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Abstract1

Recently, large language models (LLMs) have2

emerged as powerful tools, finding many ap-3

plications in medicine. LLMs’ ability to coa-4

lesce vast amounts of information from many5

sources in order to come to a response—a pro-6

cess similar to that of a human expert—has7

led many to see potential in deploying LLMs8

for clinical use. However, medicine is a setting9

where accurate reasoning is paramount. Many10

researchers are questioning the effectiveness of11

multiple choice question answering (MCQA)12

benchmarks, frequently used to test LLMs. Re-13

searchers and clinicians alike must have com-14

plete confidence in LLMs’ abilities for them to15

be deployed in a medical setting. In order to16

address this need for understanding, we intro-17

duce a knowledge graph (KG)–based method18

to evaluate the biomedical reasoning abilities19

of LLMs. Essentially, we map how LLMs link20

medical concepts in order to better understand21

how they reason. We test GPT–4, Llama3–22

70b, and PalmyraMed–70b, a medical model.23

We enlist a panel of medical students to review24

a total of 60 LLM-generated graphs and com-25

pare these graphs to BIOS, a large biomedical26

KG. We observe GPT–4 to perform best in our27

human review but worst in our ground truth28

comparison; vice–versa with PalmyraMed, the29

medical model. Our work provides a means of30

visualizing the medical reasoning pathways of31

LLMs, so they can be implemented in clinical32

settings safely and effectively.33

Keywords: Knowledge Graph, Large34

Language Models, Healthcare, Biomedical35

Database, Causal Graph36

Data and Code Availability Prompts, generated37

graphs, code and human evaluations are available at38

https://tinyurl.com/35c9aeap.39

Institutional Review Board (IRB) Our re-40

search does not require IRB approval.41

1. Introduction 42

The increasing use of large language models 43

(LLMs) has diversified their applications beyond 44

standard natural language processing (NLP) tasks 45

such as text generation, translation, and summariza- 46

tion (Wu et al., 2021; OpenAI, 2023; Dubey and 47

et.al., 2024; Xu et al., 2023). This advancement 48

has led to a growing interest among researchers and 49

healthcare professionals in leveraging LLMs for med- 50

ical applications. The capacity of LLMs to handle 51

extensive volumes of clinical data, medical records, 52

and scientific literature (Huang et al., 2019; Alsentzer 53

et al., 2019; Bolton et al., 2022) introduces the po- 54

tential for advancements in clinical decision support, 55

diagnostics, and patient management (Yang et al., 56

2022; Jiang et al., 2023a; Singhal et al., 2023b; Mc- 57

Duff et al., 2023; Tu et al., 2024). For safety-critical 58

applications such as healthcare, the performance of 59

LLM must be vigorously validated. 60

Benchmarking LLMs’ medical abilities is a chal- 61

lenging task, however. Medical knowledge, even when 62

limited to common diseases, is vast, making it diffi- 63

cult to design benchmarks that capture the breadth 64

of information clinicians rely on daily (Jain, 2024). 65

Additionally, due to the large volume of training data 66

that LLMs memorize, there is concern that their per- 67

formance on traditional benchmarks may be artifi- 68

cially inflated by memorization (Carlini et al., 2023). 69

As a result, developing more rigorous and compre- 70

hensive benchmarks is essential to accurately evaluate 71

LLMs’ true medical understanding and ensure their 72

safe and effective deployment in clinical settings. 73

The medical capabilities of LLMs are often eval- 74

uated through multiple-choice question answering 75

(MCQA) benchmarks (Pal et al., 2022). Datasets 76

such as, MedQA, which is based on questions from 77

the USMLE, draw directly from standardized med- 78

ical examinations, while other benchmarks, such as 79

MultiMedQA, aggregate data from a variety of medi- 80

cal knowledge sources (Jin et al., 2020; Singhal et al., 81

2023a). However, recent findings by Griot et al. 82

(2024) raise concerns that these MCQA benchmarks 83
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may not adequately evaluate the depth of LLMs’84

medical understanding or reasoning ability, suggest-85

ing that performance may be influenced by surface-86

level pattern recognition rather than genuine clini-87

cal reasoning. Moreover, prior studies have demon-88

strated that some state-of-the-art LLMs exhibit bi-89

ases in medical reasoning and perform poorly in es-90

sential tasks such as medical coding, highlighting fur-91

ther limitations in their practical utility and accuracy92

(Omiye et al., 2023; Soroush et al., 2024).93

Confidence in LLMs’ medical capabilities and the94

methods used for their evaluation must be ensured95

before their deployment in clinical settings. It is96

therefore essential to develop alternative methods for97

a comprehensive assessment of LLMs’ performance.98

Our research is guided by the objective of increas-99

ing the transparency of LLMs by structuring their100

medical reasoning processes. This approach aims to101

offer a deeper understanding of LLMs’ medical per-102

formance that extends beyond the capabilities of tra-103

ditional MCQA benchmarks. To address the limi-104

tations inherent in existing evaluation methods, we105

propose a novel technique for visualizing the con-106

nections between medical concepts and understand-107

ing pathways in medicine by generating knowledge108

graphs (KGs). This method reduces the risk of LLMs109

relying on verbatim memorization from pretraining110

data and circumvents issues related to the overlap of111

benchmark data with the training corpus.112

Our work is motivated by the dual nature of LLMs:113

their potential to automate complex medical tasks114

while also presenting challenges due to their black-115

box nature and susceptibility to errors. Our ap-116

proachMedG–KRP leverages LLMs to systematically117

structure and visualize their parametric knowledge.118

We begin with a single medical concept and use the119

LLM to identify and generate a knowledge graph of120

“causes” and “effects” associated with this concept.121

To the best of our knowledge, this is the first work to122

leverage an LLM to systematically generate a knowl-123

edge graph from a single, specified medical concept.124

The knowledge graphs generated by the MedG–125

KRP process offer several potential applications. By126

interpreting these graphs as proxies for LLMs’ inter-127

nal knowledge structures, we can enhance the inter-128

pretability of the models by examining their grasp129

of medical pathways. Additionally, LLM–generated130

graphs could be employed to augment or correct ex-131

isting biomedical knowledge graphs. Future research132

could also explore using MedG–KRP for chain-of-133

thought (COT) prompting, as proposed by Wei et al.134

(2023). In this approach, models could first generate 135

knowledge graphs to inform their reasoning process 136

when addressing medical questions. 137

We generate a total of sixty graphs for twenty medi- 138

cal concepts using three LLMs: GPT–4, Llama3–70b, 139

and PalmyraMed. We enlist a panel of medical ex- 140

perts to score each graph in terms of accuracy and 141

comprehensiveness to the current medical literature. 142

Additionally, we benchmark our graphs against the 143

BIOS KG (Yu et al., 2022) as ground truth. The re- 144

sults from expert evaluation indicate that the accu- 145

racy of the generated graphs is generally higher than 146

their comprehensiveness. Additionally, both general- 147

ist and specialized medical models show a tendency 148

to incorporate public knowledge, which may influence 149

the graphs’ content and affect the representation of 150

clinical information. 151

Our contributions can be summarized as follows: 152

• We proposed MedG–KRP to map the medical 153

knowledge embedded in LLMs, aiming to en- 154

hance explainability. 155

• Analyze LLMs’ understanding of causal path- 156

ways in medicine by utilizing both human re- 157

viewers and comparison to a current state–of– 158

the–art biomedical KG. 159

• We observe an interesting where medical fine- 160

tuned models performed unexpectedly worse in 161

human evaluations, despite being specialized for 162

the domain. 163

2. Related Works 164

Biomedical knowledge graphs are designed to 165

integrate and categorize extensive medical concepts 166

and their interrelationships. Bodenreider (2004) pro- 167

posed the Unified Medical Language System (UMLS), 168

which categorizes hundreds of thousands of medical 169

concepts and millions of relationships between these 170

concepts. KGs vary in scope; while the UMLS is quite 171

general, databases such as Orphanet focus specifically 172

on rare diseases (Weinreich et al., 2008). Biomed- 173

ical KGs can be generated in various ways. Some 174

have used probabilistic models to extract data from 175

patient notes (Rotmensch et al., 2017), others use 176

named entity recognition and other NLP techniques 177

(Yu et al., 2022), and many are built by reconcil- 178

ing a set of various sources (Chandak et al., 2023). 179

We use Yu et al. (2022)’s biomedical informatics on- 180
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tology system (BIOS) as ground truth to compare181

LLM–generated graphs to.182

LLMs and Graphs Causal graphs have found183

use in general medicine (Greenland and Brum-184

back, 2002), epidemiology (Greenland et al., 1999),185

and bioinformatics (Kleinberg and Hripcsak, 2011).186

LLMs have been shown to find pairwise relationships187

(Kıcıman et al., 2023), accurately determine edge di-188

rection, (Naik et al., 2023), hypothesize missing vari-189

ables (Sheth et al., 2024), and be capable of generat-190

ing small causal graphs with reasonable accuracy and191

efficiency (Long et al., 2024; Jiralerspong et al., 2024)192

and large KGs from texts (Hao et al., 2022; Melnyk193

et al., 2022; Zhang et al., 2023). LLMs have been194

also combined with statistical methods for generation195

(Ban et al., 2023; Abdulaal et al., 2024; Vashishtha196

et al., 2023). One reason why LLMs are so appealing197

for graph generation is that they are able to lever-198

age metadata similarly to how a human expert would199

go about generating a causal graph (Kıcıman et al.,200

2023; Abdulaal et al., 2024; Choi et al., 2022). Aug-201

menting LLM with KGs have been shown to improve202

task performance (Jin et al., 2023; Soman et al., 2023;203

Jiang et al., 2023b). To the best of our knowledge, our204

work is the first work to build a complete graph from205

one given concept (going beyond pairwise compari-206

son and partial graphs), which is used for evaluating207

LLMs for medical use.208

3. Methodology209

3.1. Preliminaries210

A knowledge graph can be mathematically denoted as211

G = (V,E), where V defines a finite set of vertices or212

nodes and E is a set of ordered pairs of vertices. The213

vertices, V is represented as {v1, v2, . . . , vn}, with214

each vi signifying a distinct entity or concept within215

the graph. The cardinality of V , denoted |V |, indi-216

cates the total number of entities or concepts rep-217

resented in the graph. The edges are denoted as218

{(vi, vj) | vi, vj ∈ V and (vi ̸= vj)}, where each pair219

(vi, vj) represents a directed edge from node vi to220

node vj . The presence of an edge (vi, vj) signifies a221

relationship or interaction between the entities rep-222

resented by vi and vj .223

3.2. MedG–KRP224

We introduce an algorithm, based on the process225

of sequentially expanding from a given medical con-226

cept, for the generation of biomedical KGs using 227

LLMs. After generations are complete, a panel of 228

medical students scores each graph based on accuracy 229

and comprehensiveness. We also compare our LLM- 230

generated KGs to the biomedical KG BIOS, comput- 231

ing precision and recall. 232

3.3. Generation Algorithm 233

We divide our graph generation process into two pri- 234

mary stages: node expansion and edge refine- 235

ment. In the first stage, nodes are recursively hy- 236

pothesized by querying the LLM for relevant medical 237

concepts, while the second stage involves validating 238

and refining the edges between these nodes. 239

3.3.1. Node Expansion 240

Our node expansion algorithm (Algorithm 1) aims 241

to explore the causal relationships between medical 242

concepts. The process begins with a root node r, 243

representing an initial medical concept, and recur- 244

sively prompts an LLM for concepts that are either 245

caused by or cause the root concept. The objective 246

of this stage is to identify which medical concepts the 247

LLM associates with r, thereby capturing the model’s 248

understanding of the causal pathways surrounding a 249

given medical condition or concept. 250

Formally, let r denote the root node, and i rep- 251

resent the current recursion depth. We expand the 252

graphG by exploring both forward (causal) and back- 253

ward (caused-by) relationships. The algorithm pro- 254

ceeds recursively, with each newly identified node v 255

being further expanded to find related concepts. 256

To prevent unbounded expansion and ensure the 257

graphs remain interpretable, we impose a maximum 258

recursion depth of dmax = 2. Additionally, to main- 259

tain legibility and minimize the risk of hallucination, 260

we limit the LLM to returning at most nmax = 3 con- 261

cepts in response to each query. Importantly, there is 262

no lower bound on the number of concepts an LLM 263

may return; the LLM can indicate that there are no 264

concepts either causing or caused by a given node, 265

which helps maintain the algorithm’s reliability and 266

reduces over-expansion. 267

3.3.2. Edge refinement 268

In the second stage (Algorithm 2), we perform an ex- 269

haustive check for additional causal connections that 270

the LLM may infer should exist between the concepts 271

already present in the graph. This step is crucial for 272
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Algorithm 1: Recursive Node Exploration

Expand-From-Node(r, i, d)
if i > maximum depth then

return
end
if d = −→ then

Ask LLM for a maximum of n concepts, a1 . . . an,
caused by r
G := G+ a1 . . . an
for c in a1 . . . an do

Add edge r −→ c to G
Expand-From-Node(c, i+ 1,−→)

Expand-From-Node(c, i+ 1,←−)
end

end
if d = ←− then

Ask LLM for a maximum of n concepts, b1 . . . bn,
causing r
G := G+ b1 . . . bn
for c in b1 . . . bn do

Add edge c −→ r to G
Expand-From-Node(c, i+ 1,−→)

Expand-From-Node(c, i+ 1,←−)
end

end

ensuring the completeness of the knowledge graph by273

identifying all potential relationships between nodes.274

Given a pair of nodes a and b, we query the LLM to275

determine if a directed edge a −→ b exists. Similarly,276

the reverse direction b −→ a is also queried, treating277

these two directions as distinct. This approach allows278

for the possibility of bidirectional edges, representing279

mutual causality or interdependence in medical con-280

texts.281

Let G denote the graph of concepts obtained af-282

ter the expansion stage. For each pair of distinct283

nodes i, j ∈ G, where i ̸= j, we query the LLM284

for the existence of a directed edge i −→ j. If the285

LLM confirms that such an edge should exist, it is286

added to the graph. This process is repeated for ev-287

ery pair of nodes and for both directions, ensuring288

that the graph captures all potential causal relation-289

ships based on the LLM’s understanding.290

We opt to query each direction separately, rather291

than including all possible edge directions in a single292

query, in order to reduce the cognitive load on the293

LLM. By isolating each query to a single direction, we294

hypothesize that the LLM can provide more accurate295

predictions regarding the presence of specific edges.296

Algorithm 2: Edge Refinement

Edge-Refinement(G)

foreach i ∈ G.nodes() do
foreach j ∈ G.nodes() do

if i ̸= j then
Query LLM if edge i −→ j exists
if LLM confirms i −→ j then

Add edge i −→ j to G
end

end

end

end

4. Experimental Setup 297

4.1. Concept Selection 298

We selected twenty conditions from various sub- 299

disciplines of medicine to act as the root nodes for 300

our graphs. We chose a list of conditions that would 301

vary vastly in prevalence and level of study. We in- 302

clude both conditions with clear causal pathways and 303

unclear ones. A full list of root concepts, verified by 304

a board–certified physician, can be found in Table 1. 305

4.2. Models 306

We tested our benchmark on diverse models–the pro- 307

priety GPT-4 model (OpenAI, 2023), open source 308

Llama3-70b (Dubey and et.al., 2024), and finally 309

the current state-of-art medical model PalmyraMed- 310

70b (Writer Engineering Team, 2024). PalmyraMed– 311

70b is a Llama base model fine-tuned for medical us- 312

age which displays very good performance on medical 313

LLM benchmarks. We aimed to compare the perfor- 314

mance of a medical finetune model in comparison to 315

its base model counterpart. 316

4.3. Hyperparameters 317

We run Algorithm 1 in both directions for the graph 318

G - exploring concepts that either cause or are caused 319

by the root medical concept r. Starting with iteration 320

i = 1, we limit the maximum depth of recursion to 321

2, meaning the Expand-From-Node() function calls 322

itself only once. After completing Algorithm 1, the 323

graph G will contain all relevant nodes. To identify 324

additional directed edges between the concepts in G, 325

we then execute Algorithm 2. 326

All models are evaluated with a temperature set- 327

ting of 0.05 and a top p value of 1.0. The low tem- 328
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perature ensures that results primarily reflect the329

models’ reasoning abilities, enhancing reproducibil-330

ity. However, we do not set the temperature to 0.0331

to allow for slight variations in responses during re-332

prompting, should formatting issues arise.333

4.4. Prompting334

In this paper, we aim to evaluate the ability of LLMs335

to hypothesize knowledge graphs using their zero-336

shot prompting abilities. Three main prompts were337

used, one system prompt and one general prompt for338

each algorithm.339

System Prompt The system prompt (see Ap-340

pendix B, section B.1) is designed to enhance the341

LLM’s reasoning ability by focusing on distinguishing342

direct and indirect causality—an area where LLMs343

often struggle. To improve response quality, we in-344

struct the model to employ counterfactual reasoning,345

asking it to evaluate causal relationships by consid-346

ering hypothetical scenarios.347

Expansion Prompts Two expansion prompts (see348

Appendix B, Section B.2, Section B.3) are used in349

Algorithm 1 to discover concepts related to the root350

node, one for “causes” and one for “caused by.” Sim-351

ilar to the system prompt, we emphasize counterfac-352

tual reasoning to improve accuracy. We employ a353

zero-shot chain-of-thought (CoT) approach, following354

Kojima et al. (2023), which enhances performance in355

medical QA tasks and pairwise edge-checking. The356

current graph state is passed into each prompt to357

maintain context during the expansion process.358

Edge Check Prompt The edge check prompt (see359

Appendix B, Section B.4), as used in Algorithm 2,360

queries the LLM to determine if a directed causal re-361

lationship exists between two medical concepts. Like362

the system and expansion prompts, we emphasize dis-363

tinguishing direct from indirect causality using coun-364

terfactual reasoning. To isolate the causal connec-365

tion, the prompt assumes no external risk factors are366

influencing the relationship, ensuring that the LLM367

focuses on the specific medical concepts being tested.368

4.5. Metrics369

Human Evaluation: Graph Accuracy and370

Comprehensiveness We enlisted a panel of med-371

ical students to manually comment on and score all372

generated graphs in terms of accuracy and compre-373

hensiveness. We defined accuracy as medical correct-374

ness of all concepts, relationships, and implied causal 375

pathways in a given graph. Comprehensiveness re- 376

ferred to how comprehensive a graph was to the cur- 377

rent medical understanding of the causal pathways 378

surrounding a disease. Thus, graphs with many miss- 379

ing nodes that would be present in an ideal graph (of 380

the current medical understanding) would have low 381

comprehensiveness scores. Accuracy was scored from 382

a scale of 1-4; [Completely accurate (4), Mostly Accu- 383

rate (3), Inaccurate (2), Completely inaccurate (1)]. 384

Comprehensiveness was scored similarly, on the scale 385

[Completely Comprehensive (4), Mostly Comprehen- 386

sive (3), Poorly Comprehensive (2), Not At All Com- 387

prehensive (1)]. Three reviewers scored each graph. 388

We report all reviewer scores and an average thereof 389

for each graph. 390

Ground Truth Comparison Generated graphs 391

were also compared to the Biomedical Informatics 392

Ontology System (BIOS). BIOS is a large knowledge 393

graph composed from numerous sources and contain- 394

ing hundreds of thousands of nodes and edges. We 395

chose it because BIOS appeared more complete and 396

suitable for our use case than other biomedical KGs. 397

We calculated the precision and recall of generated 398

edges using algorithm 3. For each generated graph, 399

we iterate through all edges and check if there is a 400

short path (≤ 5) between the two corresponding con- 401

cepts in the ground truth. If a path in the ground 402

truth satisfies this condition, it is marked as a hit. 403

Otherwise, it is marked as a miss. The intent of 404

checking for paths instead of a direct edge is to avoid 405

the case where an edge in a generated graph would 406

be deemed as medically correct but have intermedi- 407

ary concepts in the ground truth. 408

Mapping node names We directly match BIOS 409

graph and LLM generated graphs by building a vec- 410

tor database with embeddings of all BIOS parent con- 411

cepts using the sentence transformers model e5–base– 412

v2 (Wang et al., 2022). We retrieved the five near- 413

est neighbors in the vector database, then prompted 414

GPT as to which (if any) names of the nearest neigh- 415

bor nodes matched a given node in an LLM generated 416

graph in meaning. The prompt used can be found in 417

Appendix B, Section B.5. We iterated through all 418

generated nodes and created a json file with every 419

LLM generated node and its BIOS counterpart. If a 420

node had no counterpart, we simply set its value to 421

“none”. 422
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Algorithm 3: Precision and recall

Input: G = (VG, EG), the generated graph.
G′ = (VG′ , EG′), the BIOS graph.
d=5, the path length threshold

Output: precision: accuracy of predicted edges
recall: completeness of predicted edges

Let G′′ = (VG′′ , EG′′) ⊆ G′, where
VG′′ = VG

⋂
VG′ and

EG′′ = {(i′′, j′′) ∈ EG′′ : (i′, j′) ∈ EG′}.
foreach (i, j) ∈ EG do

if {i, j} ⊆ VG′′ and
∃P (i, j) ⊆ EG′′ s.t. |P (i, j)| ≤ d then

nhit −→ nhit + 1
end

end
Precision = nhit/|EG|
Recall = nhit/|EG′′ |

Edge types While all edges in MedG–KRP gener-423

ated graphs specify “cause”, edges in BIOS contain424

many specific relationship labels. We do not recog-425

nize any edges in BIOS labeled as “is a” or “reverse426

is a” due to the fact that both are used only for sub-427

classes or superclasses of a given concept and because428

of performance constraints. A consequence of this is,429

due to BIOS’s incompleteness, some nodes are not430

reachable. The remaining edges are a mix of bidirec-431

tional and directional edges, so we interpret all edges432

as bidirectional for the sake of consistency, and due433

to the fact that the directions of all edges in BIOS are434

implied by their labels, rather than explicitly stated.435

5. Results436

5.1. Overview437

We generated sixty graphs across three models438

for twenty different conditions from various fields of439

medicine. We observe that all LLMs perform gen-440

erally well in terms of average reviewer scores441

(see Table 1). GPT–4 displays the strongest perfor-442

mance in the human review, while PalmyraMed dis-443

plays the weakest. Human reviewers generally found444

that PalmyraMed’s graphs are more specific than445

those generated by Llama3–70b and GPT–4. Even446

for the same model, generated graphs have a wide447

variety of density values, reciprocity values, and sim-448

ple cycle counts.449

5.2. Human Evaluation 450

Accuracy, as rated by human reviewers, is gener- 451

ally strong, with all averages of all reviewer scores 452

for each model being between 3 and 4, “mostly accu- 453

rate” and “completely accurate” (see Table 1). Com- 454

prehensiveness scores range from just under 3 to 4. 455

We attribute comprehensiveness scores consistently 456

being lower than accuracy scores to us limiting re- 457

sponses and recursion depth in our recursive node 458

exploration algorithm (see Algorithm 1). 459

GPT–4 performed best in accuracy, with an aver- 460

age accuracy score across all graphs of 3.37 (see Ta- 461

ble 1. Llama3 was close behind with an average ac- 462

curacy of 3.28 and PalmyraMed displayed the worst 463

performance with a score of 3.13. Both Llama3 and 464

PalmyraMed performed similarly in comprehensive- 465

ness, with average comprehensiveness scores across 466

all graphs of 3.00 and 2.97 (see Table 1. GPT–4 467

displayed the best comprehensiveness, with a score 468

of 3.23–a significantly stronger performance than all 469

other models. 470

In their comments, reviewers mentioned that 471

PalmyraMed’s graphs were generally more specific 472

than those of GPT–4 and Llama3–70b. We specu- 473

late this to be a result of PalmyraMed being aligned 474

for medical usage. 475

Llama3–70b having weaker overall performance 476

than GPT–4 follows its generally weaker performance 477

on traditional QA benchmarks. PalmyraMed, how- 478

ever, has been shown to have better average perfor- 479

mance on QA benchmarks than GPT–4, yet it per- 480

formed worse overall on our benchmark. Reviewers 481

noticed that PalmyraMed appeared much more prone 482

to hallucination than other models, with it naming 483

multiple graph nodes “myra-med” or “PalmyraMed”, 484

and having trouble with instruction following. 485

5.3. Ground Truth Comparison 486

We observe notable results in the ground truth com- 487

parison metric, where models demonstrated behavior 488

nearly opposite to that observed in human evalua- 489

tions (see tables 2, 1). PalmyraMed performed ex- 490

ceptionally well, with the highest precision and recall 491

scores across the board. In particular, PalmyraMed 492

displayed more than three times the average recall 493

score of GPT–4, which displayed the worst perfor- 494

mance. Interestingly enough, Llama3–70b, which is 495

usually surpassed by GPT–4 on almost all major QA 496

benchmarks, outperformed GPT–4 in both precision 497

and recall in objective evaluation. 498
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Table 1: Mean Reviewer Scores (from 1–4) per Graph per Model

Llama3–70b PalmyraMed GPT–4 Average

Acc. Comp. Acc. Comp. Acc. Comp. Acc. Comp.

Acute flaccid myelitis 3.67
±0.33

3.00
±1.00

2.67
±0.33

3.33
±0.33

3.33
±0.33

3.67
±0.33

3.22 3.33

Arthritis 3.00
±0.00

3.33
±0.33

2.67
±0.33

3.00
±1.00

3.33
±0.33

3.33
±.33

3.00 3.22

Asthma 3.33
±0.33

3.00
±1.00

2.33
±0.33

3.00
±1.00

3.33
±0.33

4.00
±0.00

3.00 3.33

Creutzfeldt–Jakob disease 2.67
±1.33

2.67
±0.33

2.67
±0.33

3.33
±0.33

3.33
±0.33

3.00
±0.00

2.89 3.00

Dementia 3.33
±0.33

3.33
±1.33

3.33
±0.33

2.33
±0.33

4.00
±0.00

3.67
±0.33

3.56 3.11

Diabetes Mellitus 4.00
±0.00

3.67
±0.33

3.67
±0.33

3.00
±1.00

3.00
±0.00

2.83
±0.58

3.56 3.17

Esophageal achalasia 3.00
±0.00

3.00
±0.00

2.67
±2.33

3.00
±1.00

3.67
±0.33

3.00
±1.00

3.11 3.00

Glioblastoma 2.67
±1.33

2.00
±1.00

3.00
±0.00

3.00
±1.00

2.67
±0.33

3.33
±1.33

2.78 2.78

HIV 3.33
±0.33

2.33
±0.33

3.33
±0.33

3.00
±1.00

3.33
±0.33

2.33
±2.33

3.33 2.56

Hyperparathyroidism 3.33
±0.33

2.67
±0.33

3.00
±0.00

3.00
±1.00

4.00
±0.00

3.00
±1.00

3.44 2.89

Ischemic Stroke 3.67
±0.33

4.00
±0.00

4.00
±0.00

3.00
±0.00

3.67
±0.33

2.67
±2.33

3.78 3.22

Lung Cancer 3.67
±0.33

2.33
±0.33

3.67
±0.33

2.67
±0.33

3.00
±0.00

4.00
±0.00

3.44 3.00

Malignant neoplasms of liver 3.67
±0.33

3.33
±0.00

3.67
±0.33

3.33
±1.00

4.00
±0.00

2.67
±0.33

3.78 2.89

Myocardial infarction 3.33
±0.33

2.67
±2.33

4.00
±0.00

3.00
±0.00

3.33
±0.33

3.00
±1.00

3.56 2.89

Myocarditis 3.67
±0.33

3.00
±1.00

3.33
±0.33

2.67
±0.33

3.00
±1.00

3.00
±1.00

3.33 2.89

Parkinson’s disease 3.00
±0.00

3.00
±0.00

3.33
±0.33

2.33
±0.33

3.00
±1.00

3.00
±1.00

3.11 2.78

Renal artery stenosis 3.33
±0.33

3.67
±0.33

3.67
±0.33

3.67
±0.33

4.00
±0.00

3.33
±0.33

3.67 3.56

SARS-CoV-2 3.00
±1.00

3.33
±0.33

3.00
±1.00

3.67
±0.33

3.33
±0.33

3.67
±0.33

3.11 3.56

Spontaneous coronary artery dissection 3.00
±0.00

3.00
±3.00

2.00
±1.00

2.67
±0.33

3.00
±0.00

3.67
±0.33

2.67 3.11

Ulcerative colitis 3.00
±1.00

3.00
±1.00

2.67
±0.33

2.67
±0.33

3.00
±1.00

3.33
±1.33

2.89 3.00

Average Score 3.28 3.00 3.13 2.97 3.37 3.23
Average Variance 0.42 0.72 0.43 0.57 0.32 0.76

Table 2: Average Precision and Recall per Model

Llama3–70b PalmyraMed GPT–4

Pre. Rec. Pre. Rec. Pre. Rec.

Mean .201 .012 .243 .033 .163 .011
Min. .000 .000 .026 .004 .018 .003
Max. .486 .034 .527 .393 .359 .031
SD .123 .008 .150 .085 .106 .007

5.4. Graph Attributes499

Overall graph node and edge counts (see Ta-500

ble 11) varied between models and between graphs.501

PalmyraMed was generally the most conservative502

when creating nodes and edges while GPT–4 was503

the least, possibly contributing to PalmyraMed’s low 504

comprehensiveness. 505

We observe an inverse relationship between per- 506

formance based on reviewer scores and average reci- 507

procity, density, and simple cycle count across all 508

graphs for a given model. GPT–4 displayed the high- 509

est performance and the lowest reciprocity, density, 510

and simple cycle counts, while PalmyraMed displayed 511

the highest. Llama3–70b’s values for these three met- 512

rics were in–between those of the other models. 513

Simple cycle counts for graphs for a given model 514

varied widely. Each model consistently displayed one 515

or two graphs which were outliers in terms of sim- 516

ply cycle count. PalmyraMed had the most extreme 517

outlier, with its graph for “Malignant neoplasms of 518

liver” containing more than one million cycles, while 519

7
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all other graphs contained under 2500 and all graphs520

in the bottom 75th percentile contained less than521

one hundred. Llama3’s graph for “creutzfeldt–jakob522

disease” has a simple cycle count of greater than523

3500 and all other graphs display cycle counts less524

than 225. GPT–4 displays the most reasonable cycle525

counts out of all models in its generated graphs, with526

one outlier of 340 and a bottom 50th percentile of less527

than or equal to eight cycles.528

5.5. Direct and Indirect Causality529

Reviewers found that PalmyraMed often had dif-530

ficulty distinguishing direct and indirect causality.531

Some reviewers mentioned that PalmyraMed often532

listed nodes as “causes” that would be much more533

appropriately labeled as “risk factors” GPT–4, on the534

other hand, was observed by reviewers to display the535

strongest ability to distinguish between directy and536

indirect causality, an ability crucial in medicine.537

6. Discussion538

6.1. Conclusions539

Our algorithm, MedG–KRP, is able to generate540

KGs representing the medical reasoning abilities of541

LLMs. Coupling MedG–KRP with human reviewers542

allowed insights into model behavior that were not543

covered by traditional QA benchmarks. We found544

that PalmyraMed was generally more specific in its545

reasoning, but also had a weaker understanding of546

the differences between direct and indirect causality,547

while GPT–4 covered more broad concepts and was548

often able to correctly determine between direct and549

indirect causes of concepts.550

Although PalmyraMed displayed worse perfor-551

mance in our human review compared to other mod-552

els, its KG—while flawed—was more specific than553

that of other models. This is supported by Palmyra-554

Med’s exceptionally high recall on our KG compar-555

ison task. We hypothesize that PalmyraMed, as a556

medical model, was trained on similar sources to557

which BIOS was constructed from than other LLMs558

we tested. This would lead to more frequent matches559

between nodes generated by PalmyraMed and BIOS560

nodes. Since nodes without mappings would have all561

adjacent edges generated counted as misses, it fol-562

lows that a model that produced nodes more similar563

to those in BIOS would have much higher recall.564

Clinicians may see PalmyraMed’s specificity as a565

desirable trait. GPT–4 and Llama3–70b using more566

vague terms may signal that they are more influ- 567

enced by public knowledge than by clinical knowledge 568

since they are generalist models. It is worth noting 569

that models were asked to be particularly specific and 570

to stay to only medical—as opposed to colloquial— 571

terminology. A human doctor whose reasoning was 572

based on public discourse over medical understanding 573

would not be trusted. Likewise, although expected, 574

generalist LLMs having less specific KGs may suggest 575

value in aligning models for clinical use. We wish to 576

once again stress that the ability to find these obser- 577

vations is possible with our method, but not neces- 578

sarily covered by traditional QA benchmarks. 579

6.2. Future Work 580

Given that reviewers observe generalist models have a 581

better causal reasoning ability compared to the med- 582

ical model we tested but are lacking in domain speci- 583

ficity, the question of how we can build models that 584

display both of these abilities naturally arises. Fu- 585

ture works may seek to supplement the training cor- 586

pora of traditional medical models with information 587

on causal inference and causal reasoning to improve 588

models’ medical understanding and viability for real– 589

world application. 590

We also believe that attempting to explore LLMs’ 591

internal KGs that are unrelated to medicine may 592

yield interesting results. The topics of KGs could 593

be from any field, and seeing how LLMs’ reasoning 594

changes when encountering vastly different subjects 595

could give deeper insight into LLMs’ behaviors. 596

Using MedG–KRP or a similar algorithm as a 597

prompting technique may also be possible. An LLM 598

could generate a reasoning graph then be prompted 599

to make inferences or answer questions given the 600

graph it produced like CoT prompting. 601

Other pathways that may be worthwhile to explore 602

include, in no specific order: exploring the effect of an 603

LLM’s training data on its reasoning KGs, using KG 604

generation to determine the effect (if any) of pretrain- 605

ing data order on LLM behavior, revising the MedKG 606

algorithm or developing new algorithms to efficiently 607

use directly prompted LLMs for biomedical KG gen- 608

eration or repair, and building very large reasoning 609

KGs with LLMs to probe behavior at a larger scale 610

and how and when LLMs connect interdisciplinary or 611

seemingly unrelated concepts. 612
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Appendix A. Limitations889

While we test our method on a diverse set of mod-890

els, others may show very different behavior. Al-891

though we aimed to make our list of diseases used for892

graph generation broad, it is by no means compre-893

hensive. Due to its time complexity, our approach is894

also only suitable for the generation of small graphs—895

sufficient for benchmarking purposes but not for full896

generation of KGs. Our human review is subjec-897

tive, and only three reviewers go over a given graph.898

In addition, we found there was often high variance899

in reviewer opinions. The knowledge graph we use900

as ground truth, BIOS, may also be quite incom-901

plete. We also only test using one knowledge graph as902

ground truth. We believe that, in the case that a hu-903

man expert scored every graph edge, precision values904

would be greater than the ones which we report.905

Appendix B. Prompts906

B.1. System Prompt907

You are a helpful assistant for causal908

inference and causal reasoning about medical909

questions. You are always specific in your910

answers. You always format your answers911

consistently and name all medical terms in912

the correct and accepted medical lexicon.913

You understand the differences between914

direct and indirect causality and915

acknowledge these differences when916

formulating an answer. You utilize a917

counterfactual model of causal inference918

when formulating a response.919

B.2. Left Expansion Prompt920

A directed knowledge graph that you921

generated is surrounded in XML tags and922

provided below. This directed knowledge923

graph is formatted as a list of edges like924

so: [’a causes b’, ’b causes c’, etc]. The925

knowledge graph you generated is as follows:926

927

<Begin Knowledge Graph>928

{edges:}929

</End Knowledge Graph>930

931

Given the directed knowledge graph above932

that you generated, up to three factors that933

directly cause {concept:}. These factors do934

not need to be in the knowledge graph above, 935

but can be. If a factor you answer with is 936

in the knowledge graph above, in your 937

response, name it exactly as it is named in 938

the graph above. Do not answer with any 939

factors that only indirectly cause 940

{concept:}. In your final answer, surround 941

the medical name of each cause in square 942

brackets characters. Do not include acronyms 943

or abbreviations in your answer. Utilize a 944

counterfactual model of causal inference 945

when formulating a response. Be as specific 946

as possible. Let’s think step by step like a 947

medical expert. 948

B.3. Right Expansion Prompt 949

A directed knowledge graph that you 950

generated is surrounded in XML tags and 951

provided below. This directed knowledge 952

graph is formatted as a list of edges like 953

so: [’a causes b’, ’b causes c’, etc]. The 954

knowledge graph you generated is as follows: 955

956

<Begin Knowledge Graph> 957

{edges:} 958

</End Knowledge Graph> 959

960

Given the directed knowledge graph above 961

that you generated, List up to three medical 962

concepts directly caused by {concept:}. 963

These factors do not need to be in the 964

knowledge graph above, but can be. If a 965

factor you answer with is in the knowledge 966

graph above, in your response, name it 967

exactly as it is named in the graph above. 968

Do not answer with any factors that only are 969

indirectly caused by {concept:}. In your 970

final answer, surround the medical name of 971

each medical concept that {concept:} causes 972

in square brackets characters. Do not 973

include acronyms or abbreviations in your 974

answer. Utilize a counterfactual model of 975

causal inference when formulating a 976

response. Be as specific as possible. Let’s 977

think step by step like a medical expert. 978

B.4. Edge Refinement Prompt 979

Does {node0:} directly cause {node1:}? Your 980

answer must be one of the following: [yes] / 981

[no]. Surround your final [yes] / [no] 982

12
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answer in square brackets characters. If983

there is only an indirect causal984

relationship as opposed to a direct one,985

answer with [no]. Utilize a counterfactual986

model of causal inference. Assume no other987

risk factors are present. Let’s think step988

by step. Be concise in your response.989

B.5. Nearest Neighbor Selection Prompt990

Is the concept [’{original}’] identical in991

meaning to any of the concepts in the992

following list?993

994

Concepts: {retrieved}995

996

If so, reply with the name of one concept997

in the list identical in meaning to998

{original} as it is written in the list. If999

there is more than one item of the same1000

meaning in the list, answer with the1001

concept which best fits and which is in1002

proper medical lexicon. Provide one and1003

only one answer. If no items in the list1004

are identical in meaning to {original},1005

provide an empty set of square brackets.1006

Surround your final answer in square1007

brackets characters. It is very important1008

that you do this or else your answer will1009

not be processed. It is also very important1010

that you provide only one answer and your1011

answer as it is written in the list.1012

"""1013

Appendix C. Additional Tables 1014

Please see the next page for double-column tables. 1015
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Table 3: All Reviewer Scores for Llama3–70b Generations

Reviewer 1 Reviewer 2 Reviewer 3

Acc. Comp. Acc. Comp. Acc. Comp.

Acute flaccid myelitis 4 4 4 2 3 3
Arthritis 3 4 3 3 3 3
Asthma 3 3 4 2 3 4
Creutzfeldt–Jakob disease 2 3 4 2 2 3
Dementia 3 2 4 4 3 4
Diabetes Mellitus 4 3 4 4 4 4
Esophageal achalasia 3 3 3 3 3 3
Glioblastoma 4 2 2 1 2 3
HIV 3 2 3 2 4 3
Hyperparathyroidism 3 3 4 3 3 2
Ischemic Stroke 3 4 4 4 4 4
Lung Cancer 4 2 3 2 4 3
Malignant neoplasms of liver 3 3 4 3 4 3
Myocardial infarction 3 3 4 1 3 4
Myocarditis 3 3 4 2 4 4
Parkinson’s disease 3 3 3 3 3 3
Renal artery stenosis 3 4 4 4 3 3
SARS-CoV-2 3 4 2 3 4 3
Spontaneous coronary artery dissection 3 4 3 1 3 4
Ulcerative colitis 3 2 2 3 4 4

Table 4: All Reviewer Scores for PalmyraMed–70b Generations

Reviewer 1 Reviewer 2 Reviewer 3

Acc. Comp. Acc. Comp. Acc. Comp.

Acute flaccid myelitis 2 3 3 4 3 3
Arthritis 2 2 3 3 3 4
Asthma 2 2 2 3 3 4
Creutzfeldt–Jakob disease 3 3 3 4 2 3
Dementia 3 3 4 2 3 2
Diabetes Mellitus 4 3 4 4 3 2
Esophageal achalasia 4 4 1 2 3 3
Glioblastoma 3 3 3 2 3 4
HIV 3 4 4 3 3 2
Hyperparathyroidism 3 4 3 3 3 2
Ischemic Stroke 4 3 4 3 4 3
Lung Cancer 4 3 4 2 3 3
Malignant neoplasms of liver 4 4 4 2 3 3
Myocardial infarction 4 3 4 3 4 3
Myocarditis 4 3 3 2 3 3
Parkinson’s disease 4 3 3 2 3 2
Renal artery stenosis 4 3 4 4 3 4
SARS-CoV-2 4 3 3 4 2 4
Spontaneous coronary artery dissection 2 3 1 2 3 3
Ulcerative colitis 3 3 2 2 3 3
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Table 5: All Reviewer Scores for GPT–4 Generations

Reviewer 1 Reviewer 2 Reviewer 3

Acc. Comp. Acc. Comp. Acc. Comp.

Acute flaccid myelitis 3 3 3 4 4 4
Arthritis 3 3 4 3 3 4
Asthma 3 4 4 4 3 4
Creutzfeldt–Jakob disease 4 3 3 3 3 3
Dementia 4 3 4 4 4 4
Diabetes Mellitus 3 3.5 3 2 3 3
Esophageal achalasia 4 4 3 2 4 3
Glioblastoma 3 4 2 2 3 4
HIV 4 4 3 1 3 2
Hyperparathyroidism 4 3 4 4 4 2
Ischemic Stroke 4 3 3 1 4 4
Lung Cancer 3 4 3 4 3 4
Malignant neoplasms of liver 4 3 4 2 4 3
Myocardial infarction 3 4 3 2 4 3
Myocarditis 4 4 2 2 3 3
Parkinson’s disease 4 4 2 3 3 2
Renal artery stenosis 4 3 4 4 4 3
SARS-CoV-2 3 4 4 3 3 4
Spontaneous coronary artery dissection 3 3 3 4 3 4
Ulcerative colitis 4 4 2 2 3 4

Note: a reviewer answered with “3-4” for the comprehensiveness of GPT–4’s graph for
Diabetes Mellitus. With their approval, we reported the value as 3.5.

Table 6: Conditions Sorted by Average Accuracy and Comprehensiveness Across all Graphs

Condition (Sorted by Acc.) Acc. ▼ Comp. Condition (Sorted by Comp.) Acc. Comp. ▼

Ischemic Stroke 3.78 3.22 SARS–CoV–2 3.11 3.56
Malignant neoplasms of liver 3.78 2.89 Renal artery stenosis 3.67 3.56
Renal artery stenosis 3.67 3.56 Acute flaccid myelitis 3.22 3.33
Dementia 3.56 3.11 Asthma 3.00 3.33
Diabetes Mellitus 3.56 3.17 Arthritis 3.00 3.22
Myocardial infarction 3.56 2.89 Ischemic Stroke 3.78 3.22
Lung Cancer 3.44 3.00 Diabetes Mellitus 3.56 3.17
Hyperparathyroidism 3.44 2.89 Dementia 3.56 3.11
Myocarditis 3.33 2.89 Spontaneous coronary artery dissection 2.67 3.11
HIV 3.33 2.56 Esophageal achalasia 3.11 3.00
Acute flaccid myelitis 3.22 3.33 Lung Cancer 3.44 3.00
Esophageal achalasia 3.11 3.00 Creutzfeldt–Jakob disease 2.89 3.00
Parkinson’s disease 3.11 2.78 Ulcerative colitis 2.89 3.00
SARS–CoV–2 3.11 3.56 Hyperparathyroidism 3.44 2.89
Arthritis 3.00 3.22 Malignant neoplasms of liver 3.78 2.89
Asthma 3.00 3.33 Myocardial infarction 3.56 2.89
Creutzfeldt–Jakob disease 2.89 3.00 Myocarditis 3.33 2.89
Ulcerative colitis 2.89 3.00 Glioblastoma 2.78 2.78
Glioblastoma 2.78 2.78 Parkinson’s disease 3.11 2.78
Spontaneous coronary artery dissection 2.67 3.11 HIV 3.33 2.56
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Table 7: Conditions Sorted by Average Precision and Recall Across all Graphs

Condition (Sorted by Precision) Precision ▼ Condition (Sorted by Recall) Recall ▼

Ischemic Stroke 0.392919 Myocardial infarction 0.149441
Myocarditis 0.352433 Diabetes Mellitus 0.027118
Acute flaccid myelitis 0.329147 Ulcerative colitis 0.017456
Hyperparathyroidism 0.307151 Glioblastoma 0.016545
Asthma 0.299079 Esophageal achalasia 0.015814
Lung Cancer 0.275498 Arthritis 0.015560
Malignant neoplasms of liver 0.247299 Ischemic Stroke 0.013806
Ulcerative colitis 0.231435 Hyperparathyroidism 0.013094
Glioblastoma 0.225804 Creutzfeldt–Jakob disease 0.012317
HIV 0.216769 Dementia 0.011893
Renal artery stenosis 0.211895 Myocarditis 0.011819
Dementia 0.153292 Asthma 0.011401
Diabetes Mellitus 0.145785 Renal artery stenosis 0.010728
Arthritis 0.143932 Acute flaccid myelitis 0.010599
Creutzfeldt–Jakob disease 0.131771 Lung Cancer 0.010384
Myocardial infarction 0.120545 Malignant neoplasms of liver 0.010237
Esophageal achalasia 0.087591 HIV 0.009080
Spontaneous coronary artery dissection 0.087235 Spontaneous coronary artery dissection 0.007348
SARS-CoV-2 0.082722 SARS-CoV-2 0.004768
Parkinson’s disease 0.021010 Parkinson’s disease 0.003900

Table 8: Graph Attributes for GPT–4 Generations, Sorted by Precision

Condition Precision ▼ Recall Density Reciprocity Nodes Edges Cycles

Acute flaccid myelitis 0.359 0.012 0.075 0.085 36 94 5
HIV 0.353 0.011 0.059 0.255 31 55 22
Ischemic Stroke 0.312 0.015 0.071 0.043 37 94 151
Myocarditis 0.309 0.012 0.072 0.088 36 91 137
Ulcerative colitis 0.238 0.031 0.060 0.047 38 85 9
Glioblastoma 0.224 0.016 0.101 0.056 38 142 43
Renal artery stenosis 0.205 0.010 0.065 0.051 25 39 7
Dementia 0.155 0.014 0.102 0.040 32 101 4
Arthritis 0.149 0.018 0.092 0.125 30 80 10
Lung Cancer 0.147 0.006 0.083 0.034 38 117 3
Creutzfeldt–Jakob disease 0.138 0.017 0.130 0.014 34 146 32
Asthma 0.132 0.005 0.078 0.020 36 98 1
Spontaneous coronary artery dissection 0.130 0.009 0.059 0.109 31 55 7
Hyperparathyroidism 0.127 0.007 0.063 0.078 29 51 2
SARS-CoV-2 0.082 0.007 0.083 0.000 26 54 0
Myocardial infarction 0.075 0.022 0.078 0.130 32 77 340
Malignant neoplasms of liver 0.052 0.009 0.053 0.102 34 59 5
Parkinson’s disease 0.036 0.003 0.083 0.054 37 111 4
Esophageal achalasia 0.034 0.004 0.057 0.029 35 68 10
Diabetes Mellitus 0.018 0.006 0.091 0.125 33 96 77

Mean 0.164 0.012 0.078 0.074 33.40 85.650 43.450
SD 0.106 0.007 0.019 0.058 3.872 29.462 82.453
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Table 9: Graph Attributes for Llama3–70b Generations, Sorted by Precision

Condition Precision ▼ Recall Density Reciprocity Nodes Edges Cycles

Hyperparathyroidism 0.486 0.017 0.089 0.191 33 94 205
Malignant neoplasms of liver 0.375 0.013 0.121 0.183 32 120 26
Myocarditis 0.371 0.011 0.085 0.214 32 84 20
Ischemic Stroke 0.359 0.011 0.080 0.143 30 70 6
Lung Cancer 0.242 0.008 0.061 0.083 35 72 5
Glioblastoma 0.239 0.019 0.083 0.194 34 93 13
Asthma 0.238 0.010 0.125 0.091 27 88 27
Ulcerative colitis 0.211 0.009 0.052 0.178 30 45 7
HIV 0.202 0.004 0.101 0.338 27 71 98
Diabetes Mellitus 0.191 0.029 0.060 0.036 31 56 1
Renal artery stenosis 0.181 0.011 0.062 0.051 36 78 35
Acute flaccid myelitis 0.179 0.007 0.106 0.174 26 69 60
Myocardial infarction 0.155 0.034 0.091 0.125 27 64 5
Arthritis 0.145 0.013 0.075 0.180 35 89 40
Esophageal achalasia 0.142 0.023 0.049 0.129 36 62 14
Dementia 0.118 0.011 0.048 0.000 35 57 1
Creutzfeldt–Jakob disease 0.112 0.013 0.111 0.427 31 103 3553
SARS-CoV-2 0.089 0.004 0.117 0.146 27 82 10
Parkinson’s disease 0.000 0.000 0.095 0.064 32 94 109
Spontaneous coronary artery dissection 0.000 0.000 0.066 0.135 34 74 5

Table 10: Graph Attributes for PalmyraMed–70b Generations, Sorted by Precision

Condition Precision ▼ Recall Density Reciprocity Nodes Edges Cycles

Asthma 0.527 0.019 0.075 0.143 31 70 11
Ischemic Stroke 0.508 0.016 0.070 0.264 28 53 35
Acute flaccid myelitis 0.449 0.013 0.134 0.253 26 87 2199
Lung Cancer 0.438 0.017 0.069 0.094 31 64 3
Myocarditis 0.377 0.012 0.068 0.182 29 55 5
Malignant neoplasms of liver 0.315 0.008 0.153 0.349 34 172 1106539
Hyperparathyroidism 0.308 0.015 0.113 0.343 31 105 1448
Renal artery stenosis 0.250 0.011 0.082 0.204 25 49 12
Ulcerative colitis 0.246 0.013 0.074 0.308 27 52 18
Diabetes Mellitus 0.228 0.046 0.058 0.074 31 54 14
Glioblastoma 0.214 0.015 0.081 0.240 31 75 25
Dementia 0.187 0.010 0.108 0.123 25 65 137
Creutzfeldt–Jakob disease 0.145 0.007 0.140 0.262 25 84 75
Arthritis 0.138 0.016 0.073 0.000 28 55 4
Spontaneous coronary artery dissection 0.132 0.013 0.128 0.338 23 65 83
Myocardial infarction 0.131 0.393 0.108 0.123 25 65 60
HIV 0.095 0.013 0.136 0.187 24 75 125
Esophageal achalasia 0.087 0.021 0.069 0.281 31 64 13
SARS-CoV-2 0.077 0.004 0.195 0.189 17 53 8
Parkinson’s disease 0.027 0.009 0.171 0.329 22 79 62
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Table 11: Graph Node and Edge Counts per Model

Llama3–70b PalmyraMed GPT–4

nodes edges nodes edges nodes edges

Mean 31.5 78.25 27 72.05 33.4 85.65
Min. 26 45 17 49 25 39.
Max. 36 120 34 172 38 146
SD 3.32 17.93 4.09 27.49 3.87 29.46
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