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HunyuanVideo +AsymRnR

(30% faster)(original)
avg. latency - 703savg. latency - 913s

prompt: A person is knitting ...

FastVideo-Hunyuan +AsymRnR

(24% faster)(original)
avg. latency - 128savg. latency - 159s

prompt: A teddy bear is swimming in the ocean ...

Figure 1. Quality and speed comparison between baseline models, HunyuanVideo (Team, 2024c) and FastVideo-Hunyuan (Team,
2024a), with our AsymRnR. Our approach enables training-free, lossless acceleration for state-of-the-art video diffusion transformers.

Abstract
Diffusion Transformers (DiTs) have proven ef-
fective in generating high-quality videos but are
hindered by high computational costs. Exist-
ing video DiT sampling acceleration methods of-
ten rely on costly fine-tuning or exhibit limited
generalization capabilities. We propose Asym-
metric Reduction and Restoration (AsymRnR), a
training-free and model-agnostic method to ac-
celerate video DiTs. It builds on the observation
that redundancies of feature tokens in DiTs vary
significantly across different model blocks, de-
noising steps, and feature types. Our AsymRnR
asymmetrically reduces redundant tokens in the
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attention operation, achieving acceleration with
negligible degradation in output quality and, in
some cases, even improving it. We also tailored
a reduction schedule to distribute the reduction
across components adaptively. To further acceler-
ate this process, we introduce a matching cache
for more efficient reduction. Backed by theoreti-
cal foundations and extensive experimental vali-
dation, AsymRnR integrates into state-of-the-art
video DiTs and offers substantial speedup. The
code is available at https://github.com/
wenhao728/AsymRnR.

1. Introduction
Recent progress in video generation has been largely pro-
pelled by innovations in diffusion models (Sohl-Dickstein
et al., 2015; Song & Ermon, 2019; Ho et al., 2020). Building
on these developments, the Diffusion Transformers (DiTs)
(Peebles & Xie, 2023) have achieved state-of-the-art results
across a range of generative tasks (Zhang et al., 2023; Xing
et al., 2025; Shuai et al., 2024; Sun et al., 2024; Tu et al.,
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Figure 2. Altering different components in video DiTs leads to varying degradation. Green blocks represent original attention
blocks. Blue blocks represent attention blocks where 30% of the query tokens are randomly discarded, allowing only the remaining
70% to contribute to the output. Red blocks represent the same perturbation applied to key and value tokens. The comparison includes
perturbing: (a) different features: Q or K&V ; (b) different DiT blocks: shallow, medium, or deep; (c) different timesteps: early or later.

2024). Despite the advancements in video DiTs, the latency
remains a critical bottleneck, often taking minutes or even
hours to process a few seconds of video (Lin et al., 2024;
Yang et al., 2024; Team, 2024b;c).

Optimizing the efficiency of vision diffusion models has
been a long-standing research focus. Distillation methods
(Salimans & Ho, 2022; Meng et al., 2023; Sauer et al.,
2024; Luo et al., 2023; Team, 2024c) are widely used to
reduce sampling steps and network complexity. However,
they require extensive training and impose high computa-
tional costs. Feature caching techniques (Zhang et al., 2024;
Zhao et al., 2024; Kahatapitiya et al., 2024b) provide an
alternative acceleration strategy by avoiding redundant com-
putations in specific layers. While promising, these methods
are often tailored to specific network architectures (Rom-
bach et al., 2022; Ma et al., 2024b; Zheng et al., 2024; Lin
et al., 2024), limiting their generalizability to diverse scenar-
ios and broader model families. Another viable strategy is
reducing the attention sequence length to mitigate the com-
putational overhead in resource-intensive attention layers.
For example, Token Merging (ToMe) approaches (Bolya &
Hoffman, 2023; Li et al., 2024) merge highly similar (i.e.
redundant) tokens to accelerate image and video generation
in Stable Diffusion (SD) (Rombach et al., 2022).

However, directly extending ToMe methods to video DiTs
often results in distortions and pixelation (as shown in Fig-
ure 6). We attribute this issue to the neglect of the vary-
ing contributions of different components to the final out-
put, and to validate this hypothesis, we randomly discard

30% tokens from different features, blocks, and denoising
timesteps. The results in Figure 2 highlight three key in-
sights: 1) Perturbations in the query (Q) of the early blocks
significantly degrade the quality of the generation, whereas
similar perturbations in the key (K) and value (V ) have
a less significant impact; 2) The intensity of degradation
varies between the perturbed blocks; 3) Perturbing the Q
across all blocks but at specific denoising timesteps show
that early-timestep perturbations primarily affect semantic
accuracy (e.g. temporal motion and spatial layout), while
later-timestep perturbations degrade visual details. Previous
token reduction methods (Bolya & Hoffman, 2023; Li et al.,
2024; Kahatapitiya et al., 2024a) apply uniform reductions
across all components without accounting for their varying
sensitivities. This uniformity disproportionately impacts the
most vulnerable components, where even small perturba-
tions can significantly degrade the quality of the generation.
This phenomenon mirrors Liebig’s law of the minimum,
where a system’s capacity is constrained by its weakest
element, akin to a barrel limited by its shortest stave.

Inspired by these observations, we propose Asymmetric Re-
duction and Restoration (AsymRnR) as a plug-and-play ap-
proach to accelerate video DiTs. The core idea is to reduce
the attention sequence length asymmetrically before self-
attention and restore it afterward for subsequent operations.
We also propose a reduction scheduling that adaptively ad-
justs the reduction rate to account for nonuniform redun-
dancy. Finally, we introduce the matching cache, which
bypasses unnecessary matching computations to acceler-
ate further. We conducted extensive experiments to evalu-
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ate its effectiveness and design choices using state-of-the-
art video DiTs, including CogVideoX (Yang et al., 2024),
Mochi-1 (Team, 2024b), HunyuanVideo (Team, 2024c), and
FastVideo (Team, 2024a). With AsymRnR, these models
demonstrate significant acceleration with negligible degra-
dation in video quality and, in some cases, even improve
performance as evaluated on VBench (Huang et al., 2024).

2. Related Work
2.1. Video Diffusion Networks

State-of-the-art video diffusion methods (Team, 2024b;d;
Yang et al., 2024; Team, 2024c) employ DiT backbones.
The core module, self-attention, is defined as follows:

Attn(H) = softmax
(
QK⊤)V

= softmax
(
(HWQ)(HWK)⊤

)
(HWV ),

(1)

where WQ,WK ,WV ∈ Rd×d denote the projection matri-
ces. H ∈ Rn×d represents the input sequence, n represents
the sequence length, and d represents the hidden dimensions.
Certain operations, such as scaling, positional embeddings
(Su et al., 2024), and normalization (Ba et al., 2016), are
omitted here for brevity.

The self-attention operation has a O(n2) time complexity.
For video sequences, n is typically very large. Our goal is
to simplify its calculation to improve efficiency.

2.2. Efficient Diffusion Models

Step Distillation. Diffusion step distillation studies reduce
sampling steps to as few as 4–8 (Salimans & Ho, 2022;
Meng et al., 2023; Sauer et al., 2024). InstaFlow (Liu et al.,
2024) introduces the integration of Rectify Flow (Liu et al.,
2023) into distillation pipelines, enabling extreme model
compression without sacrificing much quality. Consistency
Models (CMs) (Song et al., 2023) propose regularizing the
ODE trajectories during distillation. LCM-LoRA (Luo et al.,
2023) introduces an efficient low-rank adaptation (Hu et al.,
2022), facilitating the conversion of SD to 4-step models.

Feature Cache. Recognizing the small variation in high-
level features across adjacent denoising steps, studies (Ma
et al., 2024a; Wimbauer et al., 2024; Habibian et al., 2024;
Chen et al., 2024) reuse these features while updating the
low-level ones. T-GATE (Zhang et al., 2024) caches cross-
attention features during the fidelity-improving stage. PAB
(Zhao et al., 2024) caches both self-attention and cross-
attention features across different broadcast ranges. Ada-
Cache (Kahatapitiya et al., 2024b) adaptively caches fea-
tures based on the computational needs of varying contexts.

Despite significant progress, distillation methods necessitate
fine-tuning to integrate new sampling paradigms. Feature

cache methods are tightly coupled with specific architec-
tures and have not been effectively integrated into few-step
sampling models. In contrast, our sequence-level accel-
eration method is training-free and compatible with SOTA
video DiTs. Our method can also accelerate distilled models
or pipelines with caching, achieving additional speedup.

2.3. Token Reduction

Recent advances in processing long contexts using Trans-
formers span areas such as NLP (Leviathan et al., 2024;
Xiao et al., 2024; Wang et al., 2020; Choromanski et al.,
2021), computer vision (Koner et al., 2024; Rao et al., 2021;
Yin et al., 2022; Choudhury et al., 2024), and multimodal
tasks (Darcet et al., 2024; Li et al., 2024; Tu et al., 2023;
Ma et al., 2024c; Ji et al., 2023). Many studies have focused
on shortening the sequence, primarily targeting discrimina-
tive and autoregressive generation tasks. These approaches
selectively truncate outputs from preceding layers, with the
reductions compounding throughout the process. However,
they are unsuitable for diffusion denoising, where the entire
sequence must remain restorable.

Token Merging (ToMe) (Bolya et al., 2023) achieves to-
ken reduction by merging tokens based on intra-sequence
similarity, which has been generalized to image generation
with SD (Bolya & Hoffman, 2023). However, directly ex-
tending ToMe to video DiTs poses challenges, often leading
to excessive pixelation and blurriness. Moreover, some de-
signs are empirical and lack theoretical justification. We
revamp their design choices from practical and theoretical
perspectives for greater acceleration and consistent quality.

3. Method
Consider a self-attention layer that processes an input ma-
trix H ∈ Rn×d, where n is the sequence length and d is
the feature dimension. The standard scaled dot-product
self-attention as shown in Equation (1) results in a O(n2)
complexity, which is costly for long sequences in video gen-
eration. We accelerate self-attention in DiTs by reducing
the number of tokens n involved in the computation.

3.1. Matching-Based Reduction

The hidden states of vision transformers often exhibit redun-
dancy (Bolya et al., 2023; Darcet et al., 2024). These obser-
vations motivate reducing the token sequence {hi}ni=1 to a
compact subsequence {h′

i}mi=1 ⊂ {hi}ni=1 prior to computa-
tion, thereby reducing computational costs by shortening the
sequences. A feasible reducing strategy involves computing
the pairwise similarity [sij ]n×n = [similarity(hi, hj)]n×n.
The token pairs with the highest similarity are iteratively
matched and merged, retaining a single representative token
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(a) Symmetric Reduction and Restoration (SymRnR) (b) Asymmetric Reduction and Restoration (AsymRnR)

Figure 3. Overview of (a) symmetric and (b) asymmetric strategies. Both methods reduce the processing sequence length before
self-attention to enhance efficiency and subsequently restore it to the original length for dense prediction. SymRnR performs reduction
before mapping to Q, K, and V , whereas AsymRnR applies reduction afterward. This flexibility allows for the adaptive assignment of
varying reduction rates to individual features. Moreover, AsymRnR supports operations on Q, K, and V before reducing sequence, such
as 3D rotary position embedding (Su et al., 2024), offering better compatibility. We use image patches for illustrative purposes.

per pair until the sequence is reduced to m tokens.

While these methods align with intuition and perform well
in practice, they lack theoretical analysis to explain their
effectiveness, limiting opportunities for further optimization.
From a distributional perspective, we provide a theoretical
explanation motivating additional improvement. To prevent
the pretrained network from being affected by covariate
shift, the distribution of the reduced sequence should closely
resemble that of the original sequence. Specifically, the re-
duction process should minimize the Kullback-Leibler (KL)
divergence DKL(P ′||P) between the reduced sequence P ′

and the original distribution P . Given that the analytical
forms of these distributions are typically inaccessible, we
employ numerical estimation techniques. Inspired by (Wang
et al., 2009), we present the following corollary for estimat-
ing the KL divergence, with further details provided in the
Appendix A.

Corollary 3.1. Suppose {Xi}li=1 and {X ′
i}l

′

i=1 are covari-
ance stationary sequences sampled from P and P ′, respec-
tively. A Monte Carlo estimator is given by:

D̂l′,l(P ′||P) =
d

l′

l′∑
i=1

log
ν(i)

ρ(i)
+ log

l

l′ − 1
, (2)

where ρ(i) is the nearest-neighbor (NN) Euclidean distance1

of X ′
i among {X ′

j}j ̸=i and ν(i) is the NN Euclidean dis-
tance of X ′

i among {Xj}lj=1. The bias and variance of this
estimator D̂l′,l(P ′||P) vanish as l, l′ → ∞.

This theoretical framework illuminates the effectiveness of
matching-based reduction methods through two key mech-
anisms: 1) the elimination of redundant tokens increases
the dispersion of P ′, resulting in larger ρ(i) values; and
2) careful control of the reduction ratio prevents excessive
sparsification, maintaining small ν(i) values. This analysis
not only provides theoretical validation for existing token

1This generally holds for Lp-distances, where 1 ≤ p ≤ ∞.

reduction strategies but also suggests promising directions
for enhancement, which we explore in subsequent sections.

3.2. Prior Reduction Methods for Diffusion Acceleration

Prior works (Bolya & Hoffman, 2023; Li et al., 2024; Ka-
hatapitiya et al., 2024a) reduce the input sequence H (so
symmetrically reduce Q, K, and V ), enabling self-attention
to process a shorter sequence, as depicted in Figure 3 (a). To
maintain compatibility with diffusion denoising, the reduced
sequences are restored to their original length by replicat-
ing each reduced token according to its most similar match
among the unreduced tokens. Formally, the attention opera-
tion with Symmetric Reduction and Restoration (SymRnR)
applied can be formulated as follows:

SymRnR(H) = (R−1 ◦Attn ◦ R)(H), (3)

where R(·) and R−1(·) represent the reduction and restora-
tion operations, respectively. The symbol ◦ denotes compo-
sition operator, meaning the connected operators are applied
sequentially from right to left. Notably, this process is lossy,
and the resulting error is often substantial in video DiTs.

Bipartite Soft Matching (BSM). Computing the naive
n × n similarity matrix is computationally expensive and
may negate acceleration. BSM is introduced to improve
the matching efficiency (Bolya et al., 2023): The tokens
{h1, . . . , hn} are first partitioned into a set of source tokens
{hs1 , . . . , hsn1

} of size n1 and a set of destination tokens
{hd1

, . . . , hdn2
} of size n2, where n = n1 + n2. Each

source token is matched with its closest destination token.
Then, the top n−m matched source tokens are reduced.

Partitioning. ToMe (Bolya & Hoffman, 2023) partitions
the image tokens into chunks using 2D stride (e.g. 2×2) and
randomly selects one token from each chunk to populate the
set of destinations. We extend this approach to 3D stride
(e.g. 2× 2× 2) to accommodate video data.
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Figure 4. CogVideoX (Yang et al., 2024) attention feature similarity distribution. The shaded areas indicate the confidence interval.
Blocks are divided into four groups, each exhibiting distinct trends, with variations observed across different feature types. These patterns
remain consistent across generations with diverse contents.

3.3. Asymmetric Reduction and Restoration

Unlike previous works that focus on reducing H , we reduce
Q and K&V independently, as depicted in Figure 3 (b). In
this way, the asymmetric treatment of Q and K&V enables
each feature to minimize its covariate shift independently
during the matching process, as discussed in Section 3.1.
The attention operation with our Asymmetric Reduction and
Restoration (AsymRnR) is formulated as:

Q′ = RQ(Q), K ′, V ′ = RKV (K,V ),

AsymRnR(H) = R−1
Q (softmax(Q′(K ′)T )V ′).

(4)

It is worth noticing that K and V must share the same reduc-
tion scheme due to their one-to-one correspondence, while
Q can be reduced independently of the other features. Fur-
thermore, since Q acts as the ”questioner” and its sequence
length must match the original sequence for subsequent
layer processing, while the information from K and V has
already been encoded into the output features by attention
weights, it is sufficient to restore the Q sequence.

Symmetric reduction at H may not necessarily achieve op-
timal divergence at the levels of Q, K, and V but seeks to
balance them. In contrast, our decoupled design allows for
an asymmetrical reduction strategy and varying reduction
rates across features, resulting in improved divergence for
each feature and greater flexibility. Another benefit of the
decoupled design is improved compatibility. For instance,
techniques such as 3D rotary position embedding (ROPE)
(Su et al., 2024) on Q and K require specific sequence
lengths. SymRnR, which performs reduction before map-
ping to Q, K, and V , cannot support arbitrary reduction
rates. In contrast, AsymRnR applies reduction after these
operations, enabling arbitrary reduction rates and ensuring
better compatibility.

3.4. Reduction Scheduling

Besides the asymmetric redundancy mentioned in Sec-
tion 3.3, Figure 2 also reveals that perturbations in Q across
the shallow, middle, and deep blocks lead to varying de-

grees of degradation. Similarly, perturbations at different
denoising timesteps exhibit obvious variations. This raises a
natural question: how does redundancy evolve across blocks
and denoising timesteps?

We examined the similarity across blocks and timesteps in
video DiTs. Figure 4 illustrates temporal trends in similarity
across blocks: 1) During the initial timesteps when the
input to the network closely resembles random noise, higher
similarity is observed across different blocks; 2) As the
generation progresses, the similarity generally decreases and
stabilizes; 3) The temporal trends vary significantly between
blocks. For instance, in the shallow blocks, the similarity
of V increases steadily after the first ten steps. Whereas
in other blocks, it remains relatively constant. 4) Such a
pattern is model-specific but context-agnostic and can be
considered an intrinsic property of the models.

To optimize computational budgets, we can reduce com-
putations for high-similarity blocks and timesteps while
maintaining low-similarity components. A key challenge is
that the similarity values for the entire process are unknown
in advance, complicating the decision on which components
to reduce. Fortunately, we can leverage the property that
similarity patterns are context-agnostic, enabling the similar-
ity distribution to be estimated in advance through arbitrary
diffusion sampling. Specifically, let Ŝ(A, t, b) represent
the similarity for feature A ∈ {H,Q,K, V }, reverse diffu-
sion timestep t, and block b during the advanced sampling
process. Using this similarity measure, reductions can be
applied selectively by thresholding Ŝ(A, t, b), enabling the
derivation of a scheduled reduction strategy:

R̃A =

{
RA if Ŝ(A, t, b) ≥ τA

id otherwise
, (5)

where τA’s are the thresholding hyperparameters, which can
be adjusted to optimize the trade-off between computational
efficiency and output quality. RA denotes the reduction
operation defined in Equation (4), while id represents the
identity operation (i.e., no reduction). The restoration op-
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Figure 5. Heatmap of matching similarity at different denoising
timesteps. The similarities across successive timesteps are nearly
identical, but divergence increases with a larger step gap.

eration R−1
A is modified correspondingly. This reduction

scheduling is also asymmetric for A ∈ {H,Q,K, V }, al-
lowing for precise coordination of computational resources.

Details of the hyperparameter tuning for τA are presented
in Appendix B.

3.5. Matching Cache

One drawback of matching-based reduction methods is the
additional cost incurred by the matching process during
each reduction. Despite using BSM (Bolya et al., 2023), the
matching process still significantly negates the speedup.

We observed that the matching similarity at successive de-
noising steps exhibits only minor differences, as illustrated
in Figure 5. Similar patterns were also observed in the hid-
den states produced by the denoising network layers (Balaji
et al., 2022; Ma et al., 2024a; Chen et al., 2024). This ob-
servation motivates us to cache the matching results over
denoising steps, avoiding repeating calculations. Formally,
matching similarity with caching is defined as:

S(A, t, b) =

{
BSM(A, t, b) if t ≡ 0 (mod s)

S(A, s · ⌊t/s⌋, b) otherwise
,

where S(A, t, b) denotes the matching similarity of the atten-
tion feature type A ∈ {H,Q,K, V } at the reverse diffusion
timestep t and block b. BSM(·) represents the bipartite soft
matching (Bolya et al., 2023) metioned in Section 3.2 and s
denotes the caching steps. Consequently, the matching cost
is proportionally reduced by 1/s.

4. Experiments
4.1. Experimental Settings

Models and Methods. We exhibit experiments on Text-
to-Video (T2V) task on state-of-the-art open-sourced video
DiTs: CogVideoX-2B, CogVideoX-5B (Yang et al., 2024),
Mochi-1 (Team, 2024b), and HunyuanVideo (Team, 2024c).
We also evaluate integrating our AsymRnR approach with
the step distillation approach by combining it with a 6-step
distilled version of FastVideo (Team, 2024a). We focus
on training-free token reduction-based acceleration and use

Table 1. Quantitative comparison of CogVideoX-2B (Yang
et al., 2024) with ToMe (Bolya et al., 2023) and AsymRnR.
FLOPs represent the floating-point operations required per video.
Generation specifications: resolution 480× 720 and 49 frames.

METHOD
FLOPS LATENCY SPEEDUP VBENCH ↑ LPIPS ↓
(×1015) (SECOND)

COGVIDEOX-2B 12.000 137.30 - 0.8008 -
+ TOME 10.549 123.59 1.11× 0.7825 0.5562
+ TOME-FAST 10.120 118.26 1.16× 0.7732 0.5602
+ OURS 10.342 121.70 1.13× 0.7917 0.5511
+ OURS-FAST 9.976 117.29 1.17× 0.7849 0.5632

ToMe (Bolya & Hoffman, 2023) as the baseline method.
We adjust the reduction rate, align the latency, and evaluate
their generation quality on CogVideoX-2B (Yang et al.,
2024). Notably, ToMe is incompatible with 3D ROPE and
cannot be directly integrated into the other DiTs as detailed
in Section 3.3. Our AsymRnR integrates seamlessly with
these methods, and we report its results across all video DiTs
for comprehensive evaluation. Additional implementation
details are provided in the Appendix.

Benchmarks and Evaluation Metrics. We follow previous
work and perform sampling on over 900 text prompts from
the standard VBench suite (Huang et al., 2024). It assesses
the quality of generated videos across 16 dimensions. The
aggregated VBench score is reported and all dimensional
scores will be provided in Appendix E.2. LPIPS (Zhang
et al., 2018) is used as a reference metric in the comparison
analysis for semantic alignment evaluation. Note that no
unique ground-truth video exists for a given text prompt;
multiple generations can be equally satisfactory. Therefore,
visual quality and textual alignment (measured by VBench
score) are the primary performance metrics. And LPIPS is
only included as a reference metric.

For efficiency evaluation, we use FLOPs and running la-
tency2 as metrics from both theoretical and practical per-
spectives. The relative speedup, ∆latency/latency + 1, is
also provided.

4.2. Experimental Results

Quantitative Comparison. Table 1 provides qualitative
comparisons between two configurations: a base version
with perceptually near-lossless quality and a fast version
that achieves higher speed at the cost of slight quality degra-
dation. We set the matching cache step to s = 5 and the
partition stride to 2× 2× 2 for both ToMe and AsymRnR.
Our higher VBench scores and lower LPIPS, achieved at
comparable FLOPs and latency, demonstrate superior video
quality and semantic preservation.

2Latency is measured using an NVIDIA A100 for CogVideoX
variants and an NVIDIA H100 for the rest of models due to the
availability of hardware at the time.
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avg. latency 137s avg. latency 118s avg. latency 117s

CogVideoX-2B +ToMe +AsymRnR

(17% faster)(original)

prompt: A sandwich and a book with a clear cover ...

avg. latency 137s avg. latency 118s avg. latency 117s

CogVideoX-2B +ToMe +AsymRnR

(17% faster)(original)

prompt: A golden retriever with a shiny coat strolls leisurely through a sun-dappled forest path ...

Figure 6. Qualitative comparison on CogVideoX-2B (Yang et al., 2024). ToMe (Bolya & Hoffman, 2023) exhibits blurriness (left) and
pixelation (right), whereas our AsymRnR consistently performs well. The video examples are provided in the Supplementary Materials.

avg. latency 348s

avg. latency 309s

CogVideoX-5B

+AsymRnR (13% faster)

(original)

prompt: A sunset time lapse at the beach with moving clouds and colors in the sky ...

avg. latency 202s

avg. latency 178s

Mochi-1

+AsymRnR (13% faster)

(original)

prompt: An astronaut flying in space ...

avg. latency 913s

avg. latency 703s

HunyuanVideo

+AsymRnR (30% faster)

(original)

prompt: A horse galloping gracefully across the open field ...

avg. latency 159s

avg. latency 128s

FastVideo-Hunyuan

+AsymRnR (24% faster)

(original)

prompt: A panda standing on a surfboard in the ocean in sunset ...

Figure 7. Qualitative results on CogVideoX-5B (Yang et al., 2024), Mochi-1 (Team, 2024b), HunyuanVideo (Team, 2024c), and
FastVideo-Hunyuan (Team, 2024a). ToMe (Bolya & Hoffman, 2023) is incompatible with these models; we present videos generated by
the baseline models and our proposed AsymRnR.

Generalization to SOTA Video DiTs. Table 2 presents
additional results of applying AsymRnR to DiTs across
various architectures, parameter sizes, and denoising sched-
ulers. Applying AsymRnR to the CogVideoX-5B demon-
strates less quality degradation than the 2B variant. This
phenomenon is more pronounced in larger models Mochi-1
and HunyuanVideo: AsymRnR even achieves superior re-
sults over baseline models while reducing computational
costs. In FastVideo-Hunyuan, a step-distilled variant of Hun-
yuanVideo, which is capable of sampling in just 6 denois-
ing steps, AsymRnR achieves an over 24% speedup while

maintaining perceptual quality. Our consistently strong per-
formance underscores effectiveness and generalizability.

Qualitative Results. Figure 6 presents a qualitative com-
parison on CogVideoX-2B. ToMe generations exhibit no-
ticeable blurriness and pixelation. Although generations
with AsymRnR deviate from the baselines at the pixel level,
they consistently preserve high quality and semantic coher-
ence. Figure 7 also presents qualitative results on other
video DiTs, which are incompatible with ToMe. Asym-
RnR demonstrates acceleration without compromising vi-
sual quality in various baseline models and contents.
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Table 2. Quantitative evaluation of CogVideoX-5B (Yang et al.,
2024), Mochi-1 (Team, 2024b), HunyuanVideo (Team, 2024c),
and FastVideo-Hunyuan (Team, 2024a). The generation specifi-
cations are detailed in the Appendix C.

METHOD
FLOPS LATENCY SPEEDUP VBENCH ↑
(×1015) (SECOND)

COGVIDEOX-5B 33.220 347.50 - 0.8074
+ OURS 29.876 316.12 1.10× 0.8061
+ OURS-FAST 29.190 308.86 1.13× 0.8056

MOCHI-1 35.877 201.85 - 0.7911
+ OURS 32.086 182.64 1.10× 0.7973
+ OURS-FAST 31.583 178.26 1.13× 0.7996

HUNYUANVIDEO 128.559 912.98 - 0.8157
+ OURS 104.795 738.18 1.24× 0.8240
+ OURS-FAST 100.110 703.29 1.30× 0.8237

FASTVIDEO 21.720 158.66 - 0.8225
+ OURS 17.746 132.52 1.20× 0.8172
+ OURS-FAST 17.086 128.39 1.24× 0.8140

avg. latency 913s avg. latency 716s avg. latency 535s

HunyuanVideo +PAB +PAB & AsymRnR

(28% faster)(original)

prompt: A fluffy white sheep ...

(71% faster)

Figure 8. Quantitative evaluation on HunyuanVideo. AsymRnR
is compatible with the feature caching method PAB (Zhao et al.,
2024), and together they achieve a 1.71× overall acceleration.

Integration with Feature Caching. Our AsymRnR acceler-
ates sampling by reducing the computation of the attention
operator and is orthogonal to other acceleration approaches.
Experiments on FastVideo-Hunyuan (Team, 2024a) demon-
strate its compatibility with the step-distillation method
(Wang et al., 2024). We further assess its compatibility
with feature caching techniques by integrating AsymRnR
with PAB (Zhao et al., 2024); the results are summarized in
Table 1. When stacked on top of PAB, AsymRnR achieves
a 1.71× overall speedup without compromising generation
quality. The quantitative results are presented in Figure 8.

Integration with UNet-based video diffusion models.
AsymRnR is designed to operate on attention layers, which
are prevalent in diffusion models, including UNet-based
(Ronneberger et al., 2015) architectures such as Animate-
Diff (Guo et al., 2024). We apply AsymRnR to the spatial
self-attention modules at the highest-resolution stages of

Table 3. Integration with the caching-based method PAB.
AsymRnR and PAB (Zhao et al., 2024) on HunyuanVideo (Team,
2024c) further improve efficiency, achieving a total 1.71× speedup
with negligible performance degradation.

METHOD
FLOPS LATENCY SPEEDUP VBENCH ↑
(×1015) (SECOND)

HUNYUANVIDEO 128.599 912.89 - 0.8157
+ PAB 96.582 715.71 1.28× 0.8153
+ PAB + OURS 73.224 534.93 1.71× 0.8140

Table 4. Integration with the UNet-based video diffusion model
AnimateDiff (Guo et al., 2024). AsymRnR achieves a 1.2×
speedup. Generation specifications: 16-frame videos at 512× 512
using a 50-step DDIM Euler solver (Song et al., 2021).

METHOD
FLOPS LATENCY SPEEDUP VBENCH ↑
(×1015) (SECOND)

ANIMATEDIFF 1.775 37.21 - 0.7748
+ TOME 1.636 31.14 1.19× 0.7693
+ OURS 1.635 31.09 1.20× 0.7738

AnimateDiff. The corresponding qualitative results are pro-
vided in Table 4. This integration yields a 1.20× speedup
without perceptible quality degradation.

4.3. Ablation Study

Quality-Latency Trade-off for Individual Features. Fig-
ure 9 illustrates the quality-latency curve for different fea-
ture types: H , Q, K, and V . To isolate the influence of
other factors, the scheduling discussed in Section 3.4 is dis-
abled unless explicitly mentioned otherwise in this section.
We observe that reducing individual features leads to a hier-
archy of V > H > K ≫ Q. As K and V require identical
reduction behavior, we use V ’s matching to decide K&V
reduction throughout the paper.

Reduction Scheduling. Table 5 presents a comparison of
AsymRnR with and without scheduling. Under a capped
latency budget, adaptively adjusting reducible blocks and
timesteps based on the scheduling strategy significantly
improves performance. Moreover, the improvement in Q
surpasses V , suggesting that Q is more sensitive in low-
redundancy blocks and timesteps but exhibits greater robust-
ness to substantial reductions in high-redundancy regions.
Specifically, reducing the high-similarity parts of Q by 80%
causes no perceptible artifacts in human evaluations. In con-
trast, reducing the low-similarity components by just 10%
leads to noticeable distortions. It underscores the necessity
of implementing such a reduction schedule.

Matching Cache. One major efficiency bottleneck is match-
ing. Our newly proposed matching cache reduces the match-
ing cost by a factor of 1/s, but may intuitively result in
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Figure 9. Quality-latency trade-off for individual features. Uni-
formly reducing V shows superior quality, whereas reducing Q in
isolation leads to a substantial quality decline.

Table 5. The effectiveness of the reduction schedule. With the
reduction schedule, the reductions in Q and V demonstrate sig-
nificant improvements without increasing latency.Collaboratively
reducing Q and V further improves performance while maintain-
ing the same latency. Our default configurations are highlighted .

FEATURE SCHEDULE
FLOPS LATENCY VBENCH ↑
(×1015) (SECOND)

Q 10.204 123.42 0.7641
V 10.276 122.34 0.7765

Q ✓ 10.620 123.59 0.7893
V ✓ 10.403 122.19 0.7787

Q+ V ✓ 10.342 121.70 0.7917

potential quality degradation. Table 6 presents the VBench
score across various caching steps. Increasing the caching
step significantly reduces FLOPs and latency, with only
minor quality degradation. We adopt s = 5 as the default
configuration, balancing latency and quality.

Similarity Metric and Reduction Operation. Table 7
analyzes the impact of various design choices for matching
and reduction. ToMe (Bolya et al., 2023) utilizes cosine
similarity, which lacks the metric properties and cannot be
interpreted via Corollary 3.1. Experimental results reveal
that switching to (negative) Euclidean distance improves
performance, offering theoretical soundness and accounting
for magnitude. Additionally, ToMe’s default mean-based
reduction operation increases latency and causes blurriness
and distortions. In contrast, our approach directly discards
redundant tokens, enhancing efficiency and output quality.

5. Limitation
One limitation of our approach is the presence of visual
discrepancies in the generated outputs as shown in Figures 6
and 7, despite maintaining semantic consistency. Addition-
ally, acceleration and generation quality depend on hyperpa-
rameter configurations, such as the similarity threshold for

Table 6. The effect of matching cache on V reduction. Increas-
ing the caching steps does not significantly degrade performance
but reduces latency when s ≤ 5. This evaluation focuses on feature
V without scheduling to isolate the impact of caching steps.

FLOPS LATENCY VBENCH ↑
(×1015) (SECOND)

s = 1 10.210 134.68 0.7859
s = 2 10.161 124.24 0.7822
s = 3 9.968 120.77 0.7798
s = 4 9.943 118.61 0.7763
s = 5 9.917 118.16 0.7796
s = 6 9.909 117.51 0.7747

Table 7. Comparison of similarity and reduction operations.
The cosine similarity in ToMe (Bolya et al., 2023) is suboptimal
compared to Euclidean similarity for AsymRnR. The mean re-
duction operation introduces extra processing time and degrades
quality. Directly discarding yields the best results.

SIMILARITY REDUCTION
FLOPS LATENCY VBENCH ↑
(×1015) (SECOND)

RANDOM DISCARD 9.843 113.79 0.7112
DOT DISCARD 9.914 117.92 0.7395

COSINE DISCARD 9.914 118.08 0.7716
EUCLIDEAN DISCARD 9.917 118.16 0.7796
EUCLIDEAN MEAN 9.917 119.90 0.7630

reduction and the reduction rate, which require tuning for
each baseline model. Furthermore, AsymRnR offers signif-
icant advantages in processing longer sequences, whereas
it provides minor acceleration for image-based DiTs due to
their inherently shorter sequence lengths.

6. Conclusion
This paper presents AsymRnR, a training-free sampling ac-
celeration approach for video DiTs. AsymRnR decouples
sequence length reduction between attention features and
allows the reduction scheduling to adaptively distribute re-
duced computations across blocks and denoising timesteps.
To further enhance efficiency, we introduce a matching
cache mechanism that minimizes matching overhead, en-
suring that acceleration gains are fully realized. Applied to
state-of-the-art video DiTs in comprehensive experiments,
our approach achieves significant speedups while maintain-
ing high-quality generation. The successful integration with
diverse models, including step-distilled models, highlights
the generalizability of our approach. These results high-
light the potential of AsymRnR to drive practical efficiency
improvements in video DiTs generation.
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Yin, H., Vahdat, A., Álvarez, J. M., Mallya, A., Kautz, J.,
and Molchanov, P. A-vit: Adaptive tokens for efficient
vision transformer. In CVPR, pp. 10799–10808. IEEE,
2022.

Zhang, C., Zhang, C., Zhang, M., and Kweon, I. S. Text-
to-image diffusion models in generative AI: A survey.
CoRR, abs/2303.07909, 2023.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric. In CVPR, pp. 586–595. IEEE, 2018.

Zhang, W., Liu, H., Xie, J., Faccio, F., Shou, M. Z.,
and Schmidhuber, J. Cross-attention makes inference
cumbersome in text-to-image diffusion models. CoRR,
abs/2404.02747, 2024.

Zhao, X., Jin, X., Wang, K., and You, Y. Real-time video
generation with pyramid attention broadcast. CoRR,
abs/2408.12588, 2024.

Zheng, Z., Peng, X., Yang, T., Shen, C., Li, S., Liu, H., Zhou,
Y., Li, T., and You, Y. Open-sora: Democratizing efficient
video production for all. https://github.com/
hpcaitech/Open-Sora, 2024. Accessed: 2024-11-
20.

12

https://github.com/hpcaitech/Open-Sora
https://github.com/hpcaitech/Open-Sora


AsymRnR: Video Diffusion Transformers Acceleration with Asymmetric Reduction and Restoration

A. Details of Corollary 3.1
The derivation of the original k-NN estimator is detailed in
(Wang et al., 2009). For completeness, we present its core
concept here. We refer the reader to the cited work for a
comprehensive derivation and coverage analysis.

Suppose p and q are the densities of two continuous distribu-
tions on Rd, where p(x) = 0 almost everywhere q(x) = 0.
The KL-divergence is defined as:

DKL(p∥q) =
∫
Rd

p(x) log
p(x)

q(x)
dx . (6)

Let {Xi}ni=1 and {Yi}mi=1 be i.i.d. samples drawn from p
and q, respectively, and p̂ and q̂ denote consistent estimators
of p and q. By the law of large numbers, the following
statistic provides a consistent estimator for DKL(p∥q):

1

n

n∑
i=1

log
p̂(Xi)

q̂(Xi)
. (7)

To define p̂ in Equation (7), consider the closure of the d-
dimensional Euclidean ball B(Xi, ρk(i)), centered at Xi

with radius ρk(i), where ρk(i) is the Euclidean distance
to the k-th nearest-neighbor of Xi in {Xj}j ̸=i. Since p
is a continuous density, the ball B(Xi, ρk(i)) contains k
samples from {Xj}j ̸=i almost surely. The density estimate
of p at Xi is

p̂(Xi) =
k

n− 1

1

c1(d)ρdk(i)
, (8)

where c1(d) = πd/2/Γ(d/2 + 1) is the volume of the unit
ball. Similarly the k-NN density estimate of q at Xi is

q̂(Xi) =
k

m

1

c1(d)νdk(i)
, (9)

where νk(i) is the Euclidean distance to the k-th nearest-
neighbor of Xi in {Yj}mj=1. Substituting Equations (8)
and (9) into Equation (7) yields the following estimator:

D̂n,m(p||q) = d

n

n∑
i=1

log
νk(i)

ρk(i)
+ log

m

n− 1
. (10)

The original paper (Wang et al., 2009) demonstrated that, for
any fixed k, the bias and variance of the estimator diminish
as the sample size n increases. Therefore, k is omitted in
Corollary 3.1 for simplicity.

The i.i.d. assumption in the derivation process, together with
the convergence analysis from Theorems 1 and 2 in (Wang
et al., 2009), is used to apply the law of large numbers.
This assumption can be relaxed to the weaker condition
of covariance stationarity by applying Chebyshev’s law of
large numbers, which leads to the same conclusion and
facilitates the derivation of Corollary 3.1.

B. Hyperparameter Tuning
The hyperparameters are manually tuned through only a
simple and efficient process, typically within 10 iterations,
with each iteration requiring only 1 inference. In practice:

1. We start the first iteration with a low similarity thresh-
old of 0.5 and a low reduction rate of 0.3.

2. We run 1 inference with an arbitrary text prompt. If the
generation maintains good, we increase the reduction
rate by 0.2 to encourage more aggressive reduction.

3. When a poor generation occurs, we revert to the previ-
ous reduction rate, lift the threshold by 0.1, and repeat
step 2.

This simple heuristic guides the tuning process with minimal
effort. The hyperparameter we used in the experiments will
be provided in Appendix C later.

C. Implementation Details for Experiments
Video Specification. In terms of output specifications,
CogVideoX-2B and CogVideoX-5B generate 49 frames
at a resolution of 480 × 720, following their default set-
ting. Mochi-1 generates 85 frames with a resolution of
480×848. HunyuanVideo produces 129 frames at 544×960.
FastVideo-Hunyuan outputs 65 frames at 720× 1280 reso-
lution. Memory-efficient attention (Rabe & Staats, 2021) is
enabled by default in all experiments.

Diffusion Specification. The sampling of CogVideoX-2B
(Yang et al., 2024) utilizes the 50-step DDIM solver (Song
et al., 2021), while CogVideoX-5B employs the 50-step
DPM solver (Lu et al., 2022). Mochi-1 (Team, 2024b), Hun-
yuanVideo (Team, 2024c), and FastVideo-Hunyuan (Team,
2024a) use the flow-matching (Esser et al., 2024) Euler
solver with 30, 30, and 6 sampling steps, respectively.

BSM Specification. To adapt ToMe to the video scenario,
we employ a 3D partition with a 2 × 2 × 2 stride in the
CogVideoX-2B experiments. This setup ensures consis-
tency with the configuration outlined in Section 3.2. In
the experiments involving AsymRnR on Mochi-1, Hun-
yuanVideo, and FastVideo-Hunyuan, the partition stride is
expanded to 6 × 2 × 2 to accommodate the higher num-
ber of generated frames in these models. As outlined in
Section 4.2, we set the matching cache steps to s = 5 for
CogVideoX variants and s = 3 for Mochi-1 and Hunyuan-
Video. For FastVideo, the matching cache is disabled.

Similarity Standardization. The negative Euclidean dis-
tance used as the similarity metric spans the range [0,∞).
To improve visualization and usability, as illustrated in Fig-
ure 4, we apply a standardization approach. Specifically,
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Table 8. Reduction scheduling details for Section 4.

METHOD FEATURE REDUCTION

COGVIDEOX
+ TOME H {0.0:0.1}
+ TOME-FAST H {0.0:0.13}

Q {0.6:0.4, 0.7:0.8}+ OURS
V {0.8:0.3}
Q {0.6:0.6, 0.7:0.8}+ OURS-FAST
V {0.7:0.3, 0.9:0.4}

MOCHI-1
Q {0.5:0.7}+ OURS
V {0.7:0.3}
Q {0.45:0.6, 0.5:0.7}+ OURS-FAST
V {0.7:0.3}

HUNYUANVIDEO
Q {0.7:0.9}+ OURS
V {0.8:0.3}
Q {0.5:0.3, 0.7:0.9}+ OURS-FAST
V {0.8:0.3}

FASTVIDEO
Q {0.7:0.9}+ OURS
V {0.8:0.3}
Q {0.7:0.9}+ OURS-FAST
V {0.8:0.4}

during the registration of similarity distributions in Sec-
tion 3.4, values outside the 5th–95th percentile range are
truncated, followed by min-max standardization. This en-
sures that all similarity values are scaled to the range [0, 1].

Reduction Scheduling. The reduction schedule is defined
by two hyperparameters: the similarity threshold for re-
duction and the reduction rates. The similarity threshold
is tuned individually for each DiT model to maintain the
quality. Specifically, it is determined through visual inspec-
tion of several cases, providing generally effective results,
though not necessarily optimal for every sample. On the
other hand, the reduction rates are adjusted to achieve the
desired acceleration (e.g., a 1.30× speedup).

The reduction schedule is represented as a JSON dictionary.
For instance, in CogVideoX-2B AsymRnR, the schedule
is specified as {’Q’: {0.6:0.4, 0.7:0.8}, ’V’:
{0.8:0.3}}. This indicates that the query sequence will
be reduced by 40% when the estimated similarity Ŝ(Q, t, b)
exceeds τQ1 = 0.6 at timestep t and block b, as outlined in
Section 3.4. The reduction rate increases to 80% if Ŝ(Q, t, b)
exceeds τQ2 = 0.8. Similarly, the value (and key) sequences
are reduced by 30% when the similarity exceeds τV = 0.8.
All schedule specifications are summarized in Table 8.

We observed that query sequences are less sensitive to
high reduction rates in high-similarity blocks and timesteps,
whereas key and value sequences benefit from a more bal-
anced reduction rate across components. This underscores

Table 9. Destination partition stride and ratio. Increasing the
number of destination tokens excessively leads to higher latency,
while reducing them too much compromises video quality.

STRIDE DESTINATION FLOPS LATENCY VBENCH ↑
(t, h, w) rd (%) (×1015) (SECOND)

(1, 2, 2) 24.44% 9.979 123.60 0.7624
(2, 2, 2) 11.28% 9.917 118.16 0.7796
(3, 2, 2) 7.52% 9.894 115.66 0.7417
(4, 2, 2) 5.64% 9.882 114.55 0.7356
(2, 3, 3) 5.13% 9.879 114.10 0.7372
(2, 4, 4) 2.63% 9.862 112.58 0.7231

Table 10. Comparison of additional reduction rates and fea-
tures. Simply scaling the reduction rate outperforms the inclusion
of H and SymRnR for lower latency.

FEATURE
FLOPS LATENCY VBENCH ↑
(×1015) (SECOND)

- 12.000 137.30 0.8008
Q+ V 9.9755 117.29 0.7849

H +Q+ V 10.0404 117.23 0.7766

the importance of our asymmetric design, which enables
greater flexibility and optimizes acceleration potential.

D. More Ablation Results
Destination Partition. The partitioning of source and
destination tokens in BSM (as detailed in Section 3.1)
is critical in final quality. BSM exhibits a complexity
of O(rd(1 − rd)n

2), which increases monotonically for
0 < rd < 1/2, where rd denotes the fraction of destination
tokens and n is the total number of tokens.

As shown in Table 9, a smaller rd results in significant
quality degradation due to less accurate matching, while a
larger rd slightly reduces quality and increases latency due
to weakened temporal regularization. We adopt a stride of
(2, 2, 2) as the default setting to balance these trade-offs.

Combining SymRnR and AsymRnR. A key question is
whether increasing the reduction rate or further reducing
additional features is more effective in squeezing the latency.
Intuitively, SymRnR and AsymRnR can be combined for
greater speedup. We explore the parallel integration of Sym-
RnR and AsymRnR: when a block is deemed redundant in
Q or V at a given timestep, AsymRnR takes precedence for
reduction. Then, the unreduced components can be further
processed using SymRnR. The result of this integration is
shown in the last row of Table 10. Incorporating additional
reductions through SymRnR results in lower quality at the
same latency, whereas directly scaling the reduction rate
of AsymRnR yields superior performance. We focus on
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Figure 10. The distribution of feature Euclidean norms. The
dashed line indicates the 95th percentile. Compared to input H ,
the value V norm distribution exhibits a longer tail, which can
cause distortion when using cosine similarity for matching.

AsymRnR and leave their integration to future work.

Similarity Metric for Matching. The attention operation
relies on the dot product metric (i.e. cosine similarity) for
calculating the attention map (Kim et al., 2017; Dong et al.,
2021). Therefore, it is regarded as the standard approach
for token similarity in previous works (Bolya et al., 2023;
Bolya & Hoffman, 2023; Li et al., 2024; Kahatapitiya et al.,
2024a). However, cosine similarity cannot be analyzed
through Corollary 3.1 because it lacks metric properties.
Empirically, this limitation results in dark spots and a dim
appearance in the generated videos, particularly when V is
reduced, as quantitatively shown in Table 7.

To investigate the root cause of this issue, we visualized
the distribution of feature norms in Figure 10. The norm
distributions for V exhibit significantly long tails: a small
proportion of tokens show significantly larger norms. Using
cosine similarity disregards the magnitude of these tokens,
which can result in matching tokens with greatly different
magnitudes, thereby causing instability. We use the (neg-
ative) Euclidean distance, which effectively captures both
directional and magnitude differences between paired vec-
tors, and is supported by a theoretical foundation.

E. More Results
E.1. More Qualitative Results

Figure 12 presents additional comparisons of ToMe (Bolya
& Hoffman, 2023) on CogVideoX-2B (Yang et al., 2024).
Since ToMe is incompatible with CogVideoX-5B, Mochi-
1 (Team, 2024b), HunyuanVideo (Team, 2024c), and
FastVideo-Hunyuan (Team, 2024a), as discussed in Sec-
tion 3.3, Figures 11, 13 and 14 illustrate further comparisons
of our AsymRnR against the baseline models. More video
examples are provided in the Supplementary Materials.

E.2. More Quantitive Results

Table 11 provides additional dimensional metrics of our
methods compared to baseline models (Yang et al., 2024;
Team, 2024b;c;a) and ToMe (Bolya et al., 2023) on VBench

avg. latency 348s avg. latency 309s

CogVideoX-5B +AsymRnR

(13% faster)(original)

avg. latency 348s avg. latency 309s

CogVideoX-5B +AsymRnR

(13% faster)(original)
Figure 11. Additional qualitative comparison on CogVideoX-
5B (Yang et al., 2024).

(Huang et al., 2024), serving as an extended reference to
Tables 1 and 2.
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avg. latency 137s avg. latency 118s avg. latency 117s

CogVideoX-2B +ToMe +AsymRnR

(17% faster)(original)

avg. latency 137s avg. latency 118s avg. latency 117s

CogVideoX-2B +ToMe +AsymRnR

(17% faster)(original)
Figure 12. Additional qualitative comparison on CogVideoX-2B (Yang et al., 2024).
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avg. latency 913s avg. latency 703s

HunyuanVideo +AsymRnR

(30% faster)(original)

avg. latency 202s avg. latency 178s

Mochi-1 +AsymRnR

(13% faster)(original)

Figure 13. Additional qualitative comparison on Hunyuan-
Video (Team, 2024c) and Mochi-1 (Team, 2024b).

avg. latency 159s avg. latency 128s

FastVideo-Hunyuan +AsymRnR

(24% faster)(original)

Figure 14. Additional qualitative comparison on FastVideo-
Hunyuan (Team, 2024a)
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Table 11. Quantitative results for VBench dimensions (Huang et al., 2024) comparing CogVideoX-2B, CogVideoX-5B (Yang et al.,
2024), Mochi-1 (Team, 2024b), HunyuanVideo (Team, 2024c), and FastVideo-Hunyuan (Team, 2024a).

METHOD
AESTHETIC APPEARANCE BACKGROUND COLOR ↑ DYNAMIC HUMAN IMAGING MOTION
QUALITY ↑ STYLE ↑ CONSISTENCY ↑ DEGREE ↑ ACTION ↑ QUALITY ↑ SMOOTHNESS ↑

COGVIDEOX-2B 0.6334 0.2514 0.9390 0.8776 0.6944 0.9400 0.6147 0.9721
+ TOME 0.6036 0.2505 0.9328 0.8315 0.5833 0.9600 0.5977 0.9750
+ TOME-FAST 0.5978 0.2500 0.9315 0.8530 0.5000 0.9700 0.5788 0.9759
+ OURS 0.6121 0.2504 0.9369 0.8252 0.6667 0.9600 0.6082 0.9699
+ OURS-FAST 0.6099 0.2500 0.9366 0.8762 0.5972 0.9600 0.5986 0.9694

METHOD
MUTLIPLE OBJECTS OVERALL SCENE ↑ SPATIAL SUBJECT TEMPORAL TEMPORAL
OBJECTS ↑ CLASS ↑ CONSISTENCY ↑ RELATIONSHIP ↑ CONSISTENCY ↑ FLICKERING ↑ STYLE ↑

COGVIDEOX-2B 0.6502 0.8505 0.2697 0.5378 0.6587 0.9168 0.9711 0.2569
+ TOME 0.5473 0.8323 0.2695 0.4586 0.7085 0.9025 0.9747 0.2473
+ TOME-FAST 0.5198 0.7880 0.2665 0.4804 0.7027 0.8949 0.9766 0.2453
+ OURS 0.5480 0.8402 0.2750 0.5029 0.7071 0.9184 0.9725 0.2475
+ OURS-FAST 0.5686 0.8188 0.2693 0.5254 0.6957 0.9058 0.9729 0.2443

METHOD
AESTHETIC APPEARANCE BACKGROUND COLOR ↑ DYNAMIC HUMAN IMAGING MOTION
QUALITY ↑ STYLE ↑ CONSISTENCY ↑ DEGREE ↑ ACTION ↑ QUALITY ↑ SMOOTHNESS ↑

COGVIDEOX-5B 0.6350 0.2516 0.9577 0.8002 0.6667 0.9600 0.6342 0.9741
+ OURS 0.6298 0.2540 0.9581 0.8300 0.6806 0.9700 0.6284 0.9699
+ OURS-FAST 0.6392 0.2509 0.9588 0.8633 0.6250 0.9700 0.6228 0.9741

MOCHI-1 0.5773 0.7989 0.9344 0.7658 0.4375 0.9800 0.4830 0.9537
+ OURS 0.5864 0.8008 0.9422 0.7789 0.4028 0.9800 0.4945 0.9712
+ OURS-FAST 0.5870 0.8051 0.9428 0.7505 0.4097 1.0000 0.4906 0.9721

HUNYUANVIDEO 0.6315 0.7210 0.9392 0.8409 0.4097 0.9700 0.5804 0.9717
+ OURS 0.6407 0.7216 0.9473 0.8251 0.4097 0.9700 0.6054 0.9716
+ OURS-FAST 0.6406 0.7216 0.9472 0.8239 0.4097 0.9700 0.6053 0.9716

FASTVIDEO 0.6318 0.7444 0.9616 0.8857 0.4167 0.9700 0.5783 0.9671
+ OURS 0.6270 0.7427 0.9647 0.8819 0.4028 0.9600 0.5662 0.9566
+ OURS-FAST 0.6248 0.7442 0.9617 0.8451 0.4097 0.9600 0.5567 0.9476

METHOD
MUTLIPLE OBJECTS OVERALL SCENE ↑ SPATIAL SUBJECT TEMPORAL TEMPORAL
OBJECTS ↑ CLASS ↑ CONSISTENCY ↑ RELATIONSHIP ↑ CONSISTENCY ↑ FLICKERING ↑ STYLE ↑

COGVIDEOX-5B 0.6555 0.8426 0.2694 0.5560 0.6782 0.9227 0.9752 0.2555
+ OURS 0.6707 0.9922 0.2717 0.5349 0.6633 0.8981 0.9770 0.2545
+ OURS-FAST 0.6601 0.8180 0.2764 0.4964 0.6448 0.9331 0.9775 0.2564

MOCHI-1 0.4794 0.8212 0.7357 0.6417 0.6740 0.8810 0.9683 0.7099
+ OURS 0.5465 0.8505 0.7266 0.6408 0.6449 0.9077 0.9705 0.6942
+ OURS-FAST 0.5663 0.8449 0.7308 0.6559 0.6901 0.9068 0.9704 0.6962

HUNYUANVIDEO 0.5838 0.8560 0.7385 0.6019 0.7253 0.9020 0.9767 0.7013
+ OURS 0.5991 0.8655 0.7269 0.6285 0.7662 0.9129 0.9797 0.6977
+ OURS-FAST 0.5983 0.8584 0.7269 0.6196 0.7704 0.9129 0.9797 0.6976

FASTVIDEO 0.6151 0.8536 0.7308 0.6240 0.7266 0.9213 0.9688 0.7016
+ OURS 0.5877 0.8489 0.7378 0.6391 0.7253 0.9206 0.9692 0.7057
+ OURS-FAST 0.6425 0.8457 0.7351 0.6134 0.7208 0.9155 0.9673 0.7055
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