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Abstract

Positional Encoder Graph Neural Networks (PE-GNNs) are among the most effective mod-
els for learning from continuous spatial data. However, their predictive distributions are
often poorly calibrated, limiting their utility in applications that require reliable uncer-
tainty quantification. We propose the Positional Encoder Graph Quantile Neural Network
(PE-GQNN), a novel framework that combines PE-GNNs with Quantile Neural Networks,
partially monotonic neural blocks, and post-hoc recalibration techniques. The PE-GQNN
enables flexible and robust conditional density estimation with minimal assumptions about
the target distribution, and it extends naturally to tasks beyond spatial data. Empirical re-
sults on benchmark datasets show that the PE-GQNN outperforms existing methods in both
predictive accuracy and uncertainty quantification, without incurring additional computa-
tional cost. We also identify important special cases arising from our formulation, including
the PE-GNN.

1 Introduction

Large spatial datasets are naturally generated in a wide range of applications in economics (Anselin, 2022),
meteorology (Bi et al., 2023), urban transportation (Lv et al., 2014; Derrow-Pinion et al., 2021; Kashyap
et al., 2022), social networks (Xu et al., 2020), e-commerce (Sreenivasa & Nirmala, 2019) and other fields.
Gaussian Processes (GPs) (Rasmussen & Williams, 2006; Cressie & Wikle, 2011) are a fundamental tool
for modelling spatial data on continuous domains. They are flexible and interpretable models for unknown
functions, both in spatial and more general regression settings. However, with time complexity O(n3) and
storage complexity O(n2), naive GP methods quickly become intractable for large datasets. This has led to
a large range of approximate inference methods, such as those based on sparse approximations to covariance
or precision matrices (Furrer et al., 2006; Lindgren et al., 2011), low rank approximations (Cressie et al.,
2022) or nearest neighbour approximations (Vecchia, 1998; Datta et al., 2016; Katzfuss & Guinness, 2021).

Given the difficulty of GP computations, it is of interest to explore scalable methods for large spatial datasets
using neural networks (NNs) and to enhance their ability to quantify uncertainty. A prominent method for
making spatial predictions using Graph Neural Networks (GNNs) is the Positional Encoder Graph Neural
Network (PE-GNN) of Klemmer et al. (2023). Our contribution is to make key modifications to the PE-GNN
architecture to enhance its ability to make accurate spatial predictions and to quantify uncertainty. These
modifications will be explained further below.

NNs are popular in data modeling and prediction tasks like computer vision and natural language process-
ing (NLP). However, traditional NNs struggle to handle spatial dynamics or graph-based data effectively.
GNNs (Kipf & Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017) offer a powerful and scalable
method for applying NNs to graph-structured data. The idea is to share information through the edges of
a graph, allowing nodes to exchange information during learning. GNNs are versatile and can uncover non-
linear relationships among inputs, hidden layers, and each node’s neighborhood information. The success of
GNNs in spatial applications largely depends on the spatial graph construction, including choice of distance
metric and the number of neighboring nodes, and traditional GNNs often struggle to model complex spatial
relationships. To address this, Klemmer et al. (2023) introduced the PE-GNN, which enhances predictive
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performance in spatial interpolation and regression. However, the PE-GNN is not designed to provide a full
probabilistic description of the target’s distribution, and assuming a Gaussian distribution for predictions
can lead to poorly calibrated intervals, such as 80% intervals that fail to contain the true outcome 80% of
the time. Recently, Bao et al. (2024) proposed a new framework called Spatial Multi-Attention Conditional
Neural Processes (SMACNPs) for spatial small sample prediction tasks. SMACNPs use GPs parameter-
ized by NNs to predict the target variable distribution, which enables precise predictions while quantifying
the uncertainty of these predictions. However, these methods remain constrained to producing Gaussian
predictive distributions, limiting their capacity to represent asymmetric or multimodal random variates.

Methods based on quantile regression are an alternative approach to probabilistic forecasting making rapid
progress in recent years. Tagasovska & Lopez-Paz (2019) introduced the Simultaneous Quantile Regression
(SQR) loss function that we use in our formulation. Si et al. (2022) proposed a novel architecture for
estimating generic quantiles of a conditional distribution. In one dimension, this method produces a quantile
function regression q̂(τ)|x that estimates the τ -th quantile of the predictive distribution of the target variable
given a feature vector x. Kuleshov & Deshpande (2022) argue that the method of Si et al. (2022) is inefficient
with high-dimensional predictors. To address this, they modify the original formulation to incorporate a
post hoc recalibration procedure whereby an auxiliary model recalibrates the predictions of a trained model.
The first model outputs features, usually summary statistics like quantiles, representing a low-dimensional
view of the conditional distribution. The auxiliary model, the recalibrator, uses these features as input to
produce calibrated predictions using Si et al.’s quantile function regression framework. The main drawback
is that it requires training two separate models, each needing its own training set.

Our work makes two sets of contributions. (1) We propose a new architecture that merges the two-step pro-
cedure of Kuleshov & Deshpande (2022) into a single model by postponing the concatenation of the τ value
used by Si et al. (2022). Additionally, τ is transformed beforehand to facilitate learning and provide better
control over the form of the predictive distribution. To ensure the model outputs valid, non-crossing quan-
tile functions, we employ the partially monotonic blocks introduced by Nolte et al. (2023). This approach
enhances the network’s ability to model uncertainty. The model becomes more robust to high-dimensional
predictor spaces, even though few assumptions are made about the form of the target’s conditional distri-
bution. As a result, a single model can fully describe the predictive conditional distribution and generate
quantile predictions and prediction intervals as byproducts. This method can be applied broadly, not just
in spatial regression or GNN contexts. We show how to integrate this strategy into the PE-GNN framework
to create an intrinsically calibrated model with no extra computational cost. (2) We introduce structural
changes to the PE-GNN. Instead of applying the GNN operator to the concatenation of the nodes’ features
and the spatial embedding, we apply it only to the features. In the PE-GNN, the GNN operator uses
neighbours’ features to create new node representations but does not include the target value of neighboring
nodes, therefore leaving valuable information underexploited. To address this, we introduce the mean target
value of a node’s neighbours as a feature after the GNN layers, closer to the output.

The structure of this work is as follows: Section 2 offers a brief background overview, Section 3 outlines the
proposed method for geographic data prediction, Section 4 shows experimental results on three real-world
datasets, and Section 5 concludes.

2 Background

Graph Neural Networks: Graph Neural Networks (GNNs) are powerful and scalable tools for represen-
tation learning and inference on graph-structured data. They exploit the topological relationships between
adjacent nodes to produce context-aware embeddings, which can be effectively used in downstream tasks
(Wu et al., 2022). GNN layers iteratively refine each node’s embedding by aggregating information from its
own features as well as those of its neighboring nodes.

Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017) are a specific type of GNN layer inspired by
the convolution operations used in Convolutional Neural Networks (CNNs). For weighted graphs, a GCN
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layer k updates node embeddings according to the following equation:

H(k) = f (k)
(
D−1/2 [A + I]D−1/2H(k−1)W (k)

)
, for k ∈ {1, . . . , K}. (1)

In this formulation, the input to the network is the feature matrix H(0) = X. The function f (k) denotes a
non-linear activation function (e.g., ReLU), and W (k) is a learnable weight matrix. The adjacency matrix
A encodes the graph structure, with edge weights typically derived from node distances and zero entries for
unconnected pairs. The identity matrix I adds self-loops, and D is the corresponding degree matrix. In our
experiments (Section 4), we also consider other widely used GNN architectures, namely, Graph Attention
Networks (GATs) (Veličković et al., 2018) and GraphSAGE (Hamilton et al., 2017).

Positional Encoder Graph Neural Network: In a typical spatial regression setting, each datapoint is
represented as pi = {yi,xi, ci}, where yi is a continuous scalar target variable, xi is a vector of input features,
and ci denotes the geographical coordinates associated with observation i. A given batch of datapoints
B = {p1, . . . , pnB

} can be fully represented by three matrices: the target vector yB ∈ RnB×1, the feature
matrix XB ∈ RnB×p, and the coordinate matrix CB ∈ RnB×2, respectively.

Klemmer et al. (2023) introduced a novel approach for incorporating spatial information into GNNs: the
Positional Encoder Graph Neural Network (PE-GNN). In this framework, a positional encoder (PE) processes
the spatial coordinate matrix CB to produce a learned spatial embedding matrix Cemb

B . The embedding
is computed as Cemb

B = PE(CB , σmin, σmax, ΘPE) = NN(ST (CB , σmin, σmax), ΘPE), where ST denotes a
deterministic set of sinusoidal transformations with hyperparameters σmin and σmax, and NN is a fully
connected neural network with trainable parameters ΘPE. A complete description of the PE mechanism is
provided in Appendix A.2.

The matrix Cemb
B is concatenated column-wise with the node features before the application of GNN layers.

Thus, the input to the first GNN layer is given by H
(0)
B = concat(XB ,Cemb

B ). At each training step, a
new random batch of nodes B is sampled, and the full pipeline — graph construction, spatial embedding
generation, feature concatenation, and GNN propagation — is executed using only the nodes in that batch.
For each node pi ∈ {p1, . . . , pnB

}, the PE-GNN predicts a target value ŷi and, as an auxiliary task (Klemmer
& Neill, 2021), the corresponding Local Moran’s I statistic (Anselin, 1995), denoted by Î(yi). The total loss
used by Klemmer et al. (2023) combines both objectives:

LB = MSE(ŷB ,yB) + λ MSE(Î(yB), I(yB)),

where λ controls the contribution of the auxiliary task.

Quantile regression: Koenker & Bassett Jr (1978) proposed a linear quantile regression model to
estimate conditional distribution quantiles. It uses the pinball loss ρτ (ri) = max (τri, (τ − 1)ri), where
ri = yi − q̂i(τ), q̂i(τ) = Xiβ̂, and τ is the desired cumulative probability associated with the predicted
quantile q̂i(τ). The pinball loss for the i-th observation is ρτ (ri). The loss over a dataset is the average
ρτ (ri) value over all datapoints. A natural extension of quantile linear regression is quantile neural networks
(QNNs). This approach is illustrated in Figure 3a, which seeks to estimate the conditional quantiles for a
pre-defined grid (τ1, . . . , τd). Each quantile is estimated by an independent model (Figure 3a). This can
lead to quantile predictions with quantile crossing (e.g., a median prediction lower than the first quartile
prediction). Rodrigues & Pereira (2020) proposed an approach that outputs multiple predictions: one for
the expectation and one for each quantile of interest. The loss function is:

L = 1
d + 1

MSE (ŷ,y) +
n∑

i=1

d∑
j=1

ρτj

(
yi − q̂i(τ j)

)
n

 . (2)

Tagasovska & Lopez-Paz (2019) proposed a method to generate a model that is independent of quantile
selection. During training, for each datapoint in the batch, a Monte Carlo sample τ ∼ U(0, 1) is drawn and
concatenated with the corresponding datapoint feature vector. The SQR loss function is similar to Eqn. 2,
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but they predict random quantiles L = 1
n

∑n
i=1 ρτi

(yi− q̂i(τi)), with {τi}n
1 ∼ U(0, 1). As the network learns,

it becomes able to provide a direct estimate to any quantile of interest. Hence, this procedure outputs an
inherently calibrated model suitable for conditional density estimation. Si et al. (2022) construct NNs with
a similar loss function (Figure 3c).

Kuleshov & Deshpande (2022) adapted the architecture from Si et al. (2022) into a two-step process for larger
predictor spaces (Figure 3d). First, a model is trained to take the original features as inputs and generate
low-dimensional representations of the predicted distribution. Next, a recalibrator is trained using these new
features by minimizing the estimated expected pinball loss over τ . During inference, the recalibrator takes
the new features and an arbitrary τ as inputs to produce the quantile prediction. This method is highly
dependent on the choice of recalibrator features.

3 Method

In this work, we introduce the Positional Encoder Graph Quantile Neural Network (PE-GQNN),
a novel framework for predictive modeling on spatial data. Algorithm 1 shows the step-by-step procedure
to train a PE-GQNN model.

Figure 1 illustrates its complete pipeline. Here, each rectangle labeled "GNN", "LINEAR" and "MONO-
TONIC" represents a set of one or more neural network layers, with the type of each layer defined by the
title inside the rectangle. At each layer, a nonlinear transformation (e.g. ReLU) may be applied.

Figure 1: PE-GQNN compared to PE-GNN and GNN

After initializing the model and hyperparameters, the first step of PE-GQNN is to randomly sample a
batch B of datapoints. The next step projects the matrix of geographical coordinates CB into the positional
embeddings, Cemb

B (nB×u) (Algorithm 1, Step 5). CB is also used to compute the distance between each pair
of datapoints (Step 6). From these distances and a predefined number of nearest neighbors, a graph can be
constructed, with each datapoint as a node and edge weights computed from the distances, leading to the
batch adjacency matrix AB .
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Algorithm 1 PE-GQNN training
Require:

Training data target, features, and coordinates matrices: y(n×1), X(n×p), and C(n×2).
A positive integer k defining the number of neighbors considered in the spatial graph.
Positive integers tsteps and nB , the number of training steps and the batch size.
Positive integers u, g, and s, the embedding dimensions considered in, respectively, the PE, the GNN
layers, and the layer where we introduce τ and ȳ.
An activation function f() for τ .

Ensure:
A set of learned weights for the model initialized at Step 1.

1: Initialize model with random weights and hyperparameters.
2: Set optimizer with hyperparameters.
3: for b← 1 to tsteps do ▷ Batched training
4: Sample minibatch B of nB datapoints: XB(nB×p), CB(nB×2), yB(nB×1).
5: Input CB(nB×2) into PE, which outputs the batch’s spatial embedding matrix Cemb

B (nB×u).
6: Compute the great-circle distance between each pair of datapoints from CB .
7: Construct a graph using k-nearest neighbors from the distances computed in Step 6.
8: Set AB as the adjacency matrix of the graph constructed in Step 7.
9: for i← 1 to nB do

10: Using AB , compute ȳi = 1
k

∑k
j=1 yj , where j = 1, . . . , k are the neighbors of i.

11: end for
12: Set ȳB = [ȳ1, . . . , ȳnB

]⊤.
13: Apply GNN layers to the features XB(nB×p), followed by fully-connected layers to reduce dimension-

ality. This step outputs a feature embedding matrix Xemb
B (nB×g).

14: Column concatenate Xemb
B (nB×g) with Cemb

B (nB×u), which results in LB(nB×(g+u)).
15: Apply fully-connected layers to reduce LB(nB×(g+u)) to ϕB(nB×s).
16: Create a vector with values sampled from U(0, 1): τB(nB×1) = [τ1, . . . , τnB

]⊤.
17: Column concatenate ϕB with f (τB) and ȳB to create ϕ̃B(nB×(s+2)).
18: Predict the target quantile vector [q̂1(τ1), . . . , q̂nB

(τnB
)]⊤ using ϕ̃B .

19: Compute loss LB = 1
nB

∑nB

i=1 ρτi
(yi − q̂i(τi)).

20: Update the parameters of the model using stochastic gradient descent.
21: end for

At Step 13, the first distinction between PE-GQNN and PE-GNN arises: instead of using the concatenation
of the feature matrix and the spatial embedding as the input for the GNN operator, we apply the GNN
operator only to the feature matrix XB . One or more fully-connected layers are then used to reduce the
feature embedding dimensionality. This process receives the constructed graph and the batch feature matrix
XB(nB×p) as input and yields an embedding matrix of features as output: Xemb

B (nB×g). Step 14 performs
a column concatenation between the feature embedding Xemb

B (nB×g) and the output obtained from the PE:
Cemb

B (nB×u). This concatenation results in the matrix LB(nB×(g+u)).

Subsequently, we use one or more fully-connected layers (Step 15) to reduce the dimensionality of LB , making
it suitable for two innovations in PE-GQNN. This set of fully-connected layers outputs the matrix ϕB(nB×s),
which is then combined with ȳB and τB . ȳB represents a vector with one scalar for each datapoint in the
batch, containing the mean target variable among the training neighbours for each node. It is computed
using the graph constructed in previous steps (Step 10), and has dimensions nB × 1. It is comparable to
a vector of predictions generated by a KNN regression model, where neighbours are determined using the
distance calculated from geographical coordinates. Here, we used the simple average due to its relationship
with KNN prediction; however, one could use a weighted average via the adjacency matrix AB . We introduce
this input at a later stage to avoid data leakage. If the GNN operator received ȳB as input, after completing
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the message passing process in each GNN layer, the true node target value would inadvertently be transmitted
to its neighbours, creating potential data leakage (Appleby et al., 2020).

In the same layer where ȳB is introduced, we apply a similar approach to Si et al. (2022) to make PE-
GQNN an inherently calibrated model suitable for probabilistic and quantile predictions. For each batch
B, we create a nB×1 vector τB(nB×1) = [τ1, . . . , τnB

]⊤ of random U(0, 1) draws (Step 16). Then, we column
concatenate ϕB with f (τB) and ȳB to create ϕ̃B(nB×(s+2)) (Step 17), where f() is an activation function.
Next, forward propagation is computed (Step 18) in one or more fully-connected layers, outputting predicted
quantiles for each datapoint in the batch. These predictions are then used to compute the SQR loss function
introduced by Tagasovska & Lopez-Paz (2019).

Incorporating τ values into the model architecture improves its ability to model uncertainty and serves as a
regularization mechanism (Rodrigues & Pereira, 2020). The use of SQR loss acts as a natural regularizer,
producing a detailed description of the predictive density beyond just mean and variance estimation. For
predictions, the quantile of interest, τ , must be given, along with the basic data components (e.g. τ = 0.25
gives the first quartile). If interest is in predicting multiple quantiles for the same observation, the input
can be propagated up to the layer where τ is introduced. For each quantile of interest, propagation can be
limited to the final layers.

Homoscedastic Gaussian model as a particular case: If in Steps 17 and 18 one sets f(τ) = Φ−1(τ),
where Φ() denotes the PDF of a Standard Gaussian distribution, and use a single linear predictive layer, the
model’s quantile function,

q̂i(τ) = (b + wȳi ȳi +
s∑

j=1
wjϕj) + wτ Φ−1(τ) = µi + σΦ−1(τ), ∀i ∈ 1, . . . , nB , (3)

matches the quantile function of a Gaussian random variable, therefore reducing PE-GQNN to a ho-
moscedastic Gaussian regression model with mean µi and a common, learnable standard deviation σ = wτ .
Here, b, wτ , wȳi

, and {wj} are the prediction layer parameters, and {ϕj} are the activation values from
the previous layer. This result may appear counterintuitive, as the SQR loss can produce a model struc-
turally identical to one trained with a fundamentally different objective, namely, the MSE loss. Similarly, if
f(τ) = logit(τ) and a single linear predictive layer is employed, the model yields logistic predictive distribu-
tions, a continuous distribution that should not be confused with logistic regression. Therefore, a well-chosen
activation function f(τ) not only facilitates learning but also explicitly shapes the structure of the predictive
distributions. The use of monotonic layers enhances the flexibility of our approach, significantly reducing
the reliance on the choice of f(τ).

Quantile crossing and Monotonic Blocks: Several related approaches (Tagasovska & Lopez-Paz,
2019; Rodrigues & Pereira, 2020; Si et al., 2022; Kuleshov & Deshpande, 2022) are subject to quantile
crossing, a phenomenon that occurs when the requirement that higher quantiles be greater than or equal to
lower quantiles is violated. To ensure the network outputs valid probability distributions (i.e. q̂(τ, ϕ̃, ȳ) ≤
q̂(τ ′, ϕ̃, ȳ),∀ τ < τ ′), we propose using the Lipschitz Monotonic Networks (LMN) introduced by Nolte et al.
(2023) to approximate q(τ, ϕ̃, ȳ). Those are highly expressive blocks of layers that can approximate all
monotonic Lipschitz bounded functions. That is, any function for which there exists a constant λ such that
|q̂(τ, ϕ̃, ȳ)− q̂(τ ′, ϕ̃, ȳ)| ≤ λ|τ − τ ′|, ∀ 0 < τ, τ ′ < 1.

Number of Monte Carlo samples: When applying the framework proposed by Si et al. (2022), we
chose to use d = 1 for the τ values. Let L(θ, τ,x, y) be the loss function for a given quantile τ ∼ U(0, 1)
and an observed pair (x, y) ∼ Ddata, where Ddata denotes the full data generative process. On each training
iteration, we minimize LB , which, by the Law of Large Numbers, converges to L̃(θ) = Eτ,x,yL(θ, τ,x, y),
as the batch size, nB , goes to ∞. Therefore, the gradients converge to the same value for any d, provided
that nB → ∞. This choice (d = 1), which is also used by Tagasovska & Lopez-Paz (2019), simplifies the
implementation without sacrificing performance, as shown in Section 4.
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Target domain: The final layer should preferably use an activation function coherent with the domain
of the target variable, ensuring model outputs are valid for target distribution support. E.g., an exponential
function could be appropriate if the target variable is continuous, unbounded and positive.

4 Experiments

4.1 Experimental setup

The PE-GQNN was implemented using PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey &
Lenssen, 2019). We conducted comprehensive simulations to explore the prediction performance and other
properties of the proposed model. Computation was performed on an Intel i7-7500U processor with 16 GB
of RAM, running Windows 10.

Candidate models: The experiment was designed to compare five primary methods approaches for
addressing spatial regression problems across three diverse real-world datasets (California Housing, Air
Temperature, 3D Road). Table 1 lists each candidate model and their applicable datasets. All models
were trained using the Adam optimizer (Kingma & Ba, 2015), with early stopping employed to prevent
overfitting. For GNN-based approaches, we used k = 5 nearest neighbors to construct the graphs. The
learning rate was set to 0.001 across all models. A batch size of 1,024 was used for the Air Temperature
dataset, while a batch size of 2,048 was used for the remaining two datasets. The architectural details are
given in Appendix Section A.4.

Table 1: Summary of candidate models.

Approach Model Type PE Innovations Loss Datasets
I GNN GNN No No MSE All
II PE-GNN λ = best GNN Yes No MSEy + λMSEI(y) All
III PE-GNN (with SQR) GNN Yes No SQR California
IV PE-GQNN GNN Yes Yes SQR All
V SMACNP GP No No Log Likelihood All but 3D Road

Approach I involves the traditional application of GNNs to geographic data. Three types of GNN layers were
considered: GCNs (Kipf & Welling, 2017), GATs (Veličković et al., 2018), and GSAGE (Hamilton et al.,
2017). For each of these, the architecture remains consistent to facilitate performance comparisons: two
GCN/GAT/GSAGE layers with ReLU activation and dropout, followed by a linear prediction layer.

Approach II involves the application of PE-GNN (Klemmer et al., 2023) with optimal weights for each
dataset and layer type combination, as demonstrated by the experimental findings of Klemmer et al. (2023).
The GNN architecture used is the same as for approach I. It was implemented using the code available at:
https://github.com/konstantinklemmer/pe-gnn.

Approach III represents a naive combination of the PE-GNN with the quantile regression framework described
in Section 3. Specifically, we trained the PE-GNN with the SQR loss function, concateneting f(τ) = τ
immediately after the GNN layers. Approach IV, which is the primary focus of this research, is the PE-
GQNN. Compared to Approach III, it introduces the following innovations: τ is incorporated into the
network through probit(τ), but only after reducing LB into ϕB . The GNN layers no longer process the
positional encoders, and the final fully connected layers are replaced with monotonic blocks. Additionally,
ȳ is used as a feature in the final part of the network. The architectures of the PE and GNN layers remain
identical to those in the previous approaches.

Finally, a benchmark approach that does not use GNNs but was recently proposed for modelling spatial data
will be considered as approach V: SMACNPs. This approach, proposed by Bao et al. (2024), has demon-
strated superior predictive performance, surpassing GPs models in the three real-world datasets considered.
This model was implemented following the specifications of Bao et al. (2024), using the code available at:
https://github.com/bll744958765/SMACNP.
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Approaches I and II do not inherently provide predicted conditional distributions. However, as they optimize
the MSE metric, they implicitly learn a Maximum Likelihood Estimate (MLE) of a Gaussian model. Thus,
the predictive distribution considered for these approaches was a Gaussian distribution centered on the
point prediction with variance equal to the MSE of the validation set. For computational simplicity in the
experiments, instead of calculating ȳB for each batch, we pre-calculated ȳ using the entire training set.

Performance metrics: We evaluate predictive accuracy using Mean Squared Error (MSE) and Mean
Absolute Error (MAE). To assess calibration of the predictive distributions, we report the SQR loss and
calibration metric introduced by Kuleshov et al. (2018): calibration =

∑m
j=1

(
τ j − 1

n

∑n
i=1 1

[
yi ≤ q̂i(τ j)

])2.
For quantile predictions of a calibrated model for a given τ , the proportion of observed values less than or
equal to the predicted quantile should approximate τ . Evaluating the calibration metric helps determine
whether the predicted quantiles are accurate.

4.2 California Housing

This dataset comprises pricing information for >20,000 residential properties in California, recorded during
the 1990 U.S. census (Pace & Barry, 1997). The main objective is a regression task: predict housing
prices, y, through the incorporation of six predictive features, x, and geographical coordinates, c. The
predictive features are neighborhood income, house age, number of rooms, number of bedrooms, occupancy
and population. All models were trained and evaluated using 80% of the data for training, 10% for validation,
and 10% for testing. In the case of SMACNP, to adhere to the specifications of Bao et al. (2024), a training
subsample was extracted to represent 10% of the entire dataset. The training time, number of training
epochs, number of parameters, and final performance metrics on the test dataset are presented in Table 2.

Table 2: Performance metrics on the California Housing test set. Cover. refers to the observed coverage for
95% confidence intervals.

Model Time Epochs # Param. MSE MAE SQR Cover. Calibr.
GCN 00h41m32s 441 1,313 0.022 0.110 0.040 0.930 0.301
PE-GCN λ = best 00h17m13s 170 24,129 0.018 0.093 0.036 0.920 0.262
PE-GCN (with SQR) 00h12m08s 113 25,217 0.018 0.092 0.034 0.870 0.132
PE-GQCN (ours) 00h14m44s 129 26,201 0.011 0.069 0.026 0.927 0.118
GAT 00h33m29s 398 1,441 0.023 0.110 0.041 0.931 0.500
PE-GAT λ = best 00h15m43s 120 24,290 0.018 0.093 0.035 0.919 0.296
PE-GAT (with SQR) 00h13m01s 120 25,345 0.018 0.096 0.035 0.843 0.153
PE-GQAT (ours) 00h12m49s 113 26,329 0.012 0.069 0.026 0.952 0.057
GSAGE 00h31m13s 348 2,529 0.017 0.094 0.035 0.945 0.446
PE-GSAGE λ = best 00h29m02s 222 27,426 0.011 0.073 0.027 0.935 0.270
PE-GSAGE (with SQR) 00h20m08s 192 28,481 0.011 0.071 0.026 0.834 0.126
PE-GQSAGE (ours) 00h13m39s 129 27,417 0.009 0.060 0.023 0.952 0.016
SMACNP 03h15m51s 70 748,482 0.016 0.088 0.047 0.998 2.700

As shown in Table 2, PE-GQNN delivers strong performance across all evaluation metrics, significantly
outperforming traditional GNNs, PE-GNN, and SMACNP. Among models with GSAGE layers — the overall
top performers — PE-GQSAGE achieved the lowest values for MSE, MAE, SQR, and calibration error.
Specifically, compared to PE-GSAGE, it reduced MSE by 23%, MAE by 18%, SQR by 14%, and calibration
error by 94%, all while maintaining the shortest training time. In contrast, a naive combination of PE-GNN
with SQR offered no meaningful improvement over PE-GNN alone.

Figure 2 presents plots that elucidate the behavior of the PE-GQSAGE predictions. The validation MSE
curves throughout training are shown in Figure 2a. Panel 2b illustrates the predicted density of a subsample
of three observations from the test set. Parametric models typically assume a fixed output structure —
such as a Gaussian distribution — which can restrict their expressiveness. In contrast, PE-GQNN imposes
minimal assumptions on the form of the predictive distribution, offering greater flexibility. As illustrated
in Figure 2b, PE-GQNN is capable of producing predictive distributions with varying shapes and scales,
whereas PE-GNN can only differentiate samples based on their location (mean value). It is worth noting that,
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in this example, assuming Gaussian distributions is reasonable. However, in scenarios involving asymmetric
or multimodal distributions, the flexibility of our model-free approach becomes even more advantageous.

(a) Validation MSE. (b) Predictive densities. (c) Calibration Plot.

Figure 2: Diagnostics for the California Housing dataset. (a) Validation MSE curves. (b) PE-GQSAGE
predicted densities of 3 observations of the test set. (c) Calibration Plot.

Lastly, Figure 2c displays the observed confidence level for the test dataset quantile predictions using each
of the m = 99 τ values in [0.01, 0.02, . . . , 0.99]⊤. This type of plot was proposed by Kuleshov et al. (2018).
The closer a model gets to the dashed diagonal line, the closer the expected and observed confidence levels
are. The Gold Standard represents one Monte Carlo draw from a perfectly specified model, where for each
quantile level, the observed confidence level is the observed success rate in n Bernoulli trials with a success
probability of τ , where n is the number of test set instances. It is evident that PE-GQSAGE has by far
the best calibration performance. This is particularly notable when compared to SMACNP, which exhibits
substantial calibration deficiencies due to its tendency to overestimate the variance component.

4.3 All datasets

Experiments were conducted on two other geographic datasets used by Klemmer et al. (2023) and Bao
et al. (2024). The Air Temperature dataset (Hooker et al. (2018)) contains geographical coordinates for
∼3,000 meteorological stations worldwide, with the goal of predicting mean temperatures (y) using mean
precipitation levels (x). Models were trained with 80% of the data, with 10% for validation and testing each,
while SMACNP used a 30% subsample for training, following the specifications of Bao et al. (2024). The
3D Road dataset (Kaul et al. (2013)), includes > 430,000 points with latitude, longitude, and altitude for
the Jutland, Denmark road network. The task is to interpolate altitude (y) using latitude and longitude (c).
The data were split into 90% for training, 1% for validation, and 9% for testing. SMACNP metrics are not
reported due to high computational costs for this dataset.

Table 3: Performance metrics from three different real-world datasets. Models with GSAGE layers.

Model California Housing Air Temperature 3D Road
MSE MAE SQR Calibr. MSE MAE SQR Calibr. MSE MAE SQR Calibr.

GNN 0.0170 0.0945 0.0347 0.4456 0.0223 0.1152 0.0427 0.2494 0.0170 0.1031 0.0360 0.4384
PE-GNN 0.0115 0.0732 0.0270 0.2696 0.0048 0.0526 0.0172 1.2173 0.0031 0.0420 0.0142 0.1960
PE-GQNN (ours) 0.0088 0.0598 0.0231 0.0161 0.0033 0.0359 0.0140 0.3530 0.0001 0.0059 0.0024 1.0345
SMACNP 0.0160 0.0881 0.0466 2.7000 0.0018 0.0290 0.0391 5.8611 - - - -

Table 3 showcases the experimental results obtained from all three datasets: California Housing, Air Temper-
ature, and 3D road. The PE-GQNN models incorporate all innovations discussed in Section 3. Additionally,
we include the SMACNP results as a benchmark model based on GPs (Bao et al., 2024). PE-GQNN outper-
forms both traditional GNN and PE-GNN. Across all datasets, the innovations introduced by PE-GQNN
result in substantial reductions in MSE, MAE, and SQR, although, for the 3D Road dataset, PE-GNN
achieves the lowest calibration error. In the California Housing dataset, PE-GQNN consistently outper-
forms SMACNP in predictive accuracy and provides enhanced uncertainty quantification across all types of
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GNN layers. Conversely, for the Air Temperature dataset, SMACNP achieves the lowest MSE and MAE
but suffers from significantly uncalibrated predictions, reflected by a much higher SQR and calibration error
compared to PE-GQNN.

5 Discussion

In this work, we have proposed the Positional Encoder Graph Quantile Neural Network (PE-GQNN) as an
innovative framework to enhance predictive modeling for geographic data. Through a series of experiments
on real-world datasets, we have demonstrated the significant advantages of the PE-GQNN over competitive
methods. The empirical results underscored the capability of the PE-GQNN to achieve lower MSE, MAE,
and SQR across all datasets and GNN backbones compared to traditional GNN and PE-GNN. Notably, the
PE-GQNN demonstrated substantial improvements in predictive accuracy and uncertainty quantification.
The PE-GQNN framework’s ability to provide a full description of the predictive conditional distribution,
including quantile predictions and prediction intervals, provides a notable improvement in geospatial machine
learning. The PE-GQNN provides a solid foundation for future advancements in the field of geospatial
machine learning.

Limitations: Although the Lipschitz Monotonic Networks (LMN) (Nolte et al., 2023) can approximate all
monotonic Lipschitz bounded functions, many common quantile functions do not satisfy this condition. This
often occurs because the derivative ∂q(τ)/∂τ tends to ∞ as τ approaches 1, and to −∞ as τ approaches 0.
The practical implications of this limitation when using LMN blocks remain to be fully understood. However,
based on our experiments, it does not appear to pose a major concern. LMNs are unlikely to struggle when
approximating truncated distributions, where the support is slightly restricted and the derivative ∂q(τ)/∂τ
remains bounded. Naturally, any advances in monotonic neural network architectures would directly enhance
the effectiveness of our approach.
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A Appendix

A.1 Quantile Neural Networks and recalibration

Figure 3 provides a visual overview of some of the most closely related approaches.

A.2 Positional Encoder

Inspired by the Transformer architecture (Vaswani et al., 2017), Mai et al. (2020) introduced the Positional
Encoder (PE) for geographic data. The PE maps the geographic coordinate vector c = (c1, c2) ∈ R2 of a
single datapoint, typically representing latitude and longitude, to a high-dimensional embedding using a set
of deterministic sinusoidal transformations followed by a fully connected neural network.

The encoded spatial embedding cemb ∈ Rd is computed as:

cemb = PE(c, σmin, σmax, ΘPE) = NN(ST (c, σmin, σmax), ΘPE), (4)
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(a) Non-linear quantile regression using NN. (b) Non-linear multiple quantile regression.

(c) Non-linear quantile function regression. (d) Two-step density estimation.

Figure 3: (a) For each quantile of interest, a separate NN is trained. (b) Rodrigues & Pereira (2020): one NN
outputs d + 1 predictions: one for the expectation and d for the quantiles. (c) Si et al. (2022): a single NN
trained to predict any generic quantile of the conditional distribution. (d) Kuleshov & Deshpande (2022):
two-step procedure: the first model outputs a low-dimensional representation of the conditional distribution,
which a recalibrator then uses to produce calibrated predictions.

where NN(·, ΘPE) denotes a fully connected neural network with parameters ΘPE, and ST (·) is a sinusoidal
transformation defined by:

ST (c, σmin, σmax) = (ST1(c, σmin, σmax); . . . ; STS(c, σmin, σmax)) , (5)

with σmin and σmax as hyperparameters. Each component STj(c, σmin, σmax), for j ∈ {1, . . . , S}, is given by:

STj(c, σmin, σmax) =
(

sin
(

2πc1

σj

)
, cos

(
2πc1

σj

)
, sin

(
2πc2

σj

)
, cos

(
2πc2

σj

))
, (6)

where the values σ1, . . . , σS form a logarithmically spaced grid between σmin and σmax, computed as:

σj = σmin ·
(

σmax

σmin

) j−1
S−1

. (7)

The result of ST (c, ·) is a 4S-dimensional vector that encodes spatial patterns at multiple scales. This vector
is then passed through the neural network NN to produce the final embedding cemb.
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A.3 Spatial visualization of the California Housing dataset predictions

Maps of the test values and predictions of selected methods are illustrated in Figure 4. Visually, the
predictions provided by PE-GQNN appear to be closest to the actual data behavior, particularly in the
major cities.

(a) Test values. (b) PE-GSAGE predictions.

(c) PE-GQSAGE predictions. (d) SMACNP predictions.

Figure 4: Geographical maps of the predicted results on the California Housing test dataset.

A.4 Architectural details

To facilitate a clear and detailed comparison between PE-GQNN and PE-GNN, we present the architectures
for the California Housing dataset in Tables 4 and 5. The same architectures are used for the Air Temperature
dataset, differing only in the number of node features (p = 1). For the 3D Road dataset, which is an
interpolation task without node features, the GNN block is omitted.
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Table 4: Architecture of PE-GQSAGE applied to the California Housing dataset, illustrating input/output
dimensions, parameter counts, layer-level annotations, and activation functions.

Layer (type & shape) # Param. Notes Activation
GNN block: 6 → 32 – – –

Input: node features (dim = 6) – Node features input –
SAGEConv (hidden): 6 → 32 – GraphConv layer –

Aggregation 224 GSAGE internal layer –
Update 192 GSAGE internal layer ReLU

SAGEConv (out): 32 → 32 – GraphConv layer –
Aggregation 1,056 GSAGE internal layer –
Update 1,024 GSAGE internal layer ReLU

Positional encoder (PE) block: 2 → 64 – – –
Input: coordinates (dim = 2) – Spatial coordinates input –
Sinusoidal Transformation (ST): 2 → 64 0 Fourier feature mapping –
Dropout regularization – Dropout rate: p = 0.5 –
Linear (hidden): 64 → 128 8,320 Feedforward layer ReLU
Linear (hidden): 128 → 64 8,256 Feedforward layer Tanh
Linear (hidden): 64 → 32 2,080 Feedforward layer Tanh
Linear (out): 32 → 64 2,112 Feedforward layer Identity

Concatenation: GNN (32) + PE (64) 0 Combined vectors –
Fully-connected (FC) block: 96 → 8 – Dimension reduction block –

Linear (hidden): 96 → 32 3,104 Feedforward layer Tanh
Linear (hidden): 32 → 16 528 Feedforward layer Tanh
Linear (out): 16 → 8 136 Feedforward layer Identity

Concatenation: FC (8) + ȳ (1) + τ (1) 0 Combined vectors –
Monotonic Layers: 10 → 1 – Final quantile regressor –

Lipschitz Linear (hidden): 10 → 32 352 Monotonic layer 1 GroupSort(2)
Lipschitz Linear (out): 32 → 1 33 Monotonic layer 2 Identity

Total 27,417 All trainable parameters –

Table 5: Architecture of PE-GSAGE. Positional encodings derived from spatial coordinates are concate-
nated with node features prior to the GNN layers. This architecture follows the specification introduced by
Klemmer et al. (2023).

Layer (type & shape) # Param. Notes Activation
Positional Encoder (PE) block: 2 → 64 – – –

Input: coordinates (dim = 2) – Spatial coordinates input –
Sinusoidal Transformation (ST): 2 → 64 0 Fourier feature mapping –
Dropout regularization – Dropout rate: p = 0.5 –
Linear (hidden): 64 → 128 8,320 Feedforward layer ReLU
Linear (hidden): 128 → 64 8,256 Feedforward layer Tanh
Linear (hidden): 64 → 32 2,080 Feedforward layer Tanh
Linear (out): 32 → 64 2,112 Feedforward layer Identity

Concatenation: PE (64) + Features (6) 0 Combined input vector –
GNN block: 70 → 32 – – –

Input: node features (dim = 70) – PE + Node attributes –
SAGEConv (hidden): 70 → 32 – GraphConv layer –

Aggregation Linear 2,272 GSAGE internal layer –
Update Linear 2,240 GSAGE internal layer ReLU

SAGEConv (out): 32 → 32 – GraphConv layer –
Aggregation Linear 1,056 GSAGE internal layer –
Update Linear 1,024 GSAGE internal layer ReLU

Fully-connected layers: 32 → 1 – – –
Linear (to target): 32 → 1 33 Final output layer Identity
Linear (to Moran’s I): 32 → 1 33 Auxiliary output layer Identity

Total 27,426 All trainable parameters –
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