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ABSTRACT

Aspect based sentiment analysis (ABSA) is a challenging natural language pro-
cessing task that could benefit from syntactic information. Previous work exploit
dependency parses to improve performance on the task, but this requires the ex-
istence of good dependency parsers. In this paper, we build a constituent-based
transformer for ABSA that can induce constituents without constituent parsers.
We also apply meta auxiliary learning to generate labels on edges between tokens,
supervised by the objective of the ABSA task. Without input from dependency
parsers, our models outperform previous work on three Twitter data sets and match
previous work closely on two review data sets.

1 INTRODUCTION

Aspect-based Sentiment Analysis (ABSA) is the task of predicting sentiment polarity towards ob-
served aspects in a sentence. Recent work (Bai et al., 2020; Huang & Carley, 2019; Sun et al.,
2019; Wang et al., 2020) used syntactic information from dependency parses to achieve new state-
of-the-art results on benchmark ABSA data sets. However, these works (i) assumed the existence of
good dependency parsers, and (ii) could not further optimize the pre-defined dependency labels for
downstream performance of ABSA. Motivated by these limitations, we propose to induce syntactic
information with supervision from the ABSA task.

To take syntax into account, we aim to induce the necessary syntactic information for the ABSA
task with inductive biases. We first design a Constituent-based Transformer (ConsTrans) to group
tokens into constituents supervised by the ABSA objective. We argue that the formation of con-
stituents provides a hierarchical structure of the sentence that is suitable for sentiment analysis. For
example, in the sentence “Chinese dumplings in this restaurant taste very good” with the aspect
term “Chinese dumplings”, it is important to accurately assign the phrase “taste very good” to the
aspect.

Next, as seen in Figure 1, even though the dependency graph structures for both sentences are
identical, the sentiment towards “Chelsea” is positive for the input sentence on the left and negative
for the one on the right. Therefore, the type of syntactic relationship between tokens would be
useful to identify the sentiment towards the aspect term. Hence, we further extend ConsTrans into
a Relational Constituent-based Transformer (RelConsTrans) to learn relation embeddings between
every pair of tokens in the input sentence. We find that simply adding relation embedding fails to
outperform ConsTrans. Inspired by Liu et al. (2019), we further extend RelConsTrans to supervise
the relation embedding with an auxiliary label generator (RelConsTransLG). In previous work (e.g.
Bai et al., 2020; Huang & Carley, 2019), the dependency parser played the role of the auxiliary label
generator. However, such dependency parsers were not trained to provide auxiliary labels meant
to improve ABSA. RelConsTransLG enables us to train the auxiliary label generator alongside the
primary task to generate auxiliary labels that could directly enhance the performance of ABSA.

We evaluate our models on five data sets - restaurant and laptop reviews (Pontiki et al., 2014),
ACL14 Twitter14 data (Dong et al., 2014), Twitter15 and Twitter17 from a multi-modal ABSA
data set (Yu & Jiang, 2019). Compared against previous work which used dependency parsers,
our models outperform them on all the Twitter data sets and matched previous work closely on the
review data sets even without the use of constituent or dependency parser.
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Figure 1: Dependency parse labels as auxiliary labels that help sentiment disambiguation. Tokens
in bold and underlined are the aspect terms. Example taken from Bai et al. (2020).

(a) ConsTrans Encoder Stack: dotted arrows refer to lower at-
tention weights between tokens from different constituents.

(b) A lower ConsTrans layer: the
shaded region is different from the
vanilla Transformer.

2 MODEL FORMULATION

Given a sentence of m tokens, s = {w0, . . . , wm−1}, and a target aspect, t = {wj , . . . , wj+q−1} of
length q, the objective of ABSA is to predict the sentiment polarity y ∈ {negative, neutral, positive}
towards the target aspect t mentioned in sentence s. In all our models, we use the pretrained BERT
(Devlin et al., 2018) model (BERT-base-uncased) to obtain contextual embeddings as inputs to our
model, and we fine tune it together with the model. We format the input to the BERT model as a
sentence pair: [CLS]+s+[SEP ]+ t+[SEP ]. We represent each token wi with the representation
hbert,12i obtained from the last layer of BERT as input to our model. Our base model is a 4-layer
transformer on this representation, similar to the baseline Transformer(B) in Bai et al. (2020). In
the rest of this section, we describe the modifications we make to this transformer to build our three
proposed models, ConsTrans, RelConsTrans and RelConsTransLG.

2.1 CONSTITUENT-BASED TRANSFORMER (ConsTrans)

ConsTrans contains a stack of 4 Transformer encoder layers (Vaswani et al., 2017) with Multi-Head
Attention (MHA) and a point-wise feed forward sub-layer in each layer. As illustrated in Figure 2a,
the encoder stack of ConsTrans is grouped into two parts - the lower layers and the upper layers. In
all our experiments, we have 2 layers each in both the lower and upper layers. The main difference
between a vanilla Transformer network and ConsTrans is that the attention scores computed in the
MHA layer between a pair of tokens are adjusted based on the probability that the two tokens belong
to the same constituent. In the lower layers, attention weights are adjusted such that greater attention
weights are assigned to tokens within the same constituent. This adjustment is not imposed at upper
layers of the encoder to allow for longer range interactions.

Figure 2b shows a single encoder layer from the lower layers of the encoder stack. The shaded region
in the figure, which emphasizes the difference from a vanilla Transformer encoder layer, contains
three components: the MHA which provides the vanilla attention scores, the constituent probability
scorer, and finally the adjusted MHA scorer that computes the final attention.

Constituent Probability Scorer Kim et al. (2020b) found that tokens from the same constituent
tend to exhibit similar attention distributions. Hence we propose to determine the probability that a
pair of tokens belong to the same constituent by the similarity of their attention distributions. We use
the scaled dot-product attention (Vaswani et al., 2017) in the MHA layer to first obtain the attention
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distributions of a token:
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where W lz
Q ∈ Rdmodel,dq and W lz

K ∈ Rdmodel,dk are projection layers that project the query and key
to the various attention heads with dimension dq and dk respectively. The attention distribution for
token i at layer l and attention head z is then defined to be the vector αlzi = [αlzij ]j . To obtain the
attention distribution similarity for two tokens, i and j, we concatenate the attention patterns of the
pair before passing it through a projection layer:
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where simlz
i,j refers to the attention distribution similarity score for token i and token j in layer l for

attention head z, Wα ∈ Rd,1 is a linear projection, [: , :] refers to the concatenation function and σ
the sigmoid function so that simlz

i,j ∈ [0, 1]. We also note that this ensures simlz
i,j = simlz

j,i.

We then use the attention distribution similarity scores to compute the probability that a pair of
tokens belong to the same constituent. The base probability c

′lz
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This formulation considers the probability that tokens spanned by the two tokens i and j form a
contiguous constituent. Moreover, since simlz

i,j ∈ [0, 1], the probability that two tokens are in the
same constituent would decrease monotonically with the distance between i and j. To encourage
the induced constituents to be consistent across layers, the final constituent probabilities obtained at
the current layer would be the weighted sum of itself and constituent probabilities from the previous
layer:

clzi,j = λ ∗ c
′lz
i,j + (1− λ) ∗ c

′l−1,z
i,j , (4)

where λ ∈ [0, 1] is a hyper-parameter that we tune.

Adjusted Attention in the Lower Constituent Layers Finally, we adjust the attention scores
between a pair of tokens according to the probability that the pair belongs to the same constituent,
through a softmax layer:

α
′lz
i,j =

exp clzi,j ∗ αlzi,j∑
j′ exp c

lz
i,j ∗ αlzi,j′

(5)

where α
′lz
i,j denotes the adjusted attention score for token i and j for layer l and attention head z.

2.2 RELATIONAL CONSTITUENT-BASED TRANSFORMER (RelConsTrans)

We extend ConsTrans with the objective of learning relation embedding between pairs of tokens. For
each pair of tokens, the goal is to learn an embedding that represents the syntactic relation between
the pair. To generate the relation embedding, we learn a non-linear projection for the concatenation
of the representation for the tokens:

ri,j =Wr2ELU(Wr1[hi, hj ]), (6)

where ri,j is the learnt embedding for token i and token j,ELU is the exponential linear unit, hi and
hj are BERT embeddings for token i and j respectively. The learnt embedding would be included
in two ways - during attention computation and during information propagation stage.

Relation-aware Attention Computation To perform relation-aware attention computation, we
make the following changes to the adjusted scaled dot-product attention formulation in Equation 1
before adjusting the attention scores with constituent probability as in Equation 5:
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Figure 3: Oveview of Relational Constituent-based Transformer and Relation Label Generator.
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where W l
Kr ∈ Rdr,dk projects the learnt relation embedding rij and is shared across attention

heads. The attention weights would be determined by both textual features, hlj , and syntactic relation
represented by rij .

Relation-aware information propagation The attention weights obtained from Equation 7 would
then be used to weigh the contribution of other tokens in updating the representation of a token, hli
with the following equation:
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where W lz
V ∈ Rdmodel,dv is a projection layer that project the value vector to various attention heads

with dimension dv . W l
p ∈ Rdv,dmodel projects the concatenation of vectors from each attention head

to size dmodel for layer l. W l
V r ∈ Rdr,dv is a projection layer and is shared across attention heads.

Therefore, both textual and syntactic and features would be propagated from one token to another.

2.3 RelConsTrans WITH LABEL GENERATOR (RelConsTransLG)

We found that RelConsTrans fails to outperform ConsTrans, possibly due to a lack of guidance on
how the relation embedding should be learned. Previous work (e.g., Bai et al., 2020) used the depen-
dency parser as an auxiliary label generator to improve ABSA. To avoid the need for a dependency
parser, we propose to meta learn a relation label generator that would be trained alongside the pri-
mary task to generate auxiliary labels optimal for enhancing the performance of ABSA. An overview
of the Relational Constituent-based Transformer with the Relation Generator (RelConsTransLG) is
shown in Figure 3. The relation label generator, trained in a self-supervised manner (Liu et al.,
2019), would produce relation labels to guide the learning of the relation embedding.

As syntax information has been shown to be useful for ABSA in previous work (e.g., Bai et al.,
2020), we design our relation label generator to encourage the generation of syntax related labels as
relation labels with supervision from the ABSA task. Hewitt & Manning (2019) showed that the L2
distance of a linear projection of token embeddings obtained from BERT could recover the parse tree
distances between the tokens. Therefore, we learn a linear transformation of the word representation
space with the intention of learning syntactic relatedness. The learned syntactic relatedness would
then be used as the ground truth for the L2 norm of the relation embedding. Different from Hewitt
& Manning (2019), we do not use ground truth labels to train the relation label generator. Instead,
we learn this linear projection in a meta learning manner.

For a pair of tokens i and j, we learn a linear projection for the BERT representation:

lij =W1(h
bert,n
i − hbert,nj ) + b1, (9)

where lij is a scalar relation label for token i and j, W1 and b1 are the weights and bias of the linear
transformation layer. hbert,ni represents the embedding of token i from the nth layer of the BERT

4



Under review as a conference paper at ICLR 2021

Data Set Positive Neutral Negative
Train Dev Test Train Dev Test Train Dev Test

Restaurant 2164 - 728 637 - 196 807 - 196
Laptop 994 - 341 464 - 169 870 - 128

Twitter14 1561 - 173 3127 - 346 1560 - 173
Twitter15 928 303 317 1883 670 607 368 149 113
Twitter17 1508 515 493 1638 517 573 416 144 168

Twitter14 (AS) 1538 - 190 3300 - 173 1445 - 288

Table 1: Statistics of the 5 benchmark data sets. TS refers to splitting the data by aspect.

model. As different layers of BERT appear to represent different types of information as shown
by Tenney et al. (2019), we could recover different information by selecting different BERT layers
(different n). In our experiments, we fixed the value of n to 6 for all data sets.

Meta Training Relation Label Generator To guide the training of the embedding, we minimize
the mean square error (MSE) of the generated label and the L2 norm of the relation embedding:

MSE(l, r) =
∑
i.j

(‖rij‖2 − lij)2. (10)

Drawing inspiration from recent work by Liu et al. (2019), we train our label generator using the loss
from ABSA with the goal of generating relation labels lij to directly optimize for the performance
of the main task.

Let θmain be the parameters of our main model, RelConsTrans. To update the parameters of θmain,
we aim to minimize a multi-task loss – cross-entropy loss, L from the ABSA prediction task and the
MSE loss described in Equation 10:

argmin
θmain

(L(ŷ, y) +MSE(l, r)). (11)

Let θ+main be the weights of the RelConsTrans after one gradient update step of gradient descent:

θ+main = θmain − αmain∇θmain argmin
θmain

(L(ŷ, y) +MSE(l, r)), (12)

where αmain is the learning rate to train the RelConsTrans. Note that the MSE from the relation
embedding would not be used to train the relation label generator. Therefore, the parameters of the
relation label generator, θaux should be updated by solely the loss from ABSA:

argmin
θaux

(L(ŷ, y)), (13)

To update the weights of the generator, a second order derivative is computed. While this formulation
was inspired by Liu et al. (2019), the second-order derivative trick used in our model was also used
in a number of other meta-learning frameworks such as Finn et al. (2017).

We train the two models in tandem, over a few iterations. We found it useful to train θmain and θaux
with separate training sets. For each data set, we took a subset of the cases which contain two or
more aspects (meta-train set) in the same sentence for training θaux. This subset is removed from
the main training set (train set) used to train the main RelConsTrans. More details of the meta-train
set would be provided in the appendix A.1.

3 RESULTS AND ANALYSIS

We conducted experiments on 5 benchmark data sets - restaurant reviews, laptop reviews from Se-
mEval 2014 (Pontiki et al., 2014), ACL14 Twitter14 data set (Dong et al., 2014) and Twitter15 and
Twitter17 from a multi-modal ABSA data set by (Yu & Jiang, 2019). For analysis, we ran additional
experiments on a split of the Twitter14 data set by aspect. We summarize the statistics of the data in
Table 1. For data sets with development sets, we perform model selection on the development sets.

For Restaurant, Laptop and Twitter14, we compare against published results from BERT-PT (Xu
et al., 2019), BERT-SPC (Song et al., 2019), AEN-BERT (Song et al., 2019), SDGCN-BERT (Zhao
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Data Set Restaurant Laptop Twitter14
Model Acc F1 Acc F1 Acc F1

BERT-PT 85.0 77.0 78.1 75.1 - -
BERT-SPC 84.5 77.0 79.0 75.0 73.6 72.1
AEN-BERT 83.1 73.8 79.9 76.3 74.7 73.1

SDGCN-BERT 83.6 76.5 81.4 78.3 - -
Transformer(B) 84.9 77.9 79.3 76.1 - -

RGAT-Bai* 86.6 80.5 81.3 78.6 75.8 74.7
RGAT-Wang* 86.6 81.4 78.2 74.1 76.2 74.9

RGAT-Wang (re-run)* 85.7 79.1 79.0 75.6 73.6 73.1
DGEDT-BERT* 86.3 80.0 79.8 75.6 77.9 75.4

LCFS-ASC-CDW* 86.7 80.3 80.5 77.1 - -
ConsTrans 85.8 80.8 80.6 77.2 76.6 75.0

RelConsTrans 85.4 79.3 80.1 76.4 75.9 74.7
RelConsTransLG 86.7 81.4 81.0 78.1 76.9 75.5

Data Set Twitter15 Twitter17
Model Acc F1 Acc F1

AE-LSTM 70.3 63.4 61.7 58.0
MemNet 70.1 61.8 64.2 60.9

RAM 70.7 63.1 64.4 61.0
MGAN 71.2 64.2 64.8 61.5
BERT 74.2 68.9 68.2 65.2

BERT+BL 74.3 70.0 68.9 66.1
TomBERT* 77.2 71.8 70.5 68.0
ConsTrans 76.5 72.5 69.3 68.2

RelConsTrans 76.9 71.6 69.0 67.7
RelConsTransLG 76.8 73.3 69.8 68.5

Table 2: Accuracy and F-score (F1) for 5 data sets: In the left (resp. right) table, systems marked *
are those that used dependency parses (resp. multi-modal information). The best Macro F1 for each
data set is in bold. For significance tests, we compare against RGAT-Wang(re-run), TomBERT and
BERT+BL. Our results are significant against RGAT-Wang(re-run) and BERT+BL. Twitter17 was
significant against TomBERT (which used image data in addition to text data) but not Twitter15.

et al., 2020), Transformer(B) (Bai et al., 2020), RGAT-Bai (Bai et al., 2020), RGAT-Wang (Wang
et al., 2020), DGEDT-BERT (Tang et al., 2020) and LCFS-ASC-CDW (Phan & Ogunbona, 2020).
The Transformer(B) is a baseline model used by Bai et al. (2020), and is the baseline vanilla Trans-
former on which ConsTrans is built upon. For Twitter 15 and Twitter17, we compare against pub-
lished results in (Yu & Jiang, 2019): MemNet (Tang et al., 2016), RAM (Chen et al., 2017),
MGAN (Fan et al., 2018), BERT, BERT+BL (Yu & Jiang, 2019) and TomBERT (Yu & Jiang, 2019).

For the Restaurant and Twitter14 data sets, we outperform all previous work that did not require de-
pendency parsers by competitive margins (4.8 F-score for Restaurant and 2.4 F-score for Twitter14).
Our results on the Laptop data (78.1) is also close to the state-of-the-art results (78.3) achieved by
SDGCN-BERT. Furthermore, comparing results with models that require a dependency parser, we
also outperform a number of models while closely matching the results of others. For Twitter15 and
Twitter17, we see in Table 2 that our best model outperforms previous work that uses only textual
content by a margin (3.3 F-score for Twitter15 and 2.4 F-Score for Twitter17). Our model also
outperforms TomBERT, the multi-modal models for Twitter15 and Twitter17.

To conduct statistical significance tests, we attempt to reproduce the results published for RGAT-
Wang, TomBERT and BERT+BL. For RGAT-Wang, we could not reproduce their published results
(with their recommended settings), and hence we can only conduct the test against the results we
obtain with their open source code, shown as RGAT-Wang(re-run) in Table 2. We run the random-
ization test (Yeh, 2000) with 100,000 shuffles. We found that RelConsTransLG outperforms RGAT-
Wang(re-run) and BERT+BL significantly (p < 0.15). RelConsTransLG significantly outperforms
TomBERT (which has additional access to image data) for Twitter17, but not Twitter15.

When comparing our proposed ConsTrans model to a vanilla Transformer, we observe that Con-
sTrans outperforms the vanilla Transformer model for both the Restaurant and Laptop data sets.
This suggests that it is indeed useful to induce constituents for ABSA. Lastly, comparing ConsTrans
and RelConsTransLG, we observe that RelConsTransLG consistently outperforms ConsTrans for all
the data sets. This suggests that our meta-learnt label generator is able to generate useful auxiliary
labels for ConsTrans for the ABSA task.

3.1 ANALYSIS

In this section, we provide findings from ablation studies and analysis of our proposed models.

Grammar Induction We derive constituent trees with the constituent probabilities to verify if the
derived trees resemble ground truth constituent trees. In Figure 4, we show an example where our
derived constituent tree shows a similar structure to the ground truth constituency tree. Notably, we
are able to accurately recall the aspect term, “jessica alba” as a constituent. The algorithm to derive
constituent trees and more examples are provided in Appendix A.4 and A.6 respectively.
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Figure 4: Example of derived constituent Tree by ConsTrans (Left) and constituent Tree from Berke-
ley Neural Parser (Kitaev & Klein, 2018) (Right).

We postulate that the ability of ConsTrans to group aspect terms into noun phrases should improve
its ABSA accuracy. To study our hypothesis, we looked at ConsTrans’s ability to recall the entire
aspect term as a noun phrase. For simplicity, we only look at records where aspect terms were not
broken down into sub-word tokens. For Twitter17, we found that ConsTrans achieves 67.8 recall rate
for correctly predicted instances and 62.2 for incorrect instances. The Pearson correlation coefficient
between prediction accuracy and recall rate was significant (with p < 0.2), indicating the usefulness
of being able to induce good constituents for ABSA.

Generalibility of RelConsTransLG The key argument by Liu et al. (2019) for designing an addi-
tional label generator is to increase the generalizability of the main model. To test the generalizabil-
ity of RelConsTransLG, we create a more challenging version of Twitter14 by splitting the data such
that the train and test set comprises of different aspect terms. The statistics of the data after splitting
by aspect (denoted by AS) is shown in Table 1. We further split the train set by aspect terms to create
a meta-train set to train the label generator in RelConsTransLG. Therefore, the relation label gener-
ator is trained to generate relation labels that enhance the performance of data with foreign aspect
terms. In this AS setting, RelConsTransLG achieves a F-score of 64.3 while ConsTrans achieved a
F-score of 62.8. Our designed framework mimics the actual train and test setting and is therefore
able to increase the generalizabillity of RelConsTransLG.

Different layers of BERT as input Tenney et al. (2019) found that different BERT layers encap-
sulate different information useful for various NLP tasks. Therefore, we experimented with using
all 12 layers of BERT as input to the label generator to study the impact on the F-score. The graph
for the F-score against BERT layer (n) is provided in Appendix A.3. Using representation from the
6th layer of BERT yields the best results for the restaurant data set and we are able to consistently
outperform models that do not use dependency parses for all value of n chosen. Furthermore, this is
an indication that syntactic information is indeed useful for ABSA since lower layers of BERT were
found to encapsulate syntactic information.

Interpreting learnt relation labels Our relation label generator is designed to encourage the gen-
eration of syntax related labels. To verify the hypothesis that generated relation label is related to
syntax, we reconstruct the dependency parses using the learnt relation embedding. Interestingly,
while Dozat & Manning (2017) have found that the L2 norm of relation embedding resembles syn-
tactic distance (i.e., a lower norm means stronger dependency), we found that our learned relation
embedding exhibits an opposite phenomenon: a higher L2 norm indicates a stronger dependency.
We hypothesize that relation embedding with higher L2 norm would influence attention weights to
a greater extent. Therefore, the L2 norm of our learnt relation embedding would represent syntac-
tic relatedness rather than syntactic distance. We then construct parse trees by linking tokens with
highest L2 norm of their relation embedding as detailed in Appendix A.5.

Manual inspection of these records suggest that while a full parse tree was not induced, we are able
to recover most of adjective-noun relations. As seen in Figure 5, we are able to retrieve the relation
of (“pleasant”, “staff”) and (“friendly”, “staff”). This is expected since understanding adjective-
noun relations would be most important to ABSA compared to other types of relations. Therefore,
training RelConsTransLG with supervision from solely ABSA would yield this behaviour.

Furthermore, to look at the ability of RelConsTransLG to link relevant adjective terms, we engaged
two annotators to annotate the adjective terms relevant to each aspect term for the test set for the
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Figure 5: Examples of induced dependency parses Tree by RelConsTransLG (Top arrows) and
ground truth dependency parses (bottom arrows) from StanfordNLP https://corenlp.run/.
Arrows in grey are for opinion terms accurately linked to the aspect term “staff”.

Restaurant data. The annotators reconciled their differing opinions and gave each record a final label.
Records with no clear opinion terms was given a ”None” label. There were 1,120 records annotated
and 811 had annotated adjective terms. We rank the relatedness of tokens with the aspect term
by the L2 norm of the relation embedding and compare it with ground truth ranks. Ground truth
ranks were obtained by ranking tokens with their syntactic distance obtained from StanfordNLP
dependency parser (Chen & Manning, 2014) with tied rank taken into account. For records where
the adjective term was more than 1 syntactic distance away, we obtain an equal or smaller rank than
the syntactic distance in 63.5% of the cases. Compared against position offset ranks, we obtain an
equal or small rank than the number of position offsets in 65.0% of the cases.

4 RELATED WORK

Sentiment analysis (Pang & Lee, 2008) is a well studied natural language processing problem. Early
works applied sentiment analysis to product reviews as a text classification problem. However, a
review or social media post could express different sentiments to different aspects, and the task
of aspect-based sentiment analysis aims at a finer classification of sentiment towards specific as-
pects (Dong et al., 2014) or aspects (Pontiki et al., 2016).

Recent work on ABSA has shown that the use of dependency parses for ABSA helps to improve
performance (Bai et al., 2020; Huang & Carley, 2019; Sun et al., 2019; Wang et al., 2020). However,
supervised dependency parsers require a substantial amount of annotated data, and might perform
badly for out-of-domain (e.g., social media) or low-resource languages. On the other hand, it has
been shown that contextual embeddings such as BERT (Devlin et al., 2018) contain significant in-
formation that could be useful to parsers (Clark et al., 2019; Kim et al., 2020a). Previous work such
as Hewitt & Manning (2019) have shown that a linear projection is sufficient to recover syntactic
information from BERT embedding. In this paper, we show that we can achieve similar ABSA
performance without supervised parsers, by leveraging on BERT which was trained with raw data.

Previous work on unsupervised grammar induction such as Shen et al. (2019); Kim et al. (2019)
aims to induce grammar from raw data. Our primary objective is not to induce grammar, but to
encourage the model to learn to perform the ABSA task by learning the causal edge dependencies
between constituents. We show that our approach is able to achieve results that rivals those obtained
by models that have access to supervised dependency parsers.

In this work, we applied meta auxiliary learning (Liu et al., 2019) which learns to generate auxiliary
labels, supervised by the primary task. While Liu et al. (2019) failed to interpret the auxiliary labels
for the computer vision tasks they worked on, we showed that in our case, the induced auxiliary
labels can be interpreted as syntactic relatedness to a certain extent.

5 CONCLUSION

In this paper, we apply a meta auxiliary learning approach to the ABSA task, and we show that
the induced relations between phrases are interpretable and supports the primary task of sentiment
analysis. We show that learning the auxiliary labels improve results over our baselines on all five
data sets. Without using dependency parsers, our approach performs competitively compared to
previous work that used dependency parses as input.
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A APPENDIX

A.1 META-SPLITTING DATA SET

To generate the meta-train set, we first obtain a subset of samples with multiple aspects of differing
sentiment from the full train set. 80% of this subset would then be used as the meta-train set. For
Twitter2014 (AS), we sampled this meta-train set by aspects. The intention is to train the Relation
Label Generator to generate labels that can encourage the model to accurately link relevant opinion
terms to the aspect term through challenging samples. The statistics of the meta-train set is provided
in Table 3.

Data set Positive Neutral Negative Total
Restaurant 195 163 162 520

Laptop 85 98 61 244
Twitter2014 265 567 301 1133
Twitter2015 123 161 56 340
Twitter2017 320 470 111 901

Twitter2014 (AS) 207 253 254 714

Table 3: Statistics of the meta-train sets. AS refers to splitting the data by aspect.

A.2 IMPLEMENTATION DETAILS

In all experiments, we used the ADAM optimizer (Kingma & Ba, 2015) with a learning rate of
10−5 to optimize the models (ConsTrans, RelConsTrans, RelConsTransLG and the relation label
generator). The BERT model was fine-tuned together with the main model built on top of it. We
used 6 multi-head attention heads and the size of the hidden layer was set to be 384. We stacked 4
encoder layers. Lower layers are defined to be the first 2 layers in the encoder stack while the last 2
layers are higher layers. Dropout was applied to all input embeddings. The L2 penalisation term for
the model’s parameters was set to be 1e-5. The size of the learnt embedding for each relation label
was set to be 786 and a batch size of 4 was used to train all the models.

A.3 DIFFERENT LAYERS OF BERT

The graph for Macro F-score against BERT layer (n) is shown in Figure 6. Using representation
from the 6th layer of BERT yields the best results for the restaurant data set and we used the 6th

layer of BERT as input to the relation label generator for all the other data sets.

Figure 6: Macro F-score on Restaurant data set with different BERT layer as input to LG.

A.4 ALGORITHM TO DERIVE CONSTITUENT TREES

To derive constituent trees, we iteratively split the input constituents into 2 parts till each constituent
is only made up of only 1 token. The breaking point is defined to be the point where the probability
of being in the same constituent for token i and i+1 is the lowest. We use the constituent probability
from the second layer of our encoder stack to find the breaking point.
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Algorithm 1 Unsupervised constituent tree derivation

1: m← Constituent layer chosen
2: x← Input tokens
3: p← Constituent probability from layer m for current constituent
4: stack = [x]
5: constituents = []
6:
7: procedure GETCONSTTREE(x, p)
8: while len(stack) != 0 do
9: current const← stack[0]

10: p0 ← constituent probabilities for current const
11: b = argmin(b0) . Find the breaking point
12: left const = x[:b]
13: right const = x[b:]
14: if len(left const) > 1 then
15: add left const to constituents
16: end if
17: if len(right const) > 1 then
18: add right const to constituents
19: end if
20: add left const and right const to constituents
21: end while
22: Return constituents
23: end procedure

A.5 ALGORITHM TO INDUCE DEPENDENCY PARSES

To recover parse trees, we iteratively linked tokens to another token with the highest L2 norm for
the learnt relation embedding. We do not allow tokens to be linked multiple times.

Algorithm 2 Unsupervised dependency parse tree induction

1: procedure GETDEPNTREE(x, p)
2: depen labels = []
3: relation norm← The L2 norm of learnt embedding
4: for j ← 1 to lengthx do
5: current max = max(relation norm)
6: i, j = position(current max); . Get the position of max L2 norm
7: add (i, j) to depen labels
8: relation norm[:, j] = −∞; . Do not link to token j
9: relation norm[j, i] = −∞; . Do not allow loops

10: end for
11: Return depen labels
12: end procedure

A.6 EXAMPLES OF DERIVED CONSTITUENT TREES

We provide more examples of constituent trees derived from ConsTrans. In general, while we were
not able to fully replicate ground truth constituent trees, we noticed that the model was able to recall
noun phrases reasonably.
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Figure 7: Example of derived constituent Tree by ConsTrans with aspect term “@Jullia webber”.

Figure 8: Example of derived constituent Tree by ConsTrans with aspect term “@golden state war-
riors”.

Figure 9: Example of derived constituent Tree by ConsTrans with aspect term “sadiq Kahn’s”.

A.7 EXAMPLES OF INDUCED DEPENDENCY PARSE TREES

We provide more examples of induced dependency parses from RelConsTransLG. While our in-
duced parse trees were not identical to ground truth parse trees, we were able to link adjective terms
to noun phrases reasonably.
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Figure 10: Examples of induced dependency parses Tree by RelConsTransLG (Top arrows) and
ground truth dependency parses (bottom arrows) from StanfordNLP https://corenlp.run/.
Arrows in grey are for opinion terms accurately linked to the aspect term “place”.

Figure 11: Examples of induced dependency parses Tree by RelConsTransLG (Top arrows) and
ground truth dependency parses (bottom arrows) from StanfordNLP https://corenlp.run/.
Arrows in grey are for opinion terms accurately linked to the aspect term “owner”.

Figure 12: Examples of induced dependency parses Tree by RelConsTransLG (Top arrows) and
ground truth dependency parses (bottom arrows) from StanfordNLP https://corenlp.run/.
Arrows in grey are for opinion terms accurately linked to the aspect term “calamari”.

15

https://corenlp.run/
https://corenlp.run/
https://corenlp.run/

	Introduction
	Model Formulation
	Constituent-based Transformer (ConsTrans)
	Relational Constituent-based Transformer (RelConsTrans)
	RelConsTrans with Label Generator (RelConsTransLG)

	Results and Analysis
	Analysis

	Related Work
	Conclusion
	Appendix
	Meta-splitting data set
	Implementation Details
	Different Layers of BERT
	Algorithm to derive constituent trees
	Algorithm to induce dependency parses
	Examples of derived constituent trees
	Examples of induced dependency parse trees


