
Large Language Models Can Plan Your Travels Rigorously with
Formal Verification Tools

Anonymous ACL submission

Abstract

In Xie et al. (2024), the authors proposed001
TravelPlanner, a U.S. domestic travel plan-002
ning benchmark, and showed that LLMs them-003
selves cannot make travel plans that satisfy004
user requirements with a best success rate of005
0.6%. The state-of-the-art methods that com-006
bine LLMs with external critics, verifiers, and007
humans can only improve the success rate to008
20% (Kambhampati et al.). In this work, we009
propose a framework that enables LLMs to for-010
mally formulate and solve combinatorial search011
problems such as the travel planning problem012
as a satisfiability modulo theory (SMT) prob-013
lem, and use SMT solvers to automatically and014
interactively solve them. The SMT solvers015
guarantee to find a plan when input constraints016
are satisfiable. When the input constraints can-017
not be satisfiable, our LLM-based framework018
can interactively and adaptively offer modifi-019
cation suggestions to users using SMT solvers’020
capability of identifying the unsatisfiable core.021
We evaluate our framework with TravelPlanner022
and achieve a success rate of 97% for satisfiable023
queries. We also create a separate dataset that024
contains international travel benchmarks and025
show that when initial user queries are unsatis-026
fiable, our interactive planning framework can027
generate valid plans with an average success028
rate of 78.6% for the international travel bench-029
mark and 85.0% for TravelPlanner according030
to diverse humans preferences. We show that031
our framework could achieve zero-shot general-032
ization to unseen constraints in travel planning033
problems. In addition, we introduce four new034
combinatorial optimization tasks and show that035
our framework could generalize well to new036
domains in a zero-shot manner.037

1 Introduction038

Recent work has demonstrated that large language039

models (LLMs) (Brown et al., 2020; Ouyang et al.,040

2022; Achiam et al., 2023), with abundant world041

knowledge, abilities to collect information via tools,042

and capabilities of reasoning, have significant po- 043

tential in solving planning problems (Huang et al., 044

2022a; Ahn et al., 2022; Yao et al., 2022; Song 045

et al., 2023). However, the planning scenarios of 046

the existing LLM planning works are still limited to 047

simple tasks such as household cleaning in which 048

the agents only consider one or few constraints. 049

Modern LLMs are not well-suited for directly solv- 050

ing highly complex combinatorial optimization 051

problems with multiple levels of constraints as they 052

generate responses based on token probabilities de- 053

rived from their training data and do not inherently 054

possess the ability to perform rigorous logical or 055

mathematical reasoning. Imagine you have a one- 056

week vacation, a $3000 budget, and are longing for 057

somewhere with a beautiful beach and delicious 058

seafood restaurants. To make a detailed plan, you 059

need to utilize various tools to search for flights, 060

cities with famous sea attractions, seafood restau- 061

rants, accommodations, and may need to repeat this 062

process iteratively to ensure the total price is within 063

your budget. Even for humans, it is a complex and 064

time-consuming undertaking to accomplish. Are 065

LLM agents capable of handling complex and re- 066

alistic planning problems like this? To investigate 067

this problem, Xie et al. (2024) proposed a U.S. do- 068

mestic travel planning benchmark, TravelPlanner, 069

and showed that LLMs are not capable of handling 070

this task and even strongest LLM GPT-4 can only 071

achieve a pass rate of 0.6% by itself without ac- 072

cess to pre-collected information. LLM-Modulo 073

Framework (Kambhampati et al.), a recent work 074

that combines LLMs with external critics, verifiers, 075

and humans, raises the pass rate to 20%, which is 076

the best performance on TravelPlanner as of now. 077

The travel planning problem contains diverse 078

constraints including time, budget, destinations, 079

etc., making it extremely challenging for LLM 080

agents to search for a feasible plan considering 081

all constraints. To tackle this problem, an alterna- 082

tive way is through constraint-based planning to 083

1

formalize the problem as a constraint satisfaction084

problem (CSP) (Dechter, 2003; Lozano-Pérez and085

Kaelbling, 2014), boolean satisfiability problem086

(SAT) (Kautz and Selman, 1999; Rintanen, 2012),087

or satisfiability modulo theory (SMT) (Barrett et al.,088

2010; De Moura and Bjørner, 2011; Dantam et al.,089

2016) and solve it with existing algorithm-based090

solvers (Dutertre and De Moura, 2006; De Moura091

and Bjørner, 2008; Barrett et al., 2011). However,092

algorithm-based solvers usually have steep learn-093

ing curves. And as human natural language queries094

have no fixed format, planners need to extract key095

information from input queries accurately to model096

the problem. Crucially, even if the extracted key097

information is correct, if the proposed query is un-098

satisfiable itself, the users have to modify inputs by099

themselves and query the tools multiple times.100

LLMs are good at parsing human input and in-101

teractions but hard to rigorously consider all con-102

straints, while SMT solvers are sound and complete103

in solving multi-constraint satisfiability problems104

but unable to handle dynamic, general, and some-105

times ambiguous natural language requirements.106

In this work, we propose a framework that com-107

bines the advantages of both methods by enabling108

LLM to utilize SMT solver as a tool to formally109

formulate, solve, and reason over the travel plan-110

ning problem. In our framework, the LLM first111

translates natural language input to a fixed JSON112

format. Then, with instruction steps and corre-113

sponding codes of using SMT solver to solve the114

example travel planning problem, LLM learns the115

pattern and generalizes to new inputs. Executing116

LLM-generated codes encodes the query and calls117

the solver, which guarantees to generate a plan118

if it exists. If the input query is not satisfiable,119

SMT solvers can identify the exact unsatisfiable120

constraints, using which LLM can propose sugges-121

tions to modify the query by analyzing the unsat-122

isfiable reasons until it becomes satisfiable. LLM123

can even interactively communicate with humans124

to incorporate their unique preferences.125

We evaluate our framework over different LLMs126

using TravelPlanner Xie et al. (2024), which con-127

tains 180 satisfiable queries in their validation set128

and 1000 satisfiable queries in their test set. Our129

framework achieves a best final pass rate of 98.9%130

in the validation set and 97.0% in the test set. To131

evaluate the plan repair capability for unsatisfiable132

queries, we modify 12 constraints from TravelPlan-133

ner’s training set to be unsatisfiable, and also build134

another international travel dataset that contains 39135

unsatisfiable queries with different types of con- 136

straints from TravelPlanner. We evaluate on both 137

datasets and show our framework’s capability of in- 138

teractively making satisfiable travel plans for users 139

with different preferences for modifying their con- 140

straints. We verify with ablation studies the positive 141

effects of key components of our framework. We 142

test the generalization capability of our framework 143

by encoding unseen constraints of travel planning 144

problems with existing instruction step examples. 145

We also introduce four new combinatorial tasks and 146

generalize with existing step and code examples 147

to solve them in a zero-shot manner. All experi- 148

ments demonstrate that our framework could reli- 149

ably handle diverse human inputs, deliver formally 150

verified plans, interactively modify unsatisfiable 151

queries considering human preferences, could be 152

effectively adapted to different LLMs, and general- 153

ize to new constraints and new domains well. 154

2 Related Work 155

LLM Planning. LLMs have shown significant in- 156

telligence in reasoning (Wei et al., 2022; Kojima 157

et al., 2022; Yao et al., 2022) and tool-use (Qin 158

et al., 2023; Schick et al., 2024), offering the po- 159

tential of promising planning capability. Previous 160

works tackle planning problems with various ways: 161

1) decomposing the task into sub-tasks and plan 162

sequentially (Wei et al., 2022; Yao et al., 2022; 163

Shen et al., 2024); 2) generating multiple plans 164

with methods like tree and graph search and select- 165

ing the optimal solution (Wang et al., 2022; Yao 166

et al., 2024; Zhao et al., 2024; Besta et al., 2024; 167

Hao et al., 2023); 3) reflecting on experiences and 168

refining plan based on feedback (Shinn et al., 2024; 169

Madaan et al., 2024; Chen et al., 2023b); 4) for- 170

malizing tasks and aiding the planning with exter- 171

nal planner (Liu et al., 2023; Guan et al., 2023; 172

Chen et al., 2023a). These methods are summa- 173

rized in Huang et al. (2024) with details. While 174

these planning algorithms have shown promising 175

result, their planning scenarios are limited to sim- 176

ple tasks with single objective function. Xie et al. 177

(2024) proposes a realistic and complex travel plan- 178

ning benchmark and tests on various LLM plan- 179

ning algorithms to show that LLMs are not capa- 180

ble of handling multi-constraint tasks. While Liu 181

et al. (2023); Guan et al. (2023) utilize LLM to 182

process information and formulate problems into 183

PDDL (Aeronautiques et al., 1998; Haslum et al., 184

2019) to account for multiple objectives, as far as 185

2

Figure 1: An overview of the framework. The pink region represents human, blue region represents LLM, gray
region represents SMT solver, and the green region is the generated plan. Given a natural language query, LLM 1)
translates it into JSON format, 2) generates steps to formulate it as a SMT problem, 3) generates corresponding
codes that encode the problem and call the solver. If the solver is not able to find the solution, LLM receives
unsatisfiable reasons from solver, collects information, analyzes current situation, and offer suggestions to modify
query interactively. LLM then update the code based on suggestions and call the solver again to find a feasible plan.

we know, there is no complete PDDL-based ap-186

proach that can identify travel planning problems.187

Algorithm-based Planning. Another way to188

tackle the travel planning problem is through189

algorithm-based planning such as heuristic190

search (Hoffmann and Nebel, 2001; Helmert, 2006;191

Vidal, 2014) and constraint-based methods (Kautz192

and Selman, 1999; Rintanen, 2012, 2014; Lozano-193

Pérez and Kaelbling, 2014; Dantam et al., 2016).194

However, heuristic search is not able to guarantee195

to find the plan, and pure constraint-based planning196

is not able to generalize to diverse natural language197

inputs. Our framework enables LLM to utilize the198

constraint-based planning method by translating199

and formalizing diverse human queries into a SMT200

problem. Since SMT solvers are sound and com-201

plete, the generated plan is guaranteed to be correct.202

If SMT solver fails to find a solution, the problem203

is verified to be unsatisfiable and the solver can204

output unsatisfiable reasons for future usage.205

LLM Tool-use. Tool-using allows LLMs to utilize206

powerful external tools to increase reliability. Re-207

cent works explore how LLMs could utilize exter-208

nal tools such as search engines, operating environ-209

ments, and code generators (Press et al., 2022; Yao210

et al., 2022; Schick et al., 2024; Liang et al., 2023;211

Singh et al., 2023; Peng et al., 2023; Song et al.,212

2023; Huang et al., 2022b) to provide feedback or213

extra information. In our framework, LLMs gener- 214

ate codes to formulate the travel planning problem 215

as a SMT problem and calls the SMT solver. This 216

overcomes LLM’s failure to consider all constraints 217

by encoding and solving all constraints rigorously. 218

3 Approach 219

We propose a framework that equips the LLM with 220

tools to formulate and solve the travel planning 221

problem as an SMT problem, shown in Fig. 1. In 222

our framework, we call LLM multiple times to ac- 223

complish a number of distinct functionalities: trans- 224

lating natural language query into a JSON format 225

description, generating steps to formulate the prob- 226

lem, and generating codes based on steps. In addi- 227

tion, when the input query is not satisfiable, LLM 228

reasons about current situation to give suggestion 229

and modifies existing codes based on suggestion. 230

See Appendix F for all prompts we use. 231

3.1 Satisfiable Plan Solving 232

3.1.1 Problem Statement 233

We define the travel planning problem as: given a 234

natural language description of humans’ constraints 235

C of a travel plan, the system should output a plan 236

that satisfies C. The travel starts from city o, travels 237

k destination cities, and returns to o. The travel 238

spans n days. The travel takes k + 1 transportation 239

3

Constraint Description
Destination cities Destination cities should not be repeated
Transportation dates First transportation happens at first day, last transportation happens at last day, and others happens

in between non-repeatedly
Transportation methods Every transportation uses flight, self-driving, or taxi

Self-driving is not valid during the trip if taxi or flight is used
No flight if “no flight" is mentioned, and no self-driving if “no self-driving" is mentioned

Flight No flight if flights unavailable between two cities on certain dates
All taken flights are non-stop if “non-stop" is mentioned
All taken flights’ airlines are within the required airlines list

Driving No driving if driving routes unavailable between two cities
Restaurant Restaurant choices should not be repeated

Restaurant for day must be located within that day’s city
All specified cuisine types must be visited

Attraction Attraction choices should not be repeated
Attraction for day must be located within that day’s city
All specified attraction types must be visited

Accommodation Accommodation for day must be located within that day’s city
All specified accommodations must satisfy specified Room Rule
All specified accommodations must satisfy specified Room Type
The number of consecutive days spent in an accommodation must meet the accommodation’s
minimum number of nights’ stay.

Budget Total spend is within specified budget

Table 1: Descriptions of constraints for two datasets. Constraints in teal are the constraints only in TravelPlanner.
Constraints in brown are the constraints only in our dataset. Constraints in black are common constraints.

Figure 2: Step to Code translation example.

method for k + 1 travels from city to city. The240

travel visits x attractions, dine in y restaurants, and241

live in accommodations for n − 1 nights. By de-242

fault, we set x=n, y=3n. However, this is not a fixed243

requirement. Users could specify their unique re-244

quirements by adding descriptions in prompts, for245

example, “Number of attractions to visit per day246

is 2". Table 1 summarizes the constraints C for247

the two datasets we used. The output plan should248

satisfy C and clearly specify the city to visit, trans-249

portation method, attraction, restaurant, and ac-250

commodation for each day. See Appendix D for251

example input query and output plan.252

3.1.2 NL-JSON Translation253

Travel planning problem is a real-world complex254

planning problem that contains various constraints255

including time, location, budget, etc. These infor-256

mation are contained in humans’ natural language257

queries in different forms. Our framework’s first 258

step is to extract important information from the 259

natural language input and translate it into a prob- 260

lem description of JSON format, as shown in Fig. 1 261

part 1). We provide LLM with descriptions of 262

JSON’s required fields and three translation exam- 263

ples. 264

3.1.3 JSON-Step Generation 265

The steps to formulate travel plan problems dif- 266

fer with the change of constraints, e.g., number of 267

destination cities, number of travel days, and spe- 268

cial restaurant cuisine requirements. However, al- 269

though the steps may be different, they have similar 270

patterns. We provide LLM with the JSON problem 271

description and three examples of JSON-Step gen- 272

eration in the prompt to enable it to generalize to 273

different input queries. We separate the steps into 274

subsections based on the type of constraints. For 275

example, to specify the "travel spanning 3 days" 276

constraint in the query in Fig. 1, the steps are: 277

1. Set 't_dates' variables for 2 transportation between cities
2. Assert first transportation happens at first day (day 0),

and last happens at last day (day 2)

While for a new query that asks to travel 2 destina- 278

tion cities in 5 days, the steps become: 279

1. Set 't_dates' variables for 3 transportation between cities
2. Assert first transportation happens at first day (day 0),

last happens at last day (day 4),
and second could happen at any day in between

3.1.4 Step-Code Generation 280

Inspired by Liang et al. (2023), we directly prompt 281

the LLM to generate language model programs in 282

4

Python by providing CitySearch, FlightSearch, At-283

tractionSearch, DistanceSearch, Accommodation-284

Search, RestaurantSearch APIs and SMT solver,285

and demonstrating how to use each of these func-286

tions. With the generated steps of how to solve each287

constraint, we provide these steps as instructions to288

LLM, as shown in Fig. 1 part 3). Fig. 2 shows how289

LLM generalizes to new instruction steps to write290

corresponding codes given examples.291

3.1.5 SMT Solver292

After gathering the generated codes, our framework293

executes the codes to encode the problem and call294

the SMT solver. Since the SMT solver is sound and295

complete, it guarantees to find a solution if there296

exists one. Thus, if the constraints are satisfiable,297

the solver generates a formally verified plan. If the298

constraints are not satisfiable, the solver outputs the299

unsatisfiable reasons and LLM could, based on its300

commonsense and reasoning capabilities, analyze301

the reasons, actively collect more information, and302

provide humans with suggestions to modify the303

constraints. We extract the unsatisfiable reasons304

with Z3 solver’s get_unsat_core function. When305

the framework proves the constraints to be unsat-306

isfiable, it proceeds to interactive plan repair with307

the unsatisfiable reasons.308

3.2 Interactive Plan Repair309

When a proposed query is not satisfiable, LLM’s310

reasoning capability and commonsense knowledge311

to analyze current situation and offer suggestions312

become vital. Furthermore, these capabilities en-313

able an interactive setting, in which humans can314

agree, disagree, or provide feedback to LLM’s pro-315

posed suggestions. LLM can deliver personalized316

plans built upon different human preferences.317

Inspired by ReAct (Yao et al., 2022), in our frame-318

work, LLM could either take an action to collect319

information based on unsatisfiable reasons, analyze320

current situation based on collected information, or321

provide suggestions. We equip LLM with infor-322

mation collection APIs and descriptions of their323

usage. As shown in Fig. 1, the unsatisfiable reason324

is “invalid flight for transportation 0". With the325

reason, the LLM first takes action to collect flight326

information by calling FlightCheck API. Realizing327

no flight is available between St. Petersburg and328

Rockford, LLM analyzes and decides to change329

the destination city. Then, it runs FlightSearch API330

to search for all available destinations and even-331

tually chooses one of them. LLM offers this as a332

suggestion to the user and waits for the user’s feed- 333

back. The feedback could be yes, no, any natural 334

language preference, or even modifications users 335

proposed. If the user disagrees with the suggestion 336

or provides their preferences, the framework starts 337

another iteration and proposes new suggestions. If 338

the users agree with the suggestion or propose their 339

own modification, the framework continues by in- 340

putting this modification, together with original 341

codes, to an LLM and prompting it to modify the 342

codes. By running the modified codes, the frame- 343

work generates a plan if the modified constraints 344

are satisfiable. Otherwise, the framework gathers 345

the unsatisfiable reasons and starts another round. 346

4 Dataset 347

To access our framework’s ability to 1) generalize 348

to unseen constraints and 2) interactive plan re- 349

pair for unsatisfiable queries, we propose a dataset, 350

UnsatChristmas, that introduces new constraints 351

not included in TravelPlanner and contains 39 un- 352

satisfiable queries under this setting. The queries 353

in UnsatChristmas aim to create an international 354

travel plan for Christmas week in 2023. We set 355

cities in our dataset to be the top ten worldwide 356

city destinations in 20191 and obtain attraction 357

information from Metabase2. We utilize Google 358

Flights3 to collect flight information from 12-24- 359

2023 to 12-30-2023 for these ten cities. Compared 360

with TravelPlanner, we omit detailed information 361

of transportation methods, restaurants, and accom- 362

modations but introduce detailed constraints regard- 363

ing flights and attractions. As shown in Table 1, 364

UnsatChristmas allows users to specify 1) whether 365

they want to take non-stop flights only, 2) the list 366

of airlines they prefer, and 3) the list of attraction 367

categories they prefer. We collect 39 unsatisfiable 368

queries with 4 possible reasons: non-stop flight 369

rule not satisfied, flight airline requirement not sat- 370

isfied, attraction category requirement not satisfied, 371

budget not enough. Out of the 39 queries, 12 fail 372

due to one reason, 18 fail due to two reasons, 8 373

fail due to three reasons, and 1 fails due to four 374

reasons. There are 13 queries with a single des- 375

tination city, 13 with two, and 13 with three. In 376

addition, to test the interactive plan repair perfor- 377

mance, we also modify 12 queries from the training 378

1https://go.euromonitor.com/
white-paper-travel-2019-100-cities.html

2https://www.metabase.com/blog/
data-guide-to-travel

3https://www.google.com/travel/flights

5

https://go.euromonitor.com/white-paper-travel-2019-100-cities.html
https://go.euromonitor.com/white-paper-travel-2019-100-cities.html
https://www.metabase.com/blog/data-guide-to-travel
https://www.metabase.com/blog/data-guide-to-travel
https://www.google.com/travel/flights

set of TravelPlanner to be unsatisfiable.379

5 Experimental Results380

We examine our framework on both TravelPlan-381

ner and UnsatChristmas. We use GPT-4 (Achiam382

et al., 2023) with temperature 0 as our LLM by383

default, and we also compare with Claude 3 Opus-384

20240229 (cla) and Mixtral-Large (mix) with tem-385

perature 0 for satisfiable plan solving evaluation.386

We use Z3 solver (De Moura and Bjørner, 2008) as387

our SMT solver for all experiments.388

5.1 Satisfiable Plan Solving Evaluation389

We examine how well our framework can create390

travel plans for satisfiable natural language queries391

on the TravelPlanner benchmark. We design our392

example instruction steps and corresponding codes393

using three queries from TravelPlanner’s training394

set and tune the prompt with other queries in the395

training set. We evaluate our method on both the396

validation (180 queries) and test set (1000 queries)397

of TravelPlanner. Our framework evaluates valida-398

tion and testing set identically, but we report the399

results separately for better comparison.400

Evaluation Metric We adapted the evaluation401

metrics from Xie et al. (2024) and mainly look at402

two evaluation metrics: 1) Delivery Rate: measures403

whether a final plan is generated within a limited404

time; 2) Final Pass Rate: represents whether LLMs405

pass all constraints. Please refer to Appendix E406

for Commonsense Constraint Pass Rate, Hard Con-407

straint Pass Rate, and detailed description of Micro408

and Macro evaluation modes.409

Baselines We compare our framework with three410

strongest models using different strategies from411

Xie et al. (2024). Greedy Search uses a traditional412

search algorithm and heuristically sets total cost413

as the optimization objective. TwoStage (GPT-4),414

the most powerful model among two-stage tool-use415

frameworks, collects information with ReAct (Yao416

et al., 2022) and gives plans based on the collected417

information. Direct (GPT-4), the most powerful418

model among sole-planning frameworks, has ac-419

cess to all necessary pre-collected information and420

gives plans without tool-calling needs. To verify421

the effectiveness of our framework in varied LLMs,422

we also evaluate our framework with Claude 3423

Opus and Mixtral-Large. We tune the prompt with424

the training set and include the prompt differences425

in Appendix F.1.4. Due to computational resources426

and cost considerations, we only evaluate two new427

LLMs on the validation set with 180 queries. 428

Results and Analysis Table 2 shows the perfor- 429

mance comparison of satisfiable queries. Since 430

TravelPlanner’s database has 65 states, 312 cities, 431

3827361 flights, 17603 driving information, 5303 432

attractions, 9552 restaurants, and 5064 accommo- 433

dations, the solution space is extremely large con- 434

sidering the combinatorial choices. In addition, a 435

few queries are challenging in that they have few 436

feasible plans. We limit SMT solver’s maximum 437

runtime for each query to 30 minutes and pause 438

the program if this limit is reached. Please refer 439

to Appendix A for detailed cost and runtime per- 440

formance. The delivery rate of Ours (GPT-4) is 441

99.4% and 97.2% for validation and test set. From 442

the results, both LLM planning methods, TwoStage 443

(GPT-4) and Direct (GPT-4), struggle to take all 444

constraints into consideration with a final pass rate 445

of 0.6% and 4.4%. In addition, without formal 446

specification, Greedy Search fails to pass any of 447

the tasks. Ours (GPT-4), with the capability of 448

formally encoding the problem as an SMT prob- 449

lem, achieves a high final pass rate of 98.9% and 450

97.0% for validation and test set. This demon- 451

strates our framework’s robustness in solving sat- 452

isfiable queries of the travel planning problem. In 453

addition, Ours (Mixtral-Large) achieves a delivery 454

rate of 85.0% and final pass rate of 84.4%, and 455

Ours (Claude-3) achieves a delivery rate and final 456

pass rate of 98.3%. Ours (Claude-3) could reach 457

comparable results as Ours (GPT-4). Although the 458

delivery rate for Ours (Mixtral-Large) drops 14.4% 459

compared to Ours (GPT-4), it still significantly out- 460

performs TwoStage (GPT-4) and Direct (GPT-4), 461

and 99.2% of its delivered plans are correct plans. 462

See Appendix F.1.5 for major failure cases of Ours 463

(Mixtral-Large). These results demonstrates the 464

adaptability of our framework to other LLMs. 465

5.2 Interactive Plan Repair Evaluation 466

We examine our framework’s interactive plan re- 467

pair capability on both the modified queries from 468

TravelPlanner and UnsatChristmas. 469

Evaluation Metric We evaluate our framework 470

based on the success rate: whether LLM eventually 471

modifies the constraints to successfully deliver a 472

feasible plan within a limited number of iterations. 473

Implementation Details UnsatChristmas con- 474

straints have four unsatisfactory modes: 1) bud- 475

get is not enough, 2) required non-stop flight does 476

not exist, 3) required airline does not exist, 4) re- 477

quired attraction category does not exist. We test 478

6

Delivery Commonsense Hard Constraint Final
Method Rate Pass Rate Pass Rate Pass Rate

Micro Macro Micro Macro

Validation (#180)

Greedy Search 100 74.4 0 60.8 37.8 0
TwoStage (GPT-4) 89.4 61.1 2.8 15.2 10.6 0.6

Direct (GPT-4) 100 80.4 17.2 47.1 22.2 4.4
Ours (Mixtral-Large) 85.0 85.0 85.0 79.3 84.4 84.4

Ours (Claude-3) 98.3 98.3 98.3 98.6 98.3 98.3
Ours (GPT-4) 99.4 99.4 99.4 99.5 98.9 98.9

Test (#1000)

Greedy Search 100 72.0 0 52.4 31.8 0
TwoStage (GPT-4) 93.1 63.3 2.0 10.5 5.5 0.6

Direct (GPT-4) 100 80.6 15.2 44.3 23.1 4.4
Ours (GPT-4) 97.2 97.2 97.2 96.2 97.0 97.0

Table 2: Performance comparison of satisfiable queries for 180 queries in validation set and 1000 queries in test set.
The results of Greedy Search, TwoStage, and Direct are from Xie et al. (2024)

Method Always
Agree

Budget Non-stop Airline Attraction
Category

Destination
Cities

Average

No Reason 74.4 61.5 69.2 53.8 69.2 53.8 63.7
No Feedback N/A 59.0 79.5 61.5 79.5 74.4 70.8

No Solver 25.6 20.5 28.2 20.5 23.1 33.3 25.2
Ours 89.7 59.0 84.6 64.1 89.7 84.6 78.6

Ours-20 92.3 61.5 87.2 66.7 89.7 92.3 81.6

Table 3: Performance of interactive plan repair for unsatisfiable queries on 39 queries from UnsatChristmas.

Method Always Agree Budget Destination
Cities

Transportation
Methods

House Type Average

No Reason 75 83.3 91.7 83.3 66.7 80
No Feedback N/A 50 91.7 66.7 75 70.9

No Solver 16.7 16.7 50 25 16.7 25.0
Ours-Code 91.7 75 100 83.3 75 85.0

Ours-20 100 83.3 100 91.7 83.3 91.7

Table 4: Performance of interactive plan repair for unsatisfiable queries on 12 modified queries from TravelPlanner.

our framework with mimic users with different479

preferences. One mimic user agrees to all sugges-480

tions proposed by LLM, and five mimic users have481

hard constraints for budget, non-stop flight, airline,482

attraction category, and destination cities, respec-483

tively. They refuse any suggestion that changes484

their hard constraint, and provide feedback indicat-485

ing they will not change this information.486

Constraints modified from TravelPlanner have487

three unsatisfactory modes: 1) budget is not488

enough, 2) required transportation method does not489

exist, 3) required house type does not exist. Mimic490

users have hard constraints for budget, destination491

cities, transportation methods, and house type.492

The maximal number of iterations is ten.493

Ablation Studies Key components in our frame-494

work are 1) LLM receives unsatisfiable reasons495

from the solver; 2) LLM collects information based496

on the reasons, analyzes, and offers suggestions;497

3) LLM receives human preferences regarding of-498

fered suggestions; 4) LLM modifies codes; 5) SMT 499

solver gives satisfiability verification. We perform 500

ablation studies to examine these key components. 501

We compare the following: 1) No Reason: eval- 502

uates the need of unsatisfiable reasons by asking 503

LLM to resolve unsatisfiable queries without pro- 504

viding unsatisfiable reasons; 2) No Feedback: tests 505

how well the framework can incorporate human nat- 506

ural language preference by asking the human to 507

only provide binary “agree" or “disagree" feedback 508

without explaining why; 3) No Solver: examines 509

the importance of tool-using by removing the SMT 510

solver. The LLM collects information and gives a 511

list of suggestions for only one iteration because it 512

is not able to call the solver to verify the updated 513

query; 4) Ours: our approach as described in 3.2; 514

5) Ours-20: a variant of our approach that changes 515

the maximum number of iterations to be 20. 516

Results and Analysis Table 3 and 4 show the in- 517

teractive plan repair performance. Our framework 518

7

Block Picking Task Allocation TSP Warehouse

Method Delivery Optimal Delivery Optimal Delivery Optimal Delivery Optimal

TwoStage(GPT-4o) 80 4 84 0 100 0 72 0
Ours(GPT-4o) 100 92 92 92 100 100 84 72

Table 5: Performance of zero-shot generalization to four other combinatorial optimization tasks.

Figure 3: Example of how JSON-Step prompt general-
ize to unseen constraints. Texts with yellow background
are the unseen constraint types, and texts with green
background are corresponding generated steps.

could address diverse human preferences with an519

average of 78.6% and 85.0% across all types of520

mimic humans. Ours-20 raises the success rate521

to 81.6% and 91.7%, showing the potential of in-522

creasing the iteration limit to achieve better results.523

We include detailed figures and analysis of how524

number of iterations affects performance in Ap-525

pendix B. For queries from both datasets, Ours526

significantly outperforms No Solver by an aver-527

age of 53.4% and 60.0% across all types of mimic528

humans. This suggests that LLM’s capability to529

utilize SMT solver to verify the modified query530

largely benefits the interactive plan repair process.531

Ours also outperforms No Reason by an average532

of 14.9% and 5.0% and outperforms No Feedback533

by an average of 7.8% and 14.1%. These results534

validate the effectiveness of our key components.535

5.3 Generalization Capability Analysis536

5.3.1 New Travel Plan Constraints537

Since the travel planning problem involves various538

constraints of different types, our example instruc-539

tion steps may not be comprehensive enough to540

cover all possible constraints. Here we examine541

our framework’s robustness by testing whether it542

could generalize to the constraint types not shown543

in prompt examples in a zero-shot manner. As544

shown in Table 1, UnsatChristmas has different545

constraints than TravelPlanner. We show that by546

adding several lines of constraint description in the547

JSON-Step prompt, LLM could generate steps for 548

new constraints without the need to add new exam- 549

ples. Figure 3 shows how our framework encodes 550

unseen constraints in UnsatChristmas. Please see 551

Appendix F.3 for the added constraint description 552

and see Appendix G for full generated steps. 553

5.3.2 New Combinatorial Optimization Tasks 554

To show the capability of our framework to gener- 555

alize to other domains, we conduct experiments in 556

four new tasks: Block Picking, Task Allocation, 557

Travelling Salesman Problem (TSP), Warehouse. 558

For each task, we create 25 different scenarios. See 559

Appendix C.1 for problem setup descriptions. For 560

both JSON-Step and Step-Code generation, we in- 561

clude one example from travel planning and a few 562

lines of new problem description in the prompt to 563

test the zero-shot generalization capability. See 564

Appendix C.2 for the added task descriptions in the 565

prompts. We implement TwoStage, the two-stage 566

tool-use framework, for four tasks as the baselines. 567

We use GPT-4o (gpt) as the LLM to account for 568

long code generation. We use both delivery rate 569

and optimal rate as the evaluation metrics. The re- 570

sults in Table 5 show that LLMs themselves fail to 571

directly solve combinatorial optimization problems 572

that have large solution spaces, but our framework, 573

with its knowledge of encoding and solving travel 574

planning problems as SMT problems, could be 575

adapted to other combinatorial optimization prob- 576

lems in a zero-shot manner with good optimal rate: 577

92%, 92%, 100%, and 72% respectively. Please 578

refer to Appendix C.3 for failure cases analysis. 579

6 Conclusion 580

In this work, we propose a framework that enables 581

LLM to utilize a SMT solver to formally formulate 582

and solve a complex travel planning problem as an 583

SMT problem. Our framework can generalize to 584

natural language query inputs, almost guarantee to 585

deliver plans if the query is satisfiable with a pass 586

rate of 97%, and interactively work with humans 587

to modify the input query if it is not satisfiable. Fi- 588

nally, we show that our framework can generalize 589

to unseen constraint types and new domains with- 590

out the need to add new examples to the prompt. 591

8

7 Limitation592

The limitations and potential risks of the work are593

as follows:594

Prompt Designing We need a careful and spe-595

cific design of instruction steps and corresponding596

codes to encode the problem. It is time-consuming597

to formulate the problem from scratch. However,598

the potential of our framework to generalize to the599

unseen constraints and unseen tasks eases the fu-600

ture efforts needed to incorporate more constraints601

into the framework and to solve more different com-602

binatorial optimization problems. In addition, as603

the designers of the framework, we design offline604

prompts to enable full model autonomy for end605

users. Thus, after these prompts are designed, the606

effort needed for any end user to utilize our frame-607

work is a simple natural language query. With our608

framework, end users can utilize powerful solvers609

to solve their problems without having any knowl-610

edge about the solvers.611

Solver Runtime For a massive database with612

more destination city choices, various constraint613

types, and queries that only have a few feasible614

plans, our framework could take a long runtime to615

find the plan. To relieve this limitation, a potential616

way is to introduce some heuristics and prioritize a617

portion of choices to be verified first.618

Risky Data Since all information sources of our619

framework is from the database we use, it currently620

does not have the capability to distinguish unsafe621

or incorrect information. One potential risk of622

our framework is that it could generate risky plans623

based on unsafe information from the database.624

References625

Au large. https://mistral.ai/news/626
mistral-large/. Accessed: 2024-02-26.627

Hello gpt-4o. https://openai.com/index/628
hello-gpt-4o/. Accessed: 2024-05-13.629

Introducing the next generation of claude. https:630
//www.anthropic.com/news/claude-3-family.631
Accessed: 2024-03-04.632

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama633
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,634
Diogo Almeida, Janko Altenschmidt, Sam Altman,635
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.636
arXiv preprint arXiv:2303.08774.637

Constructions Aeronautiques, Adele Howe, Craig638
Knoblock, ISI Drew McDermott, Ashwin Ram,639
Manuela Veloso, Daniel Weld, David Wilkins Sri, An-640
thony Barrett, Dave Christianson, et al. 1998. Pddl|641

the planning domain definition language. Technical 642
Report, Tech. Rep. 643

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen 644
Chebotar, Omar Cortes, Byron David, Chelsea Finn, 645
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus- 646
man, et al. 2022. Do as i can, not as i say: Ground- 647
ing language in robotic affordances. arXiv preprint 648
arXiv:2204.01691. 649

Clark Barrett, Christopher L Conway, Morgan Deters, 650
Liana Hadarean, Dejan Jovanović, Tim King, Andrew 651
Reynolds, and Cesare Tinelli. 2011. cvc4. In Com- 652
puter Aided Verification: 23rd International Confer- 653
ence, CAV 2011, Snowbird, UT, USA, July 14-20, 654
2011. Proceedings 23, pages 171–177. Springer. 655

Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. 656
The smt-lib standard: Version 2.0. In Proceedings of 657
the 8th international workshop on satisfiability mod- 658
ulo theories (Edinburgh, UK), volume 13, page 14. 659

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten- 660
berger, Michal Podstawski, Lukas Gianinazzi, Joanna 661
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi- 662
otr Nyczyk, et al. 2024. Graph of thoughts: Solving 663
elaborate problems with large language models. In 664
Proceedings of the AAAI Conference on Artificial 665
Intelligence, volume 38, pages 17682–17690. 666

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 667
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 668
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 669
Askell, et al. 2020. Language models are few-shot 670
learners. Advances in neural information processing 671
systems, 33:1877–1901. 672

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas 673
Roy, and Chuchu Fan. 2023a. Autotamp: Autoregres- 674
sive task and motion planning with llms as translators 675
and checkers. arXiv preprint arXiv:2306.06531. 676

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas 677
Roy, and Chuchu Fan. 2023b. Scalable multi-robot 678
collaboration with large language models: Central- 679
ized or decentralized systems? arXiv preprint 680
arXiv:2309.15943. 681

Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, 682
and Lydia E Kavraki. 2016. Incremental task and 683
motion planning: A constraint-based approach. In 684
Robotics: Science and systems, volume 12, page 685
00052. Ann Arbor, MI, USA. 686

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: 687
An efficient smt solver. In International conference 688
on Tools and Algorithms for the Construction and 689
Analysis of Systems, pages 337–340. Springer. 690

Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfia- 691
bility modulo theories: introduction and applications. 692
Communications of the ACM, 54(9):69–77. 693

Rina Dechter. 2003. Constraint processing. Morgan 694
Kaufmann. 695

9

https://mistral.ai/news/mistral-large/
https://mistral.ai/news/mistral-large/
https://mistral.ai/news/mistral-large/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

Bruno Dutertre and Leonardo De Moura. 2006. A fast696
linear-arithmetic solver for dpll (t). In International697
Conference on Computer Aided Verification, pages698
81–94. Springer.699

Lin Guan, Karthik Valmeekam, Sarath Sreedharan,700
and Subbarao Kambhampati. 2023. Leveraging pre-701
trained large language models to construct and utilize702
world models for model-based task planning. Ad-703
vances in Neural Information Processing Systems,704
36:79081–79094.705

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,706
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.707
Reasoning with language model is planning with708
world model. arXiv preprint arXiv:2305.14992.709

Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni,710
Christian Muise, Ronald Brachman, Francesca Rossi,711
and Peter Stone. 2019. An introduction to the712
planning domain definition language, volume 13.713
Springer.714

Malte Helmert. 2006. The fast downward planning715
system. Journal of Artificial Intelligence Research,716
26:191–246.717

Jörg Hoffmann and Bernhard Nebel. 2001. The ff plan-718
ning system: Fast plan generation through heuristic719
search. Journal of Artificial Intelligence Research,720
14:253–302.721

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and722
Igor Mordatch. 2022a. Language models as zero-723
shot planners: Extracting actionable knowledge for724
embodied agents. In International Conference on725
Machine Learning, pages 9118–9147. PMLR.726

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan,727
Jacky Liang, Pete Florence, Andy Zeng, Jonathan728
Tompson, Igor Mordatch, Yevgen Chebotar, et al.729
2022b. Inner monologue: Embodied reasoning730
through planning with language models. arXiv731
preprint arXiv:2207.05608.732

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei733
Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-734
ing Tang, and Enhong Chen. 2024. Understanding735
the planning of llm agents: A survey. arXiv preprint736
arXiv:2402.02716.737

Subbarao Kambhampati, Karthik Valmeekam, Lin738
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-739
bri, Lucas Paul Saldyt, and Anil B Murthy. Position:740
Llms can’t plan, but can help planning in llm-modulo741
frameworks. In Forty-first International Conference742
on Machine Learning.743

Henry Kautz and Bart Selman. 1999. Unifying sat-744
based and graph-based planning. In IJCAI, vol-745
ume 99, pages 318–325.746

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-747
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-748
guage models are zero-shot reasoners. Advances in749
neural information processing systems, 35:22199–750
22213.751

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol 752
Hausman, Brian Ichter, Pete Florence, and Andy 753
Zeng. 2023. Code as policies: Language model 754
programs for embodied control. In 2023 IEEE In- 755
ternational Conference on Robotics and Automation 756
(ICRA), pages 9493–9500. IEEE. 757

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, 758
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 759
2023. Llm+ p: Empowering large language mod- 760
els with optimal planning proficiency. arXiv preprint 761
arXiv:2304.11477. 762

Tomás Lozano-Pérez and Leslie Pack Kaelbling. 2014. 763
A constraint-based method for solving sequential ma- 764
nipulation planning problems. In 2014 IEEE/RSJ 765
International Conference on Intelligent Robots and 766
Systems, pages 3684–3691. IEEE. 767

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 768
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 769
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 770
et al. 2024. Self-refine: Iterative refinement with 771
self-feedback. Advances in Neural Information Pro- 772
cessing Systems, 36. 773

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 774
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 775
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 776
2022. Training language models to follow instruc- 777
tions with human feedback. Advances in neural in- 778
formation processing systems, 35:27730–27744. 779

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, 780
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou 781
Yu, Weizhu Chen, et al. 2023. Check your facts and 782
try again: Improving large language models with 783
external knowledge and automated feedback. arXiv 784
preprint arXiv:2302.12813. 785

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, 786
Noah A Smith, and Mike Lewis. 2022. Measuring 787
and narrowing the compositionality gap in language 788
models. arXiv preprint arXiv:2210.03350. 789

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 790
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 791
Bill Qian, et al. 2023. Toolllm: Facilitating large 792
language models to master 16000+ real-world apis. 793
arXiv preprint arXiv:2307.16789. 794

Jussi Rintanen. 2012. Planning as satisfiability: Heuris- 795
tics. Artificial intelligence, 193:45–86. 796

Jussi Rintanen. 2014. Madagascar: Scalable planning 797
with sat. Proceedings of the 8th International Plan- 798
ning Competition (IPC-2014), 21:1–5. 799

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 800
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 801
moyer, Nicola Cancedda, and Thomas Scialom. 2024. 802
Toolformer: Language models can teach themselves 803
to use tools. Advances in Neural Information Pro- 804
cessing Systems, 36. 805

10

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,806
Weiming Lu, and Yueting Zhuang. 2024. Hugging-807
gpt: Solving ai tasks with chatgpt and its friends808
in hugging face. Advances in Neural Information809
Processing Systems, 36.810

Noah Shinn, Federico Cassano, Ashwin Gopinath,811
Karthik Narasimhan, and Shunyu Yao. 2024. Re-812
flexion: Language agents with verbal reinforcement813
learning. Advances in Neural Information Process-814
ing Systems, 36.815

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit816
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,817
Jesse Thomason, and Animesh Garg. 2023. Prog-818
prompt: Generating situated robot task plans using819
large language models. In 2023 IEEE International820
Conference on Robotics and Automation (ICRA),821
pages 11523–11530. IEEE.822

Chan Hee Song, Jiaman Wu, Clayton Washington,823
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2023.824
Llm-planner: Few-shot grounded planning for em-825
bodied agents with large language models. In Pro-826
ceedings of the IEEE/CVF International Conference827
on Computer Vision, pages 2998–3009.828

Vincent Vidal. 2014. Yahsp3 and yahsp3-mt in the 8th829
international planning competition. Proceedings of830
the 8th International Planning Competition (IPC-831
2014), pages 64–65.832

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,833
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and834
Denny Zhou. 2022. Self-consistency improves chain835
of thought reasoning in language models. arXiv836
preprint arXiv:2203.11171.837

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten838
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,839
et al. 2022. Chain-of-thought prompting elicits rea-840
soning in large language models. Advances in neural841
information processing systems, 35:24824–24837.842

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu,843
Renze Lou, Yuandong Tian, Yanghua Xiao, and844
Yu Su. 2024. Travelplanner: A benchmark for real-845
world planning with language agents. arXiv preprint846
arXiv:2402.01622.847

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,848
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.849
2024. Tree of thoughts: Deliberate problem solving850
with large language models. Advances in Neural851
Information Processing Systems, 36.852

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak853
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.854
React: Synergizing reasoning and acting in language855
models. arXiv preprint arXiv:2210.03629.856

Zirui Zhao, Wee Sun Lee, and David Hsu. 2024. Large857
language models as commonsense knowledge for858
large-scale task planning. Advances in Neural Infor-859
mation Processing Systems, 36.860

11

A Runtime and cost analysis861

In this section, we include the detail runtime and cost analysis of both satisfiable plan solving and862

interactive plan repair of our framework.863

A.1 Satisfiable Plan Solving864

For the satisfiable plan solving part, we recorded the runtime and cost for 180 queries in TravelPlanner’s865

validation set. Over the 180 queries, the average cost is $0.74 per query using GPT-4. Over the 179 queries866

with delivered plans, the average time spent for different stages in our framework are shown in Table 6.867

The average total time spent for all stages is 245.66 seconds (4.09 minutes) per query. The Step-Code868

generation contains multiple LLM calls for various types of constraints, thus takes most of the time.

LLM NL-JSON LLM JSON-Step LLM Step-Code SMT Solver Total

5.45 35.16 166.66 38.39 245.66

Table 6: Runtime (seconds) of each stage of our framework for satisfiable plan solving.

869
Out of the 180 queries, there is one query with no delivered plan since its runtime exceeds 30 minutes.870

For queries with heavy computational costs, introducing some heuristics that prioritize a portion of all871

possible solutions could help to reduce the computational overhead of SMT solvers. Our framework872

introduces a simple heuristic: for queries that ask to visit multiple cities in a state, we will prioritize873

the cities with available transportations between the origin. This heuristic helps to reduce the runtime,874

especially for a big state with 20 cities. In addition to this simple heuristic, some other heuristics may875

help, which we plan to explore more in the future: pre-calculate estimated money spent and prioritize876

the cheaper solutions, prioritize the cities with a larger number of transportation methods/ restaurants/877

accommodations, etc.878

A.2 Interactive Plan Repair879

For the interactive plan solving part, we recorded the runtime and cost for queries in UnsatChristmas880

for mimic-human with hard budget constraints. Over the 23 (out of 39) successful queries, the average881

cost is $0.65 per iteration using GPT-4. The average time spent for different stages in our framework are882

shown in Table 7. The average total time spent for both stages is 33.68 seconds per iteration. Note that for883

mimic-human with hard budget constraints, the average number of iterations that successfully modify the884

queries is 2.22 per query.

LLM interactive suggestion Code Update Total

10.35 23.33 33.68

Table 7: Runtime (seconds per iteration) of each stage of our framework for interactive plan repair.

885

12

B Interactive Plan Repair: Iteration versus Performance 886

Figure 4 shows the performance (success rate %) of interactive plan repair over different numbers of 887

iterations for both datasets. 888

For the 39 queries in UnsatChristmas, 63.7% of the queries could be successfully modified to be satisfiable 889

within 3 iterations, 74.8% within 5 iterations, 78.6% within 10 iterations, and 81.6% within 20 iterations. 890

The performance increases quickly during the first 5 iterations, and the framework solves a limited number 891

of more difficult queries with more iterations. 892

Similarly, for the 12 modified queries in TravelPlanner, 65.0% of the queries could be successfully 893

modified to be satisfiable within 3 iterations, 73.3% within 5 iterations, 85.0% within 10 iterations, and 894

91.7% within 20 iterations. 895

The results suggest that we do not need extensive iterations to fully capture a major portion of the human 896

queries.

Figure 4: Performance (success rate %) of interactive plan repair over different numbers of iterations for two datasets

897

13

C New Combinatorial Optimization Tasks details898

C.1 Task Setup899

C.1.1 Block Picking900

There are blocks of different colors and scores in the scene. The goal is to select required number of901

unique blocks with required color, while maximizing the score. All possible block colors are red, yellow,902

black, pink, and blue. For 25 different scenarios, we set the total number of blocks to be a random number903

between 50 to 200, each with a random score between 1 to 20 and a random color. For the query, we will904

randomly choose 1 to 3 colors from all colors to be the required color, and 10 to be the required number905

of blocks to pick.906

C.1.2 Task Allocation907

Given a list of three tasks A, B and C, and three heterogeneous robots that are skilled at different tasks,908

the goal is to find the way to assign different tasks to different robots and finish the tasks with minimized909

finish time. The three robots could work in parallel, but the finish time counts the time when the last910

robot stops working. For 25 different scenarios, we set number of task A, B and C to be random numbers911

between 10 to 100. For each robot, we set its work time to finish each task to be a random number between912

10 to 100.913

C.1.3 TSP914

Given a list of ten cities, the goal is to visit each city exactly once with minimized distance travelled. For915

25 different scenarios, we set the coordinates of each city to be a random tuple between 0 and 1.916

C.1.4 Warehouse917

The robot has a task list of length N that needs to be finished one by one. In the warehouse, there are 50918

stations, where the robots can visit stations to finish different tasks. The robot starts at station 0, travel919

n stations to finish n tasks, and then travel back to station 0. The robot needs to finish n tasks while920

minimizing the total distance travelled. For 25 different scenarios, we set the total task number to be 50,921

and the total station number to be 50, and each station can be used to accomplish 3 random tasks. We922

set the number of tasks the robot need to finish to be a random number from 3 to 10, and the tasks to be923

random numbers within 50. We set the coordinates of each station to be a random tuple between 0 and 1.924

C.2 Added task description in prompt925

Block Picking
Now, you are given a JSON constraint of a block stacking problem.
There are blocks of different colors and scores in the scene. You need to select "block_number"
non-repeat blocks with color in "color" list, while maximizing the score.
You have access to a BlockSearch API.
BlockSearch.run(color:list) gives 1.all possible block ids of color in "color" list and 2.corresponding
score info. You should assert chosen blocks index does not exceed block id list length.
BlockSearch.get_info(score_info, block_index) gives the score of certain block.

Task Allocation
Now, you are given a JSON constraint of a task allocation problem.
Given a list of tasks and three heterogeneous robots that are skilled at different tasks, the goal is
to find the way to assign different number of tasks to different robots and finish the tasks with
minimized finish time. The three robots could work in parallel, but the finish time counts the time
when the last robot stops working.
You have access to a TimeSearch() API.
TimeSearch.run() searches robots’ accomplishing time info.
TimeSearch.get_info(time_info, robot: str, task: str) gives the accomplishing time of certain block
for certain task. An example of robot and task string is: ’robotA’, ’taskA’.

926

14

Note that for each robot R and each task T, the number of task T robot R is allocated needs to be
non-negative and within the total number of T.
You have access to a Max(variable_list) function that outputs the max of a list of variables.

TSP
Now, you are given a JSON constraint of a travelling salesman problem (TSP) problem.
Given 10 cities, you need to non-repeatly visit each city exactly once with minimized distance
travelled.
You have access to a DistanceSearch() API.
DistanceSearch.run() takes no argument and gives the distance info between cities, and Distance-
Serarch.get_info(distance_info, city_1, city_2) gives the distance(a real number) between two
cities.
You should explicitly assert city index does not exceed total number of cities.
You do not need to count the distance to go back to the first city, so the total number of distances
you need to consider is 9.

Warehouse
Now, you are given a JSON constraint of a warehouse robot routing problem.
The robot are given a task list "task_id" of length n and needs to finish them one by one. In the
warehouse, there are "total_station_number" stations, where the robots can visit stations to finish
different tasks.
The robot needs to finish n tasks while minimizing the total distance travelled. When calculating
total travel distance, make sure to include 1.the distance to travel from origin (0) to first station;
2.distance between n stations (so this is n-1 values); 3.distance to travel from last station back to
origin(0).
You have access to a StationSearch() API.
StationSearch.run_task(tasks) takes a list of tasks that the robot needs to accomplish, and gives a list
of stations_id_list. For each task, you should assert robot choose one station id from corresponding
stations_list, which is all possible stations.
StationSearch.run_distance() takes no argument and gives the distance info between stations, and
StationSearch.get_info(distance_info, station_1_id, station_2_id) takes gives the distance (a real
number) between two stations.

927

C.3 Failure case analysis 928

For Block Picking, Task Allocation, and Warehouse, there are failure cases. 929

930

Block Picking For Block Picking, LLM fails to give the optimal plan for 2 out of 25 delivered 931

plans. The failure reasons are same for these two plans. In the block picking task, all picked blocks need 932

to be distinct. Thus, in the codes LLM writes, it needs to explicitly check all block indexes it chooses are 933

different. In these two plans, the LLM fails to take this into account, thus repeatedly choose same blocks 934

with high scores to maximize the score. 935

936

Task Allocation For Task Allocation, LLM fails to deliver the plan for 2 out of 25 scenarios. 937

The failure reasons are same. The LLMs are provided a Max(variable_list) function, which takes in a list 938

of variables and return the max. However, in the codes written by LLM, they fail to input a list of vari- 939

ables, but input the variables themselves one by one. This gives runtime errors thus fails to deliver the plan. 940

941

Warehouse For Warehouse, LLM fails to deliver the plan for 4 out of 25 scenarios, and fails to 942

give the optimal plan for 3 out of the 21 delivered plan. 943

Note that Warehouse is a more challenging task in that it needs to select stations to visit while calculate 944

15

the minimum travel distance between them at the same time. Thus, the codes are more complex to write.945

The delivery failure reasons for the 4 scenarios are same. Since the task requires the robot to travel from946

origin, visit n stations, and back to origin at the end. LLM could choose to set n station variables to947

represent n stations needs to visit or set n+2 station variables and make the first and last one to equal to 0.948

However, in the failure cases, the LLM set n variables to represent n stations, but at the same time assert949

first and last one to equal to 0. This brings conflicts because the it could assert one variable to equal to950

two values at the same time.951

The non-optimal reasons for the 3 delivered plan are same: since the StationSearch.run_task(tasks)952

outputs a station_id_list, the contents are IDs of stations. LLM needs to create station variables and assert953

it to equal to value from the ID lists. However, in the codes, LLM assert the station variables to equal to954

index from zero to length of station_id_list. This makes it to calculate incorrect distance thus outputting955

non-optimal solutions.956

16

D Example input queries and output plans 957

In an query, the user can specify 1) length of travel (3, 5, or 7 days), 2) the destination city or state 958

(for 5/7 days travel, the destination cities would be 2/3 cities from a state), 3) travel dates, 4) budget, 959

5) preferences regarding transportation methods, 6) preferences regarding restaurant cuisine types, 7) 960

preferences regarding accommodation type and rules. 961

We list an example input query and the corresponding output plans. 962

963

Input query:
Can you create a 5-day travel itinerary for a group of 3, departing from Atlanta and visiting 2
cities in Minnesota from March 3rd to March 7th, 2022? We have a budget of $7,900. We require
accommodations that allow parties and should ideally be entire rooms. Although we don’t plan to
self-drive, we would like the flexibility to host parties.
Corresponding output plan:
{
"days": 1,
"current_city": "from Atlanta to Minneapolis(Minnesota)",
"transportation": "Taxi, from Atlanta to Minneapolis(Minnesota), duration: 16 hours 26 mins,
distance: 1,821 km, cost: 1821",
"breakfast": "-",
"attraction": "Minneapolis Sculpture Garden, Minneapolis(Minnesota)",
"lunch": "-",
"dinner": "Bawa Chicken, Minneapolis(Minnesota)",
"accommodation": "Light-filled Apartment in great area, close 2 all!, Minneapolis(Minnesota)"
},
{
"days": 2,
"current_city": "from Minneapolis(Minnesota) to St. Cloud(Minnesota)",
"transportation": "Taxi, from Minneapolis(Minnesota) to St. Cloud(Minnesota), duration: 1 hour 6
mins, distance: 105 km, cost: 105",
"breakfast": "Friends Restaurant, St. Cloud(Minnesota)",
"attraction": "Blacklight Adventures, St. Cloud(Minnesota)",
"lunch": "Madras Cafe, St. Cloud(Minnesota)",
"dinner": "Aggarwal’s Sweets Paradise, St. Cloud(Minnesota)",
"accommodation": "The Gramercy East, St. Cloud(Minnesota)"
},
{
"days": 3,
"current_city": "St. Cloud(Minnesota)",
"transportation": "-",
"breakfast": "Mocha, St. Cloud(Minnesota)",
"attraction": "AirMaxx Trampoline Park & Warrior Course, St. Cloud(Minnesota)",
"lunch": "House of Commons, St. Cloud(Minnesota)",
"dinner": "Cakewalk - Park Plaza, St. Cloud(Minnesota)",
"accommodation": "The Gramercy East, St. Cloud(Minnesota)"
},
{
"days": 4,
"current_city": "St. Cloud(Minnesota)",
"transportation": "-",

964

17

"breakfast": "Pa Pa Ya, St. Cloud(Minnesota)",
"attraction": "Beaver Island Trail South, St. Cloud(Minnesota)",
"lunch": "Grecian Key Restaurant, St. Cloud(Minnesota)",
"dinner": "Food Care, St. Cloud(Minnesota)",
"accommodation": "The Gramercy East, St. Cloud(Minnesota)"
},
{
"days": 5,
"current_city": "from St. Cloud(Minnesota) to Atlanta",
"transportation": "Taxi, from St. Cloud(Minnesota) to Atlanta, duration: 17 hours 19 mins, distance:
1,919 km, cost: 1919",
"breakfast": "Annapurna Sweets, St. Cloud(Minnesota)",
"attraction": "-",
"lunch": "Republic of Chicken, St. Cloud(Minnesota)",
"dinner": "-",
"accommodation": "-"
}

965

18

E Satisfiable Plan Solving Evaluation Details 966

Commonsense constraints defined in (Xie et al., 2024) include: all information in the plan is within closed 967

sandbox, the plan is complete without any left out part, all activities should be conducted in current city, 968

travel route is reasonable, restaurant and attractions should not be repeated, transportation is reasonable 969

(no self-driving if taxi or flight is taken during the travel), the nunmber of consecutive days spent in a 970

specific accommodation must meet its required minimum number of nights’ stay. 971

Hard constraints include: the total spend of the trip is within budget, the specified room rule does 972

not exist ("No parties”, “No smoking”, “No children under 10”, “No pets”, and “No visitors”), the 973

specified room type exists (“Entire Room”, “Private Room”, “Shared Room”, and “No Shared Room”), 974

the specified cuisine types are fulfilled during the trip (“Chinese”, “American”, “Italian”, “Mexican”, 975

“Indian”, “Mediterranean”, and “French”), the specified transportation method is satisfied (“No flight” 976

and “No self-driving”.). 977

For Commonsense Constraint Pass Rate and Hard Constraint Pass Rate, two evaluation modes, micro and 978

macro, are used to test the agent’s capability to follow single constraint and follow constraints holistically. 979

Micro calculates the ratio of passed constraints to the total number of constraints, while Macro calculates 980

the ratio of plans that pass all commonsense or hard constraints among all tested plans. 981

19

F Prompts982

F.1 Prompts for Satisfiable Plan Solving983

F.1.1 NL-JSON prompt984

The instruction prompt for natural language to JSON translation prompt is provided as follows:985

Please assist me in extracting valid information from a given natural language text and reconstructing
it in JSON format, as demonstrated in the following example.
In the JSON, "org" denotes the departure city. "dest" denotes the destination city. "days" denotes
the total number of travel days. When "days" exceeds 3, "visiting_city_number" specifies the
number of cities to be covered in the destination state. "date" includes the detailed date to visit.
In addition, "local_constraint" contains four possible constraints. Possible options of "house
rule" includes ["parties", "smoking", "children under 10", "pets", "visitors"]. Possible options
of "cuisine" includes ["Chinese", "American", "Italian", "Mexican", "Indian", "Mediterranean",
"French"]. Possible options of "house type" includes ["entire room", "private room", "shared room",
"not shared room"]. Possible options of "transportation" includes ["no flight", "no self-driving"]. If
neither are mentioned in the text, make the value to be null.
Here are three examples:
—–EXAMPLE 1—–
Text: Please help me plan a trip from St. Petersburg to Rockford spanning 3 days from March 16th
to March 18th, 2022. The travel should be planned for a single person with a budget of $1,700.
JSON:
{
"org": "St. Petersburg",
"dest": "Rockford",
"days": 3,
"visiting_city_number": 1,
"date": ["2022-03-16", "2022-03-17", "2022-03-18"],
"people_number": 1,
"local_constraint": {
"house rule": null,
"cuisine": null,
"room type": null,
"transportation": null
},
"budget": 1700
}
—–EXAMPLE 2—–
Text: {Please create a 3-day travel itinerary for 2 people beginning in Fort Lauderdale and ending
in Milwaukee from the 8th to the 10th of March, 2022. Our travel budget is set at $1,100. We’d
love to experience both American and Chinese cuisines during our journey.}
JSON:
{
"org": "Fort Lauderdale",
"dest": "Milwaukee",
"days": 3,
"visiting_city_number": 1,
"date": ["2022-03-08", "2022-03-09", "2022-03-10"],
"people_number": 2,
"local_constraint": {
"house rule": null,

986

20

"cuisine": ["American", "Chinese"],
"room type": null,
"transportation": null
},
"budget": 1100
}
—–EXAMPLE 3—–
Text: {Can you create a 5-day travel itinerary for a group of 3, departing from Atlanta and visiting
2 cities in Minnesota from March 3rd to March 7th, 2022? We have a budget of $7,900. We require
accommodations that allow parties and should ideally be entire rooms. Although we don’t plan to
self-drive, we would like the flexibility to host parties.}
JSON:
{
"org": "Atlanta",
"dest": "Minnesota",
"days": 5,
"visiting_city_number": 2,
"date": ["2022-03-03", "2022-03-04", "2022-03-05", "2022-03-06", "2022-03-07"],
"people_number": 3,
"local_constraint": {
"house rule": "parties",
"cuisine": null,
"room type": "entire room",
"transportation": "no self-driving"
},
"budget": 7900
}
—–EXAMPLES END—–
Text: {query}
JSON:

987

F.1.2 JSON-Step prompt 988

The instruction prompt for JSON description to steps translation prompt is provided as follows: 989

You are given a constraint to satisfy for a travel plan problem in JSON format.
In the JSON, "org" denotes the departure city. When total travel days is 5 or 7, "dest" denotes the
destination state; when total travel day is 3, "dest" denotes the destination city. "days" denotes
the total number of travel days. When "days" equals 5 or 7, "visiting_city_number" specifies
the number of cities to be covered in the destination state. "date" includes the specific date to
visit. In addition, "local_constraint" contains four possible constraints. Possible options of "house
rule" includes ["parties", "smoking", "children under 10", "pets", "visitors"]. Possible options
of "cuisine" includes ["Chinese", "American", "Italian", "Mexican", "Indian", "Mediterranean",
"French"]. Possible options of "house type" includes ["entire room", "private room", "shared room",
"not shared room"]. Possible options of "transportation" includes ["no flight", "no self-driving"]. If
the field value is null in JSON, this specific hard constraint is not included.
Your job is to give a detailed step by step instuction to encode this constraint as code.
Here are some example steps for different constraint:
—–EXAMPLE 1—–
JSON Constraint:
{

990

21

"org": "Atlanta",
"dest": "Minnesota",
"days": 5,
"visiting_city_number": 2,
"date": ["2022-03-03", "2022-03-04", "2022-03-05", "2022-03-06", "2022-03-07"],
"people_number": 3,
"local_constraint": {
"house rule": "parties",
"cuisine": null,
"room type": "entire room",
"transportation": "no self-driving"
},
"budget": 7900
}
Steps:
Destination cities
Run CitySearch to get all possible destination cities in Minnesota State from origin ’Atlanta’,
remove origin ’Atlanta’ if it is in list
Loop through cities for 2 destination cities
Initialize Z3 solver s
Set ’city’ variable to be indexes of 2 destination cities
If city_0_index and city_1_index are not same, assert 2 ’city’ variables equal to city index

Departure dates
Set ’departure_dates’ variables for 3 transportations between cities
Assert first transportation happens at first day (day 0), last transportation happens at last day (day
4), and second transportation could happen at any day in between

Transportation methods
Set transportation method (flight, self-driving, taxi) variable for 3 transportations between cities
Assert only one of flight, self-driving, or taxi is used for 3 transportations between cities,
self-driving is not valid if taxi or flight is used for any transportation
Assert all 3 transportations between cities are not self-driving

Flight information
Run FlightSearch to get flight info for Atlanta as origin, list of cities, city_0 and city_1, and dates
Get specific flight price info with Atlanta as origin and final destination, specific city variable,
and departure date for 3 transportations
Set ’flight_index’ variable for 3 transportations
Assert 3 ’flight_index’ variables are within valid range if taking flight, assert flight index to be -1
if not taking flight
Calculate flight price for 3 people for 3 transportations based on flight index variable
Get specific flight arrival time info with Atlanta as origin and final destination, specific city, and
departure date for 3 transportations
Calculate flight arrival time for 3 transportations based on flight index variable

Driving information
Run DistanceSearch to get driving info for Atlanta as origin and city_0 and city_1
Get specific driving distance info with Atlanta as origin and final destination, specific city, and
departure date for 3 transportations

991

22

Assert driving info is not empty if driving
Calculate self-driving and taxi price for 3 people and 3 transportations based on driving distance
Get driving arrival time with Atlanta as origin and final destination, specific city, and departure
date for 3 transportations

Restaurant information
Get arrivals and city list for each day based on 3 transportations, 5 total travel day, and departure
dates variables
Run RestaurantSearch to get restaurant price info and cuisine info for city_0 and city_1
Set ’restaurant_in_which_city’ variables for 15 (3 meals per day, 5 days) meals
For each ’restaurant_in_which_city’ variable, assert it to be either current city or next city based
on transportation arrivals time
Set ’restaurant_index’ variables for 15 (3 meals per day, 5 days) meals
For each ’restaurant_index’, get specific price info based on ’restaurant_in_which_city’ variable,
assert index are within valid range, assert restaurants in same city are not repeated, and calculate
restaurant price for 3 people
Calculate restaurant price based on restaurant index

Attraction information
Run AttractionSearch to get attraction info for city_0 and city_1
Set ’attraction_in_which_city’ variables for 5 (1 per day) attractions
For each ’attraction_in_which_city’ variable, assert it to be either current city or next city based
on transportation arrivals time
Set ’attraction_index’ variables for 5 (1 per day) attractions
For each ’attraction_index’, get specific length info based on attraction in which city variable,
assert index are within valid range, and attrations in same city are not repeated

Accommodation information
Run AccommodationSearch to get accommodation info and accommodation constraints for
city_0 and city_1
Set ’accommodation_index’ variables for 2 (1 per city) accommodations
For each ’accommodation_index’, get specific price info based on accommodation in which city
variable, assert ’accommodation_index’ variable are within valid range, calculate number of room
need for 3 people and accommodation price
For each city, get accommodation minimum night info and assert it to be less than the days stay
in this city
For each ’accommodation_index’, get specific room type and house rules info, assert ’Entire
home/apt’ exist for all accommodations, assert ’No parties’ does not exist for all accommodations

Budget
Set budget limit variable to be 7900
Add 3 transportation price to spent, according to whether transportation method is flight,
self-driving, or taxi
Add restaurant price to spent
Add accommodation price to spent
Assert current spent is within budget

—–EXAMPLE 2—–
JSON Constraint:
{

992

23

’org’: ’Indianapolis’,
’dest’: ’Colorado’,
’days’: 7,
’visiting_city_number’: 3,
’date’: [’2022-03-11’, ’2022-03-12’, ’2022-03-13’, ’2022-03-14’, ’2022-03-15’, ’2022-03-16’,
’2022-03-17’],
’people_number’: 5,
’local_constraint’: {
’house rule’: ’pets’,
’cuisine’: [’Mexican’, ’Italian’, ’Mediterranean’, ’Indian’],
’room type’: ’entire room’,
’transportation’: None
},
’budget’: 15100
}
Steps:
Destination cities
Run CitySearch to get all possible destination cities in Colorado State from origin ’Indianapolis’,
remove origin ’Indianapolis’ if it is in list
Loop through cities for 3 destination cities
Initialize Z3 solver s
Set ’city’ variable to be indexes of 3 destination cities
If city_0_index, city_1_index, city_2_index are not same, assert 3 ’city’ variables equal to city
index

Departure dates
Set ’departure_dates’ variables for 4 transportations between cities
Assert first transportation happens at first day (day 0), last transportation happens at last day (day
6), second and third transportation happen in between but not at the same day

Transportation methods
Set transportation method (flight, self-driving, taxi) variable for 4 transportations between cities
Assert only one of flight, self-driving, or taxi is used for 4 transportations between cities,
self-driving is not valid if taxi or flight is used for any transportation

Flight information
Run FlightSearch to get flight info for Indianapolis as origin, list of cities, city_0, city_1 and
city_2, and dates
Get specific flight price info with Indianapolis as origin and final destination, specific city
variable, and departure date for 4 transportations
Set ’flight_index’ variable for 4 transportations
Assert 4 ’flight_index’ variables are within valid range if taking flight, assert flight index to be -1
if not taking flight
Calculate flight price for 5 people for 4 transportations based on flight index variable
Get specific flight arrival time info with Indianapolis as origin and final destination, specific city,
and departure date for 4 transportations
Calculate flight arrival time for 4 transportations based on flight index variable

Driving information
Run DistanceSearch to get driving info for Indianapolis as origin and city_0, city_1 and city_2

993

24

Get specific driving distance info with Indianapolis as origin and final destination, specific city,
and departure date for 4 transportations
Assert driving info is not empty if driving
Calculate self-driving and taxi price for 5 people and 4 transportations based on driving distance
Get driving arrival time with Indianapolis as origin and final destination, specific city, and
departure date for 4 transportations

Restaurant information
Get arrivals and city list for each day based on 4 transportations, 7 total travel day, and departure
dates variables
Run RestaurantSearch to get restaurant price info and cuisine info for city_0, city_1 and city_2
Set ’restaurant_in_which_city’ variables for 21 (3 meals per day, 7 days) meals
For each ’restaurant_in_which_city’ variable, assert it to be either current city or next city based
on transportation arrivals time
Set ’restaurant_index’ variables for 21 (3 meals per day, 7 days) meals
For each ’restaurant_index’, get specific price info based on ’restaurant_in_which_city’ variable,
assert index are within valid range, assert restaurants in same city are not repeated, and calculate
restaurant price for 5 people
Set ’cuisine_type’ variables for each cuisine type required
For each cuisine type, iterate through all restaurant to check if it is satisfied

Attraction information
Run AttractionSearch to get attraction info for city_0, city_1 and city_2
Set ’attraction_in_which_city’ variables for 7 (1 per day) attractions
For each ’attraction_in_which_city’ variable, assert it to be either current city or next city based
on transportation arrivals time
Set ’attraction_index’ variables for 7 (1 per day) attractions
For each ’attraction_index’, get specific length info based on attraction in which city variable,
assert index are within valid range, and attrations in same city are not repeated

Accommodation information
Run AccommodationSearch to get accommodation info and accommodation constraints for
city_0, city_1 and city_2
Set ’accommodation_index’ variables for 3 (1 per city) accommodations
For each ’accommodation_index’, get specific price info based on accommodation in which city
variable, assert ’accommodation_index’ variable are within valid range, calculate number of room
need for 5 people and accommodation price
For each city, get accommodation minimum night info and assert it to be less than the days stay
in this city
For each ’accommodation_index’, get specific room type and house rules info, assert ’Entire
home/apt’ exist for all accommodations, assert ’No pets’ does not exist for all accommodations

Budget
Set budget limit variable to be 15100
Add 4 transportation price to spent, according to whether transportation method is flight,
self-driving, or taxi
Add restaurant price to spent
Add accommodation price to spent
Assert current spent is within budget
—–EXAMPLES 3—–

994

25

JSON Constraint:
{
"org": "Fort Lauderdale",
"dest": "Milwaukee",
"days": 3,
"visiting_city_number": 1,
"date": ["2022-03-08", "2022-03-09", "2022-03-10"],
"people_number": 2,
"local_constraint": {
"house rule": null,
"cuisine": ["American", "Chinese"],
"room type": null,
"transportation": "no flight"
},
"budget": 1100
}
Steps:
Destination cities
Set cities to be a list includes Milwaukee only
Loop through cities for 1 destination cities
Initialize Z3 solver s
Set ’city’ variable to be indexes of 1 destination cities
Assert ’city’ variable equal to city index

Departure dates
Set ’departure_dates’ variables for 2 transportations between cities
Assert first transportation happens at first day (day 0), last transportation happens at last day (day 2)

Transportation methods
Set transportation method (flight, self-driving, taxi) variable for 2 transportations between cities
Assert only one of flight, self-driving, or taxi is used for 2 transportations between cities,
self-driving is not valid if taxi or flight is used for any transportation
Assert all 2 transportations between cities are not flight

Flight information
Run FlightSearch to get flight info for Fort Lauderdale as origin, list of cities, city_0, and dates
Get specific flight price info with Fort Lauderdale as origin and final destination, specific city,
and departure date for 2 transportations
Set ’flight_index’ variable for 2 transportations
Assert 2 ’flight_index’ variables are within valid range if taking flight, assert flight index to be -1
if not taking flight
Calculate flight price for 2 people for 2 transportations based on flight index variable
Get specific flight arrival time info with Fort Lauderdale as origin and final destination, specific
city, and departure date for 2 transportations
Calculate flight arrival time for 2 transportations based on flight index variable

Driving information
Run DistanceSearch to get driving info for Fort Lauderdale as origin and city_0
Get specific driving distance info with Fort Lauderdale as origin and final destination, specific
city, and departure date for 2 transportations

995

26

Assert driving info is not empty if driving
Calculate self-driving and taxi price for 2 people and 2 transportations based on driving distance
Get driving arrival time with Fort Lauderdale as origin and final destination, specific city, and
departure date for 2 transportations

Restaurant information
Get arrivals and city list for each day based on 2 transportations, 3 total travel day, and departure
dates variables
Run RestaurantSearch to get restaurant price info and cuisine info for city_0
Set ’restaurant_in_which_city’ variables for 9 (3 meals per day, 3 days) meals
For each ’restaurant_in_which_city’ variable, assert it to be either current city or next city based
on transportation arrivals time
Set ’restaurant_index’ variables for 9 (3 meals per day, 3 days) meals
For each ’restaurant_index’, get specific price info based on ’restaurant_in_which_city’ variable,
assert index are within valid range, assert restaurants in same city are not repeated, and calculate
restaurant price for 2 people
Set ’cuisine_type’ variables for each cuisine type required
For each cuisine type, iterate through all restaurant to check if it is satisfied

Attraction information
Run AttractionSearch to get attraction info for city0
Set ’attractioninwhichcity’ variables for 3 (1 per day) attractions
For each ’attractioninwhichcity’ variable, assert it to be either current city or next city based on
transportation arrivals time
Set ’attractionindex’ variables for 3 (1 per day) attractions
For each ’attractionindex’, get specific length info based on attraction in which city variable,
assert index are within valid range, and attrations in same city are not repeated

Accommodation information
Run AccommodationSearch to get accommodation info and accommodation constraints for city0
Set ’accommodationindex’ variables for 1 (1 per city) accommodations
For each ’accommodationindex’, get specific price info based on accommodation in which city
variable, assert ’accommodationindex’ variable are within valid range, calculate number of room
need for 2 people and accommodation price
For each city, get accommodation minimum night info and assert it to be less than the days stay
in this city

Budget
Set budget limit variable to be 1100
Add 2 transportation price to spent, according to whether transportation method is flight,
self-driving, or taxi
Add restaurant price to spent
Add accommodation price to spent
Assert current spent is within budget
—–EXAMPLES END—–
Based on the examples above, give the steps for following JSON constraint.
Note to keep the format in examples and start each line containing steps with ’#’
JSON Constraint: {JSON}
Steps:

996

27

F.1.3 Step-Code prompt997

The step to code example prompt for each constraint type is provided as follows:998

Destination cities:999

1000
Python script for testing satisfiability of the destination cities constraint of a travel plan problem.

Run CitySearch to get all possible destination cities in Minnesota State from origin 'Atlanta', remove origin 'Atlanta' if it is
in list
cities = CitySearch.run('Minnesota', 'Atlanta', query_json['date'])
if 'Atlanta' in cities:

cities.remove('Atlanta')
Set cities to be a list includes Milwaukee only
cities = ['Milwaukee']
Loop through cities for 2 destination cities
for city_0_index, city_0 in enumerate(cities):

for city_1_index, city_1 in enumerate(cities):
Initialize Z3 solver s
s = Optimize()
Set 'city' variable to be indexes of 2 destination cities
variables['city'] = [Int('city_' + str(i)) for i in range(2)]
If city_0_index and city_1_index are not same, assert 2 'city' variables equal to city index
if city_0_index != city_1_index:
s.assert_and_track(variables['city'][0] == city_0_index, 'visit city in cities list')
s.assert_and_track(variables['city'][1] == city_1_index, 'visit city in cities list')

Loop through cities for 1 destination cities
for city_0_index, city_0 in enumerate(cities):

Initialize Z3 solver s
s = Optimize()
Set 'city' variable to be indexes of 1 destination cities
variables['city'] = [Int('city_' + str(i)) for i in range(1)]
Assert 'city' variable equal to city index
s.assert_and_track(variables['city'][0] == city_0_index, 'visit city in cities list')

Based on the examples above, in which the lines start with '#' is the instuction, where the line/lines below it before the
next '#' is the corresponding code.
For this below instruction, write corresponding code and respond instruction with code only. Start with ########## Destination
cities response########## and end with ########## Destination cities response ends##########.

Departure Dates:1001

1002
Python script for testing satisfiability of the departure dates constraint of a travel plan problem.

Set 'departure_dates' variables for 3 transportations between cities
variables['departure_dates'] = [Int('departure_dates_transportation_' + str(i)) for i in range(3)]
Assert first transportation happens at first day (day 0), last transportation happens at last day (day 6), second and third
transportation happen in between but not at the same day
s.assert_and_track(variables['departure_dates'][0] == 0, 'travel start date')
s.assert_and_track(And(variables['departure_dates'][1] > 0, variables['departure_dates'][1] < variables['departure_dates'][2]),

'valid travel date')↪→
s.assert_and_track(And(variables['departure_dates'][2] > variables['departure_dates'][1], variables['departure_dates'][1] < 6),

'valid travel date')↪→
s.assert_and_track(variables['departure_dates'][3] == 6, 'travel end date')
Assert first transportation happens at first day (day 0), last transportation happens at last day (day 2)
s.assert_and_track(variables['departure_dates'][0] == 0, 'travel start date')
s.assert_and_track(variables['departure_dates'][2] == 2, 'travel end date')

Based on the examples above, in which the lines start with '#' is the instuction, where the line/lines below it before the next
'#' is the corresponding code.
For this below instruction, write corresponding code and respond instruction with code only. Start with ########## Departure
dates response########## and end with ########## Departure dates response ends##########.

Transportation Methods:1003

1004
Python script for testing satisfiability of the transportation methods constraint of a travel plan problem.

Set transportation method variable (flight, self-driving, taxi) for 3 transportations between cities
variables['flight'] = [Bool('flight_travel_' + str(i)) for i in range(3)]
variables['self-driving'] = [Bool('self-driving_travel_' + str(i)) for i in range(3)]
variables['taxi'] = [Bool('taxi_travel_' + str(i)) for i in range(3)]
Assert only one of flight, self-driving, or taxi is used for 3 transportations between cities, self-driving is not valid if taxi
or flight is used for any transportation
s.assert_and_track(Or(variables['flight'][0], variables['self-driving'][0], variables['taxi'][0]), 'either flight, self-driving,

or taxi for first transportation')↪→
s.assert_and_track(Or(variables['flight'][1], variables['self-driving'][1], variables['taxi'][1]), 'either flight, self-driving,

or taxi for second transportation')↪→
s.assert_and_track(Or(variables['flight'][2], variables['self-driving'][2], variables['taxi'][2]), 'either flight, self-driving,

or taxi for third transportation')↪→
s.assert_and_track(Not(Or(And(variables['flight'][0], variables['self-driving'][0]), And(variables['flight'][0],

variables['taxi'][0]), And(variables['taxi'][0], variables['self-driving'][0]))), 'flight, self-driving, and taxi not
simutaneously for first transportation')

↪→
↪→

28

s.assert_and_track(Not(Or(And(variables['flight'][1], variables['self-driving'][1]), And(variables['flight'][1],
variables['taxi'][1]), And(variables['taxi'][1], variables['self-driving'][1]))), 'flight, self-driving, and taxi not
simutaneously for second transportation')

↪→
↪→
s.assert_and_track(Not(Or(And(variables['flight'][2], variables['self-driving'][2]), And(variables['flight'][2],

variables['taxi'][2]), And(variables['taxi'][2], variables['self-driving'][2]))), 'flight, self-driving, and taxi not
simutaneously for third transportation')

↪→
↪→
s.assert_and_track(Implies(Or(variables['flight'][0], variables['flight'][1], variables['flight'][2]),

Not(Or(variables['self-driving'][0], variables['self-driving'][1], variables['self-driving'][2]))), 'no self-driving if taken
flight for any transportation')

↪→
↪→
s.assert_and_track(Implies(Or(variables['taxi'][0], variables['taxi'][1], variables['taxi'][2]),

Not(Or(variables['self-driving'][0], variables['self-driving'][1], variables['self-driving'][2]))), 'no self-driving if taken
taxi for any transportation')

↪→
↪→
Assert all 3 transportations between cities are not self-driving
s.assert_and_track(Not(variables['self-driving'][0]), 'no self-driving for first transportation')
s.assert_and_track(Not(variables['self-driving'][1]), 'no self-driving for second transportation')
s.assert_and_track(Not(variables['self-driving'][2]), 'no self-driving for third transportation')

Based on the examples above, in which the lines start with '#' is the instuction, where the line/lines below it before the next
'#' is the corresponding code.
For this below instruction, write corresponding code and respond instruction with code only. Start with ########## Transportation
response########## and end with ########## Transportation response ends##########.

Flight Information: 1005

1006
Python script for testing satisfiability of the flight constraint constraint of a travel plan problem.

Run FlightSearch to get flight info for Atlanta as origin, list of cities, city_0 and city_1, and dates
flight_info = FlightSearch.run_for_all_cities_and_dates('Atlanta', cities, [city_0, city_1], query_json['date'])
Get specific flight price info with Atlanta as origin and final destination, specific city variable, and departure date for 3
transportations
flight_0_price_list, flight_0_price_list_length = FlightSearch.get_info(flight_info, 'Atlanta', variables['city'][0],

variables['departure_dates'][0], 'Price')↪→
flight_1_price_list, flight_1_price_list_length = FlightSearch.get_info(flight_info, variables['city'][0], variables['city'][1],

variables['departure_dates'][1], 'Price')↪→
flight_2_price_list, flight_2_price_list_length = FlightSearch.get_info(flight_info, variables['city'][1], 'Atlanta',

variables['departure_dates'][2], 'Price')↪→
Set 'flight_index' variable for 3 transportations
variables['flight_index'] = [Int('flight_{}_index'.format(i)) for i in range(3)]
Assert 3 'flight_index' variables are within valid range if taking flight, assert flight index to be -1 if not taking flight
s.assert_and_track(Implies(variables['flight'][0], And(variables['flight_index'][0] >= 0,variables['flight_index'][0] <

flight_0_price_list_length)), 'valid flight index for flight 0')↪→
s.assert_and_track(Implies(variables['flight'][1], And(variables['flight_index'][1] >= 0,variables['flight_index'][1] <

flight_1_price_list_length)), 'valid flight index for flight 1')↪→
s.assert_and_track(Implies(variables['flight'][2], And(variables['flight_index'][2] >= 0,variables['flight_index'][2] <

flight_2_price_list_length)), 'valid flight index for flight 2')↪→
s.assert_and_track(Implies(Not(variables['flight'][0]), variables['flight_index'][0] == -1), 'valid flight index for flight 0')
s.assert_and_track(Implies(Not(variables['flight'][1]), variables['flight_index'][1] == -1), 'valid flight index for flight 1')
s.assert_and_track(Implies(Not(variables['flight'][2]), variables['flight_index'][2] == -1), 'valid flight index for flight 2')
Calculate flight price for 2 people for 3 transportations based on flight index variable
flight_0_price = 2 * FlightSearch.get_info_for_index(flight_0_price_list, variables['flight_index'][0])
flight_1_price = 2 * FlightSearch.get_info_for_index(flight_1_price_list, variables['flight_index'][1])
flight_2_price = 2 * FlightSearch.get_info_for_index(flight_2_price_list, variables['flight_index'][2])
Get specific flight arrival time info with Atlanta as origin and final destination, specific city, and departure date for 3
transportations
flight_0_arrtime_list, _ = FlightSearch.get_info(flight_info, 'Atlanta', variables['city'][0], variables['departure_dates'][0],

'ArrTime')↪→
flight_1_arrtime_list, _ = FlightSearch.get_info(flight_info, variables['city'][0], variables['city'][1],

variables['departure_dates'][1], 'ArrTime')↪→
flight_2_arrtime_list, _ = FlightSearch.get_info(flight_info, variables['city'][1], 'Atlanta', variables['departure_dates'][2],

'ArrTime')↪→
Calculate flight arrival time for 3 transportations based on flight index variable
flight_0_arrtime = FlightSearch.get_info_for_index(flight_0_arrtime_list, variables['flight_index'][0])
flight_1_arrtime = FlightSearch.get_info_for_index(flight_1_arrtime_list, variables['flight_index'][1])
flight_2_arrtime = FlightSearch.get_info_for_index(flight_2_arrtime_list, variables['flight_index'][2])

Based on the examples above, in which the lines start with '#' is the instuction, where the line/lines below it before the next
'#' is the corresponding code.
For this below instruction, write corresponding code and respond instruction with code only. Start with ########## Flight
response########## and end with ########## Flight response ends##########.

Driving Information: 1007

1008
Python script for testing satisfiability of the driving constraint of a travel plan problem.

Run DistanceSearch to get driving info for Atlanta as origin and city_0 and city_1
driving_info = DistanceSearch.run_for_all_cities('Atlanta', cities, [city_0, city_1])
Get specific driving distance info with Atlanta as origin and final destination, specific city, and departure date for 3
transportations
driving_0_distance, driving_0_length = DistanceSearch.get_info(driving_info, 'Atlanta', variables['city'][0], 'Distance')
driving_1_distance, driving_1_length = DistanceSearch.get_info(driving_info, variables['city'][0], variables['city'][1],

'Distance')↪→
driving_2_distance, driving_2_length = DistanceSearch.get_info(driving_info, variables['city'][1],'Atlanta', 'Distance')

29

Assert driving info is not empty if driving
s.assert_and_track(Implies(Or(variables['self-driving'][0], variables['taxi'][0]), driving_0_length > 0), 'driving is possible for

transportation 0')↪→
s.assert_and_track(Implies(Or(variables['self-driving'][1], variables['taxi'][1]), driving_1_length > 0), 'driving is possible for

transportation 1')↪→
s.assert_and_track(Implies(Or(variables['self-driving'][2], variables['taxi'][2]), driving_2_length > 0), 'driving is possible for

transportation 2')↪→
Calculate self-driving and taxi price for 3 people and 3 transportations based on driving distance
self_driving_0_price = 0.05 * driving_0_distance * math.ceil(3 / 5)
self_driving_1_price = 0.05 * driving_1_distance * math.ceil(3 / 5)
self_driving_2_price = 0.05 * driving_2_distance * math.ceil(3 / 5)
taxi_0_price = driving_0_distance * math.ceil(3 / 4)
taxi_1_price = driving_1_distance * math.ceil(3 / 4)
taxi_2_price = driving_2_distance * math.ceil(3 / 4)
Get driving arrival time with Atlanta as origin and final destination, specific city, and departure date for 3 transportations
driving_0_arrtime, _ = DistanceSearch.get_info(driving_info, 'Atlanta', variables['city'][0], 'Duration')
driving_1_arrtime, _ = DistanceSearch.get_info(driving_info, variables['city'][0], variables['city'][1], 'Duration')
driving_2_arrtime, _ = DistanceSearch.get_info(driving_info, variables['city'][1], 'Atlanta', 'Duration')

Based on the examples above, in which the lines start with '#' is the instuction, where the line/lines below it before the next
'#' is the corresponding code.
Follow the variable names in examples.
For this below instruction, write corresponding code and respond instruction with code only. Start with ########## Driving
response########## and end with ########## Driving response ends##########.

Restaurant Information:1009

1010
Python script for testing satisfiability of the restaurant constraint of a travel plan problem.

Get arrivals and city list for each day based on 3 transportations, 5 total travel day, and departure dates variables
transportation_0_arrtime = If(variables['flight'][0], flight_0_arrtime, driving_0_arrtime)
transportation_1_arrtime = If(variables['flight'][1], flight_1_arrtime, driving_1_arrtime)
transportation_2_arrtime = If(variables['flight'][2], flight_2_arrtime, driving_2_arrtime)
arrives = get_arrivals_list([transportation_0_arrtime, transportation_1_arrtime, transportation_2_arrtime], 5,

variables['departure_dates'])↪→
city_list = get_city_list(variables['city'], 5, variables['departure_dates'])
Run RestaurantSearch to get restaurant price info and cuisine info for city_0 and city_1
restaurant_price, restaurant_cuisines = RestaurantSearch.run_for_all_cities(cities, [city_0, city_1])
Run RestaurantSearch to get restaurant price info and cuisine info for city_0
restaurant_price, restaurant_cuisines = RestaurantSearch.run_for_all_cities(cities, [city_0])
Set 'restaurant_in_which_city' variables for 15 (3 meals per day, 5 days) meals
variables['restaurant_in_which_city'] = [Int('restaurant_' + str(i)) for i in range(3*5)]
For each 'restaurant_in_which_city' variable, assert it to be either current city or next city based on transportation arrivals
time
for i, variable in enumerate(variables['restaurant_in_which_city']):

date_index = i // 3
meal_index = i % 3
if meal_index == 0: # breakfast

s.assert_and_track(Or(variable == city_list[date_index], variable == city_list[date_index+1]), 'eat in which city b')
s.assert_and_track(Implies(arrives[date_index]> 10, variable == city_list[date_index]),'eat in which city b')
s.assert_and_track(Implies(arrives[date_index]< 5, variable == city_list[date_index+1]),'eat in which city b')

if meal_index == 1: # lunch
s.assert_and_track(Or(variable == city_list[date_index], variable == city_list[date_index+1]), 'eat in which city l')
s.assert_and_track(Implies(arrives[date_index]> 15, variable == city_list[date_index]),'eat in which city l')
s.assert_and_track(Implies(arrives[date_index]< 10, variable == city_list[date_index+1]),'eat in which city l')

if meal_index == 2: # dinner
s.assert_and_track(Or(variable == city_list[date_index], variable == city_list[date_index+1]), 'eat in which city d')
s.assert_and_track(Implies(arrives[date_index]> 22, variable == city_list[date_index]),'eat in which city d')
s.assert_and_track(Implies(arrives[date_index]< 17, variable == city_list[date_index+1]),'eat in which city d')

Set 'restaurant_index' variables for 15 (3 meals per day, 5 days) meals
variables['restaurant_index'] = [Int('restaurant_{}_index'.format(i)) for i in range(3*5)]
For each 'restaurant_index', get specific price info based on 'restaurant_in_which_city' variable, assert index are within valid
range, assert restaurants in same city are not repeated, and calculate restaurant price for 2 people
all_restaurant_price = 0
for i, variable in enumerate(variables['restaurant_index']):

restaurant_price_list, restaurant_list_length = RestaurantSearch.get_info(restaurant_price,
variables['restaurant_in_which_city'][i], 'Price')↪→

s.assert_and_track(Implies(variables['restaurant_in_which_city'][i] != -1, And(variable >= 0, variable <
restaurant_list_length)), 'valid restaurant index')↪→

s.assert_and_track(Implies(variables['restaurant_in_which_city'][i] == -1, variable == -1), 'valid restaurant index')
for j in range(i-1, -1, -1):

s.assert_and_track(Implies(And(variables['restaurant_in_which_city'][i] != -1, variables['restaurant_in_which_city'][i] ==
variables['restaurant_in_which_city'][j]), variable != variables['restaurant_index'][j]), 'non repeating restaurant
index')

↪→
↪→

Calculate restaurant price based on restaurant index
all_restaurant_price += 2 * If(variables['restaurant_in_which_city'][i] != -1,

RestaurantSearch.get_info_for_index(restaurant_price_list, variable), 0)↪→
Set 'cuisine_type' variables for each cuisine type required
variables['cuisines_type'] = [Int('cuisines_' + i) for i in query_json['local_constraint']['cuisine']]
For each cuisine type, iterate through all restaurant to check if it is satisfied
for index, cuisine in enumerate(query_json['local_constraint']['cuisine']):

count = 0
for i, variable in enumerate(variables['restaurant_index']):

restaurant_cuisines_list, _ = RestaurantSearch.get_info(restaurant_cuisines, variables['restaurant_in_which_city'][i],
'Cuisines')↪→

30

count += If(RestaurantSearch.check_exists(cuisine, restaurant_cuisines_list, variable), 1, 0)
s.assert_and_track(variables['cuisines_type'][index] == count, cuisine + 'type restaurant')
s.assert_and_track(variables['cuisines_type'][index] > 0, cuisine + 'type restaurant is visited')

Based on the examples above, in which the lines start with '#' is the instuction, where the line/lines below it before the next
'#' is the corresponding code.
For this below instruction, write corresponding code and respond instruction with code only. Start with ########## Restaurant
response########## and end with ########## Restaurant response ends##########.

Attraction Information: 1011

1012
Python script for testing satisfiability of the attraction constraint of a travel plan problem.

Run AttractionSearch to get attraction info for city_0 and city_1
attraction_info = AttractionSearch.run_for_all_cities(cities, [city_0, city_1])
Run AttractionSearch to get attraction info for city_0
attraction_info = AttractionSearch.run_for_all_cities(cities, [city_0])
Set 'attraction_in_which_city' variables for 5 (1 per day) attractions
variables['attraction_in_which_city'] = [Int('attraction_' + str(i)) for i in range(1*5)]
For each 'attraction_in_which_city' variable, assert it to be either current city or next city based on transportation arrivals
time
for i, variable in enumerate(variables['attraction_in_which_city']):

s.assert_and_track(variable == If(arrives[i]> 18, city_list[i], city_list[i+1]), 'attraction in which city')
Set 'attraction_index' variables for 5 (1 per day) attractions
variables['attraction_index'] = [Int('attraction_{}_index'.format(i)) for i in range(1*5)]
For each 'attraction_index', get specific length info based on attraction in which city variable, assert index are within valid
range, and attrations in same city are not repeated
for i, variable in enumerate(variables['attraction_index']):

attraction_list_length = AttractionSearch.get_info(attraction_info, variables['attraction_in_which_city'][i])
s.assert_and_track(Implies(variables['attraction_in_which_city'][i] != -1, And(variable >= 0, variable <

attraction_list_length)), 'valid attraction index')↪→
s.assert_and_track(Implies(variables['attraction_in_which_city'][i] == -1, variable == -1), 'valid attraction index')
for j in range(i-1, -1, -1):

s.assert_and_track(Implies(And(variables['attraction_in_which_city'][i] != -1, variables['attraction_in_which_city'][i] ==
variables['attraction_in_which_city'][j]), variable != variables['attraction_index'][j]), 'non repeating attraction
index')

↪→
↪→

Based on the examples above, in which the lines start with '#' is the instuction, where the line/lines below it before the next
'#' is the corresponding code.
For this below instruction, write corresponding code and respond instruction with code only. Start with ########## Attraction
response########## and end with ########## Attraction response ends##########.

Accommodation Information: 1013

1014
Python script for testing satisfiability of the accommodation constraint of a travel plan problem.

Run AccommodationSearch to get accommodation info and accommodation constraints for city_0 and city_1
accommodation_info, accommodation_constraints = AccommodationSearch.run_for_all_cities(cities, [city_0, city_1])
Run AccommodationSearch to get accommodation info and accommodation constraints for city_0
accommodation_info, accommodation_constraints = AccommodationSearch.run_for_all_cities(cities, [city_0])
Set 'accommodation_index' variables for 2 (1 per city) accommodations
variables['accommodation_index'] = [Int('accommodation_{}_index'.format(i)) for i in range(2)]
For each 'accommodation_index', get specific price info based on accommodation in which city variable, assert
'accommodation_index' variable are within valid range, calculate number of room need for 2 people and accommodation price
all_accommodation_price = 0
for i, variable in enumerate(variables['accommodation_index']):

accommodation_price_list, accommodation_list_length = AccommodationSearch.get_info(accommodation_info, variables['city'][i],
'Price')↪→

s.assert_and_track(And(variable >= 0, variable < accommodation_list_length), 'valid accomodation index')
accommodation_maximum_occupancy_list, _ = AccommodationSearch.get_info(accommodation_info, variables['city'][i],

'Maximum_occupancy')↪→
num_room = convert_to_int(RealVal(2) / AccommodationSearch.get_info_for_index(accommodation_maximum_occupancy_list, variable))
all_accommodation_price += (variables['departure_dates'][i+1] - variables['departure_dates'][i]) * num_room *

AccommodationSearch.get_info_for_index(accommodation_price_list, variable)↪→
For each city, get accommodation minimum night info and assert it to be less than the days stay in this city
for index, city in enumerate(variables['city']):

accommodation_minimum_nights_list, _ = AccommodationSearch.get_info(accommodation_info, city, 'Minimum_nights')
minimum_night = AccommodationSearch.get_info_for_index(accommodation_minimum_nights_list,

variables['accommodation_index'][index])↪→
s.assert_and_track(minimum_night <= variables['departure_dates'][index+1]- variables['departure_dates'][index], 'minimum

nights satisfied')↪→
For each 'accommodation_index', get specific room type and house rules info, assert 'Entire home/apt' exist for all
accommodations, assert 'No parties' does not exist for all accommodations
for i, variable in enumerate(variables['accommodation_index']):

accommodation_room_types_list, _ = AccommodationSearch.get_info(accommodation_constraints, variables['city'][i],
'Room_types')↪→

accommodation_house_rules_list, _ = AccommodationSearch.get_info(accommodation_constraints, variables['city'][i],
'House_rules')↪→

s.assert_and_track(AccommodationSearch.check_exists('Entire home/apt', accommodation_room_types_list, variable) == True,
'Entire home/apt' + 'types accomadation visited')↪→

s.assert_and_track(AccommodationSearch.check_exists('No parties', accommodation_house_rules_list, variable) == False, 'No
parties' + 'rules accomadation not visited')↪→

31

Based on the examples above, in which the lines start with '#' is the instuction, where the line/lines below it before the next
'#' is the corresponding code.
For this below instruction, write corresponding code and respond instruction with code only. Start with ########## Accommodation
response########## and end with ########## Accommodation response ends##########.

Budget:1015

1016
Python script for testing satisfiability of the budget constraint of a travel plan problem.

Set budget limit variable to be 7900
variables['budget_limit'] = RealVal(7900)
Add 3 transportation price to spent, according to whether transportation method is flight, self-driving, or taxi
spent = 0
spent += If(variables['flight'][0], flight_0_price, If(variables['self-driving'][0], self_driving_0_price,

If(variables['taxi'][0], taxi_0_price, 10000)))↪→
spent += If(variables['flight'][1], flight_1_price, If(variables['self-driving'][1], self_driving_1_price,

If(variables['taxi'][1], taxi_1_price, 10000)))↪→
spent += If(variables['flight'][2], flight_2_price, If(variables['self-driving'][2], self_driving_2_price,

If(variables['taxi'][2], taxi_2_price, 10000)))↪→
Add restaurant price to spent
spent += all_restaurant_price
Add accommodation price to spent
spent += all_accommodation_price
Assert current spent is within budget
s.assert_and_track(spent <= variables['budget_limit'], 'budget enough')

Based on the examples above, in which the lines start with '#' is the instuction, where the line/lines below it before the next
'#' is the corresponding code.
For this below instruction, write corresponding code and respond instruction with code only. Start with ########## Budget
response########## and end with ########## Budget response ends##########.

F.1.4 Prompt difference of GPT-4, Claude 3, and Mixtral-Large1017

With the prompt we have for GPT-4 as the starting point, we adjust the prompts (add more explainations1018

or examples) for Claude-3 and Mixtral-Large using the training set in TravelPlanner.1019

1020

Claude-3 almost has the same prompt as GPT-4, except for the JSON-Step prompt. Since in1021

training set, a failure case for Claude-3 is it is not able to handle the "house rule" properly. When the1022

JSON specifies "house rule" to be "children under 10" it means the travellers have children under 10 and1023

would like to stay in accommodations without "No children under 10" rule. While Claude-3 sometimes is1024

not able to give "No children under 10" in the step, instead, it gives steps with "children under 10 not1025

allowed". To enable it to handle this, we add one sentence explanation "if house rule ’xxx’ is mentioned,1026

then ’No xxx’ should not exist for all accomadations." in JSON-Step prompt.1027

1028

Compared to Claude-3, Mixtral-Large needs more prompt adjustment:1029

• We add "You can only assign null to local constraints if it is needed. Other fields must have1030

values." to NL-JSON prompt because Mixtral-Large sometimes misses some information in JSON1031

translation.1032

• Claude-3 uses the same JSON-Step prompt as Mixtral-Large.1033

• We add a 3-city loop-through-cities example in Destination Cities Step-Code prompt; We add a 2-city1034

travel-date-assertion example in Departure Dates prompt; We add a 1-city transportation-method1035

assertion-example to Transportation Methods; We add instructions that ask LLM to not use for-loops1036

and name variable with "i" as when it tries to iteratively create or access variables with i it fails to1037

write the correct code.1038

From the amount of changes we need to make, we can observe that Mixtral-Large in general produces more1039

code generation errors compared to GPT-4 and Claude-3, thus needing more examples and explanations1040

provided in prompts.1041

F.1.5 Failure cases of Mixtral-Large1042

Although we tune our prompt with training set, there are still some failure cases that do not appear in1043

training set and thus negatively affect Mixtral-Large’s delivery rate.1044

The major failure mode is: "room type" takes the value "no shared room". This room type is special in1045

32

that when other room types such as "private room" is specified, the generated instruction steps should be 1046

"private room exists for all accommodations". However, only when "no shared room" is mentioned, the 1047

steps should be "shared room does not exist for all accommodations." Since "no shared room" does not 1048

appear in training set or examples, and Mixtral-Large is not able to generalize to it, it fails by producing 1049

"not shard room exists for all accommodations", thus fails to search for home with type "not shared room". 1050

This is the major failure mode and is responsible for 7.8% of failed delivered plans (15.0% in total). Other 1051

than this, the failures are induced by runtime issue or some occasional code generation errors. 1052

F.2 Prompts for Interactive Plan Repair 1053

F.2.1 Suggestion prompt 1054

The instruction prompt that guides LLM to collect information, analyze current situation, and offer 1055

suggestions for unsatisfiable queries is provided as follows: 1056

Suggestion prompt for UnsatChristmas: 1057

1058

As a travel planner, you have some constraints in JSON format to satisfy for a round trip travel plan
problem.
The trip spans "date", goes from "org", travels "dest" cities in a row in between, and then goes back
to "org"
For example, if "org" is city_0, and "dest" is [city_1, city_2], then the flights could be [city_0-
>city_1,city_1->city_2,city_2->city_0] or [city_0->city_2,city_2-> city_1,city_1->city_0]
In addition, "local_constraint" contains three possible constraints. "flight rule" specifies whether
"nonstop" is required or not. "airlines" specifies a list of a airlines user can accept. Possible options
of "attraction_category" specifies a list of categories of attractions want to visit. If the field value is
null in JSON, this specific hard constraint is not included.
The specified "flight rule" needs to be satisfied by all flights. All flights need to be one of the
accepted "airlines". All categories in "attraction_category" needs to be satisfied, and a category
could be satisfied if it exists for one attraction.
After anaylzed these constraints, you found they are not satisfiable under current setting. You will
be giving unsatisfiable reasons.
Collect information based on the reasons or, based on the information you collect, analyze current
situation or give a suggested modification to the constraints.
Info collecting can take 4 different actions:
(1) FlightSearch[Departure City, Destination City]: Description: A flight information retrieval tool.
Parameters:
Departure City: The city you’ll be flying out from.
Destination City: The city you aim to reach.
Example: FlightSearch[New York City, London] would fetch flights from New York City to London.

(2) AirlineSearch[Airline]:
Description: Find flights of input airline.
Parameter: Airline - The airline name you want to take.
Example: AirlineSearch[United] would return all flights of United airline.

(3) AttractionSearch[City]:
Description: Find attractions categories in a city of your choice.
Parameter: City - The name of the city where you’re seeking attractions.
Example: AttractionSearch[London] would return attraction categories in London.

(4) CategorySearch[Category]:
Description: Find cities contain attractions of input category.
Parameter: Category - The attraction category where you want to visit.

1059

33

Example: CategorySearch[Park] would return all cities where attractions of category Park exist.

You need to take an action analyze current situation and plan your future steps after each
FlightSearch, AirlineSearch, AttractionSearch, or CategorySearch.
Example: Analyze[your analysis of current situation and plan for future]

You can suggest to remove the non-stop constraint, suggest to change required airlines, suggest
to change destination cities(but keep number of destination cities unchanged), suggest to change
attraction categories, or suggest to raise budget. Do not give other suggestions that change other
fields in JSON input, such as origin, number of visit cities, etc.
Please give a reasonable suggestion to modify the constraint only when you think you’ve collected
enough information and the suggestion has high chance to be satisfiable. For example, if destination
city does not have required attraction category, you should suggest to change destination city if info
shows the new city has the required category
Please try to keep original constraint and make minimal change to original constraint only when it
is necessary.
Examples:
Suggest[raise budget to 5000]
Suggest[change destination cities to be Istanbul and Macau]
Suggest[remove the non-stop constraint]
Suggest[change airlines to be United, Air France, or JetBlue]
Suggest[change attraction categories to be Garden and Museum]

A list of possible cities is [’Bangkok’, ’Dubai’, ’Hong Kong’, ’Istanbul’, ’Kuala Lumpur’,
’London’, ’Macau’, ’New York City’, ’Paris’, ’Singapore’]
Now, based on the input query, unsatisfiable reasons, and collected information, please give the
next action(only one action) you want to take only with no explainations, you need to give a
suggestion within 15 iterations:
Input query: {query}
Unsatisfiable reasons: {reasons}
Collected information: {info}

1060

Suggestion prompt for TravelPlanner:1061

1062

As a travel planner, you have some constraints in JSON format to satisfy for a round trip travel plan
problem.
The trip spans "date", goes from "org", travels "dest" city, and then goes back to "org" For example,
if "org" is city_0, and "dest" is city_1, then the transportations would be [city_0->city_1,city_1-
>city_0]
In addition, "local_constraint" contains four possible constraints. Possible options of "house
rule" includes ["parties", "smoking", "children under 10", "pets", "visitors"]. Possible options
of "cuisine" includes ["Chinese", "American", "Italian", "Mexican", "Indian", "Mediterranean",
"French"]. Possible options of "house type" includes ["entire room", "private room", "shared room",
"not shared room"]. Possible options of "transportation" includes ["no flight", "no self-driving"]. If
the field value is null in JSON, this specific hard constraint is not included.
The specified "house rule" and "house type" needs to be satisfied by all accommodations. The
specified "transportation" needs to be satisfied by all transportations. All cuisines in "cuisine"
needs to be satisfied, and a cuisine could be satisfied if it exists for one restaurant.
After anaylzed these constraints, you found they are not satisfiable under current setting. You will
be giving unsatisfiable reasons.

1063

34

Collect information based on the reasons or, based on the information you collect, analyze current
situation or give a suggested modification to the constraints.
Info collecting can take 6 different actions:
(1) DrivingCheck[Departure City, Destination City]: Description: A driving information checking
tool that checks if driving is feasible.
Parameters:
Departure City: The city you’ll be driving out from.
Destination City: The city you aim to reach.
Example: DrivingCheck[Grand Forks, Minneapolis] would check if driving is feasible from Grand
Forks to Minneapolis.

(2) DrivingSearch[Departure City]:
Description: A driving information retrieval tool that returns all reachable cities.
Parameters:
Departure City: The city you’ll be driving out from.
Example: DrivingSearch[Grand Forks] would return all reachable cities from Grand Forks through
driving.

(3) FlightCheck[Departure City, Destination City, Date]:
Description: A flight information checking tool that checks if flight is feasible.
Parameters:
Departure City: The city you’ll be flying out from.
Destination City: The city you aim to reach.
Date: The date you take the flight.
Example: FlightCheck[Grand Forks, Minneapolis, 2022-06-05] would check if flight is feasible
from Grand Forks to Minneapolis on 2022-06-05.

(4) FlightSearch[Departure City, Date]: Description: A flight information retrieval tool
that returns all reachable cities.
Parameters:
Departure City: The city you’ll be flying out from.
Date: The date you take the flight.
Example: FlightSearch[Grand Forks, 2022-06-05] would return all reachable cities from Grand
Forks through flight on 2022-06-05.

(5) AccommodationSearch[City]:
Description: Find accommodations types in a city of your choice.
Parameter: City - The name of the city where you’re seeking accommodations.
Example: AccommodationSearch[Grand Forks] would return accommodation categories in Grand
Forks.

(6) TypeSearch[Type]:
Description: Find cities contain accommodations of input type.
Parameter: Type - The accommodation type where you want to visit.
Example: TypeSearch[entire room] would return all cities where entire room type accommodation
exist.

You need to take an action analyze current situation and plan your future steps after each
DrivingCheck, DrivingSearch, FlightCheck, FlightSearch, AccommodationSearch, or TypeSearch.
Example: Analyze[your analysis of current situation and plan for future]

1064

35

You can suggest to remove the "house type" constraint, suggest to remove the "transportation"
constraint, suggest to change destination cities(but keep number of destination cities unchanged),
or suggest to raise budget. Do not give other suggestions that change other fields in JSON input,
such as origin, number of visit cities, etc.
Please give a reasonable suggestion to modify the constraint only when you think you’ve collected
enough information and the suggestion has high chance to be satisfiable. For example, if destination
city does not have required accomadation type, you should suggest to change destination city if
info shows the new city has the required type.
Please try to keep original constraint and make minimal change to original constraint only when it
is necessary.
Examples:
Suggest[raise budget to 5000]
Suggest[change destination cities to be Minneapolis]
Suggest[remove the house type constraint]
Suggest[remove the flight/no flight/ no self-driving assertion for transportations]

Now, based on the input query, unsatisfiable reasons, and collected information, please
give the next action(only one action) you want to take only with no explainations, you need to give
a suggestion within 15 iterations:
Input query: {query}
Unsatisfiable reasons: {reasons}
Collected information: {info}

1065

F.2.2 Suggestion-No Reason prompt1066

The Suggestion-No Reason prompt is basically modified from the Suggestion prompt by removing all1067

descriptions about reasons.1068

F.2.3 Suggestion-No Sovler prompt1069

The instruction suggestion prompt that remove the iterative solver calling and directly guide LLM to offer1070

a list of suggestions is provided as follows:1071

Suggestion-No Sovler prompt for UnsatChristmas:1072

1073
As a travel planner, you have some constraints in JSON format to satisfy for a round trip travel plan
problem.
The trip spans "date", goes from "org", travels "dest" cities in a row in between, and then goes back
to "org" For example, if "org" is city_0, and "dest" is [city_1, city_2], then the flights could be
[city_0->city_1,city_1->city_2,city_2->city_0] or [city_0->city_2,city_2-> city_1,city_1->city_0]
In addition, "local_constraint" contains three possible constraints. "flight rule" specifies whether
"non-stop" is required or not. "airlines" specifies a list of a airlines user can accept. Possible
options of "attraction_category" specifies a list of categories of attractions want to visit. If the field
value is null in JSON, this specific hard constraint is not included.
The specified "flight rule" needs to be satisfied by all flights. All flights need to be one of the
accepted "airlines". All categories in "attraction_category" needs to be satisfied, and a category
could be satisfied if it exists for one attraction.
After anaylzed these constraints, you found they are not satisfiable under current setting.
Collect information or, based on the information you collect, analyze current situation or give a
suggested modification to the constraints.
Info collecting can take 4 different actions:
(1) FlightSearch[Departure City, Destination City]:
Description: A flight information retrieval tool. Parameters:
Departure City: The city you’ll be flying out from.

1074

36

Destination City: The city you aim to reach.
Example: FlightSearch[New York City, London] would fetch flights from New York City to London.

(2) AirlineSearch[Airline]:
Description: Find flights of input airline.
Parameter: Airline - The airline name you want to take.
Example: AirlineSearch[United] would return all flights of United airline.

(3) AttractionSearch[City]:
Description: Find attractions categories in a city of your choice.
Parameter: City - The name of the city where you’re seeking attractions.
Example: AttractionSearch[London] would return attraction categories in London.

(4) CategorySearch[Category]:
Description: Find cities contain attractions of input category.
Parameter: Category - The attraction category where you want to visit.
Example: CategorySearch[Park] would return all cities where attractions of category Park exist.

You need to take an action analyze current situation and plan your future steps after each
FlightSearch, AirlineSearch, AttractionSearch, or CategorySearch.
Example: Analyze[your analysis of current situation and plan for future]

You can suggest to remove the non-stop constraint, suggest to change required airlines,
suggest to change destination cities(but keep number of destination cities unchanged), suggest to
change attraction categories, or suggest to raise budget. Do not give other suggestions that change
other fields in JSON input, such as origin, number of visit cities, etc.
Please give reasonable suggestions to modify the constraint only when you think you’ve collected
enough information and the suggestion has high chance to be satisfiable. For example, if destination
city does not have required attraction category, you should suggest to change destination city if info
shows the new city has the required category
Please try to keep original constraint and make minimal change to original constraint only when it
is necessary.
You can give one or more suggestions if you think one is not enough. Please separate the
suggestions with ;
Examples:
Suggest[raise budget to 5000]
Suggest[change destination cities to be Istanbul and Macau]
Suggest[remove the non-stop constraint]
Suggest[change airlines to be United, Air France, or JetBlue]
Suggest[change attraction categories to be Garden and Museum]
Suggest[raise budget to 3000; change destination cities to be London]

A list of possible cities is [’Bangkok’, ’Dubai’, ’Hong Kong’, ’Istanbul’, ’Kuala Lumpur’,
’London’, ’Macau’, ’New York City’, ’Paris’, ’Singapore’] Now, based on the input query and
collected information, please give the next action(only one action) you want to take only with no
explainations, you need to give suggestions within 15 iterations:
Input query: {query}
Collected information: {info}

1075

Suggestion-No Sovler prompt for UnsatChristmas: 1076

1077

37

As a travel planner, you have some constraints in JSON format to satisfy for a round trip travel plan
problem.
The trip spans "date", goes from "org", travels "dest" city, and then goes back to "org" For example,
if "org" is city_0, and "dest" is city_1, then the transportations would be [city_0->city_1,city_1-
>city_0]
In addition, "local_constraint" contains four possible constraints. Possible options of "house
rule" includes ["parties", "smoking", "children under 10", "pets", "visitors"]. Possible options
of "cuisine" includes ["Chinese", "American", "Italian", "Mexican", "Indian", "Mediterranean",
"French"]. Possible options of "house type" includes ["entire room", "private room", "shared room",
"not shared room"]. Possible options of "transportation" includes ["no flight", "no self-driving"]. If
the field value is null in JSON, this specific hard constraint is not included. The specified "house
rule" and "house type" needs to be satisfied by all accommodations. The specified "transportation"
needs to be satisfied by all transportations. All cuisines in "cuisine" needs to be satisfied, and a
cuisine could be satisfied if it exists for one restaurant.
After anaylzed these constraints, you found they are not satisfiable under current setting.
Collect information or, based on the information you collect, analyze current situation or give a
suggested modification to the constraints.
Info collecting can take 6 different actions:
(1) DrivingCheck[Departure City, Destination City]: Description: A driving information checking
tool that checks if driving is feasible.
Parameters:
Departure City: The city you’ll be driving out from.
Destination City: The city you aim to reach.
Example: DrivingCheck[Grand Forks, Minneapolis]
would check if driving is feasible from Grand Forks to Minneapolis.

(2) DrivingSearch[Departure City]:
Description: A driving information retrieval tool that returns all reachable cities.
Parameters:
Departure City: The city you’ll be driving out from.
Example: DrivingSearch[Grand Forks] would return all reachable cities from Grand Forks through
driving.

(3) FlightCheck[Departure City, Destination City, Date]:
Description: A flight information checking tool that checks if flight is feasible.
Parameters:
Departure City: The city you’ll be flying out from.
Destination City: The city you aim to reach. Date: The date you take the flight.
Example: FlightCheck[Grand Forks, Minneapolis, 2022-06-05] would check if flight is feasible
from Grand Forks to Minneapolis on 2022-06-05.

(4) FlightSearch[Departure City, Date]:
Description: A flight information retrieval tool that returns all reachable cities.
Parameters:
Departure City: The city you’ll be flying out from.
Date: The date you take the flight.
Example: FlightSearch[Grand Forks, 2022-06-05] would return all reachable cities from Grand
Forks through flight on 2022-06-05.

(5) AccommodationSearch[City]:
1078

38

Description: Find accommodations types in a city of your choice.
Parameter: City - The name of the city where you’re seeking accommodations.
Example: AccommodationSearch[Grand Forks] would return accommodation categories in Grand
Forks.

(6) TypeSearch[Type]:
Description: Find cities contain accommodations of input type.
Parameter: Type - The accommodation type where you want to visit.
Example: TypeSearch[entire room] would return all cities where entire room type accommodation
exist.
You need to take an action analyze current situation and plan your future steps after each
DrivingCheck, DrivingSearch, FlightCheck, FlightSearch, AccommodationSearch, or TypeSearch.
Example: Analyze[your analysis of current situation and plan for future]

You can suggest to remove the "house type" constraint, suggest to remove the "transporta-
tion" constraint, suggest to change destination cities(but keep number of destination cities
unchanged), or suggest to raise budget. Do not give other suggestions that change other fields in
JSON input, such as origin, number of visit cities, etc.
Please give a reasonable suggestion to modify the constraint only when you think you’ve collected
enough information and the suggestion has high chance to be satisfiable. For example, if destination
city does not have required accomadation type, you should suggest to change destination city if
info shows the new city has the required type.
Please try to keep original constraint and make minimal change to original constraint only when it
is necessary.
You can give one or more suggestions if you think one is not enough. Please separate the
suggestions with ;
Examples:
Suggest[raise budget to 5000]
Suggest[change destination cities to be Minneapolis]
Suggest[remove the house type constraint]
Suggest[remove the flight/no flight/ no self-driving assertion for transportations]
Suggest[raise budget to 2000, change destination cities to be Chicago]

Now, based on the input query and collected information, please give the next action(only one
action) you want to take only with no explainations, you need to give a suggestion within 15
iterations:
Input query: {query}
Collected information: {info}

1079

F.2.4 Code modify prompt 1080

As a travel planner, you have some python codes that tests the satisfiability of a travel plan problem.
While now some of the constraints are changed, your task is to change the python codes according
to the changed constraints.
Only change the part of code that needs to be modified, and do not add any new parts.
Please respond with codes only, and be sure to include full codes instead of lines of updated codes.
Start with ########## response ########## and end with ########## response ends ##########.

Original Codes: {codes}
Modified Constraints: {constraints}

1081

39

F.3 Prompts for Generalization Evaluation1082

To test the capability of our framework to generalize to unseen constraint types, we add this task description1083

and append at the end of Step-Code prompt:1084

Based on the examples above, can you give the steps for following JSON constraint with different
fields. In the input JSON, "org" denotes the departure city. "dest" denotes the destination city/cities.
"days" denotes the total number of travel days. When "days" equals 5 or 7. "date" includes the
specific date to visit.
In addition, "local_constraint" contains three possible constraints. "flight rule" specifies the whether
"non-stop" is required or not. "airlines" specifies a list of a airlines you can accept. Possible options
of "attraction_category" specifies a list of categories of attractions want to visit. "transportation" is
always ’flight’. If the field value is null in JSON, this specific hard constraint is not included.
The specified "flight rule" needs to be satisfied by all flights. All flights need to be one of the
accepted "airlines". All categories in "attraction_category" needs to be satisfied, and a category
could be satisfied if it exists for one attraction.
We do not consider restaurant information or accommodation information, instead, we fix each
restaurant price to be 30 per person and accommodation to be 100 per person.

1085

G Example input JSON and output step for generalization evaluation1086

We include the full example of JSON-Step generation for unseen constraint types here:1087

1088

Input JSON query {
"org": "Hong Kong",
"dest": ["New York City", "Bangkok"],
"days": 5,
"visiting_city_number": 2,
"date": ["2023-12-22", "2023-12-23", "2023-12-24", "2023-12-25", "2023-12-26"],
"people_number": 3,
"local_constraint": {
"flight rule": "non-stop",
"airlines": ["United", "Emirates"],
"attraction_category": ["Garden", "Historical Landmarks"],
"transportation": "flight"
},
"budget": 5000
}
Corresponding output step # Destination cities #
Set cities to be a list includes ’New York City’ and ’Bangkok’
Loop through cities for 2 destination cities
Initialize Z3 solver s
Set ’city’ variable to be indexes of 2 destination cities
If city_0_index and city_1_index are not same, assert 2 ’city’ variables equal to city index

Departure dates
Set ’departure_dates’ variables for 3 transportations between cities
Assert first transportation happens at first day (day 0), last transportation happens at last day (day
4), and second transportation could happen at any day in between

1089

40

Transportation methods
Set transportation method (flight) variable for 3 transportations between cities
Assert all 3 transportations between cities are flight

Flight information
Run FlightSearch to get flight info for Hong Kong as origin, city_0 and city_1, and dates
Get specific flight price info with Hong Kong as origin and final destination, specific city variable,
and departure date for 3 transportations
Set ’flight_index’ variable for 3 transportations
Assert 3 ’flight_index’ variables are within valid range if taking flight, assert flight index to be -1
if not taking flight
Calculate flight price for 3 people for 3 transportations based on flight index variable
Get specific flight arrival time info with Hong Kong as origin and final destination, specific city,
and departure date for 3 transportations
Calculate flight arrival time for 3 transportations based on flight index variable
For each ’flight_index’, get specific flight rule and airlines info, assert ’non-stop’ exist for all
flights, assert ’United’ or ’Emirates’ exist for all flights

Attraction information
Get arrivals and city list for each day based on 3 transportations, 5 total travel day, and departure
dates variables
Run AttractionSearch to get attraction info for city_0 and city_1
Set ’attraction_in_which_city’ variables for 5 (1 per day) attractions
For each ’attraction_in_which_city’ variable, assert it to be either current city or next city based
on transportation arrivals time
Set ’attraction_index’ variables for 5 (1 per day) attractions
For each ’attraction_index’, get specific length info based on attraction in which city variable,
assert index are within valid range, and attrations in same city are not repeated
Set ’attraction_category’ variables for each category required
For each category, iterate through all attraction to check if it is satisfied

Restaurant information
Set restaurant price to be 30 per person per meal, calculate total restaurant price for 3 people for
5 days

Accommodation information
Set accommodation price to be 100 per person per night, calculate total accommodation price for
3 people for 4 nights

Budget
Set budget limit variable to be 5000
Add 3 transportation price to spent, according to whether transportation method is flight
Add restaurant price to spent
Add accommodation price to spent
Assert current spent is within budget

1090

41

	Introduction
	Related Work
	Approach
	Satisfiable Plan Solving
	Problem Statement
	NL-JSON Translation
	JSON-Step Generation
	Step-Code Generation
	SMT Solver

	Interactive Plan Repair

	Dataset
	Experimental Results
	Satisfiable Plan Solving Evaluation
	Interactive Plan Repair Evaluation
	Generalization Capability Analysis
	New Travel Plan Constraints
	New Combinatorial Optimization Tasks

	Conclusion
	Limitation
	Runtime and cost analysis
	Satisfiable Plan Solving
	Interactive Plan Repair

	Interactive Plan Repair: Iteration versus Performance
	New Combinatorial Optimization Tasks details
	Task Setup
	Block Picking
	Task Allocation
	TSP
	Warehouse

	Added task description in prompt
	Failure case analysis

	Example input queries and output plans
	Satisfiable Plan Solving Evaluation Details
	Prompts
	Prompts for Satisfiable Plan Solving
	NL-JSON prompt
	JSON-Step prompt
	Step-Code prompt
	Prompt difference of GPT-4, Claude 3, and Mixtral-Large
	Failure cases of Mixtral-Large

	Prompts for Interactive Plan Repair
	Suggestion prompt
	Suggestion-No Reason prompt
	Suggestion-No Sovler prompt
	Code modify prompt

	Prompts for Generalization Evaluation

	Example input JSON and output step for generalization evaluation

