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Abstract

The performance of multilingual pretrained001
models is highly dependent on the availability002
of monolingual or parallel text present in a tar-003
get language. Thus, the majority of the world’s004
languages cannot benefit from recent progress005
in NLP as they have no or limited textual data.006
To expand possibilities of using NLP technol-007
ogy in these under-represented languages, we008
systematically study strategies that relax the009
reliance on conventional language resources010
through the use of bilingual lexicons, an al-011
ternative resource with much better language012
coverage. We analyze different strategies to013
synthesize textual or labeled data using lexi-014
cons, and how this data can be combined with015
monolingual or parallel text when available.016
For 19 under-represented languages across 3017
tasks, our methods lead to consistent improve-018
ments of up to 5 and 15 points with and with-019
out extra monolingual text respectively. Over-020
all, our study highlights how NLP methods can021
be adapted to thousands more languages that022
are under-served by current technology.1023

1 Introduction024

Multilingual pretrained models (Devlin et al., 2019;025

Conneau and Lample, 2019; Conneau et al., 2020)026

have become an essential method for cross-lingual027

transfer on a variety of NLP tasks (Pires et al.,028

2019; Wu and Dredze, 2019). These models can029

be finetuned on annotated data of a down-stream030

task in a high-resource language, often English,031

and then the resulting model is applied to other032

languages. This paradigm is supposed to benefit033

under-represented languages that do not have an-034

notated data. However, recent studies have found035

that the cross-lingual transfer performance of a036

language is highly contingent on the availability037

of monolingual data in the language during pre-038

training (Hu et al., 2020). Languages with more039

monolingual data tend to have better performance040

1Code and data to reproduce experiments will be released.
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Figure 1: The percentage of the world’s ≈7,000 languages
covered by mBERT, monolingual data sources and lexicons.

while languages not present during pretraining sig- 041

nificantly lag behind. 042

Several works propose methods to adapt the 043

pretrained multilingual models to low-resource 044

languages, but these generally involve continued 045

training using monolingual text from these lan- 046

guages (Wang et al., 2020; Chau et al., 2020; Pfeif- 047

fer et al., 2020, 2021). Therefore, the performance 048

of these methods is still constrained by the amount 049

of monolingual or parallel text available, making it 050

difficult for languages with little or no textual data 051

to benefit from the progress in pretrained models. 052

Joshi et al. (2020) indeed argue that unsupervised 053

pretraining makes the ‘resource-poor poorer’. 054

Fig. 1 plots the language coverage of multilin- 055

gual BERT (mBERT; Devlin et al., 2019), a widely 056

used pre-trained model, and several commonly 057

used textual data sources.2 Among the 7,000 lan- 058

guages in the world, mBERT only covers about 059

1% of the languages while Wikipedia and Com- 060

monCrawl, the two most common resources used 061

for pretraining and adaptation, only contain textual 062

data from 4% of the languages (often in quite small 063

quantities, partially because language IDs are diffi- 064

cult to obtain for low-resource languages (Caswell 065

et al., 2020)). Ebrahimi and Kann (2021) show 066

that continued pretraining of multilingual models 067

on a small amount of Bible data can significantly 068

improve the performance of uncovered languages. 069

Although the Bible has much better language cov- 070

erage of 23%, its relatively small data size and 071

2Statistics taken from Ebrahimi and Kann (2021) and
panlex.org.
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constrained domain limits its utility (see § 6)—and072

70% of the world’s languages do not even have073

this resource. The failure of technology to adapt074

to these situations raises grave concerns regarding075

the fairness of allocation of any benefit that may be076

conferred by NLP to speakers of these languages077

(Joshi et al., 2020; Blasi et al., 2021). On the other078

hand, linguists have been studying and document-079

ing under-represented languages for years in a vari-080

ety of formats (Gippert et al., 2006). Among these,081

bilingual lexicons or word lists are usually one of082

the first products of language documentation, and083

thus have much better coverage of the worlds’ lan-084

guages than easily accessible monolingual text, as085

shown in Fig. 1. There are also ongoing efforts086

to create these word lists for even more languages087

through methodologies such as “rapid word col-088

lection” (Boerger, 2017), which can create an ex-089

tensive lexicon for a new language in a number of090

days. As Bird (2020) notes:091

After centuries of colonisation, mission-092

ary endeavours, and linguistic fieldwork,093

all languages have been identified and094

classified. There is always a wordlist.095

. . . In short, we do not need to “discover”096

the language ex nihilo (L1 acquisition)097

but to leverage the available resources098

(L2 acquisition).099

However, there are few efforts on understanding100

the best strategy to utilize this valuable resource101

for adapting pretrained language models. Bilingual102

lexicons have been used to synthesize bilingual103

data for learning cross-lingual word embeddings104

(Gouws and Søgaard, 2015; Ruder et al., 2019)105

and task data for NER via word-to-word transla-106

tion (Mayhew et al., 2017), but both approaches107

precede the adoption of pre-trained multilingual108

LMs. Khemchandani et al. (2021) use lexicons to109

synthesize monolingual data for adapting LMs, but110

their experimentation is limited to several Indian111

languages and no attempt was made to synthesize112

downstream task data.113

In this paper, we conduct a systematic study of114

strategies to leverage this relatively under-studied115

resource of bilingual lexicons to adapt pretrained116

multilingual models to languages with little or117

no monolingual data. Utilizing lexicons from an118

open-source database, we create synthetic data119

for both continued pretraining and downstream120

task fine-tuning via word-to-word translation. Em-121

pirical results on 19 under-represented languages122

Figure 2: Results for baselines and adaptation using synthetic
data for both resource settings across three NLP tasks.

on 3 different tasks demonstrate that using syn- 123

thetic data leads to significant improvements on all 124

tasks (Fig. 2), and that the best strategy depends on 125

the availability of monolingual data (§ 5, § 6). We 126

further investigate methods that improve the qual- 127

ity of the synthetic data through a small amount of 128

parallel data or by model distillation. 129

2 Background 130

We focus on the cross-lingual transfer setting where 131

the goal is to maximize performance on a down- 132

stream task in a target language T . Due to the 133

frequent unavailability of labeled data in the target 134

language, a pretrained multilingual model M is 135

typically fine-tuned on labeled data in the down- 136

stream task DS
label = {(xSi , ySi )}Ni=1 in a source 137

language S where xSi is a textual input, ySi is the 138

label, and N is the number of labeled examples. 139

The fine-tuned model is then directly applied to 140

task data DT
test = {xTi , yTi }i in language T at test 141

time.3 The performance on the target language T 142

can often be improved by further adaptation of the 143

pretrained model. 144

2.1 Adaptation with Text 145

There are two widely adopted paradigms for adapt- 146

ing pretrained models to a target language using 147

monolingual or parallel text. 148

MLM Continued pretraining on monolingual 149

text DT
mono = {xTi }i in the target language 150

(Howard and Ruder, 2018; Gururangan et al., 2020) 151

using a masked language model (MLM) objective 152

has proven effective for adapting models to the 153

target language (Pfeiffer et al., 2020). Notably, 154

Ebrahimi and Kann (2021) show that using as little 155

as several thousand sentences can significantly im- 156

prove the model’s performance on target languages 157

not covered during pretraining. 158

3We additionally examine the few-shot setting where some
task data DT

label in T is available for fine-tuning in § 7.
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Trans-Train For target languages with sufficient159

parallel text with the source language DST
par =160

{(xSi , xTi )}i, one can train a machine translation161

(MT) system that translates data from the source162

language into the target language. Using such an163

MT system, we can translate the labeled data in164

the source language DS
label into target language165

data D̂T
label = {(x̂Ti , ySi )}Ni=1, and fine-tune the pre-166

trained multilingual model on both the source and167

translated labeled dataDS
label∪D̂T

label. This method168

often brings significant gains to the target language,169

especially for languages with high-quality MT sys-170

tems (Hu et al., 2020; Ruder et al., 2021).171

2.2 Challenges with Low-resource Languages172

Both methods above require DT
mono or DST

par in tar-173

get language T , so they cannot be directly extended174

to languages without this variety of data. Joshi et al.175

(2020) classified the around 7,000 languages of the176

world into six groups based on the availability of177

data in each language. The two groups posing the178

biggest challenges for NLP are:179

“The Left-Behinds,” languages with virtually no180

unlabeled data. We refer to this as the No-Text181

setting.182

“The Scraping-Bys,” languages with a small183

amount of monolingual data. We refer to this184

as the Few-Text setting.185

These languages make up 85% of languages in the186

world, yet they do not benefit from the development187

of pretrained models and adaptation methods due188

to the lack of monolingual and parallel text. In this189

paper, we conduct a systematic study of strategies190

directly targeted at these languages.191

3 Adapting to Under-represented192

Languages Using Lexicons193

Since the main bottleneck of adapting to under-194

represented languages is the lack of text, we adopt a195

data augmentation framework (illustrated in Fig. 3)196

that leverages bilingual lexicons, which are avail-197

able for a much larger number of languages.198

3.1 Synthesizing Data Using Lexicons199

Given a bilingual lexicon DST
lex between the source200

language S and a target language T , we create201

synthetic sentences x̃Ti in T using sentences xSi202

in S via word-to-word translation, and use this203

synthetic data in the following adaptation methods.204

Pretrained Model Pseudo MLM Pseudo Trans-train

S Labeled
Lexicon

S Mono

S-T 
 Parallel T Mono

T Pseudo 
Mono

T Pseudo 
Labeled

Label Distill

Figure 3: Pipelines for synthesizing data for both No-text and
Few-text settings and utilizing extra data for the Few-Text
setting. Solid lines indicate adaptation methods and dashed
lines are synthetic data refinement methods.

Pseudo MLM Using monolingual textDS
mono = 205

{xSi }i, we generate pseudo monolingual text 206

D̃T
mono = {x̃Ti }i for T by replacing the words 207

in xSi to its translation in T based on the lexicon 208

DST
lex . We then adapt the pretrained multilingual 209

model on D̃T
mono using the MLM objective. For 210

the Few-Text setting where some gold monolingual 211

data DT
mono is available, we can train the model 212

jointly on the pseudo and the gold monolingual 213

data D̃T
mono ∪ DT

mono. 214

Pseudo Trans-train Given the source labeled 215

data DS
label = {(xSi , ySi )}Ni=1, for each text exam- 216

ple xSi we use DST
lex to replace the words in xSi 217

with its corresponding translation in T , resulting in 218

pseudo labeled data D̃T
label = {(x̃Ti , ySi )}Ni=1. We 219

then fine-tune the model jointly on both pseudo and 220

gold labeled data D̃T
label ∪ DS

label. 221

Since these methods only require bilingual lexi- 222

cons, we can apply them to both No-Text and Few- 223

Text settings. We can use either of the two methods 224

or the combination of both to adapt the model. 225

Challenges with Pseudo Data Our synthetic 226

data D̃T could be very different from the true data 227

DT because the lexicons do not cover all words 228

in S or T , and we do not consider morphologi- 229

cal or word order differences between T and S.4 230

Nonetheless, we find that this approach yields sig- 231

nificant improvements in practice (see Tab. 2). We 232

also outline two strategies that aim to improve the 233

quality of the synthetic data in the next section. 234

3.2 Refining the Synthetic Data 235

Label Distillation The pseudo labeled data 236

D̃T
label = {(x̃Ti , ySi )}Ni=1 is noisy because the syn- 237

thetic examples x̃Ti could have a different label 238

from the original label ySi (See Tab. 1). To alleviate 239

4In fact, we considered more sophisticated methods using
morphological analyzers and inflectors, but even models with
relatively broad coverage (Anastasopoulos and Neubig, 2019)
did not cover many languages we used in experiments.
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eng xS ∈ DS
mono Anarchism calls for the abolition of the state , which it holds to be undesirable , unnecessary , and harmful .

Pseudo Mono x̃T ∈ D̃T
mono Anarchism calls gal il abolition ta’ il stat , lima hi holds gal tkun undesirable , bla bzonn , u harmful .

eng xS ∈ DS
label I suspect the streets of Baghdad will look as if a war is looming this week .

Pseudo Labeled x̃T ∈ D̃T
label jien iddubita il streets ta’ Bagdad xewqa hares kif jekk a gwerra is looming dan ġimga .

Pseudo Labeled yS ∈ D̃T
label PRON VERB DET NOUN ADP PROPN AUX VERB SCONJ SCONJ DET NOUN AUX VERB DET NOUN PUNCT

Label Distilled ỹT ∈ D̃T
distill PRON VERB DET NOUN ADP PROPN NOUN NOUN SCONJ SCONJ DET NOUN AUX VERB DET NOUN PUNCT

Table 1: Examples of pseudo monolingual data and pseudo labeled data for POS tagging for Maltese (mlt). Words in red have
different labels between the source language and the label distilled data. This is because “xewqa” in Maltese is a noun meaning
“desire,will”, while the word “will” is not used as a noun in the original English sentence.

this issue, we propose to automatically “correct”240

the labels of pseudo data using a teacher model.241

Specifically, we fine-tune the pretrained multilin-242

gual model as a teacher model using only DS
label.243

We use this model to generate the new pseudo la-244

beled data D̃T
distill = {(x̃Ti , ỹTi )}Ni=1 by predicting245

labels ỹTi for the pseudo task examples x̃Ti . We246

then fine-tune the pretrained model on both the247

new pseudo labeled data and the source labeled248

data D̃T
distill ∪ DS

label.249

Induced Lexicons with Parallel Data For the250

Few-Text setting, we can leverage the available par-251

allel data DST
par to further improve the quality of the252

augmented data. Specifically, we use unsupervised253

word alignment to extract additional word pairs254

D̃ST
lex from the parallel data, and use the combined255

lexicon D̃ST
lex ∪DST

lex to synthesize the pseudo data.256

4 General Experimental Setting257

In this section, we outline the tasks and data setting258

used by all experiments. We will then introduce259

the adaptation methods and results for the No-Text260

setting in § 5 and the Few-Text setting in § 6.261

4.1 Tasks, Languages and Model262

We evaluate on three different tasks with rela-263

tively good coverage of under-represented lan-264

guages: named entity recognition (NER), part-265

of-speech (POS) tagging, and dependency pars-266

ing (DEP). We use two NER datasets: WikiAnn267

NER (Pan et al., 2017; Rahimi et al., 2019) and268

MasakhaNER (Adelani et al., 2021). We use the269

Universal Dependency 2.5 (Nivre et al., 2018)270

dataset for both the POS and DEP tasks.271

We use English as the source language for all272

experiments. For each dataset, we use the English273

training data and select the checkpoint with the274

best performance on the English development set.275

For MasakhaNER, which does not have English276

training data, we follow Adelani et al. (2021) and277

use the CoNLL-2003 English NER training data.278

We run each fine-tuning experiment with 3 ran- 279

dom seeds and report the average performance. For 280

NER and POS tagging, we follow the data process- 281

ing and fine-tuning hyper-parameters in Hu et al. 282

(2020). We use the Udify (Kondratyuk and Straka, 283

2019) codebase and configuration for parsing. 284

Languages For each task, we select languages 285

that are not covered by the mBERT pretraining 286

data. The list of languages we consider are in § A.1. 287

Most selected languages fall under the Few-Text 288

setting (Joshi et al., 2020). We employ the same 289

set of languages to simulate the No-Text setting 290

because very few languages in this category have 291

suitable test data. 292

Model We use the multilingual BERT 293

model (mBERT) because it has competitive perfor- 294

mance on under-represented languages (Pfeiffer 295

et al., 2020). We find that our mBERT performance 296

on WikiNER and POS is generally comparable or 297

exceeds the XLM-R large results in Ebrahimi and 298

Kann (2021). We additionally verify our results 299

also hold for XLM-R in § 7. 300

4.2 Adaptation Data 301

Lexicon We extract lexicons between English 302

and each target language from the PanLex 303

database.5 The number of lexicon entries varies 304

from about 0.5k to 30k, and most of the lexicons 305

have around 5k entries. The lexicon statistics for 306

each language can be found in § A.1. 307

Pseudo Monolingual Data English Wikipedia 308

articles are used to synthesize monolingual data. 309

We first tokenize the English articles using 310

Stanza (Qi et al., 2020) and keep the first 200k 311

sentences. To create pseudo monolingual data for 312

a given target language, we replace each English 313

word with its translation if the word exists in the 314

bilingual lexicon. We randomly sample a target 315

word if the English word has multiple possible 316

5https://panlex.org/snapshot/
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translations because it is difficult to estimate trans-317

lation probabilities due to lack of target text.318

Pseudo Labeled Data Using the English train-319

ing data for each task, we simply replace each En-320

glish word in the labeled training data with its cor-321

responding translation and retain its original label.322

For the sake of simplicity, we only use lexicon323

entries with a single word.324

5 No-Text Setting325

We analyze the results of the following adaptation326

methods for the setting where we do not have any327

monolingual data.328

Pseudo MLM The mBERT model is trained on329

the pseudo monolingual data using the MLM ob-330

jective. We train the model for 5k steps for the331

NER tasks and 10k steps for the POS tagging and332

Parsing tasks.333

Pseudo Trans-train We fine-tune mBERT or the334

model adapted with Pseudo MLM for a down-335

stream task on the concatenation of both the En-336

glish labeled data and the pseudo labeled data.337

Label Distillation We use the model adapted338

with Pseudo MLM as the teacher model to gen-339

erate new labels for the pseudo labeled data, which340

we use jointly with the English labeled data to fine-341

tune the final model.342

5.1 Results343

The average performance of different adaptation344

methods averaged across all languages in each task345

can be found in Tab. 2.346

Pseudo Trans-train is the best method for No-347

Text. Pseudo MLM and Pseudo Trans-train can348

both bring significant improvements over the349

mBERT baseline for all tasks. Pseudo Trans-train350

leads to the best aggregated result across all tasks,351

and it is also the best method or very close to the352

best method for each task. Adding Pseudo Trans-353

train on top of Pseudo MLM does not add much354

improvement. Label Distillation generally leads to355

better performance, but overall it is comparable to356

only using Pseudo Trans-train.357

6 Few-Text Setting358

We test same adaptation methods introduced in § 5359

for the Few-Text setting where we have a small360

amount of gold data. First we introduce the addi-361

tional data and adaptation methods for this setting.362

6.1 Gold Data 363

Gold Monolingual Data We use the JHU Bible 364

Corpus (McCarthy et al., 2020) as the monolingual 365

data. Following the setup in Ebrahimi and Kann 366

(2021), we use the verses from the New Testament, 367

which contain 5000 to 8000 sentences for each 368

target language. 369

Gold Parallel Data We can use the parallel data 370

between English and the target languages from the 371

Bible to extract additional word pairs. We use an 372

existing unsupervised word alignment tool, eflo- 373

mal (Östling and Tiedemann, 2016), to generate 374

word alignments for each sentence in the parallel 375

Bible data. To create high quality lexicon entries, 376

we only keep the word pairs that are aligned more 377

than once, resulting in about 2k extra word pairs 378

for each language. We then augment the PanLex 379

lexicons with the induced lexicon entries. 380

6.2 Adaptation Methods 381

Gold MLM The mBERT model is trained on the 382

gold monolingual Bible data in the target language 383

using the MLM objective. Following the setting in 384

Ebrahimi and Kann (2021), we train for 40 epochs 385

for the NER task, and 80 epochs for the POS and 386

Parsing tasks. 387

Pseudo MLM We conduct MLM training on 388

both the Bible monolingual data and the pseudo 389

monolingual data in the target language. The Bible 390

data is up-sampled to match the size of the pseudo 391

monolingual data. We train the model for 5k steps 392

for the NER task and 10k steps for the POS tagging 393

and Parsing tasks. 394

6.3 Results 395

The average performance in each task for Few-Text 396

can be found in Tab. 2. 397

Pseudo MLM is the competitive strategy for 398

Few-Text. Unlike the No-Text setting, Pseudo 399

Trans-train only marginally improves or even de- 400

creases the performance for three out of the four 401

datasets we consider. On the other hand, Pseudo 402

MLM, which uses both gold and pseudo mono- 403

lingual data for MLM adaptation, consistently and 404

significantly improves over Gold MLM for all tasks. 405

Again, using Pseudo Trans-train on top of Pseudo 406

MLM does not help and actually leads to relatively 407

large performance loss for the syntactic tasks, such 408

as POS tagging and Parsing. 409
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Method Lexicon WikiNER ∆ MasakhaNER ∆ POS ∆ Parsing ∆ Avg. ∆

No-Text

mBERT - 47.6 - 46.1 - 36.1 - 16.5 - 36.5 -

Pseudo Trans-train PanLex 49.8 2.2 54.4 8.3 51.1 15.0 25.9 9.4 45.2 8.7
Pseudo MLM PanLex 49.8 2.2 52.6 6.5 48.9 12.8 25.2 8.7 44.1 7.6
Both PanLex 48.5 0.9 54.6 8.5 48.7 12.6 25.9 9.4 44.4 7.9
Both+Label Distillation PanLex 50.6 2.1 53.5 -1.1 50.3 1.6 26.0 0.1 45.1 0.7

Few-Text

Gold MLM - 49.5 - 53.6 - 60.6 - 40.2 - 50.9 -

Pseudo Trans-train PanLex 50.2 0.7 59.4 5.8 59.3 -1.3 37.0 -3.2 51.4 0.5

Pseudo MLM PanLex 50.7 1.2 57.4 3.8 65.4 4.8 43.5 3.3 54.2 3.3
PanLex+Induced 52.2 1.5 58.5 0.9 64.7 -0.7 41.5 -2.0 54.2 0.0

Both PanLex 50.1 0.6 59.2 5.6 60.7 0.1 38.3 -1.9 52.0 1.1
PanLex+Induced 52.6 2.5 61.1 1.9 59.5 -1.2 35.3 -3.0 52.0 0.0

Both+Label Distillation PanLex 51.7 1.6 58.4 -0.8 66.2 5.5 41.9 3.6 54.5 2.5
PanLex+Induced 53.2 1.5 59.4 1.0 65.8 -0.4 40.7 -1.2 54.7 0.2

Table 2: Average F1 score for languages in each task. We record F1 of the LAS for Parsing. We compare three adaptation
methods (∆ indicates gains over baselines): Pseudo Trans-train, Pseudo MLM, and Both. We also examine two data refinement
methods: Label Distillation (∆ is gains over Both) and PanLex+Induced (∆ is gains over PanLex). Bold is the best result for
each dataset, and underline indicates the best improvements among the three adaptation methods over the baselines.

Label Distillation brings significant improve-410

ments for the two syntactic tasks. Notably, it411

is the best performing method for POS tagging,412

but it still lags behind Pseudo MLM for Parsing.413

This is likely because Parsing is a much harder task414

than POS tagging to generate correct labels. The415

effect of Label Distillation on the NER task is less416

consistent—it improves over Pseudo Trans-train417

for WikiNER but not for MasakhaNER. This is418

because the named entity tags of the same words419

in different languages likely remain the same so420

that the pseudo task data probably has less noise421

for Label Distillation to have consistent benefits.422

Adding Induced Lexicons We examine the ef-423

fect of using the lexicons augmented by word pairs424

induced from the Bible parallel data. The results425

can be found in Tab. 2. Adding the induced lexi-426

con significantly improves the NER performance,427

while it hurts the two syntactic tasks.428

To understand what might have prevented the429

syntactic tasks from benefiting from the extra lex-430

icon entries, we plot the distribution of the part-431

of-speech tags of the words in PanLex lexicons432

and the lexicons induced from the Bible in Fig. 4.433

PanLex lexicons have more nouns than the Bible434

lexicons while the Bible lexicons cover more verbs435

than PanLex. However, the higher verb coverage436

in induced lexicons actually leads to a larger pre-437

diction accuracy drop for verbs in the POS tagging438

task. We hypothesize that the pseudo monolingual439

data created using the induced lexicons would con-440

tain more target language verbs with the wrong441

word order, which could be more harmful for syn-442
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Figure 4: left: Ratio of words with different POS tags in each
lexicon. right: POS accuracy gain of test words with different
POS tags by using induced lexicons. The induced lexicons
have more verbs but lead to worse performance on verbs.

tactic tasks than tasks that are less sensitive to word 443

order such as NER. 444

Discrepancies between the two NER datasets 445

While WikiNER, along with POS tagging and Pars- 446

ing, benefit the most from Pseudo MLM for Few- 447

Text, MasakhaNER achieves the best result with 448

Pseudo Trans-train. One possible explanation is 449

that MasakhaNER contains data from the news do- 450

main, while WikiNER is created from Wikipedia. 451

The pseudo monolingual data used for MLM is cre- 452

ated from English Wikipedia articles, which could 453

benefit WikiNER much more than MasakhaNER. 454

On the other hand, the English NER training data 455

for MasakhaNER is from the news domain, which 456

potentially makes Pseudo Trans-train a stronger 457

method for adapting the model simultaneously to 458

the target language and to the news domain. One 459

advantage of Pseudo MLM is that the English 460

monolingual data is much cheaper to acquire, while 461

Pseudo Trans-train is constrained by the amount 462

of labeled data for a task. We show in § A.5 that 463

Pseudo MLM has more benefit for MasakhaNER 464

when we use a subset of the NER training data. 465

6



bam glv mlt myv

Gold MLM (Ours) 59.7 64.1 58.5 70.6
Ebrahimi and Kann (2021) 60.5 59.7 59.6 66.6

+Pseudo Trans-train 57.4 63.2 69.1 63.8
+Pseudo MLM 68.5 67.5 72.3 73.8
+Both 60.3 64.5 69.3 65.9
+Both(Label Distillation) 69.4 68.8 72.1 74.3

Table 3: Results for POS tagging with XLM-R. Our methods
follow similar trend as on mBERT and they lead to significant
gains compared to prior work.
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Figure 5: F1 gain over the baselines for languages with in-
creasing baseline performance from left to right. Pseudo data
tends to help more for languages with lower performance.

7 Analyses466

Performance with XLM-R We mainly use467

mBERT because it has competitive performance468

for under-represented languages and it is more com-469

putationally efficient due to the smaller size. Here470

we verify our methods have the same trend when471

used on a different model XLM-R (Conneau et al.,472

2020). We focus on a subset of languages in the473

POS tagging task for the Few-Text setting and the474

results are in Tab. 3. We use the smaller XLM-R475

base for efficiency, and compare to the best result476

in prior work, which uses XLM-R large (Ebrahimi477

and Kann, 2021). Tab. 3 shows that our baseline is478

comparable or better than prior work. Similar to479

the conclusion in § 6, Pseudo MLM is the competi-480

tive strategy that brings significant improvements481

over prior work. While adding Pseudo Trans-train482

to Pseudo MLM does not help, using Label Distil-483

lation further improves the performance.484

Effect of Baseline Performance Using pseudo485

data might be especially effective for languages486

with lower performance. We plot the improvement487

of different languages over the baseline in Fig. 5,488

where languages are arranged with increasing base-489

line performance from left to right. We mainly plot490

Pseudo MLM and Pseudo Trans-train for simplicity.491

Fig. 5 shows that for both resource settings, lower492

performing languages on the left tend to have more493

performance improvement by using pseudo data.494

Using NMT Model to Synthesize Data One495

problem with the pseudo data synthesized using496

WikiNER MasakaNER POS Parsing

Lexicon 45.0 56.0 63.7 40.7
NMT 42.2 55.8 58.9 37.7

Table 4: F1 of using Pseudo MLM for Few-Text. Synthesizing
data with NMT is consistently worse.

word-to-word translation is that it cannot capture 497

the correct word order or syntactic structure in the 498

target language. If we have a good NMT system 499

that translates English into the target language, we 500

might be able to get more natural pseudo monolin- 501

gual data by translating the English sentences to 502

the target language. 503

Since the target languages we consider are usu- 504

ally not supported by popular translation services, 505

we train our own NMT system by fine-tuning an 506

open sourced many-to-many NMT model on the 507

Bible parallel data from English to the target lan- 508

guage (details in § A.3). Instead of creating pseudo 509

monolingual data using the lexicon, we can simply 510

use the fine-tuned NMT model to translate English 511

monolingual data into the target language. 512

The results of using NMT as opposed to lexicon 513

for Pseudo MLM on all four tasks can be found in 514

Tab. 4. Unfortunately, NMT is consistently worse 515

than word-to-word translation using lexicons. We 516

find that the translated monolingual data tend to 517

have repeated words and phrases that are common 518

in the Bible data, although the source sentence is 519

from Wikipedia. This is because the NMT model 520

overfits to the Bible data, and it fails to generate 521

good translation for monolingual data from a dif- 522

ferent domain such as Wikipedia. 523

Comparison to Few-shot Learning Lauscher 524

et al. (2020) found that using as few as 10 labeled 525

examples in the target language can significantly 526

outperform the zero-shot transfer baseline for lan- 527

guages included in mBERT. We focus on the zero- 528

shot setting in this paper because the languages 529

we consider have very limited data and it could 530

be expensive or unrealistic to annotate data in ev- 531

ery task for thousands of languages. Nonetheless, 532

we experiment with k-shot learning to examine 533

its performance on low-resource languages in the 534

MasakhaNER task. Tab. 5 shows that using 10 535

labeled examples brings improvements over the 536

mBERT baseline for a subset of the languages, and 537

it is mostly worse than our best adapted model 538

without using any labeled data. When we have 539

access to 100 examples, few-shot learning begins 540
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Method hau wol lug ibo kin luo

mBERT 48.7 33.9 50.9 55.2 52.4 35.3
Best Adapted 74.4 60.3 61.6 63.6 63.8 42.6

10-shot 44.5 49.1 52.7 56.2 51.2 46.2
100-shot 64.0 56.9 58.3 65.5 55.7 51.6
Best Adapt+100-shot 76.1 57.3 61.3 63.2 62.6 49.4

Table 5: Results on MasakhaNER for k-shot learning. We
compare to the zero-shot mBERT baseline and our best
adapted model.

to reach or exceed our zero-shot model. In gen-541

eral, few-shot learning seems to require more data542

to consistently perform well for under-represented543

languages while our adaptation methods bring con-544

sistent gains without any labeled data. Combining545

the best adapted model with few-shot learning leads546

to mixed results. More research is needed to under-547

stand the annotation cost and benefit of few-shot548

learning for low-resource languages.549

8 Related Work550

Several methods are proposed to adapt pretrained551

language models to a target language. Most of552

them rely on MLM training using monolingual data553

in the target languages (Wang et al., 2020; Chau554

et al., 2020; Muller et al., 2021; Pfeiffer et al., 2020;555

Ebrahimi and Kann, 2021), competitive NMT sys-556

tems trained on parallel data (Hu et al., 2020; Ponti557

et al., 2021), or some amount of labeled data in558

the target languages (Lauscher et al., 2020). These559

methods cannot be easily extended to low-resource560

languages with no or limited amount of monolin-561

gual data, which account for more than 80% of the562

World’s languages (Joshi et al., 2020).563

Bilingual lexicons have been commonly used for564

learning cross-lingual word embeddings (Mikolov565

et al., 2013; Ruder et al., 2019). Among these,566

some work uses lexicons to synthesize pseudo bilin-567

gual (Gouws and Søgaard, 2015; Duong et al.,568

2016) or pseudo multilingual corpora (Ammar569

et al., 2016). Mayhew et al. (2017) propose to570

synthesize task data for NER using bilingual lexi-571

cons. More recently, Khemchandani et al. (2021)572

synthesize monolingual data in Indian languages573

for adapting pretrained language models via MLM.574

However, none of them provide systematic studies575

of methods that utilize lexicons and limited data576

resources for adapting pretrained language models577

to languages with no or limited text.578

9 Conclusion and Discussion579

We propose a pipeline that leverages bilingual580

lexicons, an under-studied resource with much581

better language coverage than conventional data, 582

to adapt pretrained multilingual models to under- 583

represented languages. Through comprehensive 584

studies, we find that using synthetic data can signif- 585

icantly boost the performance of these languages 586

while the best method depends on the data avail- 587

ability. Our results show that we can make concrete 588

progress towards including under-represented lan- 589

guages into the development of NLP systems by 590

utilizing alternative data sources. 591

Our work also has some limitations. Since we 592

focus on different methods of using lexicons, we 593

restrict experiments to languages in Latin script 594

and only use English as the source language for 595

simplicity. Future work could explore the effect 596

of using different source languages and combining 597

transliteration (Muller et al., 2021) or vocabulary 598

extension (Pfeiffer et al., 2021) with lexicon-based 599

data augmentation for languages in other scripts. 600

We also did not test the data augmentation methods 601

on higher-resourced languages as MLM fine-tuning 602

and translate-train are already effective in that set- 603

ting and our main goal is to support the languages 604

with little textual data. Nonetheless, it would be 605

interesting to examine whether our methods can de- 606

liver gains for high-resource languages, especially 607

for test data in specialized domains. 608

We point to the following future directions: First, 609

phrases instead of single word entries could be used 610

to create pseudo data. Second, additional lexicons 611

beyond PanLex could be leveraged.6 Third, more 612

effort could be spent on digitizing both existing 613

monolingual data such as books (Gref, 2016) and 614

lexicons into a format easily accessible by NLP 615

practitioners. Although PanLex already covers over 616

5000 languages, some language varieties have only 617

as little as 10 words in the database, while there ex- 618

ist many paper dictionaries that could be digitized 619

through technologies such as OCR (Rijhwani et al., 620

2020).7 Lexicon collection is also relatively fast, 621

which could be a more cost effective strategy to 622

significantly boost the performance of many lan- 623

guages without lexicons. Finally, the quality of 624

synthetic data could be improved by incorporating 625

morphology. However, we find that there is vir- 626

tually no existing morphological analysis data or 627

toolkits for the languages we consider. Future work 628

could aim to improve the morphological analysis 629

of these low-resource languages. 630

6We provide a list of resources in Appendix A.6.
7https://panlex.org/source-list/ contains

a list of undigitized dictionaries.
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Goran Glavaš. 2020. From zero to hero: On the lim-750
itations of zero-shot language transfer with multilin-751
gual Transformers. In EMNLP, Online. Association752
for Computational Linguistics.753

Stephen Mayhew, Chen-Tse Tsai, and Dan Roth. 2017.754
Cheap translation for cross-lingual named entity755
recognition. In EMNLP, Copenhagen, Denmark. As-756
sociation for Computational Linguistics.757

Arya D. McCarthy, Rachel Wicks, Dylan Lewis, Aaron758
Mueller, Winston Wu, Oliver Adams, Garrett Nico-759
lai, Matt Post, and David Yarowsky. 2020. The760
Johns Hopkins University Bible corpus: 1600+761
tongues for typological exploration. In LREC, pages762
2884–2892, Marseille, France. European Language763
Resources Association.764

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013.765
Exploiting similarities among languages for ma-766
chine translation. arXiv preprint arXiv:1309.4168.767

Benjamin Muller, Antonios Anastasopoulos, Benoît768
Sagot, and Djamé Seddah. 2021. When being un-769
seen from mBERT is just the beginning: Handling770
new languages with multilingual language models.771
In NAACL, Online.772

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars773
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Language iso Family Task Lex Count

Acehnese ace Austronesian NER 0.5k
Bashkir bak Turkic NER 3.4k
Crimean Turkish crh Turkic NER 4.4k
Hakka Chinese hak Sino-Tibetan NER 8.5k
Igbo ibo Niger-Congo NER 3.6k
Ilokano ilo Austronesian NER 4.0k
Kinyarwanda kin Niger-Congo NER 4.7k
Eastern Mari mhr Uralic NER 21.7k
Maltese mlt Afro-Asiatic All 1.0k
Maori mri Austronesian NER 13.8k
Hausa hau Niger-Congo NER 5.6k
Wolof wol Niger-Congo All 1.9k
Luganda lug Niger-Congo NER 3.5k
Luo luo NER 0.7k
Bambara bam Mande POS,Parsing 4.4k
Manx glv Indo-European POS,Parsing 37.6k
Ancient Greek grc Indo-European POS,Parsing 8.0k
Swiss German gsw Indo-European POS,Parsing 2.5k
Erzya myv Uralic POS,Parsing 7.4k

Table 6: Languages used for evaluation.

A Appendix836

A.1 Languages837

The languages we used for experiments are listed838

in Tab. 6.839

A.2 Experiment Details840

For all experiments using MLM training for NER841

tasks, we train 5000 steps, or about equivalent to842

40 epochs on Bible; for MLM training for POS843

tagging and Parsing, we train 10000 steps, or equiv-844

alent to 80 epochs on Bible. We use learning rate845

of 2e−5, batch size of 32, and maximum sequence846

length of 128. We did not tune these hyperparame-847

ters because we mostly follow the ones provided in848

(Ebrahimi and Kann, 2021).849

To finetune the model for a downstream task,850

we use learning rate of 2e − 5 and batch size of851

32. We train all models for 10 epochs and pick852

the checkpoint with the best performance on the853

English development set.854

A.3 NMT Models855

We use the many-to-many NMT models provided856

in the fairseq repoo (Ott et al., 2019). We use857

the model with 175M parameters and finetune the858

NMT model for 50 epochs on the parallel data from859

the Bible.860

We use beam size of 5 to generate translations.861

A.4 Induced lexicons help languages with862

Fewer PanLex Entries863

We plot the performance difference between using864

combined lexicons and PanLex for the Few-Text865

in Fig. 6. The languages are arranged from left to866
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Figure 6: Improvements of using combined lexicons compared
to PanLex lexicons for Pseudo MLM. Languages with fewer
PanLex lexicons tend to benefit more from the combined
lexicons.
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Figure 7: F1 on MasakhaNER with different amount of labeled
data. Pseudo MLM becomes beneficial when the labeled
training data is small.

right based on increasing amount of PanLex entries. 867

For MasakhaNER, the three languages with fewer 868

entries in PanLex have much more significant gains 869

by using the combined lexicon. While using the 870

combined lexicons generally hurts POS tagging, 871

the languages with fewer entries in PanLex tend to 872

have less performance decrease. 873

A.5 Effect of Task Data Size 874

Our experiments in Tab. 2 show that MasakhaNER 875

benefits more from Pseudo Trans-train, likely be- 876

cause the labeled data is closer to the domain of 877

the test data. However, this result might not hold 878

when the amount of labeled data is limited. One ad- 879

vantage of Pseudo MLM over Pseudo Trans-train 880

is that it only requires English monolingual data 881

to synthesize pseudo training data, while Pseudo 882

Trans-train is constrained by the availability of la- 883

beled data. We subsample the amount of English 884

NER training data for MasakhaNER and plot the 885

average F1 score of Pseudo Trans-train, pseudo 886

MLM and using both. Fig. 7 shows that the ad- 887

vantage of Pseudo Trans-train on MasakhaNER 888

decreases as the number of labeled data decreases, 889

and using both methods is more competitive when 890

the task data is small. 891

A.6 List of Bilingual Lexicons 892

We provide a list of bilingual lexicons beyond Pan- 893

Lex: 894

• Swadesh lists in about 200 languages in 895

Wikipedia8 896

8https://en.wiktionary.org/wiki/
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• Words in 3156 language varietities in CLICS9897

• Intercontinental Dictionary Series in about898

300 languages10899

• 40-item wordlists in 5,000+ languages in900

ASJP11901

• Austronesian Basic Vocabulary Database in902

1,700+ languages12903

• Diachronic Atlas of Comparative Linguistics904

in 500 languages13905

A.7 Lexicon Extraction906

We use a simple python script to extract the lexi-907

cons from the PanLex database, and directly use908

them for synthesizing the pseudo data. We will909

open-source the script in our codebase.910

Appendix:Swadesh_lists
9https://clics.clld.org/

10https://ids.clld.org/
11https://asjp.clld.org/
12https://abvd.shh.mpg.de/austronesian/
13https://diacl.ht.lu.se/
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