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Abstract—This study introduces a novel refinement to two
classes of local explainability techniques and combines this with
the Self-Organizing Map (SOM) to achieve a combination of local
and global explainability. The new approach is demonstrated
on a deep neural network that has been trained to classify the
quality of a certain type of ultrasound exam. Using the new
approach, we are able to demonstrate that the deep network
uses two different types of image characteristics in combination
to assess quality. This insight would not have been possible using
standard local explainability methods. In a clinical setting, the
novel explanations can enhance confidence in the deep network
decisions.

Index Terms—Explainability, Deep Learning, SOM, FAST

I. INTRODUCTION

There is a consensus that highly performing Deep Learning
(DL) systems are no longer sufficient by themselves. They
need to have a mechanism for explaining their decisions.
Providing an explanation of the decision making process builds
trust and transparency.

It is common to group explainability techniques into two
categories: global and local. For global explainability we are
interested in the overall pattern or logic of the decision process.
For local explainability we want to know what characteristics
of a particular input example led to the specific decision made
by the DL model. In this paper we combine aspects of both
approaches.

Some local explainability techniques use the gradient of
the network output with respect to the input elements to
define the attributions (explanations), while other methods
propagate attributions from the network output back to the
input. Integrated Gradient (IG) [1] is an example of the former,
and DeepLIFT [2] is an example of the latter. IG computes
the average of the gradient along a line. DeepLIFT uses the
internal structure of the model to propagate attributions. A
commonality between these two methods (as well as other
standard methods) is that they both use baselines. Baselines are
reference inputs from which we want to measure a change. For
example, IG uses baselines to define a path for the line integral,
whereas DeepLIFT uses baselines to define the difference-
from-reference of the output. Selecting the right baseline for
a given problem generally requires domain knowledge. The
method of selecting baselines is still an active research area
[3].

In image-based problems, it is common to use black images
as baselines [1]. In [4], the authors used the expected value
of the input as a baseline. Additionally, the averages of
multiple baselines and blurred versions of inputs are also used
as baselines [4]. In this study, we propose a novel way of
selecting baselines. The main idea is that explainability will
be improved when the baseline is near the current input but
on the opposite side of the decision boundary.

Global explainability focuses more on overall model perfor-
mance than individual predictions. In [5], the authors calcu-
lated the average of all true positive instances from a validation
or testing set, weighted by the model’s predicted probability
of the target label, as a measure of global explainability.
Global explainability can also be achieved by extending local
explainability methods in some form to make sense at a
global level. The authors in [6], for example, used the Local
Interpretable model-agnostic explanations (LIME) method to
collect a set of instances and form an explanation matrix
as a global explainability approach. After calculating the
attributes using the Layer-wise Relevance Propagation (LRP)
local explainability method, the authors in [7] clustered the
attributes to study the global patterns.

In this paper we propose using the Self-Organizing-Map
(SOM) [8] as a global explainability method. The SOM is an
unsupervised clustering network that enables visualization of
high dimensional inputs in two dimensional representations.
There are several tools of the SOM that can be used to
visualize and interpret Deep Learning models. One advantage
of the SOM is that it can be used for high dimensional inputs,
and it is global in its nature. The SOM will be used in this
study to explain the operation of trained neural networks. We
are not aware of any previous research that has used an SOM
to explain the operation of a DL model trained with supervised
learning.

In the image processing area, most research on explain-
ability has focused on problems of object detection, object
classification and image segmentation. There has been much
less research on explainability for quality assessment appli-
cations, which is a significantly different endeavor and has
a more amorphous character. We believe it is an application
which requires a combination of local and global explainability
techniques. We will use a DL model trained to classify the



quality of Focused Assessment with Sonography in Trauma
(FAST) ultrasound exams as a testbed to demonstrate our
proposed explainability methods.

In Section II, we present the local explainability method
followed by a global explainability method in Section III. We
then present the experimental setup in Section IV. Finally, we
present the results in Section V.

II. LOCAL EXPLAINABILITY

In this section we want to begin by giving very brief out-
lines of two popular local explainability methods (Integrated
Gradient [IG] and DeepLIFT [DL]) that are representative
of two major categories of local explainability (gradient and
attribution-propagation). Both of these methods (IG and DL)
use baseline inputs as key components of their algorithms.
Next, we will introduce a new approach to selecting the
baselines. The new approach can be applied to many other
explainability techniques, but we have chosen these two for
demonstration purposes.

A. Integrated Gradient (IG)

In [9], the authors introduced the gradient as a measure
of importance for Bayes classifiers. The gradient method
measures the change in the network output for a small change
in the network input. The higher the gradient, the higher
the attribution of the input. There are various flavors of the
gradient method.

In this paper we will focus on IG [1], which is the average
gradient of the score with respect to the input as it varies
along a straight line from a baseline input to the current input.
Each point on the line between the baseline and the input is
weighted equally. Suppose we have m sample inputs on the
line between the baseline and the input. The tth sample input
on this line is denoted by pt, for t ∈ {1, 2, ...,m}. The IG
attribution IGC of input P using baseline P̄ is given by

[
IGC(P,P)

]
i,j

=
(pi,j − pi,j)

m

m−1∑
t=0

∂nMc (Pt)

∂pi,j
(1)

where Pt = P + t
m−1

(P − P). See [1] for details of the

algorithm.

B. Deep Learning Important FeaTures(DeepLIFT)

In [10], the authors introduced an attribution-propagation
method by defining three constraints (assumptions).

1)
c(ami ) =

∑
am+1
j ∈ pa(am

i )

c(ami |am+1
j )c(am+1

j ) (2)

2) ∑
am
i ∈ ch(am+1

j )

c(ami |am+1
j ) = 1 (3)

3)
0 ≤ c(ami |am+1

j ) ≤ 1 (4)

where ami is the activation of the ith neuron in layer m,
ch(ami ) is the set of all of input neurons of ami (children),
pa(ami ) is the set of all neurons that ami is an input for
(parents), c(ami ) is the attribution of neuron i of layer m to
the output of the network, and the multiplier c(ami |a

m+1
j ) is

the partial contribution of neuron ami to neuron am+1
j ,

The first assumption defines the attribution c(ami ) as the
sum of all the contributions that ami makes to its parent’s,
am+1
j , attributions. This is to say that a neuron is important

to the decision making (output) if it is important to the parent
neurons, and the parent neurons are important to the output
[10]. The second and the third constraints are used so that
attribution is conserved at each layer. The procedure starts by
assigning the last layer attribution c(aMk ) to the output aMk .
It then backpropagates the attribution c(aMk ) to lower layer
neurons using Eq 2. Using Eqs. 2 and 3, it can be shown that

Sm∑
i=1

c(ami ) = aMc (5)

which is the law of conservation of attribution. This applies
to every layer, as well as the input, a0i = pi.

DeepLIFT [2] is an attribution-propagation method where
the attributions are computed as a deviation from a baseline
input. First, the network response to the baseline input is
computed, followed by the response to the current input. At
the final layer the network output for class c is

nMc =

SM−1∑
i=1

wM
c,ia

M−1
i + bMc (6)

aMc = fM
(
nMc
)

(7)

The deviation from baseline is

∆aMc = aMc − āMc (8)

where āMc is the network output when a baseline input is
applied. DeepLIFT then follows a backpropagation scheme
modeled on Eq. 2. (See [2] for details.)

C. Weighted Top 5 Closest Baseline

In this section we propose a new method for selecting base-
line inputs. We will demonstrate the procedure for DeepLIFT
and IG, but it can be used with any explainability method that
uses a baseline input. The main idea behind the new method
is that explainability will be improved if the current input and
the baseline input span the decision boundary. For a binary
classification problem, if the input is from the positive class,
then the baseline will be selected as the closest input in the
training set that is from the negative class.

First, denote the training set by T . Then, split the training set
into pairwise disjoint subsets such that each subset contains
all the data that belongs to a class. We denote elements of
class i by Ti such that Ti ∩ Tj = ∅, ∀i 6= j. For example,
T1 represents the set of elements of class 1 in the training set.
For this study, we focus on a training set of only two classes.



If we have input P, we denote the kth closest baseline input
by kP∗(P), which is given by

kP∗(P) = argmin
P̃∈T c

i −kU

D(P, P̃) (9)

where

kU =

{
∅, if k = 1

{1P∗, 2P∗, 3P∗, ..., k−1P∗}, otherwise
(10)

and

D(P, P̃) =
∥∥P− P̃

∥∥ (11)

The D in Eq. 11 represents the Euclidean distance between
the inputs P and P̃, and T c

i is the complement of set Ti. Notice
that if P ∈ Ti, then kP∗(P) ∈ T c

i . For each image, we first
determine the predicted class of the image. Then, we search
for the nearest image (based on Euclidean distance) in the
training set from the other class.

One challenge of using the single closest image as a base-
line, instead of a black image, is that the explainability features
might be affected by features from the baseline. To mitigate
this issue, we took the weighted average of the attributions
formed by the input and the 5 closest images from the other
class. Each attribution was weighted inversely to the distance
from the corresponding baseline image to the current input.
The result is the Weighted Top 5 Closest Baseline (WT5CB)
attribution. The following equations show the calculation for
the IG case, but the form would be the same for all methods.

WT5CBIG
C(P) =

5∑
k=1

IGC(P, kP∗(P))βk (12)

where

βk =
d−1(P, kP∗(P))∑5
k=1 d−1(P, kP∗(P))

(13)

III. SOM AS GLOBAL EXPLAINABILITY TECHNIQUE

A Self-Organizing Map (SOM) [8] is a type of artificial
neural network that is used for unsupervised clustering. The
primary goal of an SOM is to produce a low-dimensional (typ-
ically two-dimensional) representation of high-dimensional
data, while preserving the topological properties of the in-
put space. This means that similar data points in the high-
dimensional space are mapped to nearby locations in the low-
dimensional topology of the SOM.

The SOM consists of a grid of neurons, each of which is
associated with a weight vector of the same dimension as the
input data. When an input vector is presented to the SOM,
the algorithm identifies the neuron whose weight vector is
most similar to the input vector. This winner neuron and its
neighboring neurons’ weights are then adjusted to become
more like the input vector. This process is repeated for many
input vectors, allowing the SOM to self-organize by grouping
similar input vectors together into clusters and preserving the
topological properties of the input space. The key feature of
the SOM is its ability to cluster similar data points together and
to visualize a high dimensional input space in two dimensions.

We will use the SOM to cluster input images from the full
training and test sets of a trained DL classifier. Each of the
resulting SOM clusters will contain similar images, and the
images in neighboring clusters will be similar to each other.
We can then identify: how the trained DL classifier responds
to images across the SOM topology, where consistent errors
occur, how features of images (like contrast and density) vary
across the SOM topology, how DL classification varies across
the SOM topology, etc. The SOM will give us a type of
microscope or X-ray with which to examine the DL classifier
operation. Our method employs several visualization tools to
identify what the classifier model is focusing on to make
decisions at a global level.

IV. EXPERIMENT SETUP

Most explainability research in the image processing area
has concentrated on object detection, object classification
and image segmentation. Much less work has been done in
explaining DL models for quality assessment. We believe that
our approach is well-suited to this task. To demonstrate this,
we need a suitable benchmark problem. We describe such a
problem in this section.

Focused Assessment with Sonography in Trauma (FAST)
ultrasounds are an important tool for rapid noninvasive eval-
uation. It is especially important for the identification of
the presence of free fluid in the abdomen of traumatically
injured patients. Quality assurance (QA) is a central process
for all emergency department ultrasound activities and must
be performed on all FAST exams. However, QA can take a
significant amount of expert time and can be cost prohibitive.
The authors in [11] report a DL model that automatically
classifies the quality of FAST exams with 100% accuracy.
However, they were not able to explain how the DL model
was able to achieve this performance. Without a reasonable
explanation, the model lacks full confidence from users.

We were able to obtain the DL models and the associated
training and testing datasets from [11]. In the following
sections we will demonstrate how to use our local and global
explainability tools to identify the image features used by the
DL models to accurately classify FAST exam quality.

The main objective of [11] is to distinguish between poor
quality and good quality FAST exams. The dataset consists of
441 FAST exams, encompassing a total of 3,161 videos and
525,000 frames. The classification of the exams is based on
individual frames extracted from these videos. For training, all
videos are given the same label as the exam they came from,
and all frames are given the same label as the video they
came from. During inference, if half or more of the frames
are assigned poor quality, the video is assigned poor quality,
and if half of the videos are assigned poor quality, the exam
is assigned poor quality.

The DL model was a convolution network, pretrained as
an autoencoder and then fine-tuned for FAST quality classifi-
cation with a two-layer classifier appended to the pre-trained
encoder. (See [11] for more detail on the network architecture,
training and inference.)



To train the SOM, we made two adjustments to the input
data. Since training the SOM requires significant memory, we
reduced the size of the dataset. We took only 20 randomly
selected frames from each video in the dataset. This reduced
the dataset to only 62,128 frames. Moreover, instead of using
the frames themselves as inputs to the SOM, we used the
encoder outputs. The original frames were 512x352 (180,224
pixels), and the encoder outputs were 3x64x44 (2,816 pixels).

V. RESULTS

In this section, we cover the results of the proposed local and
global explainability techniques. First, we compare the new
WT5CB method with the original DeepLIFT and IG methods.

A. Local Analysis of the Trained Network

1) Comparison of WT5BC : Figure 1, compares our
WT5CB method with the original DeepLIFT and IG methods
on one typical frame. One consistent feature across all the
techniques is their emphasis on areas with distinct contrasts
in the image. A prime example of this is the area (280:350,
175:225) in Figure 1. Each method seems to highlight this
region, reinforcing the importance of such contrasting areas.
Though all methods primarily focus on areas of contrast, the
precision and the amount of noise vary between them. Both the
DL Weighted Top 5 Closest Baseline (DL WT5CB) and the
IG Weighted Top 5 Closest Baseline (IG WT5CB) methods
outperform the original DeepLIFT and IG methods (black
baseline [BB]). Notably, these methods place precise emphasis
on areas of contrast. Among them, the DL WT5CB method is
found to be the most precise.

To showcase the precision of the DL WT5CB method, we
conducted a comparative analysis with the DL BB method.
In Figure 2, a distinct area taken from Figure 1, specifically
denoted as (100:300, 250:350), is highlighted. Upon close
observation of this region, the superior precision of the DL
WT5CB method becomes readily apparent when compared
to the DL BB approach. We found the increased precision
consistently across a variety of frames that we tested.

2) Assessment using the DL WT5CB Method: In Figures 3
and 4, we plotted the results of two US frames extracted from
the same video, spaced one second apart. The frame depicted
in Figure 4 produces a network output of 0.24, indicating good
quality, while the frame in Figure 3 produces an output of 0.68,
indicating poor quality. (A network output of 1 represents poor
quality, and a network output of 0 indicates good quality.)
Despite the striking similarities of the two frames — their
origin from the same video and their temporal proximity —
and the attribution methods pointing out similar regions of
interest, they were classified differently. This leads to the
question: What differences in these two images prompt such
varied classifications?

The answer may lie in the image’s sharpness. For example,
in Figure 4, sharp contrasts are distinctly visible around
coordinates (310, 280), (370, 80), and (450, 285). These
regions are underscored by the attributions across both figures,
suggesting that such features heavily influence the network’s

Fig. 1. Explainability results for a typical FAST frame – Red pixels indicate
high attribution levels – most important for the decision

(a) Zoom of DL BB from area at (100:300,
250:350) in Figure 1

(b) Zoom of DL WT5CB from area at (100:300,
250:350) in Figure 1

Fig. 2. Zoomed comparison of DL Black Baseline (BB) and DL Weighted
Top 5 Closest Baseline (WT5CB) for the FAST frame in Figure 1

decision-making process. As a result, the network classifies
the frame in Figure 4 as being of good quality. However, in
the same locations in Figure 3, the contrast appears fuzzy,
indicating that the frame is of poor quality. It appears that
image sharpness is a key characteristic valued by the network.

In Figures 5 through 7, we present a side-by-side com-
parison that specifically emphasizes the differences between



Fig. 3. Example of an image classified as poor quality and its DL attributions.

Fig. 4. Example of an image classified as good quality and its DL attributions.

the three regions highlighted in the preceding discussion. This
comparative layout provides a clearer, visual understanding of
how quality variations manifest in the two figures (Figure 4
and Figure 3). Notice that the subimages extracted from Figure
4, which the network classified as good quality, display distinct
sharpness levels. In comparison, the corresponding subimages
from Figure 3—which was classified as poor quality—display
a noticeable fuzziness. Such characteristics may be the factors
that influenced the network’s decision to classify the frame as
of poor quality. These juxtapositions in Figures 5 through 7
offer tangible evidence of the disparities in quality between
the two frames, underscoring the importance of sharpness in
the evaluation of image quality. This will be reinforced when
we consider the SOM analysis.

(a) Figure 3 (b) Figure 4

Fig. 5. Zoomed illustration of region (300:360,270:290) in Figures 3 and 4.

(a) Figure 3 (b) Figure 4

Fig. 6. Zoomed illustration of region (360:390,70:90) in Figures 3 and 4.

(a) Figure 3 (b) Figure 4

Fig. 7. Zoomed illustration of region (440:460,270:290) in Figures 3 and 4.

B. Global Analysis of the Trained Network

So far, we analyzed classifier network performance using
local explainability techniques. In this section, we explain the
proposed novel approach to global explainability, employing
the SOM as a global explainer. We utilize various visualization
tools of the SOM to elucidate the observed patterns.

We trained 5x5, 7x7 and 10x10 hexagonal SOMs on the
encoder outputs of 62,128 FAST frames. The encoder output
dimension was 2,816. We found that the 7x7 SOM enabled
the best analysis.

(a) Topology (b) U-Matrix

Fig. 8. Topology and U-Matrix (indicating distances between clusters – darker
color for greater distance) for the SOM trained on FAST frames.

The topology of the SOM is given in Figure 8(a). The units
are numbered from left to right and from bottom to top. In the
next sections, we will be referring to these numbers as cluster
numbers.

Figure 8(b) displays a Unified Distance Matrix, commonly
referred to as the U-matrix, which is utilized to illustrate the
distances between adjacent weight vectors, or cluster centers.
The small, dark gray hexagons symbolize the cluster centers,
while the colored, elongated hexagons depict the distances
between these centers. A darker shade denotes a greater
distance. For instance, the significant distance between clusters
2 and 3 is represented by a dark color. Conversely, a lighter
shade between clusters 6 and 13 suggests that these centers are
relatively closer together. The U-matrix can help us identify
super-clusters within the SOM. For example, clusters 6, 12.
13, 19 and 20 are all close to each other, which indicates that
the frames within this set of clusters will be similar.

Figure 9(a) presents a Hit Histogram, with each hexagon
symbolizing a cluster center. This histogram indicates the
number of frames in each cluster. The hexagon size reflects
the frame count, which is also indicated inside each hexagon.

The clusters vary a lot in size, however, Figure 9(b) shows
that there is less variation in the cluster radii. The larger
clusters are more densely packed.



(a) Complex Hit Histogram

35

29

24

19

13

8

(b) Maximum Radius

Fig. 9. Complex hit histogram, indicating the number of frames in each
cluster, and the maximum radius of each cluster, indicating the variation in
the frames in each cluster.

Now that we have clustered the inputs to the CNN, we can
look for patterns of network operation. How does the network
classify various types of FAST frames? For example, Figure 10
illustrates the percentage of False Positive (FP) frames across
the clusters (positive represents poor quality), highlighting
that those in the Bottom Right (BR) section of the topology
exhibit relatively higher FP rates. This observation indicates
that frames of good quality in the Top Left (TL) section are
classified more accurately than those in the BR section.

17

14

10

7

3

0

Fig. 10. Average False Positive (FP) percentage in each cluster.

Fig. 11. Cluster centers (first feature map), indicating typical frame shape
within each cluster. (See Figure 8 for cluster placements.)

In Figure 11, we show the cluster center for each cluster.
(The figure displays the first feature map generated at the

Encoder’s output.) These cluster centers are representative of
typical frames in each cluster. Frames that are relatively dense
are predominantly located in the TL part of Figure 11. For
instance, clusters 21, 22, 28, 29, 35, 36, 42, and 43 feature
dense frames. In contrast, clusters in the BR section, such as
clusters 5, 6, 12, 13, 19, 20, 26 and 27, have relatively sparse
frames.

Thus far we learned that clusters in the TL area have frames
that are dense and contain a small number of FPs. Conversely,
clusters in the BR section contain sparse frames, and there is
a higher percentage of FPs.

More detail on network operation is shown in Figure 12,
which, as well as FP, includes False Negative (FN), True
Negative (TN) and True Positive (TP): TP in green, TN
in blue, FN in yellow, and FP in red. Figure 10 showed
that FP errors predominantly accumulate in the BR section.
It’s now observable that most clusters in the TL section are
characterized as TNs, and this region is associated with cluster
centers exhibiting dense frames, as shown in Figure 11. This
could indicate that dense frames are generally classified by
the network as good quality. (The dataset is unbalanced, with
94% of frames classified as good quality.)

Fig. 12. Classification performance for each cluster: TP(g), FN(y), TN(b),
FP(r)

Figure 13 reinforces the idea that the network classifies
sparse frames as low quality. It shows the heat map for the
average output in each cluster. Clusters in the TL area, pre-
dominantly consisting of dense frames, show a lower average
output, indicative of good quality. In contrast, the BR section,
characterized by sparser frames, exhibits a higher average
output, signaling poor quality.

We further analyzed the distribution of outputs for each
cluster using histograms, as shown in Figure 14. The bins in
the histograms represent output values ranging from 0 (good
quality) to 1 (poor quality), in increments of 0.1. We observed
a noticeable skew towards the left (closer to zero) in the
outputs in the TL section, indicating that dense frames are
more likely to be good quality. The confidence of the network
to classify frames in the TL section as good quality is high. As
we move to the BR section, the output begins to shift towards
the center, which indicates a lower confidence in determining
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Fig. 13. Average classification network output for each cluster.

both good and poor quality frames. This figure also shows a
higher variation in terms of output as we go farther from the
TL.

Fig. 14. Classification network output histogram by cluster. Red line repre-
sents 0.5 – smaller is good quality, larger is poor quality. (See Figure 8 for
cluster placements.)

In order to have a quantitive measure of sparsity, for each
image, we counted the number of pixels with a value greater
than or equal to 30 on a 0 to 255 scale. We then calculated the
ratio of this number to the total number of pixels (352*512). A
higher ratio indicates greater density. In Figure 15, we plotted
this ratio against the network output and also included a linear
regression line. The negative slope of the regression line shows
that sparse frames tend to have a higher output (poor quality),
while denser images are likely to be good quality.

Our SOM analysis shows that, globally, our classifier
considers sparsity as an indicator of frame quality. In the
TL section of the SOM, this is very clear, as the network
confidently classifies very dense frames as good quality. For
the sparser frames that appear more often as we move toward

Fig. 15. Density vs classification network output for all FAST frames
(correlation coefficient = -0.442).

the BR of the SOM, there is more variation in network output.
This raises the question: What other factors does the network
consider when assessing the quality of a frame? Recall that,
in Section V-A2, we discussed how sharpness affected the
network’s decision-making process using local explainability.
Here, we will explore sharpness in a global sense.

To quantitatively measure sharpness (approximately), we
first applied the Laplacian filter to the frames. The Laplacian
filter produces a new image that represents the second deriva-
tive of the original image, which is used to find regions of
rapid intensity change in frames. After applying the Laplacian
operator, the contrast of the image can be quantified by
calculating the standard deviation of the resulting image.
The standard deviation measures the amount of variation or
dispersion of a set of values. In the context of the Laplacian-
applied image, a higher standard deviation (STD) indicates a
greater presence of high-contrast regions.

For each frame within each cluster, we calculated the
Laplacian STD and plotted it against the network output in
Figure 16. The horizontal axis represents the network output,
ranging from 0 to 1, while the vertical axis corresponds to
the Laplacian STD. We also plotted a linear regression line
to show the trend. This figure shows that there is an inverse
relationship between the network output and the Laplacian
STD in almost every cluster, suggesting that higher contrast or
sharpness (indicated by a higher Laplacian STD) increases the
likelihood of the network classifying the frame as good quality
– reflected by a lower network output. (The few clusters with
positive slope contained outlier images.)

C. Summary

By combining the global analysis of the SOM with the local
explainability techniques, we were able to show that the DL
model was using two different characteristics of the FAST
frames to identify quality: the sharpness of the images and
the density of the images. It would not have been possible
with standard local explainability methods to identify density
as a key characteristic, since density is a global feature of an
image.



Fig. 16. Sharpness vs output by cluster (See Figure 8 for cluster placements.)

VI. CONCLUSIONS AND FUTURE WORK

This research introduced innovative enhancements to ex-
isting local explainability methods and utilized the Self-
Organizing Map (SOM) as a global explainability method,
providing a more profound insight into how deep neural
networks reach decisions. Our methods are especially well-
suited to explaining DL models that assess image quality.

Local explainability techniques, such as DeepLIFT and
Integrated Gradient, are commonly used to understand neural
network decisions at a detailed level. Typically, these methods
use a single baseline image, often entirely black, for their
computations. However, this study introduces a novel approach
by utilizing multiple baseline images from the training dataset
that are closest to the input image but belong to different
categories. This method forces the baseline images to be on
the opposite side of the decision boundary from the input
image, resulting in more precise and informative explanations
compared to conventional methods.

Additionally, the study presents a fresh approach to global
explainability, aiming to provide a broader understanding of
the neural network’s decision process. The Self-Organizing
Map (SOM) is employed as a global explainer, facilitating the
clustering of inputs and the visualization of results in a two-
dimensional grid. This approach allows for the identification
of data patterns and offers insights into areas where the neural
network may have misclassified inputs.

To validate these methods, the study applied them to a
deep learning model for the quality classification of FAST
ultrasound images. The results showed that the classification
network could accurately assess the quality of ultrasound
images based on two main characteristics: image sharpness
and image density. These findings are results of the combined
local and global explainability techniques. These findings not

only enhance our comprehension of how neural networks
interpret medical imaging data but also have implications for
enhancing the accuracy and reliability of such systems in
practical applications.

We have not yet brought this technology to a clinical setting
or considered other imaging modalities. These are promising
avenues that could be pursued in future work. For example,
when the deep model makes a classification of a FAST exam,
it could display several frames that contributed to the decision
and include overlays on the frames of pixels with maximum
attribution. It could also display density and sharpness values
for each frame, and indicate which SOM clusters the frames
fell into. Of course, there would need to be extensive tests with
clinicians to determine the best variables and formats to use in
displays, since explanations are only useful if they clarify the
decisions, and this is a subjective question. It also seems likely
that the analyses described in this paper could be applied to
other imaging modalities, especially those assessing quality.
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