.

4 Results and discussion

SHARCS’ generalisation is on par with non-interpretable multimodal models. As a proof-of-
principle of our method, we first benchmarked it against unimodal approaches (see Figure 7 in the
Appendix D). SHARCS achieves good performance across all four multimodal tasks, consistently
outperforming (up to 81%) the unimodal baselines. Furthermore, the results presented in Table 1
show that SHARCS achieves slightly better or comparable performance than the other multimodal
baselines. In particular, our approach can maintain good performance, despite the bottleneck in-
troduced for computing concepts and the constraint of the shared space. More importantly, both
concept-based approaches are the only two that can accurately model the CLEVR task, which further
justifies the utility of the concept embeddings. Moreover, in terms of performance in scenarios with
missing modalities, SHARCS consistently outperforms other baselines in Table 1. Its success lies
in constructing a more robust and less noisy concept space, enhancing sample representation and
enabling precise retrieval of missing modalities.

Table 1: The performance of SHARCS (Accuracy (%)) in scenarios
with missing modalities, compared to Relative representation and
Concept Multimodal variants. The global task accuracy is pre-
sented as a reference. SHARCS performs better than the baselines,
particularly on harder tasks requiring both modalities. In some
scenarios, SHARCS is able to retrieve modalities, leading to better
downstream performance than the original data.

Global Missing Modality
Dataset Model Accuracy Compl. 1st Modality 2nd Modality

XOR-AND-XOR
Relative 99.5 ± 0.3 - 80.1± 6.4 82.8± 2.2
Concept 99.0± 0.8 96.2± 1.2 68.0± 2.0 57.0± 6.1
SHARCS 98.7± 0.5 98.0 ± 1.2 98.6 ± 0.9 91.9 ± 1.2

MNIST+SuperP.
Relative 80.4± 0.2 - 52.6± 4.9 30.1± 2.4
Concept 88.2± 0.1 78.9± 1.4 13.7± 3.9 10.8± 2.6
SHARCS 89.6 ± 0.1 88.7 ± 0.2 98.0 ± 0.0 82.5 ± 0.4

HalfMNIST
Relative 95.6 ± 0.1 - 92.9± 1.4 60.1 ± 3.4
Concept 93.9± 0.0 91.3± 0.1 89.4± 1.3 13.4± 2.1
SHARCS 94.0± 0.1 92.6 ± 0.3 96.5 ± 0.0 55.1± 3.0

CLEVR
Relative 48.7± 0.5 - 49.9± 0.0 49.0± 0.1
Concept 90.1± 1.0 82.3 ± 1.2 51.4± 2.8 48.6± 2.7
SHARCS 90.2 ± 0.2 81.5± 1.1 93.1 ± 0.6 93.4 ± 0.4

SHARCS unveils meaning-
ful concepts and. SHARCS,
much like our Concept Multi-
modal baselines, excels at ex-
tracting task-related concepts,
evidenced by its completeness
score [27] aligning closely with
Accuracy in Table 1. No-
tably, SHARCS achieves higher
completeness scores on three
of the four datasets compared
to solutions lacking a shared
space, with improvements of up
to 10% in MNIST+Superpixels.
SHARCS uses the shared space
to de-noise concepts, collaps-
ing less significant ones into
semantically richer representa-
tions. Additionally, SHARCS
can offers insights into the pre-
diction process by replacing the predictor function f with a decision tree (see Figures 12 and 13 in
Appendix D). This enables users to understand how various concepts contribute to decisions, en-
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Figure 2: (a-c) Retrieval examples obtained by (a) SHARCS, (b) Relative representation, and (c)
Concept Multimodal; on the MNIST+Superpixels dataset. The top two rows are samples of retrieved
graphs using images, while the bottom two are retrieved images using graph samples. (d) tSNE plot
of the SHARCS concept space
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hancing task comprehension, revealing how concepts combine, and justifying sample classifications.
Moreover, SHARCS enhance cross-modal understanding. This cross-modal explanation can be
extended to individual concepts, demonstrating how specific concepts are represented in the other
modality. Additionally, Figure 2d shows SHARCS’ shared space for the MNIST+Superpixels dataset,
where similar examples from different modalities are closely mapped. This property is extremely
valuable, particularly when modalities lack expressiveness or share nuanced commonalities, shedding
light on the critical relationship between modalities and samples, which can be beneficial across
domains like medicine, biology, and healthcare. We envision this work as a foundation for the
development and evaluation of interpretable multimodal approaches.
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A Additional details of SHARCS

A.1 Multimodal concept-based explanations

Unimodal and multimodal explanations. The key advantage of SHARCS with respect to existing
multimodal models is that it provides intuitive concept-based explanations. Similarly to unimodal
unsupervised concept-based models [7], we can use SHARCS to assign semantic meaning to concept
labels by visualizing the “prototypes” of a concept, represented by the examples with the highest
values (concept active) or with the lowest values (concept inactive) for that concept in the shared
space. Thanks to the interpretable architecture, SHARCS does not require an external algorithm to
find these samples as opposed to post-hoc methods such as Ghorbani et al. [7]. More formally, we
can retrieve a prototype γv ∈ {0, 1}t of a concept v in a modality i by taking the sample with the
SHARCS shared concept representation with the highest (lowest) value across all the si seen during
training.

Moreover, SHARCS can also provide a semantic contextualisation for an input sample m by visual-
ising the input samples whose embeddings are closer in the shared space embeddings to the given
input. More formally, given a reference modality i we can identify the set of closest samples to the
input m in a radius ρ ∈ R as follows:

E = {j ∈ Btrain | ||si,m − si,j ||2 < ρ} (4)

where Btrain ⊆ N is the set of indexes of training samples, E ⊆ Btrain is the set of the closest
samples in the shared space. This form of visualisation is often used to find relevant clusters of
samples sharing some key characteristics. By showcasing examples from the input concept’s family,
SHARCS allows users to comprehend why these examples are classified similarly.

Both can be applied to global concepts, as they are the concatenation of the shared concepts. The
only difference it to consider zj = (s1,j | . . . |sn,j) ∈ [0, 1]n×t, instead of si.

Cross-modal explanations. SHARCS offers unique forms of explanations which go significantly
beyond simple unimodal interpretability. Indeed, SHARCS enables cross-modal explanations, al-
lowing one modality to be explained using another. Specifically, we can use an input sample in a
specific modality to retrieve the most similar examples from other modalities. To this end, we can
select training samples from the other modalities, which are closer in the shared concept space to the
sample m being explained:

E = {j ∈ Btrain, q ∈ {1, . . . , n} | ||si,m − sq,j ||2 < ρ} (5)

As before, it is also possible to visualise how a concept v of a modality i is interpreted in the other
modality q, visualising the samples with the highest (or lowest) value of the concept v in modality q
across all sqv. In such a manner, it is possible to translate a key feature from one modality to another.

These functionalities are particularly valuable when a modality’s features are less human-interpretable
than others. Visualizing the relationships between modalities enables cross-modal interpretability by
emphasizing the semantic interconnections between concepts of different modalities.

Inference with missing modalities. Another unique feature of SHARCS is that the shared concept
space enables it to process inputs with missing modalities effectively. Indeed, the original representa-
tion of an input m of a missing modality i can be effectively approximated using the shared concepts
of another reference modality q. To this end, we just need to find the shared concept si,j observed
during training from the missing modality, which is closest to a shared concept of the reference
modality m′ = argminj∈Btrain

||sq,m − si,j ||2
This way we can approximate the missing shared concept representation sim from the missing
modality as follows:

si,m′ = σ
(
ψi(ci,m′) ⊛

i=1,...,n ∧ j∈Bi,m′
ψi(ci,j)

)−1

≈ si,m (6)

A.2 Different configuration of SHARCS

End-to-end It is possible to train all SHARCS components simultaneously, allowing a joint opti-
misation of the task and the concepts found. Therefore, it is also possible to include the loss of
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the local tasks in Equation 3. However, to use local supervision, we need to implement inside the
model n local label predictor function f1, . . . , fn ∈ N, one for each modality i = 1, . . . , n. The
local label predictor function fi : Ci → Yi maps the local concepts from the i-th modality to the
downstream local task space Y ⊆ Rli , where li is the number of classes of the local task of the
modality i. Therefore the objective function to minimise is the following:

L(y, ŷ, s) = T (y, ŷ) +
λ

|M |
∑

(i,q)∈M⊆({1,...,n}
2 )

∣∣∣∣si − sq
∣∣∣∣
2
+

n∑
i=1

βiTi(yi, ŷi) (7)

where βi ∈ R is a hyperparameter that controls the strengths of the local loss Ti.
Sequential The training process of this method is split in two parts. In the first one, a model similar
to Concept Multimodal is trained. Therefore, unimodal models g1, . . . , gn are utilised to compute
local concepts, which are concatenated and passed through the label predictor function to solve the
downstream task. This part of the entire architecture is trained first, using an objective function
equals to T , solving the task using local concepts. Then, the concept encoders functions g1, . . . , gn
are frozen. In the second part of the training, local concepts are projected into the shared space by
h1, . . . , hn, concatenated and used by f to make the final prediction. At this point, the standard loss
described in Equation 3 is applied.

Local pre-training In this approach, SHARCS’ single modality components g1, . . . , gn are trained
first, using the same local label predictor functions f1, . . . , fn described in the end-to-end approach
to make a prediction. Each is trained using their specific local loss Ti. Then, the concept encoders
functions g1, . . . , gn are frozen, while the other SHARCS’ modules are employed and trained using
the standard objective function described in Equation 3.

A.3 Concept Finding on Graph

Although our solution is model agnostic, it is important to treat every modality properly. Therefore,
we slightly modify the concept encoder function when it is composed of a Graph Neural Network.
Specifically, we applied a modified version of the Concept Encoder Module (CEM)[16]. In this case,
the concept encoder function gi is composed of a Graph Neural Network ϕi : Xi → Hi, a Gumbel
Softmax [10] to find the "node concepts", an add pooling over the nodes of the graph, a batch scaling
function and a sigmoid Function. Therefore to find cim, where i is a graph modality, the equation
becomes the following:

ti,m = ϕi(xi,m) ni,m =
∑

d∈xi,m

σ(ti,m,d) (8)

ci,m = σ
(

ni,m ⊛
j∈Bi,m

ni,j

)−1

(9)

where ϕi represents the Graph Neural Network applied to the modality i, which outputs the represen-
tation of each node d of graph m in the modality i, σ is the Gumbel Softmax, and n represents the
sum over the node concept of the graph m. Therefore, in our solution, the graph concept is related to
the occurrences of each node concept.

The issue with CEM is that when it aggregates node concepts, there is no one-to-one mapping
between a set of node concepts and graph concepts. This could lead to giving the wrong concept to a
graph. Figure 3 shows an example of a situation where two different graphs end up with the same
concepts.

A.4 Code, licences and Resources

Libraries For our experiments, we implemented all baselines and methods in Python 3.9 and relied
upon open-source libraries such as PyTorch 2.0 [20] (BSD license), Pytorch Geometric 2.3 [5]
(MIT license) and Sklearn 1.2 [21] (BSD license). In addition, we used Matplotlib [9] 3.7 (BSD
license) to produce the plots shown in this paper and Dtreeviz1 2.2 (MIT license) to produce the

1https://github.com/parrt/dtreeviz
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Figure 3: An example of two different graphs with a different set of node concepts described with the
same graph concept.

tree visualisations. We will publicly release the code to reproduce all the experiments under an MIT
license.

B Experiments details

Modeling details. As discussed earlier, SHARCS learns modality-specific concepts before combining
them in a shared space. Therefore, since we consider tasks that combine different modalities, we
use different models. Specifically: (i) for tabular data, we use a 2-layer Feed Forward Network;
(ii) for images, a 2 layers CNN (MNIST+Superpixels, HalfMNIST) or a pre-trained ResNet18 [8]
(CLEVR); (iii) for text, a 2-layer Feed Forward Network after computing the text representation with
TF-IDF; and (iv) for graphs, 4 layers of GCN [12] (XOR-AND-XOR) or 2 layers of Spline CNN [6]
(MNIST+Superpixels, HalfMNIST). Note that, since in this paper, we are focusing on evaluating the
efficacy of SHARCS in a multimodal setting rather than pursuing state-of-the-art performance; all
approaches use the same (local) backbone architectures. Nevertheless, as SHARCS is model agnostic,
these can be easily extended to more sophisticated (but likely less efficient) architectures. Appendix
C provides further details about model compositions and used hyperparameters in each experiment.

Baselines and experiments. We begin by examining SHARCS’ multimodal capabilities. In our initial
experiments, we compare SHARCS with models trained solely on single modalities. These unimodal
models include both basic concept-less models and concept-based variations. In the subsequent
experiments, we assess SHARCS’ performance against several multimodal baseline models. These
baselines consist of: (i) A standard multimodal approach called ’Simple Multimodal,’ which combines
uninterpretable embedded representations from individual local models (ii) A concept-based variant
known as ’Concept Multimodal,’ similar to the previous approach but additionally computes and uses
local concepts without sharing them (iii) A ’Relative Representations’ multimodal approach [18],
which constructs relative mapped representations of each sample in relation to a given anchor within
a shared space. This approach requires a two-stage training process: first for building representations
for each modality and then for mapping them in the shared relative space. Furthermore, we consider
a practical multimodal scenario involving missing modalities. In this setup, we train multimodal
models using both modalities, but during inference, one of the modalities is replaced with an auxiliary
one. For example, instead of representing a six as an image and a four as a graph, we represent both a
six and a four as images.

Evaluation metrics. We repeat each experiment several times (three times in the case of CLEVR
and five times for the other three) and report a mean and standard error for each metric we use. Each
model has been evaluated using test classification accuracy to evaluate multimodal generalisation
performance. Furthermore, we also report the completeness score to quantitatively assess the concept
quality (for SHARCS and Concept Multimodal). The completeness score assesses how the learnt
concepts are suitable to solve the downstream task. To compute it, we train a decision tree, which
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Figure 4: Examples of the conversion from the four main families of graphs to the meaningful bits of
the tabular data in the XOR-AND-XOR dataset. In the dataset, they have some additional random
edges.

takes the binarised global concepts at the input. To evaluate the performance of SHARCS to the ones
of the ‘Relative representation’ and ‘Concept Multimodal’ variants in the missing modality settings,
we compute their accuracy in this scenario.

Tasks and datasets. We evaluate our hypotheses on four multimodal tasks, each leveraging a pair
of multimodal datasets such as tabular, image, graph, and text data. The four multimodal, or global,
tasks are designed such that the models need to leverage both modalities in order to provide correct
predictions. Models that will learn only from one of the modalities will be able to solve a partial
(local) single-modality task but will typically exhibit random performance on the global multimodal
task. Furthermore, we test the interpretability of SHARCS and its ability to cope with real-world
scenarios when a modality is missing.

The first task, XOR-AND-XOR, considers multimodal settings with tabular and graph data, each
modelling a local/partial XOR task. The entire dataset contains 1000 samples for each modality. The
tabular modality consists of bit-strings (2 used for solving the ‘xor’ and 4 random), while the graph
modality comprises 4 types of graphs (the label is binarized and used for solving the ‘xor’ task, as
Figure 4 shows). The global multimodal task is an ‘and’ binary problem, combining the outcome
of the two local ‘xor’ tasks. The second task is MNIST+Superpixels, comprised of 60000 pairs of
image modality (MNIST [3]) and a graph modality, the latter representing a superpixel-graph of
an MNIST image [17]. While the local tasks are treated as classical classification tasks (from an
image and a graph, respectively), the global multimodal task concerns predicting the sum of the two
digits. Figure 5a shows five samples from this dataset, including the global label. Next, we consider
HalfMNIST, which combines 60000 samples of an image and a graph modality. Here the task is to
perform (MNIST) classification, but each modality comprises one part of the sample (the top/bottom
half of an image or graph). Figure 5b shows five samples from this dataset. Finally, the last task
builds on CLEVR, a standard benchmark in visual question answering comprised of image and text
modalities. Specifically, in our multimodal setting, we follow [25] and produce our own CLEVR
sample dataset with 8000 samples, where instead of having a question, we generate text captions for
the generated images. In turn, the multimodal task is a binary problem, predicting whether the caption
matches the image. Figure 6 shows five samples taken from this dataset, the top row represents the
captions, while the bottom is about the images.

C Models details

In this section, we describe in detail the configuration of SHARCS used in each experiment. Then,
we add only the missing or different information needed to build the other models used, as most of
the details are in common between our solutions and baselines.
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(a) (b)

Figure 5: (a) Examples from the MNIST+Superpixels dataset. The shown label is related to the task,
which is the sum of the two digits. (b) Examples from the HalfMNIST dataset. The shown label is
related to the task, which is the digit represented by joining both parts. Each half can be represented
with one of the two modalities.

small blue metallic sphere

label: True

large blue shiny ball

label: False

big red rubber cylinder

label: True

large red metallic ball

label: True

small yellow matte cube

label: False

Figure 6: Examples from the CLEVR dataset, where there is a text caption and an image of an object.
The label is True if the caption correctly describes the image, otherwise is False.

In general, single modality models used only the DL model inside of the respective gi, with (or
without) a sigmoid function, if it is a concept-based (concept-less) solution. Simple Multimodal and
Relative representation solutions employ the DL models inside gi and the label predictor f , while
Concept Multimodal also uses batch scaling and the sigmoid inside gi.

C.1 XOR-AND-XOR

On this task, we trained SHARCS with the end-to-end configuration, as we do not have local
supervision. It is composed of two gi concept encoder functions, one for each modality. To handle
the graph modality, the DL model inside of g1 is composed of 5 layers of Graph Convolutional
Networks [12] with LeakyReLU as the activation function. The input size is 1, the hidden size of
all the intermediate layers is 30, while the output dimension of g1 is 7. On the other hand, a simple
2-layer MLP with a ReLU as the activation function is the DL model of g2, which takes tabular
data as input. The input size is 8, the hidden size is 30, and the output dimension is equal to 7.
SHARCS uses Batch Normalisation as batch scaling and Sigmoid to compute concepts, but on the
graph modality follows the approach described in Appendix A.3. The second set of concept encoders
h1 and h2 are 2-layer MLPs with a ReLU as the activation function, with an input dimension of 8, as
well as the hidden and output size. Finally, the label prediction function f is a 2-layer MLP with a
ReLU as the activation function, with an input dimension of 16, a hidden size of 10 and an output
dimension equals to the number of classes, which is 2.

An additional detail for single modality models is their label prediction function fi, one for each
modality, which is a 2-layers MLPs with a ReLU as the activation function, with an input dimension
of 8, a hidden size of 10 and an output dimension of 2.
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In terms of learning process, we used a Binary Cross Entropy Loss (BCELoss) with Logits (which
incorporates a sigmoid layer before computing the BCELoss) as T , a λ equals to 0.1, and at every
iteration, we took 10% of randomly draw samples to compute the distance. Other hyperparameters
used to train the models are the Batch Size used (64), the number of epochs (150) and the Learning
Rate used by an Adam optimizer (0.001). However, we train the unimodality models of Relative
representation models for 150 epochs and its label predictor function for other 150 epochs.

C.2 MNIST+Superpixels and HalfMNIST

On MNIST+Superpixels and HalfMNIST, we used an almost identical setup. We trained SHARCS
with the local pre-training configuration, as we have local supervision. It is composed of two gi
concept encoder functions, one for each modality. To handle the graph modality, the DL model
inside of g1 is composed of 2 layers of SplineCNN [6] with ELU as the activation function, similar
to the SplineCNN model described in the original paper. Therefore, a max pooling operator based
on the Graclus method [4] is applied after every layer. The input size is 1, the hidden size of all the
intermediate layers is 32, and the output dimension of g1 is 12. On the other hand, a Convolutional
Neural Network is the DL model of g2. It is composed of the following layers: a Convolutional
Layer (input channel=1, output channel=16, kernel size=5, padding=2, stride=1), a ReLU, a MaxPool
with a kernel size of 2, a Convolutional Layer (input channel=16, output channel=16, kernel size=5,
padding=2, stride=1), a ReLU, a MaxPool with a kernel size of 2, then the output is flattened and
taken as input from a 2-layer MLP with a ReLU as the activation function, with a hidden dimension
of 64 and output size of 12. Moreover, SHARCS uses Batch Normalisation as batch scaling and
sigmoid to compute concepts, but on the graph modality follows the approach described in Appendix
A.3. The second set of concept encoders h1 and h2 are 2-layer MLPs with a ReLU as the activation
function, with an input dimension of 12, as well as the output size and a hidden size of 64. Finally,
the label prediction function f is a 2-layer MLP with a ReLU as the activation function, with an
input dimension of 24, a hidden size of 128 and an output dimension equals to the number of classes,
which is 19 for MNIST+Superpixels and 10 for HalfMNIST. As we apply the local pre-training
configuration, in the first part of the training, we used some local label predictor function fi, one
for each modality. They are 2-layer MLPs with a ReLU as the activation function, with an input
dimension of 12, a hidden size of 64 and an output dimension equals to the number of classes of the
local task, which is 10 for both datasets. Other unimodal baselines also use these local label predictor
functions.

Regarding the learning process, we used a BCELoss with Logits both with local and global tasks,
a λ equals to 0.1, and at every iteration, we took 10% of randomly drawn samples to compute the
distance. Other hyperparameters used to train the models are the Batch Size used (64), the number of
epochs used to pretrain the unimodal models (15) and the additional epochs used to train the second
part of SHARCS (15). The learning rate used by the Adam optimiser is equal to 0.01 for the Graph
Neural Network and 0.001 for all the other layers of the model. However, we train the unimodality
models of Relative representation models for 15 epochs and its label predictor function for other 20
epochs.

C.3 CLEVR

On this task, we trained SHARCS with the sequential configuration, as we do not have local
supervision and want to discover local concepts that are not influenced by the other modality. It is
composed of two gi concept encoder functions, one for each modality. To handle the image modality,
the DL model inside of g1 is a pretreated ResNet18 [8], followed by a Dense layer that reduced
the output size of the ResNet to 24. On the other hand, a simple 2-layer MLP with a ReLU as the
activation function is the DL model of g2, which takes the TF-IDF representation of the caption
received as input. The input size is 22, the hidden size is 48, and the output dimension is equal to 24.
SHARCS uses Batch Normalisation as batch scaling and sigmoid to compute concepts. The second
set of concept encoders h1 and h2 are 2-layer MLPs with a ReLU as the activation function, with an
input dimension of 24, as well as the hidden and output size. Finally, the label prediction function f
is a 2-layer MLP with a ReLU as the activation function, with an input dimension of 48, a hidden
size of 10 and an output dimension equals to the number of classes, which is 2.
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Figure 7: Accuracy of unimodal models and SHARCS on all datasets. SHARCS outperforms all the
other models on all tasks.

Table 2: Accuracy (%) and Completeness Score (%) of SHARCS compared to non-interpretable
unimodal models (Simple Modality 1 and Simple Modality 2), non-interpretable multimodal models
(Simple Multimodal and Relative representation), interpretable unimodal models (CBM Modality
1 and CBM Modality 2) and interpretable multimodal baselines (Concept Multimodal). Generally,
SHARCS achieves better (or comparable) performance than the other baselines, producing better and
more compact concepts.

Model XOR-AND-XOR MNIST+SuperP. HalfMNIST CLEVR
Acc. Compl. Acc. Compl. Acc. Compl. Acc. Compl.

Mod 1 74.4± 0.7 - 8.7± 0.1 - 76.7± 0.2 - 48.3± 0.3 -
Mod 2 75.9± 1.4 - 9.8± 0.1 - 92.6± 0.2 - 49.8± 0.1 -
CBM 1 74.8± 0.0 - 9.4± 0.1 - 78.3± 0.1 - 49.1± 0.5 -
CBM 2 76.6± 1.3 - 9.9± 0.2 - 92.9± 0.1 - 49.3± 0.4 -

Simple 99.3± 0.5 - 86.6± 3.0 - 94.2± 0.2 - 59.5± 9.5 -
Concept 99.0± 0.8 96.2± 1.2 88.2± 0.1 78.9± 1.4 93.9± 0.0 91.3± 0.1 90.1± 1.0 82.3 ± 1.2
Relative 99.5 ± 0.3 - 80.4± 0.2 - 95.6 ± 0.1 - 48.7± 0.5 -

SHARCS 98.7± 0.5 98.0 ± 1.2 89.6 ± 0.1 88.7 ± 0.2 94.0± 0.1 92.6 ± 0.3 90.2 ± 0.2 81.5± 1.1

An additional detail for single modality models is their label prediction function fi, one for each
modality, which is a 2-layers MLPs with a ReLU as the activation function, with an input dimension
of 24, a hidden size of 24 and an output dimension of 2.

In terms of learning process, we used a BCELoss with Logits, a λ equals to 0.1, and at every iteration,
we took the samples with the label equals to True out of 20% of randomly drawn samples to compute
the distance. Other hyperparameters used to train the models are the Batch Size used (64), the number
of epochs used by all models and in the first part of the training of SHARCS (30), the additional
epochs used in the second part of the training of SHARCS (20) and the Learning Rate used by an
Adam optimizer (0.001). In addition, we train the unimodality models of Relative representation
models for 30 epochs and its label predictor function for other 20 epochs.

D Additional results

This section includes additional results and consideration of the experiments presented in Section 3.

Broader Impacts We do not believe this approach can have a direct harmful impact when applied in
AI systems. On the contrary, it can positively influence the development of models for safety-critical
domains, such as healthcare.

Detailed results of experiments Figure 7 shows the performance of unimodal models compared to
SHARCS in all tasks. It is clear how 3 out of the 4 datasets we designed are not solvable by unimodal
models, proving our design choice. Furthermore, Table 2 shows the Accuracy for all the models
trained and the Completeness Score for the multimodal interpretable models. It gives more detailed
results and compares together all the trained models. On the other hand, Table 3, shows the result of
an analysis we performed on CLEVR, where we checked for each model which characteristics of the
retrieved sam- ple matched with the ones of the object used as the source.

Interpretability We present the visual results for some of the dataset to give a better idea of the
performance of our solution. We show the retrieved examples per modality, the learnt shared space
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Table 3: Accuracy (%) of Relative representation, Concept Multimodal and SHARCS in retrieving
a specific characteristic in a modality using the other. SHARCS attains higher figures than other
models on every characteristic.

Model Modality Shape Size Material Color Mean

Concept Text 31.7± 2.3 46.0± 3.0 52.1± 0.2 16.2± 3.7 36.5± 0.6
Image 30.0± 0.2 45.4± 5.3 51.3± 2.6 10.8± 1.3 34.3± 0.6

Relative Text 29.9± 1.0 50.5± 0.7 50.0± 0.6 13.3± 1.2 35.9± 0.3
Image 33.0± 1.0 49.6± 0.2 49.0± 1.0 11.1± 0.7 35.6± 0.2

SHARCS Text 56.8 ± 1.4 63.6 ± 3.5 53.9 ± 1.8 30.2 ± 5.6 51.1 ± 2.0
Image 51.4 ± 2.4 61.5 ± 1.7 53.4 ± 2.6 27.5 ± 4.0 48.5 ± 1.9

and the decision tree. Figure 8 shows the retrieved examples by SHARCS, Relative Representation
and Concept Multimodal in the MNIST+Superpixels dataset. Finally, Figure 9 shows the retrieval
capability of these models on the CLEVR dataset. In all these experiments, it can be seen that the
quality of the retrieved examples is higher than the others, where the Relative Representation is not
always accurate, and the Concept Multimodal resembles random retrieval. The second set of images
visually confronts the shared space learnt by SHARCS and Concept Multimodal. For this purpose,
we visualise the tSNE representation of the shared concepts for SHARCS and the local concepts
for Concept Multimodal. Figure 10 shows these shared spaces for the MNIST+Superpixels dataset
and Figure 11 for CLEVR. It is clear how the concept representation learnt by SHARCS for one
modality overlaps with that for the other, especially when considering semantically similar examples
from different modalities that are closer in the space representation. All these results are expected
by design since we force the model to produce the shared space with these properties. Finally, part
of the decision trees used to compute the completeness score is visualised. At every split, it shows
the concept that is considered to make the decision, and it can be active (right branch) or non-active
(left branch). If the node is not the roof, it also shows three samples with the highest (concept active)
or the lowest (concept non-active) value for the concepts of the previous split, among the ones that
respect all the previous split conditions. Each leaf shows the class distribution of the samples that
it represents, in addition to the most characteristic samples. Moreover, the root of the tree uses the
most influential concept for the classification task, as it is by definition the one that brings the highest
Information Gain, and the same is applicable to the following splits. For example, Figure 12 shows
the decision tree used in the XOR-AND-XOR dataset. Specifically, you can see that if Concept
11 is active, the prediction is always Class 0 (False). As you can see, if a sample has Concept 11
active, it means that it has both tabular significant digits equal to 1, which implies that the local XOR
operation is False and as a consequence the global AND operation is False, no matter what is the
other modality. Furthermore, the following split is focused on Concept 4, which is curiously the
corresponding concept in the shared space of the graph modality for Concept 11 (7 is the number of
concepts per modality, so 11 - 7 = 4). This split represents the same underlying idea as the previous
one but for the graph modality. If the concept is active, it means that the graph is connected (False in
the local XOR operation). Therefore, it shows also how the concepts from one modality are related
and translated into the other, confirming that the concept shared space created is meaningful. Finally,
Figure 13 shows part of the first three layers of the Decision tree used in CLEVR.
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Figure 8: Retrieval examples obtained by (a) SHARCS, (b) Relative representation, and (c) Concept
Multimodal on the MNIST+Superpixels dataset. The top two rows are samples of retrieved graphs
using images, while the bottom two are retrieved images using graph samples.
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Figure 9: Retrieval examples obtained by (a) SHARCS, (b) Relative representation, and (c) Concept
Multimodal on the CLEVR dataset. The top two rows are samples of retrieved text using images,
while the bottom two are retrieved images using graph samples.
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Figure 10: tSNE plot of the concept space. The images represent the centroid of the top-5 common
concepts per modality in the MNIST+Superpixels dataset (a) SHARCS (b) Concept Multimodal
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Figure 11: tSNE plot of the concept space. The images represent the centroid of the top-5 common
concepts per modality in the CLEVR dataset (a) SHARCS (b) Concept Multimodal
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Figure 12: Decision tree visualisation of SHARCS concepts on the XOR-AND-XOR dataset. Every
split shows the combined concept closer to the cluster’s centroid lower and greater than the splitting
criteria. In addition, each leaf shows the class distribution of the samples that it represents.

Figure 13: Visaulisation of part of the first 3 layers of a Decision tree trained on SHARCS concepts
on the CLEVR dataset. Every split shows the combined concept closer to the cluster’s centroid lower
and greater than the splitting criteria. In addition, each leaf shows the class distribution of the samples
that it represents.
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