
Z-FOLD: A Frustratingly Easy Post-Training Quantization Scheme for
LLMs

Yongkweon Jeon,∗,† Chungman Lee,∗ Kyungphil Park,∗ Ho-young Kim
Samsung Research

{dragwon.jeon, chungman.lee, k_phil.park, hoyoung4.kim}@samsung.com

Abstract
Efficient inference has become crucial for
hyper-scale AI models, including large lan-
guage models, as their parameter count contin-
ues to increase for enhanced performance. This
necessity holds true regardless of the comput-
ing environment, whether it be mobile devices
or cloud servers. Quantization emerges as a
solution to alleviate the computational burden
during inference. By representing models with
a reduced bit-width, quantization minimizes
the frequency of DRAM access while fully ex-
ploiting the parallelism of operations through
a dense matrix format. Consequently, quan-
tized models achieve low end-to-end latency
and optimize resource utilization by addressing
both memory and computing bottlenecks. In
this paper, we propose a straightforward post-
training quantization scheme, called Z-FOLD,
that fully utilizes the feature of the Transformer
structure widely employed in large language
models. The code will be available at https:
//github.com/SamsungLabs/Z-Fold.

1 Introduction

The Transformer (Vaswani et al., 2017) mod-
els have revolutionized machine learning across
various domains by leveraging attention mecha-
nisms (Bahdanau et al., 2014). Neural language
processing (NLP) tasks, including large language
models (LLMs) and neural machine translation
(NMT), heavily rely on the Transformers, extend-
ing their impact to vision tasks as well (Khan et al.,
2022; Rombach et al., 2022). In essence, hyper-
scale AI models heavily depend on the Transformer
architecture.

To enhance the performance of general lan-
guage tasks, large language models progressively
increase the number of parameters, which are
achieved with various techniques such as pre-
venting performance saturation or enabling hyper-
scale model to be trained; layer dropping (Zhang

∗Equal Contribution, †Corresponding Author

Figure 1: The Transformer Architecture (Pre-
LayerNorm). We fully exploit the feature of the architec-
ture to prevent accuracy drop from lowered bit-precision
of weights.

and He, 2020), pipeline parallelism (Huang
et al., 2019), model parallelism (Shoeybi et al.,
2019), pre-normalization (Xiong et al., 2020), and
AdamW (Loshchilov and Hutter, 2017) are em-
ployed and resulting in models with up to 100 tril-
lion parameters.

Nonetheless, these hyperscale models encounter
limitations that hinder their applicability. Among
the key challenges are the memory and computa-
tional costs associated with processing an exten-
sive number of parameters; these lead to increased
end-to-end latency and power consumption, regard-
less of the available computing resources. Specif-
ically, a considerable number of parameters need
to be transferred between memory and processors,
and computed with long input sequences. Thus,
hyperscale models impose a burden on hardware
during inference, despite the performance bene-
fits of parameter scaling. Consequently, efficient

https://github.com/SamsungLabs/Z-Fold
https://github.com/SamsungLabs/Z-Fold

inference techniques have gained significant at-
tention as much as for scaling out the models,
whether in resource-constrained (e.g., edge devices)
or resource-abundant (e.g., cloud server) environ-
ments.

Quantization emerges as a promising and attrac-
tive solution among various techniques aimed at
improving model efficiency (e.g., pruning (Frantar
and Alistarh, 2023), low-rank approximation (Chen
et al., 2018) and knowledge distillation (Hsieh
et al., 2023)). By representing models with a low
bit-width, quantization reduces the frequency of
DRAM access, while fully leveraging the paral-
lelism of operations through a dense matrix format.
As a result, quantized models alleviate the bottle-
neck caused by both memory and computational
overheads.

In this paper, we propose a post-training quan-
tization method for LLMs, called Z-FOLD, which
exploits the feature of the Transformer architecture
(pre-LayerNorm) to enhance the quantized models
without introducing additional quantization param-
eters or computational costs. In a nutshell, we
quantize weights into low bit-width (down to 2-bit)
using more parameters (ζ) than existing approaches.
This contributes to improving quantized networks
by further minimizing the loss perturbation as a
result of quantization. However, we fold or fuse
these additional parameters (ζ) into other existing
parameters (α or γ; see Figure 1) in advance of in-
ference, to avoid imposing further hardware costs.
As a result, our approach achieves state-of-the-art
performance among quantized LLMs without any
additional parameters or hardware costs.

2 Related Works

2.1 Quantization

When the entire dataset is available, quantization-
aware training (QAT) (Jin et al., 2021) could be use-
ful, potentially outperforming post-training quan-
tization (PTQ). However, given the vast number
of parameters to be optimized in LLMs, retraining
them with the entire dataset would not be a realistic
option. QAT with few samples also suffers from
overfitting due to its extensive search space. Con-
sequently, most approaches for quantizing LLMs
rely on PTQ with either a calibration set (few-shot)
or without any dataset (data-free quantization). By
limiting the search space to the region adjacent to
the convergence point of pre-trained models, over-
fitting caused by few data can be prevented in PTQ.

The loss surface of pre-trained models can be
approximated using the Taylor series. Assuming
successful convergence and generalization of the
pre-trained model, we can simplify the relationship
between loss degradation (∆L) and perturbation
of flattened weights ∆w (i.e., ∆w ≜ vec(∆W))
by quantization to a linear as follows (LeCun et al.,
1989; Nagel et al., 2020):

∆L ≈ 1

2
∆w⊺ ·H(w) ·∆w, (1)

where H(w) denotes the Hessian matrix of weights.
When quantizing models in the absence of datasets,
the Hessian can be approximated to c · I, where
c and I denote a constant and the Identity matrix,
respectively. We thus set the out_channel-wise step
size α ∈ Rdout×1 for the weights W ∈ Rdin×dout

to minimize weight perturbation as follows:

α∗ =argmin
α

∥W −Wint ·A∥F , (2)

Wint = clip
(⌊
W ·A−1

⌉
, n, p

)
, (3)

where ⌊·⌉ represent the round-to-nearest function
and A denotes A = diag(α). And n and p repre-
sent the lower and upper bounds, respectively, for
the integer weights Wint. Once α∗ is determined,
we employ the nearest-rounding scheme to map
the weights onto uniformly distributed quantiza-
tion grids, which we refer to as MMSE quantiza-
tion. Note that, the step size α can be set simply as
min-max quatization as follows:

α =
max(W)−min(W)

2bit − 1
. (4)

where min() and max() return the minimum and
maximum values of each column respectively.

Based on the step size α set by MMSE or min-
max, we can further optimize the quantized network
by various approaches approximating the Hessian
with the calibration set (few-shot), which leads
quantized networks to be more robust than data-
free quantization (Nagel et al., 2020; Li et al., 2021;
Hubara et al., 2021; Frantar and Alistarh, 2022;
Jeon et al., 2023). Among them, OPTQ (Fran-
tar et al., 2023), also known as GPTQ, achieves
reasonable performance for quantized LLMs with-
out gradient-based optimization in a relatively
short period by simplifying Optimal Brain Quan-
tization (Frantar and Alistarh, 2022). Consider
W ⊺ ∈ Rdout×din as the transposed weight matrix
and X ∈ Rdin×n as the input batch of the layer,

′ ∈ [,]

00 01 02
10 11 12

0 1 2
out_channel-wise step size

quan�ze
00
′

01
′

02
′

10
′

11
′

12
′

0

1

in
_c

ha
nn

el
-w

ise

st
ep

 si
ze

0

1

0

1

2In_channels

out_channels

0

1

2

0

1

= ⨀ ′ = ⋅ ⨀ ′ ,

ProposedRank-1 decomposi�on

Folding

= 0
1

, =
0
1
2

Figure 2: Decomposing the step size S into ζ and α, followed by folding ζ to the preceding layer (if available)

where din and n represent the input dimension and
input sequence length, respectively. By assuming
there is no interaction between each row of W⊺,
OPTQ approximates the Hessian H corresponding
to each row of W⊺ as

H ≈ 2XX⊺ + λI ∈ Rdin×din . (5)

We thus have H(w) as H(w) = I⊗H, where ⊗ is
the Kronecker product. OPTQ quantizes W ⊺ on
column-by-column in ascending order (0 to din-1).
Whenever each column of weights wi ∈ Rdout×1

is quantized, they measure the error e as

e = (wi −wq
i)/H

−1
ii , (6)

where H−1 = Cholesky(H−1)⊺, and then all the
remaining (not yet quantized) column weights wj

(j = i+1 to din-1) are updated to reflect the pertur-
bation of quantized weights as follows:

{wj = wj − e ·H−1
ij }din-1j=i+1, (7)

where H−1
ij denotes the entry in the ith row and jth

column of the Hessian inverse.

2.2 Quantization for LLMs
OPTQ enhances the robustness of quantized LLMs
by approximating the Hessian matrix using a
small sample of sentences, where activations are
maintained in FP16 precision since they are not
the bottleneck. ZeroQuant (Yao et al., 2022)
adopts group-wise quantization for weights and
token-wise quantization for activation to suggest
a hardware-friendly quantization scheme. Despite
having a larger number of scaling parameters com-
pared to other methods, ZeroQuant adjusts the num-
ber of scaling parameters to match the hardware
architecture used during inference, resulting in min-
imal overhead. LLM.int8() (Dettmers et al., 2022)
propose a vector-wise quantization approach with

a mixed-precision scheme, in which outlier vec-
tors are preserved as FP16. SmoothQuant (Xiao
et al., 2022) and Quadapter (Park et al., 2022) have
identified the challenges associated with handling
the dynamic range of activations, and then suggest
solutions to mitigate the variance. QuIP (Chee
et al., 2023) has tried to quantize LLMs into a low
bit-width (i.e.,, 2-bit) by introducing additional pa-
rameters (random orthogonal matrices). However,
QuIP needs to store or generate such additional
parameters and impose computational costs during
the inference. ZeroQuant-V2 (Yao et al., 2023) has
summarized and analyzed the properties of each
method and bit configuration (e.g., E8A8, W4A16).
While all of these approaches apply post-training
quantization to LLMs, a QAT method for LLMs
has been proposed in LLM-QAT (Liu et al., 2023).

3 Z-FOLD

3.1 The Newly Introduced Parameter ζ

To achieve even greater reductions in the loss per-
turbation due to quantization (Eq. (1)), we intro-
duce new scaling factor ζ ∈ Rm×1 corresponding
the in_channel in addition to existing out_channel-
wise scaling factors α ∈ Rn×1. The scaling factor
ζ is then fused or folded into α of the previous
layer in advance of inference to eliminate the over-
head by additional parameters ζ, which we call
Z-FOLD1 (see Figure 2). In essence, our objective
is to obtain the bi-directional (in and out) step size
matrix S, which can be formulated as follows:

S∗ =argmin
S

∆w⊺ ·H(w) ·∆w, (8)

∆w = vec(W − S ⊙Wint) (9)

Wint = clip (⌊W ⊘ S⌉ , n, p) , (10)

where ⊘ and ⊙ denote the Hadamard division and
product, respectively. To determine S∗ in Eq. (8),

1step size-Folding

Algorithm 1 Alternating Least Square for S

Input: W ∈ Rdin×dout

Output: α ∈ Rdout×1, ζ ∈ Rdin×1, (ζ ·α⊺=S)

1: procedure Z-FOLD(W , H = 2XX⊺ + λI)
2: Initialize α and ζ

3: repeat
4: Wint=Quantize(W , ζ ·α⊺)

5: ζ = Least_Squares(W ⊺, (Wint · diag(α))⊺, I)

6: Wint=Quantize(W , ζ ·α⊺)

7: α = Least_Squares(W , diag(ζ) ·Wint,H)

8: until converged
9: return α, ζ

10: procedure QUANTIZE(W ,S)
11: return clip (⌊W ⊘ S⌉ , n, p)
12: procedure LEAST_SQUARES(W ,W̃ , H)
13: for each column vector (wi, w̃i) in (W , W̃) do
14: yi = (w̃⊺

i Hw̃i)
−1w̃⊺

i H ·wi

15: return y

we decompose the matrix S into two vectors (the
rank-1 approximation) by alternating least square
(ALS) factorization (Zachariah et al., 2012). Specif-
ically, we determine those value of α ∈ Rn×1 and
ζ ∈ Rm×1 as follows:

∆W = ∥W −Z ·Wint ·A∥22 , (11)

when Z ≜ diag(ζ) and A ≜ diag(α), (12)

which can be achieved by vector-wise least squares.
Considering a vector wi ∈ Rm×1 representing the
ith column vector of W ∈ Rm×n, we can leverage
the weighted least squares to determine α using
the Hessian as follows:

αi = (w̃⊺
iHw̃i)

−1w̃⊺
iH ·wi (13)

where w̃i denotes w̃i = diag(ζ) · wint,i. The
weighted least square is used only for α and al-
ternately refined with ζ. Note that, because the
weights sharing ζ also share the entries of the Hes-
sian, whether or not the Hessian is used to deter-
mine ζ does not affect the result for ζ.

Algorithm 1 provides a detailed overview of the
factorization algorithm. We initialize ζ as all-1 vec-
tor and then employ Min-Max quantization for α
as in Eq. (4) (Line 2). Subsequently, α and ζ are
alternately updated using a least square solution
until convergence (Line 3–8), such that minimiz-
ing the loss as in Eq. (8). Note that column-wise
least square (Line 12–14) offers loop-level paral-
lelism allowing for parallel processing via batch
matrix-matrix multiplication (i.e., bmm). With the

Figure 3: Norm-to-Linear Folding. The in_channel-
wise parameters can be fused into the affine transforma-
tion parameters of the previous normalization layer.

factorized the step size from weights matrix W ,
we obtain quantized weights matrix W q as follows:

W q = S ⊙Wint (14)

= diag(ζ) ·Wint · diag(α) (15)

= Z ·Wint ·A (16)

Our scheme also supports per-out_channel asym-
metric quantization, in which each column weight
wi can be quantized as follows:

wq
i = α(wi,int − o)⊙ ζ (17)

wi,int = clip

(⌊
wi ⊘ ζ

α

⌉
+ o, n, p

)
. (18)

where o indicates the zero point vector (all-o vec-
tor), computed by o = −

⌊
min(wi⊘ζ)

α

⌉
. For asym-

metric quantization, we can employ a grid search
to identify the optimal values of α and o, aiming
to minimize the loss perturbation caused by quan-
tization. This grid search replaces the use of least
squares in Line 7 of Algorithm 1.

3.2 Parameter Integration (ζ-Folding)
Figures 2, 3 and 5 illustrate the mechanism of Z-
FOLD. The figures demonstrate how in_channel-
wise parameters ζ can be integrated into either the
affine transformation parameters γ and β (Norm-
to-Linear) or the out_channel-wise parameters α
(Linear-to-Linear) of the preceding layer.

Norm-to-Linear Let us consider a latent token
x ∈ Rm×1 as the input of a normalization layer
followed by a linear layer, the normalized vector,
denoted by x̂ is computed as follows:

y = γ ⊙ x̂+ β (19)

where γ ∈ Rm×1 and β ∈ Rm×1 denote affine
transform parameters of x̂ (i.e., the scale and shift).

Figure 4: Concatenating WQ, WK , and WV to extract
a mutual ζ for fusion into the preceding normalization
layer.

Eq. (19) can be expressed as a matrix operation, as
follows:

y⊺ =
[
x̂⊺ 1

]
· Γ, (20)

where Γ =
[

diag(γ)
β⊺

]
≜

γ0 0 ··· 0
0 γ1 ··· 0

...
...

. . .
...

0 0 ··· γm−1

β0 β1 ··· βm−1

 . (21)

The output y from the normalization layer is then
multiplied by quantized weights W q ∈ Rm×n of
the subsequent linear layer as follows:

y⊺·W q = y⊺ · (Z ·Wint ·A) (22)

=
([
x̂⊺ 1

]
· Γ

)
· (Z ·Wint ·A) (23)

=
([
x̂⊺ 1

]
· (Γ ·Z)

)
· (Wint ·A). (24)

As in Eq. (24), we can update the affine transform
parameters using the ζ of the subsequent linear. As
a result, We obtain the revised parameters as

Γ′ = Γ ·Z =

γ0ζ0 0 ··· 0
0 γ1ζ1 ··· 0

...
...

. . .
...

0 0 ··· γm−1ζm−1

β0ζ0 β1ζ1 ··· βm−1ζm−1

 . (25)

Essentially, we can update the affinity parameters
without relying on the dataset to compensate for
the errors caused by quantization. By folding ζ
into γ and β of the preceding normalization layer,
we can reduce the loss by quantization weights
without increasing the number of parameters and
computational cost.

Notably, by concatenating the weight matrices
of Q, K, and V , the shared ζ can be extracted;
consequently, the shared ζ can be seamlessly incor-
porated into the γ and β of the preceding normal-
ization layer (see Figure 4).

Linear-to-Linear It can be easily demonstrated
that the in_channel-wise step size ζ can be fused
into the out_channel-wise step size α of the preced-
ing layer, provided there is no non-linear function

Figure 5: Linear-to-Linear Folding. The quantization
parameters between two adjacent linear layers can be
fused if there is no non-linear function except ReLU.

Algorithm 2 Fine Tuning Each Layer

Input: W ∈ Rdin×dout , X ∈ Rdin×n (Y = X⊺ ·W)
Output: α, ζ, W q

1: procedure FINE-TUNING WITH OPTQ(W ,X)
2: H = 2XX⊺ + λI

3: α, ζ=Z-FOLD(W ,H) ▷ Algorithm 1
4: H−1 = Cholesky(H−1)⊺

5: for each row vector wi in W do
6: s = (ζi ⊙α) ∈ Rdout×1 ▷ the step size of wi

7: wq
i = s⊺ · clip (⌊wi ⊘ s⊺⌉ , n, p)

8: e = (wi −wq
i)/H

−1
ii

9: {wj = wj − e ·H−1
ij }din−1

j=i+1

10: return α, ζ, W q

excepting ReLU between adjacent two linear lay-
ers. Considering W q

1 ∈ Rn×m and W q
2 ∈ Rm×n

as the weights of two consecutive linear layers and
x ∈ Rn×1 as the input of the first layer, the output
can be computed as follows:

(x⊺) · (W q
1A1) · (Z2W

q
2A2) (26)

= (x⊺) · (W q
1A1Z2) · (W q

2A2) (27)

As shown in Figure 1, it can also fuse the pair of
layers WO and WV in addition to W1 and W2.
Suppose Y and X denote Y = softmax(Q,K⊺)
and the input of the attention layer, respectively.
Then, the output of linear, WO, remained consis-
tent even after parameter incorporation as follows:

(Y ⊺) · (X⊺ ·W q
V AV) · (ZOW

q
OAO) (28)

= (Y ⊺) · (X⊺ ·W q
V AV ZO) · (W q

OAO) (29)

3.3 Fine-Tuning with a Calibration Set
After determining the bi-directional step size ma-
trix S as in Algorithm 1, we further optimize quan-
tized LLMs with a small calibration set by per-
forming optimization using the approximated Hes-
sian (Nagel et al., 2020; Li et al., 2021; Hubara

Table 1: Quantization performance of Z-FOLD on OPT models (Perplexity ↓).

(a) WikiText-2

Method Precision 125M 350M 1.3B 2.7B 6.7B 13B 30B

Baseline FP16 27.65 22.00 14.63 12.47 10.86 10.13 9.56

RTN†

INT4
37.28 25.94 48.17 16.92 12.10 11.32 10.98

OPTQ† 31.12 24.24 15.47 12.87 11.39 10.31 9.63
Z-FOLD 30.18 23.64 14.92 12.41 10.95 10.15 9.52

RTN†

INT3
1.3e3 64.57 1.3e4 1.6e4 5.8e3 3.4e3 1.6e3

OPTQ† 53.85 33.79 20.97 16.88 14.86 11.61 10.27
Z-FOLD 37.19 28.18 16.27 13.53 11.43 10.65 9.89

RTN
INT2

5.5e3 2.8e4 1.1e5 9.5e3 2.8e4 1.9e5 1.7e5
OPTQ 5.6e3 1.7e4 8.0e3 9.0e3 3.4e3 348.2 61.53
Z-FOLD 152.3 127.9 36.91 28.00 19.36 15.84 13.13

(b) PTB

Method Precision 125M 350M 1.3B 2.7B 6.7B 13B 30B

Baseline FP16 38.99 31.08 20.29 17.97 15.77 14.52 14.04

RTN†

INT4
53.89 36.79 57.30 31.05 18.84 16.51 15.40

OPTQ† 45.17 34.52 21.85 19.14 16.56 14.94 14.26
Z-FOLD 42.83 34.03 21.11 18.45 15.85 14.67 14.21

RTN†

INT3
1.4e3 88.04 1.3e4 1.4e4 5.7e3 2.8e3 1.2e3

OPTQ† 73.19 47.08 32.10 24.81 21.88 16.68 15.36
Z-FOLD 53.74 40.23 23.15 20.30 16.67 15.19 14.58

RTN
INT2

4.3e3 2.8e4 1.1e4 6.8e3 1.8e4 1.2e5 1.7e5
OPTQ 3.8e3 1.5e4 7.1e3 8.6e3 2.4e4 275.7 87.54
Z-FOLD 210.1 190.2 60.42 48.53 27.89 23.57 19.15

(c) C4

Method Precision 125M 350M 1.3B 2.7B 6.7B 13B 30B

Baseline FP16 26.56 22.59 16.07 14.34 12.71 12.06 11.44

RTN†

INT4
33.91 26.21 24.51 18.43 14.36 13.36 13.46

OPTQ† 29.22 24.63 16.97 15.00 13.18 12.26 11.57
Z-FOLD 27.96 24.12 16.50 14.65 12.86 12.15 11.50

RTN†

INT3
834.0 55.49 5.2e3 1.1e4 5.3e3 3.1e3 1.4e3

OPTQ† 42.41 31.33 21.63 18.17 17.14 13.34 12.23
Z-FOLD 32.75 27.33 17.49 15.64 13.36 12.47 11.74

RTN
INT2

3.7e3 1.6e4 7.7e3 7.7e3 1.4e4 9.7e4 5.6e4
OPTQ 2.3e3 5.5e3 4.3e3 4.2e3 568.1 124.5 29.03
Z-FOLD 106.8 87.96 34.53 26.73 21.60 17.11 14.10
† Results are taken from (Frantar et al., 2023).
* In OPT-350M, post-LayerNorm architecture has been used so that we only apply

Z-FOLD for WO and W2 (see Figure 1).

et al., 2021; Wei et al., 2022; Frantar et al., 2023;
Jeon et al., 2023). Among them, we utilize OPTQ,
which is a time-efficient solution for hyper-scale
models such as LLMs. In essence, we utilize Z-
FOLD as the initial quantization state and subse-

quently apply a few-shot quantization method to
refine quantized models further. Algorithm 2 ex-
plains our approach when given a calibration set.
We initialize quantized models by Z-FOLD, where
we use the Hessian for α to minimize the degrada-

Table 2: Quantization performance of Z-FOLD on LLaMA models (Perplexity ↓).

Method Precision
WikiText-2 PTB C4

7B 13B 30B 7B 13B 30B 7B 13B 30B

Baseline FP16 5.68 5.09 4.10 8.80 8.07 7.30 7.08 6.61 5.98

RTN
INT4

6.29 5.53 4.54 9.70 8.63 7.70 7.73 6.99 6.33
OPTQ 6.11 5.35 4.46 9.31 8.42 7.53 7.43 6.84 6.20
Z-FOLD 6.07 5.28 4.34 9.35 8.31 7.52 7.47 6.77 6.13

RTN
INT3

25.62 11.78 14.87 61.71 22.38 30.68 28.24 13.24 28.57
OPTQ 8.11 6.71 5.68 12.06 9.99 8.90 9.56 8.22 7.36
Z-FOLD 6.79 5.76 4.92 10.43 8.96 7.97 8.22 7.21 6.59

RTN
INT2

1.1e5 5.7e4 2.7e4 1.2e5 7.8e4 2.6e4 1.1e5 5.9e4 2.8e4
OPTQ 1.0e4 7703. 2065. 7620. 1.4e4 5666. 1031. 1185. 349.0
Z-FOLD 14.58 13.25 9.65 24.36 20.98 17.01 15.19 13.10 10.82

tion of the loss (Eq. (1)) (Line 2–3). We then apply
the OPTQ to minimize the loss further (Line 4–9).

Our scheme can be applied to not only uniform
quantization but also multi-level binary quantiza-
tion (Xu et al., 2018; Jeon et al., 2022). Both for-
mats can be accelerated by dedicated kernels (Jeon
et al., 2020; Frantar et al., 2023) when performing
LLMs inference without quantizing activations. As
well, Z-FOLD can be utilized in QLoRA (Dettmers
et al., 2023) when quantizing and freezing the pre-
trained weights of LLMs.

4 Experiments

4.1 Experimental Setup

To evaluate the performance of the proposed
method, we quantize publicly available LLMs (e.g.,
OPT (Zhang et al., 2022), LLaMA (Touvron et al.,
2023), and BLOOM (Scao et al., 2022)) using Z-
FOLD. As a calibration dataset to estimate the
Hessian, we use 128 random 2048 token segments
from the C4 dataset (Raffel et al., 2019) as in
OPTQ (Frantar et al., 2023). We conduct all exper-
iments using a single NVIDIA A100 GPU (80 GB)
and implement Z-FOLD using PyTorch.

In our experiments, we quantize only weights
and retain activations as full-precision (FP16) since
activations do not pose a significant bottleneck dur-
ing the inference of LLMs (Frantar et al., 2023).
We break the alternating updates of α and ζ in Z-
FOLD (see lines 4-7 in Algorithm 1) when the loss
perturbation ∆L (see equation 1) increases after
the update or the total number of updates exceeds
30 iterations.

After the quantization, we evaluate the perfor-
mance of the quantized LLMs using three bench-

mark datasets (WikiText-2 (Merity et al., 2016),
C4 (Raffel et al., 2019), and PTB (Marcus et al.,
1993)) and several zero-shot tasks.

4.2 Comparison with Others

In Table 1, we summarize quantization results on
OPT models of various sizes (125M to 30B). For
comparison, we also summarize the results for con-
ventional RTN and OPTQ schemes. Overall, Z-
FOLD and OPTQ outperform RTN by a large mar-
gin since they minimize the loss degradation ∆L,
rather than the weight quantization error ∆w, by
exploiting the estimated Hessian. Furthermore, we
can observe that the proposed Z-FOLD outperforms
OPTQ, and the performance gap is getting larger
when quantizing models into a lower bit width.

In the case of 2-bit quantization, for example,
OPTQ collapses completely (perplexity is larger
than 2,000 regardless of the model size and the
test dataset) while Z-FOLD still shows reasonable
perplexity. The outstanding performance of Z-
FOLD results from dividing quantization levels
more precisely using an additional parameter ζ, yet
imposing no extra cost via folding (see Section 3.2).
Such an outperformance can be also observed for
LLaMA (see Table 2) and BLOOM models (see
Table 5 in Appendix A.1).2

Z-FOLD performs better than OPTQ in almost
all cases, and the performance gap is significant
in a low bit width. We note that the quantized
models obtained by OPTQ perform much worse
than the full-precision model even for large-scale

2For BLOOM, GeLU is used as an activation function
between the adjacent linear layers (W1 and W2 in Figure 1).
In this case, ζ of W2 cannot be folded into W1 so we do not
apply Z-FOLD for W2.

Table 3: Quantization (INT2) results for Z-FOLD com-
bined with AdaRound/BRECQ (Perplexity ↓)

Method WikiText-2 PTB C4

Baseline (OPT-125M) 27.65 38.99 26.56

AdaRound 570.5 877.6 298.6
AdaRound + Z-FOLD 158.8 227.6 100.6

BRECQ 53.95 82.19 41.50
BRECQ + Z-FOLD 45.43 60.00 36.73

models (e.g., LLaMA-30B) that might be overpa-
rameterized and thus expected to be quantized with
marginal performance. For example, the perplexity
of the 2-bit LLaMA-30B model is 2065 while that
of the full-precision model is only 4.10. Whereas,
the perplexity obtained by the proposed Z-FOLD is
9.65, which means that the model quantized by
Z-FOLD performs very close to the full-precision
model.

4.3 Generalizability of Z-FOLD

We investigate the generalizability of LLMs quan-
tized by Z-FOLD using zero-shot tasks such as
LAMBADA (Paperno et al., 2016), PIQA (Bisk
et al., 2020), StoryCloze (Mostafazadeh et al.,
2017), and ARC (Easy and Challenge) (Clark et al.,
2018). We recall that the calibration data we used
for the quantization (i.e., random token segments
from the C4 dataset) is excerpts from randomly
crawled websites, which means that our calibration
data is not task-specific (generic) and zero-shot
setting is kept in our experiments.

In Tables 6 to 8 (see Appendix A.2), we summa-
rize the zero-shot performance of quantized LLMs.
From the results, we observe that the models quan-
tized by the proposed Z-FOLD are much more ro-
bust than those obtained by conventional RTN and
OPTQ approaches. In particular, for the LAM-
BADA task, while RTN and OPTQ completely
fail the 2-bit quantization even for 30B models,
Z-FOLD shows reasonable performance owing to
more sophisticated quantization capability induced
by ζ.

4.4 Portability of Z-FOLD

So far, we have used Z-FOLD together with OPTQ
to quantize LLMs. To show the versatility of the
proposed Z-FOLD, we perform the quantization by
combining Z-FOLD with other well-known quanti-
zation approaches such as AdaRound (Nagel et al.,
2020) and BRECQ (Li et al., 2021) (see Table 3).

Table 4: Ablation study for Z-FOLD on 2-bit quantiza-
tion of OPT-125M (Perplexity ↓)

Method
Quant.

WikiText-2 PTB C4
Grid

OPTQ
Min-Max

5606. 3829. 2333.
Z-FOLD 3254. 2940. 1181.

OPTQ
MMSE

978.3 1192. 628.4
Z-FOLD 493.3 680.9 314.9

OPTQ
Hessian

231.1 375.6 186.0
Z-FOLD 152.3 210.1 106.8

We only consider OPT-125M since AdaRound and
BRECQ require more computing resources and
time to complete the quantization of large-scale
models than OPTQ. As in Table 3, we observe
that Z-FOLD greatly enhances the quantization per-
formance of AdaRound and BRECQ. In particu-
lar, when combined with BRECQ, the quantized
model obtained by Z-FOLD shows comparable per-
formance with the full-precision model.

4.5 Ablation Study
We recall that two key features of the proposed
Z-FOLD are 1) additional (foldable) parameters ζ
and 2) Hessian-based computation of quantization
grids (i.e., ζ and α). Note that Z-FOLD utilizes
the Hessian information when determining the step
size while existing works such as AdaRound and
OPTQ use MMSE or Min-Max for the step size.

To examine the impact of each feature, we con-
duct ablation studies (see Table 4). From the results,
we observe that the quantization performance can
be enhanced by exploiting ζ, which demonstrates
the effectiveness of the proposed ζ in refining quan-
tization grids. We also note that the performance
of Z-FOLD can be improved dramatically by uti-
lizing the Hessian H in computing ζ and α. In
other words, we can further optimize the quantized
networks by using the Hessian H in searching the
quantization grid (i.e., α and ζ). Which contributes
to reducing the loss perturbation ∆L rather than
the quantization error ∆W .

5 Conclusion

In this paper, we have proposed a post-training
quantization scheme called Z-FOLD. By capturing
the unique features of the Transformer and fully
leveraging its architecture (pre-LayerNorm and suc-
cessivity of linear layers), we developed a simple
yet powerful approach that enhances the perfor-

mance of quantized models. Our scheme stands
out by quantizing models using a greater number
of parameters than existing approaches, resulting
in enhanced sophistication. Importantly, these ad-
ditional parameters are intelligently fused into ex-
isting ones, eliminating the need for extra hardware
costs. Our findings demonstrate that the Z-FOLD

scheme achieves state-of-the-art performance in
quantized LLMs.

6 Limitations

Our proposed scheme has a dependence on the tar-
get architecture although the pre-LN Transformer
we target (e.g., OPT, BLOOM, and LLaMA) is
broadly used in generative large language models.

Acknowledgements

We would like to thank Junhan Kim, Ph.D for his
helpful discussion.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and
Christopher De Sa. 2023. Quip: 2-bit quantization
of large language models with guarantees. arXiv
preprint arXiv:2307.13304.

Patrick Chen, Si Si, Yang Li, Ciprian Chelba, and Cho-
Jui Hsieh. 2018. Groupreduce: Block-wise low-rank
approximation for neural language model shrinking.
In Advances in Neural Information Processing Sys-
tems, volume 31. Curran Associates, Inc.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems, 35:30318–
30332.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman,
and Luke Zettlemoyer. 2023. QLoRa: Efficient
finetuning of quantized llms. arXiv preprint
arXiv:2305.14314.

Elias Frantar and Dan Alistarh. 2022. Optimal
brain compression: A framework for accurate post-
training quantization and pruning. arXiv preprint
arXiv:2208.11580.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2023. Optq: Accurate quantization for
generative pre-trained transformers. In The Eleventh
International Conference on Learning Representa-
tions.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. arXiv preprint arXiv:2305.02301.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Ji-
quan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019.
Gpipe: Efficient training of giant neural networks
using pipeline parallelism. Advances in neural infor-
mation processing systems, 32.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner,
and Daniel Soudry. 2021. Accurate post training
quantization with small calibration sets. In Inter-
national Conference on Machine Learning, pages
4466–4475. PMLR.

Yongkweon Jeon, Chungman Lee, Eulrang Cho, and
Yeonju Ro. 2022. Mr.BiQ: Post-training non-uniform
quantization based on minimizing the reconstruction
error. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
12329–12338.

Yongkweon Jeon, Chungman Lee, and Ho-young Kim.
2023. GENIE: Show me the data for quantization. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Yongkweon Jeon, Baeseong Park, Se Kwon, Byeong-
wook Kim, Jeongin Yun, and Dongsoo Lee. 2020.
BiQGEMM: Matrix multiplication with lookup ta-
ble for binary-coding-based quantized DNNs. In
The International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC),
pages 1343–1356. IEEE Computer Society.

Jing Jin, Cai Liang, Tiancheng Wu, Liqin Zou, and Zhil-
iang Gan. 2021. KDLSQ-BERT: A quantized BERT
combining knowledge distillation with learned step
size quantization. arXiv preprint arXiv:2101.05938.

Salman Khan, Muzammal Naseer, Munawar Hayat,
Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. 2022. Transformers in vision: A
survey. ACM computing surveys (CSUR), 54(10s):1–
41.

https://proceedings.neurips.cc/paper_files/paper/2018/file/a2b8a85a29b2d64ad6f47275bf1360c6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a2b8a85a29b2d64ad6f47275bf1360c6-Paper.pdf
http://arxiv.org/abs/2301.00774
http://arxiv.org/abs/2301.00774
http://arxiv.org/abs/2301.00774

Yann LeCun, John S Denker, Sara A Solla, Richard E
Howard, and Lawrence D Jackel. 1989. Optimal
brain damage. In Advances in Neural Information
Processing Systems (NIPS), volume 2, pages 598–
605.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu,
Qi Zhang, Fengwei Yu, Wei Wang, and Shi Gu. 2021.
BRECQ: Pushing the limit of post-training quantiza-
tion by block reconstruction. In International Con-
ference on Learning Representations (ICLR).

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie
Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi,
Raghuraman Krishnamoorthi, and Vikas Chandra.
2023. Llm-qat: Data-free quantization aware training
for large language models.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Nasrin Mostafazadeh, Michael Roth, Annie Louis,
Nathanael Chambers, and James Allen. 2017. Ls-
dsem 2017 shared task: The story cloze test. In
Proceedings of the 2nd Workshop on Linking Models
of Lexical, Sentential and Discourse-level Semantics,
pages 46–51.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen,
Christos Louizos, and Tijmen Blankevoort. 2020. Up
or down? adaptive rounding for post-training quan-
tization. In International Conference on Machine
Learning (ICML), pages 7197–7206.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

Minseop Park, Jaeseong You, Markus Nagel, and
Simyung Chang. 2022. Quadapter: Adapter for GPT-
2 quantization. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pages
2510–2517, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 10684–10695.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu,
and Fengwei Yu. 2022. Qdrop: randomly dropping
quantization for extremely low-bit post-training quan-
tization. arXiv preprint arXiv:2203.05740.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien De-
mouth, and Song Han. 2022. Smoothquant: Accurate
and efficient post-training quantization for large lan-
guage models. arXiv preprint arXiv:2211.10438.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. 2020. On layer
normalization in the transformer architecture. In In-
ternational Conference on Machine Learning, pages
10524–10533. PMLR.

Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou,
Yuanbin Cao, Zhirong Wang, and Hongbin Zha. 2018.
Alternating multi-bit quantization for recurrent neural
networks. In International Conference on Learning
Representations (ICLR).

Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and
Yuxiong He. 2023. Zeroquant-v2: Exploring post-
training quantization in llms from comprehensive
study to low rank compensation.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. Advances
in Neural Information Processing Systems, 35:27168–
27183.

http://arxiv.org/abs/2305.17888
http://arxiv.org/abs/2305.17888
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
http://www.aclweb.org/anthology/P16-1144
http://www.aclweb.org/anthology/P16-1144
https://aclanthology.org/2022.findings-emnlp.185
https://aclanthology.org/2022.findings-emnlp.185
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/2303.08302
http://arxiv.org/abs/2303.08302
http://arxiv.org/abs/2303.08302

Dave Zachariah, Martin Sundin, Magnus Jansson, and
Saikat Chatterjee. 2012. Alternating least-squares
for low-rank matrix reconstruction. IEEE Signal
Processing Letters, 19(4):231–234.

Minjia Zhang and Yuxiong He. 2020. Accelerating
training of transformer-based language models with
progressive layer dropping. Advances in Neural In-
formation Processing Systems, 33:14011–14023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

A Additional Experimental Results

In the Appendix, we provide experimental results excluded in the main text due to the page limitation.

A.1 Results for BLOOM Models

Table 5: Quantization performance of Z-FOLD on BLOOM models (Perplexity ↓).

(a) WikiText-2

Method Precision 560M 1.1B 1.7B 3B 7.1B

Baseline FP16 22.42 17.69 15.39 13.48 11.37

RTN†

INT4
25.90 22.00 16.97 14.76 12.10

OPTQ† 24.03 19.05 16.48 14.20 11.73
Z-FOLD 23.58 18.61 15.99 13.90 11.59

RTN†

INT3
57.08 50.19 63.59 39.36 17.38

OPTQ† 32.31 25.08 21.11 17.40 13.47
Z-FOLD 27.16 21.24 17.75 15.21 12.35

RTN
INT2

7.9e5 9.9e5 3.5e5 1.4e5 2.1e5
OPTQ 2646. 2220. 1791. 889.5 218.0
Z-FOLD 76.63 51.41 33.66 27.69 19.69

(b) PTB

Method Precision 560M 1.1B 1.7B 3B 7.1B

Baseline FP16 43.69 57.96 30.00 25.34 20.83

RTN†

INT4
51.10 66.85 33.58 27.68 22.42

OPTQ† 46.97 62.47 31.84 26.49 21.67
Z-FOLD 43.40 49.87 29.19 24.08 19.87

RTN†

INT3
126.0 185.0 106.0 66.78 35.04

OPTQ† 70.35 87.04 46.11 34.02 26.14
Z-FOLD 51.43 58.14 34.44 26.58 21.29

RTN
INT2

1.1e6 2.0e6 3.2e5 1.2e5 1.3e5
OPTQ 4548. 5202. 4254. 2619. 579.2
Z-FOLD 184.6 154.5 68.05 55.57 38.23

(c) C4

Method Precision 560M 1.1B 1.7B 3B 7.1B

Baseline FP16 26.60 22.05 19.49 17.49 15.20

RTN†

INT4
29.89 24.44 21.26 18.76 16.06

OPTQ† 28.00 23.25 20.55 18.10 15.60
Z-FOLD 25.24 20.96 18.53 16.50 14.36

RTN†

INT3
67.49 60.71 113.0 80.49 22.59

OPTQ† 35.78 28.83 25.34 21.25 17.67
Z-FOLD 27.96 22.77 19.93 17.51 15.01

RTN
INT2

1.1e6 1.9e6 2.6e5 8.8e4 1.3e6
OPTQ 763.9 699.6 499.4 332.5 108.0
Z-FOLD 62.17 41.46 33.24 27.12 21.23
† Results are taken from (Frantar et al., 2023).

A.2 Results on Zero-Shot Tasks

Table 6: Zero-shot performance of quantized OPT models (Accuracy ↑).

(a) LAMBADA

Method Precision 125M 350M 1.3B 2.7B 6.7B 13B 30B

Baseline FP16 39.16 46.67 58.80 64.82 68.72 70.23 72.39

RTN †

INT4
18.34 40.62 36.31 59.27 64.66 67.38 70.48

OPTQ† 34.74 48.38 56.45 62.97 66.37 69.12 72.40
Z-FOLD 33.70 48.03 57.83 66.83 69.45 71.14 72.87

RTN †

INT3
0.10 27.36 0.00 0.00 0.00 0.06 1.46

OPTQ† 13.93 32.31 37.26 52.26 54.98 64.18 69.69
Z-FOLD 24.37 51.10 55.33 63.59 69.96 70.48 72.29

RTN
INT2

0.00 0.00 0.00 0.00 0.00 0.00 0.00
OPTQ 0.00 0.00 0.00 0.00 0.83 4.70 26.94
Z-FOLD 6.42 16.67 28.10 43.10 51.58 54.69 65.75

(b) PIQA

Method Precision 125M 350M 1.3B 2.7B 6.7B 13B 30B

Baseline FP16 62.02 64.74 72.36 74.81 76.39 76.88 78.18

RTN †

INT4
61.43 63.44 67.63 73.72 76.44 76.01 77.26

OPTQ† 61.26 63.71 70.73 73.99 76.28 76.61 79.00
Z-FOLD 62.35 64.47 71.33 75.35 76.39 76.55 78.07

RTN †

INT3
56.09 60.61 52.77 51.90 50.49 52.99 56.37

OPTQ† 59.25 61.32 68.34 71.38 73.29 75.24 77.58
Z-FOLD 60.55 63.17 70.78 73.50 76.77 76.01 78.29

RTN
INT2

50.44 50.76 49.62 49.56 49.29 50.38 47.82
OPTQ 52.61 55.71 55.01 56.58 59.58 62.57 67.41
Z-FOLD 57.62 56.80 64.15 64.42 70.78 69.15 74.92

(c) ARC-easy

Method Precision 125M 350M 1.3B 2.7B 6.7B 13B 30B

Baseline FP16 39.69 40.36 50.93 54.34 60.14 61.83 65.40

RTN †

INT4
36.32 38.55 49.20 52.90 57.68 61.31 61.11

OPTQ† 39.02 37.92 59.97 53.11 59.72 61.32 65.11
Z-FOLD 39.02 38.85 50.17 53.24 59.64 61.41 64.81

RTN †

INT3
30.43 36.07 27.97 26.05 25.04 30.60 34.22

OPTQ† 36.15 36.91 46.17 48.19 53.41 56.82 59.72
Z-FOLD 36.83 38.05 47.90 51.56 58.80 59.93 62.75
RTN

INT2
25.84 25.72 25.42 25.34 25.59 26.05 25.29

OPTQ 28.07 25.93 26.05 26.18 30.30 31.06 40.24
Z-FOLD 32.41 31.78 40.74 40.36 47.31 49.03 54.80

(d) ARC-challenge

Method Precision 125M 350M 1.3B 2.7B 6.7B 13B 30B

Baseline FP16 22.87 24.06 29.44 31.31 34.56 35.75 38.14

RTN †

INT4
22.44 23.81 24.91 29.18 32.59 35.24 35.41

OPTQ† 22.95 24.83 28.24 30.12 33.70 34.90 37.80
Z-FOLD 23.46 24.15 29.10 29.86 33.96 34.64 37.37

RTN †

INT3
21.76 22.18 23.55 25.43 25.85 23.81 19.97

OPTQ† 22.53 25.09 27.65 27.82 31.91 33.02 35.84
Z-FOLD 22.35 23.46 28.07 28.92 34.04 33.53 34.98

RTN
INT2

26.37 25.60 23.81 26.71 25.94 27.22 26.54
OPTQ 24.40 24.74 23.98 26.79 23.81 24.06 26.54
Z-FOLD 23.04 21.84 25.60 24.83 26.88 28.50 30.38

(e) StoryCloze

Method Precision 125M 350M 1.3B 2.7B 6.7B 13B 30B

Baseline FP16 59.96 63.21 70.78 71.74 74.60 76.64 77.28

RTN †

INT4
60.02 63.08 59.13 70.78 73.65 74.47 75.37

OPTQ† 59.58 63.46 69.64 70.46 73.90 76.19 77.08
Z-FOLD 61.23 62.44 69.89 71.93 74.54 76.00 76.96

RTN †

INT3
49.65 56.78 47.61 46.98 48.12 49.20 49.84

OPTQ† 57.03 60.15 65.25 68.43 70.97 73.07 75.68
Z-FOLD 59.00 60.92 68.68 70.66 74.92 74.79 76.64

RTN
INT2

48.12 49.20 48.76 47.74 48.63 48.50 48.19
OPTQ 51.94 54.23 53.47 52.51 54.04 61.17 65.63
Z-FOLD 53.15 54.55 62.19 64.42 67.79 68.87 72.12
† Results are taken from (Frantar et al., 2023).

Table 7: Zero-shot performance of quantized BLOOM models (Accuracy ↑).

(a) LAMBADA and PIQA

Method Precision
LAMBADA PIQA

560M 1.1B 1.7B 3B 7.1B 560M 1.1B 1.7B 3B 7.1B

Baseline FP16 34.06 42.85 46.71 52.12 57.70 65.07 67.14 69.97 70.51 73.72

RTN†

INT4
26.00 39.06 41.92 45.84 50.48 63.11 65.29 67.74 69.86 72.69

OPTQ† 31.75 39.80 46.28 51.41 54.65 64.31 66.05 68.77 69.42 72.96
Z-FOLD 35.34 43.94 47.53 51.43 58.14 63.98 66.97 68.34 69.91 72.69

RTN†

INT3
9.10 15.95 15.02 24.55 29.90 58.60 60.80 60.88 66.28 69.70

OPTQ† 21.31 28.70 33.65 43.12 47.41 61.62 62.62 65.18 68.34 70.95
Z-FOLD 31.73 34.66 45.12 50.13 58.72 62.57 65.45 67.14 69.10 70.89

RTN
INT2

0.00 0.00 0.00 0.00 0.00 51.09 48.53 49.23 49.73 50.22
OPTQ 0.06 0.39 0.12 1.16 4.44 51.03 50.76 50.76 51.90 55.66
Z-FOLD 14.55 19.02 34.43 31.59 42.52 56.37 60.12 61.21 64.42 66.21

(b) ARC-easy and StoryCloze

Method Precision
ARC-easy StoryCloze

560M 1.1B 1.7B 3B 7.1B 560M 1.1B 1.7B 3B 7.1B

Baseline FP16 41.71 45.41 48.11 53.24 57.37 61.94 63.27 65.44 67.79 71.99

RTN†

INT4
39.40 42.51 44.70 51.35 56.14 60.15 60.66 62.95 67.09 70.72

OPTQ† 40.24 44.49 44.49 52.82 56.14 61.17 62.32 64.48 67.22 71.36
Z-FOLD 40.82 44.07 45.62 52.48 55.47 61.43 63.21 64.67 67.60 70.97

RTN†

INT3
45.44 46.87 37.58 45.08 48.61 54.87 56.08 55.79 59.83 66.20

OPTQ† 39.14 41.79 42.85 46.63 51.56 57.80 59.77 61.81 63.97 69.26
Z-FOLD 39.94 42.56 44.23 48.82 53.20 59.96 62.44 63.21 67.03 69.51

RTN
INT2

26.81 27.10 27.27 26.56 27.95 47.29 46.53 45.83 46.15 46.40
OPTQ 31.61 33.84 34.34 35.65 38.05 49.71 49.97 48.89 50.80 53.34
Z-FOLD 34.05 35.69 39.06 40.91 43.94 53.47 56.46 59.26 61.11 63.33
† Results are taken from (Frantar et al., 2023).

Table 8: Zero-shot performance of quantized LLAMA models (Accuracy ↑).

(a) ARC-challenge and HellaSwag

Method Precision
ARC-challenge HellaSwag

7B 13B 30B 7B 13B 30B

Baseline FP16 44.48 48.83 52.17 76.19 79.06 82.64

RTN
INT4

43.13 44.48 52.83 74.17 77.06 81.54
OPTQ 43.81 46.15 48.83 75.09 77.87 81.32
Z-FOLD 43.81 47.83 52.84 75.40 78.25 82.40

RTN
INT3

20.40 37.79 28.43 45.42 62.06 31.49
OPTQ 34.78 34.78 45.82 68.74 73.15 78.05
Z-FOLD 39.46 45.82 49.83 72.35 75.62 79.60

RTN
INT2

26.42 28.43 29.10 26.47 26.10 25.89
OPTQ 29.43 26.42 33.11 25.32 26.35 26.03
Z-FOLD 28.43 31.44 38.80 53.87 57.09 64.53

(b) PIQA and OpenBookQA

Method Precision
PIQA OpenBookQA

7B 13B 30B 7B 13B 30B

Baseline FP16 79.16 80.14 82.21 42.60 43.80 45.60

RTN
INT4

78.24 79.54 80.69 42.60 42.40 44.20
OPTQ 78.40 79.76 81.01 42.40 44.20 45.80
Z-FOLD 79.05 80.09 81.23 43.40 43.20 47.80

RTN
INT3

65.83 72.20 65.34 29.40 35.00 32.00
OPTQ 75.14 77.64 79.00 40.40 39.80 41.80
Z-FOLD 78.02 79.27 79.05 40.60 40.80 45.20

RTN
INT2

49.24 50.00 50.33 23.20 24.40 25.40
OPTQ 50.49 50.44 48.97 24.80 22.80 23.40
Z-FOLD 70.24 72.09 73.99 32.80 33.80 36.60

