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ABSTRACT

Data-analytic agents are emerging as a key catalyst for automated scientific dis-
covery and for the vision of Innovating AI. Current approaches, however, rely
heavily on prompt engineering or multi-agent scaffolds over proprietary models,
while open-source models still struggle with diverse-format, large-scale data files
and long-horizon, multi-step reasoning that real-world analytics demands. This
paper introduces DATAMIND, a scalable data synthesis and agent training recipe
designed to construct generalist data-analytic agents. DATAMIND tackles three key
challenges in building open-source data-analytic agents, including insufficient data
resources, improper training strategy, and unstable code-based multi-turn rollout.
Concretely, DATAMIND applies 1) a fine-grained task taxonomy and a recursive
easy-to-hard task composition mechanism to increase the diversity and difficulty
of synthesized queries; 2) a knowledge-augmented trajectory sampling strategy
followed by model-based and rule-based filtering; 3) a dynamically adjustable
training objective combining both SFT and RL losses; 4) a memory-frugal and
stable code-based multi-turn rollout framework. Built on DATAMIND, we curate
DATAMIND-12K, a high-quality trajectory set spanning diverse domains, task cate-
gories, and data file formats for data-analytic tasks. Trained on DATAMIND-12K,
our DATAMIND-14B achieves state-of-the-art with an average score of 71.16%
on multiple data analysis benchmarks, outperforming the strongest proprietary
baselines DeepSeek-V3.1 and GPT-5. Our DATAMIND-7B also performs best
among all open-source models with a score of 68.10%. We also list some empirical
insights gained from our exploratory trials in the analysis experiments, aiming
to provide actionable insights about agent training for the community. We have
released DATAMIND-12K and DATAMIND-7B,14B for the community1.
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(a) Task taxonomy used in DATAMIND for fine-grained
and diverse query synthesis.
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Figure 1: (a) Task Taxonomy. We categorize data analysis tasks into 18 fine-grained categories to enhance the
diversity of our synthesized queries. (b) Performance Comparison. Our DATAMIND-14B achieves the best
compared with all proprietary models and open-source trained or untrained models.

∗ Equal Contribution.
† Corresponding Author.
1 Code: https://github.com/zjunlp/DataMind.

1

https://github.com/zjunlp/DataMind


Published as a conference paper at ICLR 2026

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated formidable performance on a wide spectrum
of reasoning tasks spanning math, code, and science (DeepSeek-AI et al., 2025; Kimi et al., 2025;
OpenAI, 2025a; Yang et al., 2025). As AI enters its second half (Yao, 2025), a surge of LLM Agentic
benchmarks targeted in increasingly complex and domain-specific scenarios (Jimenez et al., 2024;
Starace et al., 2025; Mialon et al., 2024; Phan et al., 2025; Wei et al., 2025a) is emerging. Among
them, Automated Data Analysis (Hu et al., 2024; Jing et al., 2025; Liu et al., 2024; Majumder et al.,
2025), an essential pillar of AI for scientific research, plays a critical role in realizing Innovating AI
and has shown its promise to boost research efficiency and accelerate scientific discovery (Chen et al.,
2025b; Schmidgall et al., 2025; Lu et al., 2024; Chai et al., 2025).

Data-Analytic Agents process, model, and compute data by generating code to discover useful
information or regular conclusions, thereby furnishing users with insights to support decision-making.
However, existing data-analytic agents (Zhang et al., 2023; Hong et al., 2025; Li et al., 2024; Sun
et al., 2025; Guo et al., 2024) are overwhelmingly built on proprietary models via prompt engineering
and rely on predefined workflows or multi-agent scaffolds. The few open-source trained models (Wu
et al., 2025b;c; Su et al., 2024) can only perform simple table understanding tasks (tables compact
enough to fit into the prompt) and can easily break down when confronted with diverse-format,
large-scale data files and long-horizon, multi-step reasoning demanded by real-world tasks.

Challenges. In this work, we propose to train a generalist, open-source data-analytic agent. This
endeavor entails several intrinsic challenges that must be addressed: 1) Insufficient data resources.
Training a specialized agent demands a large-scale, high-quality collection of tasks and corresponding
solution trajectories. However, publicly available data analysis benchmarks often only provide
a limited test set for evaluation purposes and lack step-by-step trajectory annotations, making it
infeasible to assemble an effective training corpus from off-the-shelf resources. 2) Improper training
strategy. Current agent training strategies typically follow an SFT-then-RL paradigm. Yet, in a new
scenario, it remains unclear how to stabilize long-horizon agent training and how to allocate training
steps across SFT and RL to achieve optimal performance. 3) Unstable code-based multi-turn rollout.
Data files and code interpreters involve intricate memory management. Parallel agentic rollout and
multi-turn code generation with limited memory resources will further exacerbate this situation.

The DATAMIND Pipeline. In response to the above challenges, we introduce DATAMIND, a scalable
data synthesis and agent training recipe designed to build generalist data-analytic agents. To construct
a large-scale training corpus, we begin by harvesting a diverse collection of data files in various
formats and domains from the Internet and open communities. Then, we apply a fine-grained task
taxonomy (see Fig.1a) and a recursive easy-to-hard task composition mechanism to increase the
diversity and difficulty of our synthesized queries. Next, we adopt a knowledge-augmented trajectory
sampling strategy to improve both the validity and reliability of synthesized trajectories. A model-
based judger performs self-consistency filtering on these trajectories, followed by rule-based checks.
The judgment signal will also be fed back to the model to encourage refinement, enriching the thinking
patterns present in the final training set. During training, we combine SFT loss and RL loss with a
dynamic coefficient to schedule the relative weight of SFT versus RL across training steps, allowing
us to balance exploitation and exploration to stabilize training. For parallel multi-turn rollout, we
asynchronize agent generation and code execution and utilize a chunk-wise code maintenance method
to reduce peak memory usage. Moreover, we sandbox each trajectory in an isolated environment with
strict caps on execution time and memory usage, enabling stable code-based multi-turn rollout.

Results and Insights. Through the DATAMIND pipeline, we curate DATAMIND-12K, a high-
quality training set that spans diverse task categories and data file formats for data-analytic tasks.
When trained on DATAMIND-12K, our 14B model, DATAMIND-14B, achieves a new state-of-
the-art with an average score of 71.16% on multiple data analysis benchmarks, outperforming the
strongest proprietary baselines DeepSeek-V3.1 and GPT-5 and surpassing all open-source models by
a substantial margin (see Fig.1b). Our DATAMIND-7B also performs best among all open-source
models with a score of 68.10%. Our additional analysis studies yield three valuable insights for the
community: 1) Self-consistency filtering is more non-trivial than the best trajectory selection; 2) SFT
loss can be an effective stabilizer for RL training, but can also be the culprit of unstable training. 3)
RL can narrow the performance gap between different base models, but can hardly reverse the order.
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Figure 2: The Pipeline of DATAMIND. DATAMIND applies 1) a fine-grained task taxonomy and a recursive
easy-to-hard task composition mechanism; 2) a knowledge-augmented trajectory sampling strategy followed by
model-based and rule-based filtering; 3) a dynamically adjustable training objective including both SFT and RL
losses; 4) a memory-frugal and stable code-based multi-turn rollout framework.

2 PROBLEM DEFINITION

A data analysis task u is typically represented as a quadruple u = (q, f, d, a), comprising the user
query q, the data file f , the data description d, and the answer a, where data file f may be provided
in a variety of formats (.csv, .xlsx, .sqlite, etc.), and data description d is optional.

Our agent framework adheres to the prevailing ReAct (Yao et al., 2023) paradigm. Upon receiving a
task, the agent is required to iterate multiple rounds of Thought-Action-Observation cycles
and finally produce an answer. In the data analysis scenario, Thought denotes the agent’s reasoning
and reflection process conditioned on the current context; Action refers to the agent’s invocation of
code to process and compute over the data files or the generation of the final answer. The code may
be written in 3 Python or õ SQL, depending on the data file format; Observation consists of
the execution feedback returned by the environment (i.e., �Code Interpreter).

Given task u, let a Thought-Action-Observation loop be represented by (τ, α, o), respec-
tively. Then the agent’s historical trajectory h at time step t can be denoted as:

ht = (u, τ0, α0, o0, τ1, α1, o1, . . . , τt−1, αt−1, ot−1). (1)

Conditioned on the history trajectory ht, the agent with parameters θ will produce its next thought τt
and action αt according to the policy πθ(τt, αt|ht) and will receive an observation ot from the code
interpreter after action αt is executed. The whole trajectory terminates either when the agent emits
an answer or when a predefined maximum number of rounds T is reached. For simplicity, in the
following sections, we denote the input part provided to the agent (including q, f , and d) as x and
the trajectory (including answer a) sampled from the agent as y ∼ πθ(·|x).

3 SCALING DATA-ANALYTIC AGENT DATA

3.1 FILE COLLECTION AND QUERY SYNTHESIS

Data File Collection. First, we need a large amount of raw data files f to scale up the potential
synthesized task volume. Fortunately, the Internet and the open community benchmarks already host
a massive reservoir of such files. We first target Kaggle, which contains tens of thousands of .csv
and .xlsx spreadsheets. Using the official Kaggle API2, we crawl a diverse subset of files spanning
multiple domains, and then discard files that i) can not be loaded, ii) are extremely small (< 20 rows)
or large (> 1, 000 rows), or iii) contain anomalous data types. After this pipeline, we retain 3, 400
.csv and 560 .xlsx files. For database files, we draw primarily from the training set of BIRD (Li
et al., 2023b) and OmniSQL (Li et al., 2025a), both of which are high-quality corpora widely used
in the Text-to-SQL field. Similarly, we sample from these sources and apply an analogous filtering
pipeline, finally obtaining 1, 954 .sqlite files.

2https://www.kaggle.com/docs/api.
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Query Categorization and Synthesis. To generate specific queries, we devise an automated script
to extract meta-information d of each data file, such as table headers, column names, data types,
and representative rows, and then feed these metadata into DeepSeek-V3 (DeepSeek-AI, 2024) to
synthesize queries q. To ensure both diversity and fine-grainedness of the generated questions, we
refer to and refine the taxonomy in Wu et al. (2025b) and classify the data analysis tasks into 18
fine-grained categories (see Fig.1a). For each category, we carefully curate 4 ∼ 6 exemplar queries
that vary in complexity and domains and serve as few-shot demonstrations. Under the guidance of
these type-specific contexts, every data file is used to generate a diverse set of queries that span the
full spectrum of the proposed taxonomy. To further elevate query complexity, we adopt a recursive
easy-to-hard composition scheme that chains multiple task types, i.e., the output of one task is fed
as input to the next. By iterating 2 ∼ 5 times, we progressively amplify the difficulty and create
multi-hop analytic challenges that go well beyond the capability required by any single task type.
The prompts for query synthesis can be found in Appx.I.2.

3.2 EXPERT TRAJECTORY SAMPLING AND FILTERING.

Knowledge Augmented Trajectory Sampling. To guarantee the quality of the synthesized trajecto-
ries, we introduce a knowledge-augmented trajectory sampling framework. Initially, for each question
category, we manually craft a high-level workflow k that encodes procedural knowledge and steers
the model during trajectory synthesis. To further boost answer quality, we impose a self-consistency
filter. We sample N independent trajectories per query and employ a judge model M powered by
GPT-4o-mini (OpenAI, 2024b) to verify whether their final answers are consistent with reasoning
rationales. Only trajectories that converge to the same answer are retained; among them, the judge
model will also select the most concise and accurate one as our training instance y:

{c, s, y} = M({yi}Ni=1), {yi}Ni=1 ∼ πθexpert(·|k, x), y =

{
yi ∈ {yi}Ni=1, s = 1

none, s = 0
, (2)

where c is the chain-of-thought process of the judge model to reach the binary conclusion s of whether
the sampled trajectories are consistent. We use DeepSeek-V3.1 (DeepSeek-AI, 2025) as our expert
policy model πθexpert . During implementation, we set N = 3. The prompt used for trajectory sampling
and the judge model M can be found in Appx.I.3 and Appx.I.4, respectively. We extract the final
answer from the trajectory as the final synthesized answer a for the corresponding query q. However,
this pipeline inherently biases us toward easier queries whose answers are more likely to coincide.
To counteract this, we refine the high-level workflow knowledge k into more granular, step-by-step
instructions for categories that exhibit low inter-trajectory consistency. Moreover, for trajectories that
fail the consistency check, we feed the judge model’s chain-of-thought back to the agent as external
critique, prompting it to reflect and revise its reasoning path:

{yireflected}Ni=1 ∼ πθexpert(·|k, x, {yi}Ni=1, c), if s = 0. (3)

The reflected trajectories {yireflected}Ni=1 will be fed into the judge model M again to conduct the
consistency check and the trajectory selection in Eqn.2. This rescue loop not only salvages additional
usable data but also enriches the diversity of thinking patterns embedded in the trajectory pool.

Rule-based Trajectory Filtering. In addition to discarding inconsistent trajectories, we apply three
further rule-based filtering stages. 1) Format compliance. We drop any trajectory that deviates
from the ReAct format, ensuring that every remaining trajectory can be losslessly converted into
our target training schema. 2) Length control. We filter out trajectories whose final answer exceeds
1, 024 tokens, preventing the model from exploiting spurious hallucinations to artificially hit the
correct string. 3) Linguistic integrity. We remove trajectories containing garbled text or intermingled
natural languages, eliminating samples that could destabilize the agent training. After the full filtering
pipeline, we retain 11, 707 high-quality trajectories named as DATAMIND-12K.

4 SCALING DATA-ANALYTIC AGENT TRAINING

Dynamic Control Between SFT and RL. In this paper, we adopt a combined paradigm of
Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) for the agent training. Empirically,
we observe that it is difficult to strike a balance between the two stages: the model needs to absorb
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sufficient knowledge from expert data during SFT, yet excessive imitation often rigidifies exploration
during RL. Hence, following Zhang et al. (2025b), we employ a hybrid strategy that dynamically
blends on-policy and off-policy learning, allowing the training procedure to flexibly trade off between
exploitation of expert knowledge and continued exploration.

Given the training dataset D, we express our SFT loss as:

LSFT(θ) = −E(x,y)∼D

[ |y|∑
t=1

I(yt /∈ o) · log πθ(yt|x, y<t)

]
, (4)

where I(yt /∈ o) is an indicator function that masks out any tokens produced by the environment
feedback, ensuring that the model is optimized only on the agent-generated portion of the trajectory.
For RL, we use the Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO) (Yu et al.,
2025) algorithm, minimizing the following function:

LDAPO(θ) =− E(x,y)∼D,{y∗
i }G

i=1∼πθold (·|x)[
1∑G

i=1 |y∗i |

G∑
i=1

|y∗
i |∑

t=1

min

(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− εlow, 1 + εhigh

)
Âi,t

)]
s.t. 0 <

∣∣∣{y∗i | is_equivalent(y, y∗i )}
∣∣∣ < G,

(5)

where {y∗i }Gi=1 is a group of G trajectories sampled from the agent policy πθold and y is the expert
trajectory. Similar to SFT, any tokens emitted by the environment are discarded when computing the
objective. ri,t(θ) denotes the per-token importance-sampling ratio, and Âi,t is the advantage of the
i-th response, obtained by normalizing the group-level rewards {Ri}Gi=1:

ri,t(θ) =
πθ(y

∗
i,t | x, y∗i,<t)

πθold(y
∗
i,t | x, y∗i,<t)

, Âi,t =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
. (6)

The inequality in Eqn.5 serves as a filtering criterion that discards trajectories lacking optimization
utility whose rewards are uniformly 0 or uniformly 1 to prevent spurious gradient updates.

Finally, unlike the conventional SFT-then-RL pipeline, we jointly optimize the agent by combining
the SFT and RL objectives with a dynamically balanced weighting factor:

LFinal(θ) = γLSFT(θ) + (1− γ)LDAPO(θ), (7)

where γ ∈ [0, 1] varies dynamically throughout training. In our implementation, γ is initialized to a
large value so that the agent first acquires knowledge from expert data via the SFT loss, and is then
annealed to a small value to encourage extensive exploration through RL. Please refer to §5.4 for our
analysis of different γ settings. Importantly, for any trajectory that is filtered out by the inequality in
Eqn.5, we will compute only the SFT loss. To increase the likelihood of producing eligible trajectories
during the early stage of RL training, we perform a cold start using DATAMIND-12K before the
process described above. We also analyze the effect of cold start for RL training in §5.4.

Void Turns Filtering. In multi-turn agentic training, the model can experience distributional drift
due to external feedback and multi-turn compounding errors during multi-turn rollout, which will
easily result in trajectory collapse, thereby destabilizing RL training (Xue et al., 2025; Baronio et al.,
2025; Mai et al., 2025). We also observe this phenomenon in our experiments. To stabilize training,
we directly mask out the entire loss contributed by trajectories that contain void turns. Here, a void
turn is defined as an agentic loop that fails to produce a valid code snippet or answer.

Agentic Code-based Multi-turn Rollout. A stable environment plays a key role in stable on-policy
RL training. In data-analytic agent training, massive concurrent file I/O and code execution can
easily lead to environment crashes, especially with limited memory resources. To prevent this, we
implement three optimizations: 1) Asynchronous interaction. We asynchronize model generation
and code execution for different data samples, which can decouple peak GPU and CPU memory
demands and avoid simultaneous file I/O and code-execution spikes. 2) Chunked code maintenance.
We implement a light-weight, notebook-style code generation strategy. The model only needs to
produce the code snippet required for the current reasoning step, effectively reducing generation
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Table 1: Main Results. ♣ indicates that the original paper does not report results for the corresponding model
and we use their official data and code to train the model for reproduction. ‡ denotes that we directly download
their official trained model for fair evaluation. The best results for each model group are highlighted in bold.

Backbone Method DABench TableBench BIRD Avg.

pass@1 pass@3 pass@1 pass@3 pass@1 pass@3 pass@1 pass@3

Proprietary Models

GPT-4o

ReAct

76.39 84.44 64.97 75.06 50.20 62.39 63.85 73.96
o4-mini 79.12 86.77 71.03 80.15 57.04 66.88 69.06 77.93
DeepSeek-R1 78.73 87.55 68.96 79.52 55.80 66.17 67.83 77.75
DeepSeek-V3.1 81.32 89.49 72.52 81.68 57.89 68.12 70.58 79.76
GPT-5 78.21 85.21 69.93 78.37 60.17 65.19 69.44 76.26

Open-source Models

Qwen-2.5-Coder-32B

ReAct

73.15 81.32 61.11 72.26 41.20 60.17 58.49 71.25
QwQ-32B 70.17 85.21 57.79 75.19 50.30 64.21 59.42 74.87
Llama-3.3-70B 69.78 80.16 55.47 70.36 59.10 68.58 61.45 73.03
Qwen-2.5-72B 75.33 86.38 65.44 76.21 60.30 69.49 67.02 77.36

Qwen-2.5
Coder-7B

ReAct 15.05 35.41 11.70 28.63 7.02 18.71 11.26 27.58
TableLLM♣ 36.71 71.98 41.01 70.36 11.99 16.75 29.90 53.03
Table-R1♣ 42.54 78.99 56.36 63.61 10.69 13.49 36.53 52.03
OmniSQL‡ 26.46 36.19 39.95 50.25 57.11 66.30 41.17 50.91
SQL-R1‡ 24.90 34.63 40.84 50.64 56.78 66.23 40.83 50.50
DATAMIND 77.30 87.94 67.60 79.39 59.41 69.88 68.10 79.07

Qwen-2.5
Coder-14B

ReAct 71.21 83.27 56.96 69.97 41.76 59.91 56.64 71.05
TableLLM♣ 38.26 74.71 46.44 76.08 20.99 28.88 35.23 59.89
Table-R1♣ 45.33 79.38 50.38 58.91 11.80 14.08 35.84 50.79
OmniSQL‡ 26.46 39.30 41.98 52.67 58.80 67.41 42.41 53.13
SQL-R1‡ 27.24 40.47 41.22 51.02 58.02 66.62 42.16 52.70
DATAMIND 80.29 88.72 70.95 81.81 62.23 70.21 71.16 80.25

latency. Furthermore, whereas conventional notebook systems maintain a global variable pool,
which is memory-intensive, we retain only the textual code chunks. At runtime, we concatenate the
active snippet with its predecessors, yielding the same global execution effect without the memory
overhead. 3) Security Control. To ensure secure code execution, we isolate the runtime environment
for each trajectory, enforce per-trajectory limits on CPU time and peak memory, and filter any
snippet containing insecure function calls before execution. Additionally, we provide an automatic
package-installation mechanism that dynamically checks and installs uninstalled Python packages.

Reward Design. Our reward mainly comprises three components: format reward rformat, answer
reward ranswer, and length reward rlength. The agent is required to enclose its reasoning process
within <think>...</think> tags, place any generated data-processing code between <code> and
</code>, and wrap its final answer in <answer>...</answer>. The environment’s execution
results will be placed between <interpreter> and </interpreter>. For the answer reward,
as many answers are descriptive and thus resist rule-based verification, we adopt a model-as-judge
powered by GPT-4o-mini (OpenAI, 2024b). We engineer a dedicated LLM evaluation prompt detailed
in Appx.I.4. Both rformat and ranswer are binary with only 0 and 1. To mitigate the risk of the agent
hacking the answer reward by hallucinating excessive tokens, we further impose a length-based
penalty to discourage overly verbose outputs. We define the length reward and the final reward as:

R =


rlength · ranswer, ranswer = 1

0, rformat = 1, ranswer = 0

−0.1, rformat = 0, ranswer = 0

, rlength =


1, l ≤ lmin
lmax−l

lmax−lmin
· 0.5 + 0.5, lmin < l ≤ lmax

0.5, lmax < l

(8)

We incentivize correct outputs. So as long as the predicted answer exactly matches the ground truth,
the model will receive a high reward (≥ 0.5). The specific value is length-dependent: we award a
full reward if the answer length l is shorter than lmin; it decays linearly to 0.5 when the length falls
between lmin and lmax; any sequence longer than lmax incurs a fixed length penalty of 0.5. According
to our observation, we set lmin and lmax to 256 and 1024 respectively during our experiments.
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Metrics. We evaluate our model on three datasets related to data analysis: DABench
(Hu et al., 2024), TableBench (Wu et al., 2025b), and BIRD (Li et al., 2023b). Our evaluation
protocol aligns with our answer reward method, where a judge model powered by GPT-4o-mini
(OpenAI, 2024b) is used to evaluate the correctness of the final answer. We report both pass@1 and
pass@3 scores for all the methods. Please refer to Appx.D for more details.

Models and Baselines. We compare our models with five strong proprietary models and four
outstanding open-source models (see Tab.1). In addition, we select four open-source models that
have been explicitly trained for data-analysis-related tasks: TableLLM (Wu et al., 2025b), Table-R1
(Wu et al., 2025c), OmniSQL (Li et al., 2025a), and SQL-R1 (Ma et al., 2025). We include Qwen-
2.5-Coder-7B and 14B (Hui et al., 2024) as our backbone models to compare different baselines.
Detailed model information and reproduction protocols for all baselines are provided in Appx.E.

Training and Inference Setups. We use LlamaFactory (Zheng et al., 2024) for SFT training and
verl (Sheng et al., 2025) for RL training. For SFT, our learning rate is 1e− 5 with a warmup ratio
of 0.1 and a cosine decay schedule. Our global batch size is set to 16. For RL, we use a learning
rate of 1e− 6. The batch size is 32 with a mini batch size of 4 and the number of epochs is 1. The
rollout temperature is 0.7, the top-p is 1.0, and the group size G is 4. We schedule γ via cosine decay,
annealing from a peak of 0.9 to a valley of 0.05. At test time, we fix the temperature to 0.7, top-p to
0.95, and an inference batch size of 5 for all evaluations. For all the processes, the maximum number
of interaction rounds T is set to 10. Each of the training experiments can be run on a machine with 8
80G A100 GPUs within 2 days. The detailed hyperparameter information can be seen in Appx.F.

5.2 MAIN RESULTS
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Figure 3: Ablation on Data.

As shown in Tab.1, our 7B model, DATAMIND-7B, achieves the
best among all open-source models with an average score of
68.10%. Our 14B model, DATAMIND-14B, attains an average
score of 71.16% across all tasks, surpassing all proprietary mod-
els (including the latest GPT-5 and DeepSeek-v3.1) as well as
all open-source alternatives. Moreover, our DATAMIND series
models demonstrate robust mastery of diverse data formats and
exhibit balanced performance across all datasets. By contrast,
specialized models degrade sharply when confronted with unseen
data. For example, OmniSQL-7B reaches 57.11% on BIRD, yet
its performance on TableBench and DABench drops steeply. Note
that to ensure a fair evaluation, we have converted all tables in these two benchmarks into .sqlite
files. Nevertheless, SQL-oriented models still underperform. This observation indicates the breadth
of query types and file formats covered by DATAMIND-12K. Furthermore, TableLLM and Table-
R1 are limited to small-scale tables. When evaluated on DABench’s large-scale tables, they fail
to generalize, and their accuracy deteriorates even further on BIRD’s multi-table analysis. These
results highlight our model’s capacity to handle complex tabular data, which can be attributed to the
difficulty distribution embedded in DATAMIND-12K. Moreover, all trained baselines are exposed
to significantly larger training corpora than ours (20K instances for TableLLM and Table-R1, and
2.5M for OmniSQL and SQL-R1, versus only 12K for DATAMIND), yet we outperform them even
on their adept benchmarks. This gain is attributable to the high-quality reasoning trajectories curated
in DATAMIND-12K and our stable training strategy. Our model also maintains a high pass@3 score,
preserving strong generation diversity while ensuring reliability.

5.3 ABLATION STUDIES

Ablation on Data Volume. We conduct an ablation study on the impact of training data scale by
randomly sampling 2K, 4K, and 8K instances from DATAMIND-12K to train the agent. The average
performance of the 7B model on all the benchmarks is reported in Fig.3. It shows that as the training
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Figure 4: Analysis on Self-Consistency Filtering and Best Trajectory Selection. Con-select is our original
setting, including self-consistency filtering and best trajectory selection by a judge model M. Non-select uses all
the sampled trajectories without the best selection. Random-select means randomly select a trajectory instead of
the best selection. Non-con directly leverages all the synthesized trajectories without self-consistency filtering.

data volume increases, the model’s performance exhibits a clear scaling law, demonstrating the
scalability of the DATAMIND data-synthesis pipeline. Another intriguing observation is that the gap
between pass@1 and pass@3 gradually narrows as the data size grows. This pattern seems to align
with the conclusion in Yue et al. (2025a): RL training tends to increase the likelihood of generating
correct samples, yet contributes little to expanding the model’s coverage of solvable problems.

Table 2: Ablation Results of Differ-
ent Agent Training Strategy.

Method Avg.

pass@1 pass@3

SFT 62.54 73.74
zero-RL 58.03 71.72
SFT-then-RL 63.42 75.46
SFT-and-RL 68.10 79.07

Ablation on Training Strategy. In Tab.2, we demonstrate
the superiority of our hybrid SFT+RL training objective by
comparing with pure SFT, zero-RL, and SFT-then-RL on the
7B model. We need to say that the majority of our performance
gains stem from our high-quality training data, as SFT alone
raises the score from 11.26% (ReAct) to 62.54%, substantially
closing the gap with other strong models. However, zero-RL
performs markedly worse than SFT, while SFT-then-RL yields
only marginal gains over pure SFT. On the contrary, our hybrid

training strategy can further boost the model performance to 68.10% of pass@1 and 79.07% of
pass@3. What these numbers do not reveal is the training stability conferred by our hybrid objective,
as both zero-RL and SFT-then-RL can easily fall into collapse (detailed analysis about training
stability can be found in §5.4), and we need to run many trials and select a relatively good checkpoint
that performs best on the validation set.
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DataMind-7B
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Figure 5: Ablation on Judge Model. Solid
markers denote results on DABench; hollow
markers correspond to TableBench.

Ablation on Evaluation Method. Because the same
judge model is used during both training and evaluation, to
rule out the possibility that our model wins by hacking the
judge, we re-score representative baselines on DABench
and TableBench with Qwen-2.5-72B serving as an external
judge, and plot the pairwise mapping between the two
judges in Fig.5. As shown, the rankings produced by
the two judges are virtually identical (each model–dataset
pair contributes two points, corresponding to pass@1 and
pass@3). Quantitatively, the Pearson correlation between
the two sets of scores is 0.96, indicating an almost perfect
linear relationship. Furthermore, we isolate the descriptive-
generation tasks in TableBench and evaluate the outputs of
DATAMIND and the baselines with the dataset’s original
objective metric, Rouge-L, in Appx.G.4. The resulting
rankings again align closely with those produced by our
model-as-judge. Nevertheless, Rouge-L clearly fails to capture true model performance. It over-
emphasizes surface lexical and sentence overlap with the gold label rather than answer correctness.
Even the powerful DeepSeek-V3.1 attains a very low Rouge-L score, underscoring the rationality
and fairness of employing a judge model for evaluation.

5.4 ANALYSIS

Self-consistency filtering is more non-trivial than the best trajectory selection. In Fig.4, we
analyze the impact of the self-consistency trajectory filtering and best trajectory selection strategies
through SFT on the 7B model. It is evident that removing the self-consistency filtering (non-con)

8



Published as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140
Step

0.0

0.1

0.2

0.3

0.4

Re
w

ar
d 

Va
lu

e

=0
Original Rewards
EMA Smoothed Rewards

0 20 40 60 80 100
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
w

ar
d 

Va
lu

e

=0.2

Original Rewards
EMA Smoothed Rewards

0 50 100 150 200 250 300 350
Step

0.2

0.4

0.6

0.8

Re
w

ar
d 

Va
lu

e

Dynamic 

Original Rewards
EMA Smoothed Rewards

Figure 6: The Influence of SFT Loss for RL Training. γ = 0 denotes the absence of SFT loss, γ = 0.2
corresponds to a low SFT-loss weight, and dynamic γ indicates our naive setting.

inflicts the most pronounced degradation on model performance: both pass@1 and pass@3 drop to
varying extents across all datasets. This observation suggests that the quality of the answers produced
by a trajectory is a critical guarantee of the trajectory’s overall quality. Provided that the final answers
are consistent, we observe that randomly selecting a single trajectory for training is not necessarily
worse than explicitly choosing the best one, and it even yields a clear improvement on DABench.
We hypothesize that the judge model’s preference bias may potentially reduce trajectory diversity.
This conjecture can be further evidenced by the pass@3 scores of random-select, which are on par
with or superior to those of con-select across all three datasets. Moreover, the largest performance
gains are obtained by including, without any selection, every trajectory that converges to a consistent
answer. This pattern holds across all datasets and indicates that the diversity of reasoning patterns and
problem-solving strategies embedded in the trajectories is more beneficial to the model’s reasoning
capability, which aligns with the findings in Guha et al. (2025), although we cannot fully rule out the
contribution of the larger training volume introduced by this unfiltered approach.

SFT loss is an effective stabilizer for RL training. When our experiments are still in an exploratory
phase, we use DATAMIND-12K to examine how the weight of the SFT loss in Eqn.7 influences the
RL training on the 7B model without a cold start. In Fig.6, we plot the dynamics of the answer reward
across training steps under different γ settings. As can be seen, when no SFT loss is imposed (γ = 0),
the answer reward declines almost monotonically. We attribute this failure to two factors. First, the
7B model’s limited multi-step reasoning capability makes it difficult to roll out high-quality trajectory
groups for effective learning. Second, the heterogeneity of both data structures and code languages
yields highly imbalanced trajectory distributions, resulting in unstable training. Raising γ to 0.2 can
alleviate the problem to some extent. The answer reward initially rises despite large oscillations, yet
the SFT loss remains too weak to prevent the policy from eventually drifting away and collapsing.
Under our dynamic-γ schedule, the model first enjoys the stabilizing supervision of a strong SFT
loss and after it matures, the SFT coefficient is gradually annealed to encourage exploration, yielding
stable training during the whole process.
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Figure 7: Answer Reward and Entropy
Dynamics of different γ settings.

SFT loss can also be the culprit of unstable training.
Although SFT loss serves as an effective stabilizer for RL
training, we find that its persistent dominance through-
out training can conversely trigger collapse. As shown
in Fig.7, fixing γ at a high level also causes the answer
reward to rise briefly, followed by a gradual decline. The
underlying reason is that over-fitting to the SFT loss traps
the policy in the rigid thinking patterns embedded in the
expert trajectories, especially when these trajectories are
synthesized from the same model, thereby crippling ex-
ploration. To corroborate this, we track the entropy of the
policy during training and observe a pronounced entropy
collapse phenomenon. In contrast, our dynamic-γ strategy
can keep the policy entropy consistently at a relatively high
level throughout training. Overall, we find the training pro-
cess resembles raising a child. During early childhood,
constant parental guidance (a large γ) is indispensable to
keep the child from going astray. As the child grows up,
excessive supervision stifles the child’s innate drive for
self-directed exploration. At that stage, judiciously letting go (a small γ) enables the child to discover
their true capabilities through the feedback from the surrounding world.
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Figure 8: Performance Gap Between Cold
Start and RL with varying cold start epochs.

RL can narrow the performance gap between different
base models, but can hardly reverse the order. Fig.8
shows the impact of different degrees of cold start on sub-
sequent RL training. We randomly sample 3, 843 training
data from DATAMIND-12K (balanced on query types) and
240 test data (60 for each of the three test datasets) for
evaluation. As the number of cold start training epochs
increases, the marginal gain achieved by RL over the cold
start checkpoint (i.e., the slope of the dashed line) dimin-
ishes. This indicates that RL can narrow the performance gap between different base models (Liu
et al., 2025). This phenomenon also aligns well between the 7B and 14B models with the same
training epochs. Nevertheless, although the gap is narrowed, post-RL performance remains positively
correlated with the capability of the base model. This suggests that the bulk of knowledge is acquired
during SFT, whereas RL primarily serves to unlock latent potential rather than explicitly push the
model beyond its inherent capacity boundary (Yue et al., 2025a; Chu et al., 2025).

6 RELATED WORK

Agent Training. The earliest wave of LLM Agents (Wang et al., 2023; Xi et al., 2023) leverages
the formidable reasoning capabilities of proprietary models (Qiao et al., 2023; Chen et al., 2025a;
Yao et al., 2023; Zhou et al., 2023; Hong et al., 2024; Li et al., 2023a; Wu et al., 2023). As AI
entered the second half (Yao, 2025), numerous benchmarks targeting complex, domain-specific
agentic tasks are introduced (Mialon et al., 2024; Phan et al., 2025; Jimenez et al., 2024; Chan et al.,
2025; Starace et al., 2025; Wei et al., 2025a), which expose the limitations of general-purpose agent
architectures, elevating domain-specific agent training to a critical necessity. The release of Large
Reasoning Models (OpenAI, 2024c; DeepSeek-AI et al., 2025; Kimi et al., 2025) marks the triumph
of Reinforcement Learning (RL) for LLMs. Consequently, a surge of work has sought to adapt
RL algorithms to various agent domains (Jin et al., 2025a; Song et al., 2025; Li et al., 2025c; Wu
et al., 2025a; Feng et al., 2025; Qian et al., 2025; Li et al., 2025b). Yet these methods presuppose
a strong backbone model; researchers are therefore compelled to synthesize copious post-training
data to compensate for the backbone’s deficiencies. To the best of our knowledge, we are the first to
systematically investigate the scaling of agent post-training in the data-analytic scenario, aiming to
provide actionable insights for data synthesis and RL-driven training in other complex agent fields.

Data-Analytic Agents and Benchmarks. Data Analysis Agents harness the reasoning capabilities
and code-generation facility of LLMs to automate the end-to-end processing of data analysis tasks.
Virtually all existing data analysis agents rely on closed-source models and are limited to prompt
engineering. DS-Agent (Guo et al., 2024) incorporates human insights into data analysis tasks via
case-based reasoning. AutoKaggle (Li et al., 2024) decomposes the data analysis pipeline into
specialized sub-tasks through a multi-agent architecture. Data-Copilot (Zhang et al., 2023) and
AgenticData (Sun et al., 2025) stabilize agent behavior by orchestrating operations within predefined
workflows. Data Interpreter (Hong et al., 2025) further enlarges the agent’s exploration space by
introducing dynamic graph-based workflows. To foster progress in this domain, numerous data
analysis datasets have been introduced (Hu et al., 2024; Jing et al., 2025; Liu et al., 2024; Zhang et al.,
2025a; Majumder et al., 2025). Nevertheless, each adopts its own task formulation and evaluation
protocol, and the majority primarily rely on human-annotated labels. In this paper, we propose a fully
automated pipeline to synthesize data analysis questions and executable code trajectories. Leveraging
this synthetic corpus, we train two generalist data-analytic agents with advanced performance.

7 CONCLUSION

This paper introduces DATAMIND, a scalable data synthesis and agent training recipe designed to
build generalist data-analytic agents. Built on DATAMIND, we curate DATAMIND-12K, a high-quality
training set that spans diverse task categories and data file formats for data-analytic tasks. Trained
on DATAMIND-12K, we obtain DATAMIND-7B and 14B, two advanced data-analytic agents with
superior performance on multiple benchmarks compared with various proprietary and open-source
baselines. We also incorporate some empirical insights gained from our exploratory trials into the
analysis experiments, aiming to provide actionable insights about agentic training for the community.
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bench: Evaluating machine learning agents on machine learning engineering, 2025. URL https:
//arxiv.org/abs/2410.07095.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
Fireact: Toward language agent fine-tuning. CoRR, abs/2310.05915, 2023. doi: 10.48550/ARXIV.
2310.05915. URL https://doi.org/10.48550/arXiv.2310.05915.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. CoRR, abs/2503.09567, 2025a. doi: 10.48550/
ARXIV.2503.09567. URL https://doi.org/10.48550/arXiv.2503.09567.

11

https://doi.org/10.48550/arXiv.2507.11948
https://doi.org/10.48550/arXiv.2507.05241
https://doi.org/10.48550/arXiv.2507.05241
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2410.07095
https://doi.org/10.48550/arXiv.2310.05915
https://doi.org/10.48550/arXiv.2503.09567


Published as a conference paper at ICLR 2026

Qiguang Chen, Ming-Hsuan Yang, Libo Qin, Jinhao Liu, Zheng Yan, Jiannan Guan, Dengyun
Peng, Yiyan Ji, Hanjing Li, Mengkang Hu, Yimeng Zhang, Yihao Liang, Yu Zhou, Jiaqi Wang,
Zhi Chen, and Wanxiang Che. Ai4research: A survey of artificial intelligence for scientific
research. CoRR, abs/2507.01903, 2025b. doi: 10.48550/ARXIV.2507.01903. URL https:
//doi.org/10.48550/arXiv.2507.01903.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen,
and Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large
language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the
Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting,
August 11-16, 2024, pp. 9354–9366. Association for Computational Linguistics, 2024. doi:
10.18653/V1/2024.FINDINGS-ACL.557. URL https://doi.org/10.18653/v1/2024.
findings-acl.557.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of foundation
model post-training. CoRR, abs/2501.17161, 2025. doi: 10.48550/ARXIV.2501.17161. URL
https://doi.org/10.48550/arXiv.2501.17161.

DeepSeek-AI. Deepseek-v3 technical report. CoRR, abs/2412.19437, 2024. doi: 10.48550/ARXIV.
2412.19437. URL https://doi.org/10.48550/arXiv.2412.19437.

DeepSeek-AI. Deepseek-v3.1 release, 2025. https://api-docs.deepseek.com/news/
news250821.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, and et al. Deepseek-r1: Incentivizing reasoning capability in llms via
reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia Chen,
Jiazhen Du, Huiyang Wang, Fuzheng Zhang, Guorui Zhou, Yutao Zhu, Ji-Rong Wen, and Zhicheng
Dou. Agentic reinforced policy optimization, 2025. URL https://arxiv.org/abs/2507.
19849.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, and et al. The llama 3 herd of models. CoRR,
abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL https://doi.org/10.
48550/arXiv.2407.21783.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms, 2025.
URL https://arxiv.org/abs/2504.11536.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. CoRR,
abs/2503.01307, 2025. doi: 10.48550/ARXIV.2503.01307. URL https://doi.org/10.
48550/arXiv.2503.01307.

Etash Kumar Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal,
Marianna Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer,
Liangyu Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff,
Shiye Su, Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie
Ji, Yichuan Deng, Sarah M. Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave,
Alon Albalak, Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit
Bansal, Saadia Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan,
Mike A. Merrill, Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran
Sathiamoorthy, Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for
reasoning models. CoRR, abs/2506.04178, 2025. doi: 10.48550/ARXIV.2506.04178. URL
https://doi.org/10.48550/arXiv.2506.04178.

12

https://doi.org/10.48550/arXiv.2507.01903
https://doi.org/10.48550/arXiv.2507.01903
https://doi.org/10.18653/v1/2024.findings-acl.557
https://doi.org/10.18653/v1/2024.findings-acl.557
https://doi.org/10.48550/arXiv.2501.17161
https://doi.org/10.48550/arXiv.2412.19437
https://api-docs.deepseek.com/news/news250821
https://api-docs.deepseek.com/news/news250821
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2507.19849
https://arxiv.org/abs/2507.19849
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://arxiv.org/abs/2504.11536
https://doi.org/10.48550/arXiv.2503.01307
https://doi.org/10.48550/arXiv.2503.01307
https://doi.org/10.48550/arXiv.2506.04178


Published as a conference paper at ICLR 2026

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Automated
data science by empowering large language models with case-based reasoning. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=LfJgeBNCFI.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for A multi-
agent collaborative framework. In The Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=VtmBAGCN7o.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Danyang Li, Jiaqi
Chen, Jiayi Zhang, Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen Zhuge, Taicheng
Guo, Tuo Zhou, Wei Tao, Robert Tang, Xiangtao Lu, Xiawu Zheng, Xinbing Liang, Yaying Fei,
Yuheng Cheng, Yongxin Ni, Zhibin Gou, Zongze Xu, Yuyu Luo, and Chenglin Wu. Data interpreter:
An LLM agent for data science. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational Linguistics, ACL
2025, Vienna, Austria, July 27 - August 1, 2025, pp. 19796–19821. Association for Computational
Linguistics, 2025. URL https://aclanthology.org/2025.findings-acl.1016/.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su,
Jingjing Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li, Kun Kuang, Yang Yang, Hongxia
Yang, and Fei Wu. Infiagent-dabench: Evaluating agents on data analysis tasks. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=d5LURMSfTx.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. Qwen2.5-coder technical report. CoRR, abs/2409.12186, 2024. doi: 10.
48550/ARXIV.2409.12186. URL https://doi.org/10.48550/arXiv.2409.12186.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
VTF8yNQM66.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning, 2025a. URL https://arxiv.org/abs/2503.09516.

Hangzhan Jin, Sicheng Lv, Sifan Wu, and Mohammad Hamdaqa. Rl is neither a panacea nor a
mirage: Understanding supervised vs. reinforcement learning fine-tuning for llms, 2025b. URL
https://arxiv.org/abs/2508.16546.

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. Dsbench: How far are data science agents from becoming data
science experts? In The Thirteenth International Conference on Learning Representations, ICLR
2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.
net/forum?id=DSsSPr0RZJ.

Team Kimi, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, and et al. Kimi k2: Open
agentic intelligence, 2025. URL https://arxiv.org/abs/2507.20534.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun, Qian
Liu, Sida Wang, and Tao Yu. Spider 2.0: Evaluating language models on real-world enterprise text-
to-sql workflows. In The Thirteenth International Conference on Learning Representations, ICLR
2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.
net/forum?id=XmProj9cPs.

13

https://openreview.net/forum?id=LfJgeBNCFI
https://openreview.net/forum?id=VtmBAGCN7o
https://aclanthology.org/2025.findings-acl.1016/
https://openreview.net/forum?id=d5LURMSfTx
https://doi.org/10.48550/arXiv.2409.12186
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2508.16546
https://openreview.net/forum?id=DSsSPr0RZJ
https://openreview.net/forum?id=DSsSPr0RZJ
https://arxiv.org/abs/2507.20534
https://openreview.net/forum?id=XmProj9cPs
https://openreview.net/forum?id=XmProj9cPs


Published as a conference paper at ICLR 2026

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. CAMEL:
communicative agents for "mind" exploration of large language model society. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023a. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a3621ee907def47c1b952ade25c67698-Abstract-Conference.html.

Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei Huang, Jing Zhang, Fuxin Jiang, Shuai Wang,
Tieying Zhang, Jianjun Chen, Rui Shi, Hong Chen, and Cuiping Li. Omnisql: Synthesizing high-
quality text-to-sql data at scale. CoRR, abs/2503.02240, 2025a. doi: 10.48550/ARXIV.2503.02240.
URL https://doi.org/10.48550/arXiv.2503.02240.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen
Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chen-
Chuan Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can LLM already serve as A
database interface? A big bench for large-scale database grounded text-to-sqls. In Alice
Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023b. URL http://papers.nips.cc/paper_files/paper/
2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_
and_Benchmarks.html.

Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan
Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi Wu, Yong
Jiang, Ming Yan, Pengjun Xie, Fei Huang, and Jingren Zhou. Websailor: Navigating super-human
reasoning for web agent, 2025b. URL https://arxiv.org/abs/2507.02592.

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability,
2025c. URL https://arxiv.org/abs/2504.21776.

Ziming Li, Qianbo Zang, David Ma, Jiawei Guo, Tuney Zheng, Minghao Liu, Xinyao Niu,
Yue Wang, Jian Yang, Jiaheng Liu, Wanjun Zhong, Wangchunshu Zhou, Wenhao Huang,
and Ge Zhang. Autokaggle: A multi-agent framework for autonomous data science com-
petitions. CoRR, abs/2410.20424, 2024. doi: 10.48550/ARXIV.2410.20424. URL https:
//doi.org/10.48550/arXiv.2410.20424.

Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei Chang, and Yansong Feng. Are llms capable
of data-based statistical and causal reasoning? benchmarking advanced quantitative reasoning
with data. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16,
2024, pp. 9215–9235. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
FINDINGS-ACL.548. URL https://doi.org/10.18653/v1/2024.findings-acl.
548.

Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and Wei
Ping. Acereason-nemotron 1.1: Advancing math and code reasoning through sft and rl synergy,
2025. URL https://arxiv.org/abs/2506.13284.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob N. Foerster, Jeff Clune, and David Ha. The AI
scientist: Towards fully automated open-ended scientific discovery. CoRR, abs/2408.06292, 2024.
doi: 10.48550/ARXIV.2408.06292. URL https://doi.org/10.48550/arXiv.2408.
06292.

Peixian Ma, Xialie Zhuang, Chengjin Xu, Xuhui Jiang, Ran Chen, and Jian Guo. SQL-R1: training
natural language to SQL reasoning model by reinforcement learning. CoRR, abs/2504.08600, 2025.
doi: 10.48550/ARXIV.2504.08600. URL https://doi.org/10.48550/arXiv.2504.
08600.

14

http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2503.02240
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2507.02592
https://arxiv.org/abs/2504.21776
https://doi.org/10.48550/arXiv.2410.20424
https://doi.org/10.48550/arXiv.2410.20424
https://doi.org/10.18653/v1/2024.findings-acl.548
https://doi.org/10.18653/v1/2024.findings-acl.548
https://arxiv.org/abs/2506.13284
https://doi.org/10.48550/arXiv.2408.06292
https://doi.org/10.48550/arXiv.2408.06292
https://doi.org/10.48550/arXiv.2504.08600
https://doi.org/10.48550/arXiv.2504.08600


Published as a conference paper at ICLR 2026

Xinji Mai, Haotian Xu, Xing W, Weinong Wang, Yingying Zhang, and Wenqiang Zhang. Agent
RL scaling law: Agent RL with spontaneous code execution for mathematical problem solving.
CoRR, abs/2505.07773, 2025. doi: 10.48550/ARXIV.2505.07773. URL https://doi.org/
10.48550/arXiv.2505.07773.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhi-
jeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.
Discoverybench: Towards data-driven discovery with large language models. In The Thirteenth
International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net, 2025. URL https://openreview.net/forum?id=vyflgpwfJW.

Meta. Introducing llama 3.1: Our most capable models to date, 2024. https://ai.meta.com/
blog/meta-llama-3-1/.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
a benchmark for general AI assistants. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=fibxvahvs3.

OpenAI. Hello gpt-4o, 2024a. https://openai.com/index/hello-gpt-4o/.

OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024b. https://openai.com/
index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

OpenAI. Introducing openai o1-preview, 2024c. https://openai.com/index/
introducing-openai-o1-preview/.

OpenAI. Introducing gpt-5, 2025a. https://openai.com/index/
introducing-gpt-5/.

OpenAI. Introducing openai o3 and o4-mini, 2025b. https://openai.com/index/
introducing-o3-and-o4-mini/.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra,
Adam Khoja, Ryan Kim, Richard Ren, Jason Hausenloy, Oliver Zhang, Mantas Mazeika, Dmitry
Dodonov, Tung Nguyen, , Milind Jagota, Ronak Pradeep, and et al. Humanity’s last exam, 2025.
URL https://arxiv.org/abs/2501.14249.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs, 2025. URL https://arxiv.org/
abs/2504.13958.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan,
Fei Huang, and Huajun Chen. Reasoning with language model prompting: A survey. In Anna
Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 5368–5393. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.ACL-LONG.294. URL https://doi.org/10.18653/v1/
2023.acl-long.294.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Eleanor Jiang,
Chengfei Lv, and Huajun Chen. Autoact: Automatic agent learning from scratch for QA via
self-planning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pp. 3003–3021. Association for Computational
Linguistics, 2024. URL https://aclanthology.org/2024.acl-long.165.

Shuofei Qiao, Zhisong Qiu, Baochang Ren, Xiaobin Wang, Xiangyuan Ru, Ningyu Zhang, Xiang
Chen, Yong Jiang, Pengjun Xie, Fei Huang, and Huajun Chen. Agentic knowledgeable self-
awareness, 2025. URL https://arxiv.org/abs/2504.03553.

Team Qwen. Qwq-32b: Embracing the power of reinforcement learning, 2025. https://qwenlm.
github.io/blog/qwq-32b/.

15

https://doi.org/10.48550/arXiv.2505.07773
https://doi.org/10.48550/arXiv.2505.07773
https://openreview.net/forum?id=vyflgpwfJW
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://openreview.net/forum?id=fibxvahvs3
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2504.13958
https://arxiv.org/abs/2504.13958
https://doi.org/10.18653/v1/2023.acl-long.294
https://doi.org/10.18653/v1/2023.acl-long.294
https://aclanthology.org/2024.acl-long.165
https://arxiv.org/abs/2504.03553
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/


Published as a conference paper at ICLR 2026

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
Zicheng Liu, and Emad Barsoum. Agent laboratory: Using LLM agents as research assistants.
CoRR, abs/2501.04227, 2025. doi: 10.48550/ARXIV.2501.04227. URL https://doi.org/
10.48550/arXiv.2501.04227.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient RLHF framework. In Proceedings
of the Twentieth European Conference on Computer Systems, EuroSys 2025, Rotterdam, The
Netherlands, 30 March 2025 - 3 April 2025, pp. 1279–1297. ACM, 2025. doi: 10.1145/3689031.
3696075. URL https://doi.org/10.1145/3689031.3696075.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2503.05592.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia Glaese,
and Tejal Patwardhan. Paperbench: Evaluating ai’s ability to replicate ai research, 2025. URL
https://arxiv.org/abs/2504.01848.

Aofeng Su, Aowen Wang, Chao Ye, Chen Zhou, Ga Zhang, Gang Chen, Guangcheng Zhu, Haobo
Wang, Haokai Xu, Hao Chen, Haoze Li, Haoxuan Lan, Jiaming Tian, Jing Yuan, Junbo Zhao,
Junlin Zhou, Kaizhe Shou, Liangyu Zha, Lin Long, Liyao Li, Pengzuo Wu, Qi Zhang, Qingyi
Huang, Saisai Yang, Tao Zhang, Wentao Ye, Wufang Zhu, Xiaomeng Hu, Xijun Gu, Xinjie
Sun, Xiang Li, Yuhang Yang, and Zhiqing Xiao. Tablegpt2: A large multimodal model with
tabular data integration. CoRR, abs/2411.02059, 2024. doi: 10.48550/ARXIV.2411.02059. URL
https://doi.org/10.48550/arXiv.2411.02059.

Ji Sun, Guoliang Li, Peiyao Zhou, Yihui Ma, Jingzhe Xu, and Yuan Li. Agenticdata: An agentic
data analytics system for heterogeneous data, 2025. URL https://arxiv.org/abs/2508.
05002.

Hanlin Wang, Chak Tou Leong, Jiashuo Wang, Jian Wang, and Wenjie Li. Spa-rl: Reinforcing
llm agents via stepwise progress attribution, 2025a. URL https://arxiv.org/abs/2505.
20732.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji-Rong Wen. A survey on large
language model based autonomous agents. CoRR, abs/2308.11432, 2023. doi: 10.48550/ARXIV.
2308.11432. URL https://doi.org/10.48550/arXiv.2308.11432.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes
reinforcement learning scaling. CoRR, abs/2506.20512, 2025b. doi: 10.48550/ARXIV.2506.20512.
URL https://doi.org/10.48550/arXiv.2506.20512.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents, 2025a. URL https://arxiv.org/abs/2504.
12516.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via
reinforcement learning on open software evolution, 2025b. URL https://arxiv.org/abs/
2502.18449.

Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
Zekun Xi, Gang Fu, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Webdancer: Towards
autonomous information seeking agency, 2025a. URL https://arxiv.org/abs/2505.
22648.

16

https://doi.org/10.48550/arXiv.2501.04227
https://doi.org/10.48550/arXiv.2501.04227
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://doi.org/10.1145/3689031.3696075
https://arxiv.org/abs/2503.05592
https://arxiv.org/abs/2504.01848
https://doi.org/10.48550/arXiv.2411.02059
https://arxiv.org/abs/2508.05002
https://arxiv.org/abs/2508.05002
https://arxiv.org/abs/2505.20732
https://arxiv.org/abs/2505.20732
https://doi.org/10.48550/arXiv.2308.11432
https://doi.org/10.48550/arXiv.2506.20512
https://arxiv.org/abs/2504.12516
https://arxiv.org/abs/2504.12516
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2505.22648
https://arxiv.org/abs/2505.22648


Published as a conference paper at ICLR 2026

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen LLM applications via multi-
agent conversation framework. CoRR, abs/2308.08155, 2023. doi: 10.48550/ARXIV.2308.08155.
URL https://doi.org/10.48550/arXiv.2308.08155.

Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang, Jiaheng Liu, Xeron Du, Di Liang, Daixin Shu,
Xianfu Cheng, Tianzhen Sun, Tongliang Li, Zhoujun Li, and Guanglin Niu. Tablebench: A
comprehensive and complex benchmark for table question answering. In Toby Walsh, Julie
Shah, and Zico Kolter (eds.), AAAI-25, Sponsored by the Association for the Advancement of
Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA, pp. 25497–25506.
AAAI Press, 2025b. doi: 10.1609/AAAI.V39I24.34739. URL https://doi.org/10.1609/
aaai.v39i24.34739.

Zhenhe Wu, Jian Yang, Jiaheng Liu, Xianjie Wu, Changzai Pan, Jie Zhang, Yu Zhao, Shuangyong
Song, Yongxiang Li, and Zhoujun Li. Table-r1: Region-based reinforcement learning for table
understanding. CoRR, abs/2505.12415, 2025c. doi: 10.48550/ARXIV.2505.12415. URL https:
//doi.org/10.48550/arXiv.2505.12415.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao
Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan
Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng
Qiu, Xuanjing Huan, and Tao Gui. The rise and potential of large language model based
agents: A survey. CoRR, abs/2309.07864, 2023. doi: 10.48550/ARXIV.2309.07864. URL
https://doi.org/10.48550/arXiv.2309.07864.

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Simpletir:
End-to-end reinforcement learning for multi-turn tool-integrated reasoning, 2025. URL https:
//arxiv.org/abs/2509.02479.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
Zhou, and et al. Qwen2 technical report. CoRR, abs/2407.10671, 2024. doi: 10.48550/ARXIV.
2407.10671. URL https://doi.org/10.48550/arXiv.2407.10671.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao
Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jian Yang, and
et al. Qwen3 technical report. CoRR, abs/2505.09388, 2025. doi: 10.48550/ARXIV.2505.09388.
URL https://doi.org/10.48550/arXiv.2505.09388.

Shunyu Yao. The second half, 2025. https://ysymyth.github.io/
The-Second-Half/.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/forum?id=WE_vluYUL-X.

Ziming You, Yumiao Zhang, Dexuan Xu, Yiwei Lou, Yandong Yan, Wei Wang, Huaming Zhang, and
Yu Huang. Datawiseagent: A notebook-centric llm agent framework for adaptive and robust data
science automation, 2025. URL https://arxiv.org/abs/2503.07044.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie
Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An
open-source llm reinforcement learning system at scale, 2025. URL https://arxiv.org/
abs/2503.14476.

17

https://doi.org/10.48550/arXiv.2308.08155
https://doi.org/10.1609/aaai.v39i24.34739
https://doi.org/10.1609/aaai.v39i24.34739
https://doi.org/10.48550/arXiv.2505.12415
https://doi.org/10.48550/arXiv.2505.12415
https://doi.org/10.48550/arXiv.2309.07864
https://arxiv.org/abs/2509.02479
https://arxiv.org/abs/2509.02479
https://doi.org/10.48550/arXiv.2407.10671
https://doi.org/10.48550/arXiv.2505.09388
https://ysymyth.github.io/The-Second-Half/
https://ysymyth.github.io/The-Second-Half/
https://openreview.net/forum?id=WE_vluYUL-X
https://arxiv.org/abs/2503.07044
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476


Published as a conference paper at ICLR 2026

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
base model? CoRR, abs/2504.13837, 2025a. doi: 10.48550/ARXIV.2504.13837. URL https:
//doi.org/10.48550/arXiv.2504.13837.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
Wang, TianTian Fan, Zhengyin Du, Xiangpeng Wei, Xiangyu Yu, Gaohong Liu, Juncai Liu,
Lingjun Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu,
Ru Zhang, Xin Liu, Mingxuan Wang, Yonghui Wu, and Lin Yan. Vapo: Efficient and reliable
reinforcement learning for advanced reasoning tasks, 2025b. URL https://arxiv.org/
abs/2504.05118.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agent-
tuning: Enabling generalized agent abilities for llms. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Findings of the Association for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024, pp. 3053–3077. Association for Computational
Linguistics, 2024. URL https://aclanthology.org/2024.findings-acl.181.

Dan Zhang, Sining Zhoubian, Min Cai, Fengzu Li, Lekang Yang, Wei Wang, Tianjiao Dong, Ziniu
Hu, Jie Tang, and Yisong Yue. Datascibench: An LLM agent benchmark for data science. CoRR,
abs/2502.13897, 2025a. doi: 10.48550/ARXIV.2502.13897. URL https://doi.org/10.
48550/arXiv.2502.13897.

Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding,
and Jingren Zhou. On-policy rl meets off-policy experts: Harmonizing supervised fine-tuning
and reinforcement learning via dynamic weighting, 2025b. URL https://arxiv.org/abs/
2508.11408.

Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. Data-copilot: Bridging billions
of data and humans with autonomous workflow. CoRR, abs/2306.07209, 2023. doi: 10.48550/
ARXIV.2306.07209. URL https://doi.org/10.48550/arXiv.2306.07209.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, and Yongqiang Ma. Lla-
mafactory: Unified efficient fine-tuning of 100+ language models. CoRR, abs/2403.13372, 2024.
doi: 10.48550/ARXIV.2403.13372. URL https://doi.org/10.48550/arXiv.2403.
13372.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian
Zhang, Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu Chen, Wentao Zhang, Ningyu
Zhang, Huajun Chen, Peng Cui, and Mrinmaya Sachan. Agents: An open-source framework for
autonomous language agents. CoRR, abs/2309.07870, 2023. doi: 10.48550/ARXIV.2309.07870.
URL https://doi.org/10.48550/arXiv.2309.07870.

A THE USE OF LARGE LANGUAGE MODELS

We affirm that Large Language Models are employed solely as an assisted tool to refine wording
and sentence structure during our paper writing process. Their use in the experiments is strictly for
scientific research purposes, and all such usage has been explicitly documented in our Experimental
Settings and Reproducibility Statement. No other reliance on LLMs is involved in this work.

B LIMITATIONS

This paper still has some limitations that must be acknowledged: a) At present, we only incorporate
reasoning-oriented data-analysis tasks; training, predictive, and data-visualization tasks are deliber-
ately excluded and reserved as our important future work. b) Owing to computational constraints, our
experimental backbone is restricted to the Qwen family, with model scale capped at 14B. Furthermore,
not all mainstream benchmarks are covered in our evaluation suite. c) Limited by computational
resources, we have not exhaustively evaluated all RL training algorithms; moreover, data scarcity
constrains our RL runs to ∼ 350 steps. In future work, we will investigate more advanced RL
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strategies that enable stable, continual learning over substantially larger datasets. d) The current
version of DATAMIND only accepts tabular data files and textual questions. In the future, we will
extend DATAMIND to additional modalities.

C A MORE DETAILED RELATED WORK

Agent Training. The earliest wave of LLM Agents (Wang et al., 2023; Xi et al., 2023) leverages
the formidable reasoning capabilities of proprietary models (Qiao et al., 2023; Chen et al., 2025a).
At that time, researchers primarily boost agent performance through prompt engineering (Yao et al.,
2023; Zhou et al., 2023; Hong et al., 2024; Li et al., 2023a; Wu et al., 2023). To equip open-source
models with agentic skills, subsequent works introduce agent training (Chen et al., 2023; Zeng
et al., 2024; Chen et al., 2024; Qiao et al., 2024) via SFT. Large-scale trajectory data, manually
curated or synthetically generated by closed-source models, are used to instruct-tune open-source
models. As AI entered the second half (Yao, 2025), numerous benchmarks targeting complex,
domain-specific agentic tasks are introduced (Mialon et al., 2024; Phan et al., 2025; Jimenez et al.,
2024; Chan et al., 2025; Starace et al., 2025; Wei et al., 2025a), which expose the limitations of
general-purpose agent architectures, elevating domain-specific agent training to a critical necessity.
However, extensive studies have shown that SFT tends to drive agent models into paradigm overfitting,
severely compromising their dynamic generalization ability in sophisticated agent scenarios (Chu
et al., 2025; Jin et al., 2025b; Qiao et al., 2025).

The release of Large Reasoning Models (OpenAI, 2024c; DeepSeek-AI et al., 2025; Kimi et al.,
2025) marks the triumph of Reinforcement Learning (RL) for LLMs. GRPO-style algorithms (Shao
et al., 2024; Yu et al., 2025; Yue et al., 2025b; Wang et al., 2025a; Dong et al., 2025; Zhang et al.,
2025b) enable models to autonomously explore while preserving robust generalization across diverse
reasoning patterns. Consequently, a surge of work has sought to adapt GRPO-like algorithms to
various agent domains (Jin et al., 2025a; Song et al., 2025; Li et al., 2025c; Wu et al., 2025a; Feng
et al., 2025; Qian et al., 2025; Li et al., 2025b; Wei et al., 2025b). Yet these methods presuppose
a strong backbone model; researchers are therefore compelled to synthesize copious post-training
data to compensate for the backbone’s deficiencies in the target agent setting. To the best of our
knowledge, we are the first to systematically investigate the scaling of agent post-training data and
multi-turn RL training in the data-analytic scenario, aiming to provide actionable insights for data
synthesis and RL-driven training in other complex agent fields.

Data-Analytic Agents and Benchmarks. Data Analysis Agents harness the reasoning capabilities
and code-generation facility of LLMs to automate the end-to-end processing of data analysis tasks,
constituting a critical component in the pursuit of autonomous scientific discovery (Chen et al.,
2025b). Virtually all existing data analysis agents rely on closed-source models and are limited to
prompt engineering. InfiAgent (Hu et al., 2024) pioneers the adoption of the ReAct (Yao et al.,
2023) paradigm for tackling data analysis problems. DS-Agent (Guo et al., 2024) incorporates human
insights into data analysis tasks via case-based reasoning. AutoKaggle (Li et al., 2024) decomposes
the data analysis pipeline into specialized sub-tasks through a multi-agent architecture. Data-Copilot
(Zhang et al., 2023) and AgenticData (Sun et al., 2025) stabilize agent behavior by orchestrating
operations within predefined workflows. Data Interpreter (Hong et al., 2025) further enlarges the
agent’s exploration space by introducing dynamic graph-based workflows. To foster progress in this
domain, numerous data analysis datasets have been introduced (Hu et al., 2024; Jing et al., 2025;
Liu et al., 2024; Zhang et al., 2025a; Majumder et al., 2025; Wu et al., 2025b; Lei et al., 2025).
Nevertheless, each adopts its own task formulation and evaluation protocol, and the majority primarily
rely on human-annotated labels. In this paper, we propose a fully automated pipeline to synthesize
data analysis questions and executable code trajectories. Leveraging this synthetic corpus, we train
two generalist data-analytic agents with advanced performance.

D DATASETS AND EVALUATION DETAILS

We evaluate our model on three datasets related to data analysis. Here, we introduce the details and
our evaluation protocols for each dataset:
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• DABench (Hu et al., 2024). DABench evaluates LLMs in data analysis tasks across 257 challenges
from 52 CSV files, covering 7 question categories. The original benchmark uses accuracy as the
metric. The model’s answer will be reformatted by an LLM to a specific structure and compared
with the gold label using regular expression matching. Here, we directly utilize the model-as-judge
to compare the predicted answer and the gold answer.

• TableBench (Wu et al., 2025b). TableBench is a real-world table reasoning benchmark spanning
18 fields and four major categories. The tables in TableBench are organized using .json files. So
we first transform them into .csv files. Then, we filter the trend forecasting and chart generation
questions because these questions do not have explicit gold answers. The original benchmark uses
Rouge-L as the metric, and we apply model-as-judge instead.

• BIRD (Li et al., 2023b). BIRD is a widely used Text-to-SQL benchmark. We use it to evaluate
our model’s ability to analyze table-based databases. Since the BIRD test set requires official
leaderboard submission, we adopt its validation set as our testbed for convenience. As SQL
execution typically returns structured and often very large tables that are hard for a model-as-
judge to assess, we instead materialize each result into a .csv file and perform an exact match
comparison against the gold label.

We adopt accuracy as the final metric. For every model, we run three independent trials. We take the
average score of the three trials as pass@1, while the union of the three trials is taken as pass@3 (i.e.,
success on any single trial counts as an overall success).

E BASELINES AND REPRODUCTION DETAILS

Models and Baselines. We compare our DATAMIND with five strong proprietary models: GPT-
4o (gpt-4o-2024-0806) (OpenAI, 2024a), o4-mini (o4-mini-2025-04-16) (OpenAI,
2025b), DeepSeek-R1 (deepseek-r1-2025-0528) (DeepSeek-AI et al., 2025), DeepSeek-
V3.1 (deepseek-v3.1-nothinking) (DeepSeek-AI, 2025), GPT-5 (gpt-5-2025-08-07)
(OpenAI, 2025a). We also include four outstanding open-source models: QwQ-32B (Qwen, 2025),
Qwen-2.5-Coder-32B (Hui et al., 2024), Llama-3.3-70B (Dubey et al., 2024), and Qwen-2.5-72B
(Yang et al., 2024). In addition, we select four open-source models that have been explicitly trained
for data-analysis-related tasks: TableLLM (Wu et al., 2025b) and Table-R1 (Wu et al., 2025c) are
specialized for tabular reasoning, whereas OmniSQL (Li et al., 2025a) and SQL-R1 (Ma et al.,
2025) are optimized for Text-to-SQL generation. We include Qwen-2.5-Coder-7B and 14B (Hui
et al., 2024) as backbone models to compare different baselines. We use the Instruct version for all
open-source models. Here we introduce the baselines we compare with and our reproduction details:

• REACT (Yao et al., 2023). For untrained models, including all proprietary models and open-source
models, we test them using REACT agent format in a zero-shot manner. The detailed prompt is the
same with the prompt in Fig.9.

• TableLLM (Wu et al., 2025b). TableLLM is trained on TableInstruct (Wu et al., 2025b), the
training set of TableBench, with SFT. The data volume of TableInstruct is 19,661. We directly use
TableInstruct to train Qwen2.5-Coder-7B and 14B for reproduction. As TableInstruct has three
prompt modes (i.e., TCoT, SCoT, PoT), we test all of them and report the best results.

• Table-R1 (Wu et al., 2025c). Table-R1 applies a region-enhanced SFT followed by a table-aware
GRPO (Shao et al., 2024) training. The training data is also from TableInstruct for both SFT and
RL stages. We follow the same data split and the training pipeline of Table-R1 to train Qwen2.5-
Coder-7B and 14B for reproduction. As TableInstruct has three prompt modes (i.e., TCoT, SCoT,
PoT), we test all of them and report the best results.

• OmniSQL (Li et al., 2025a). OmniSQL is trained on a large-scale synthesized text-to-SQL dataset
SynSQL-2.5M with a data volume of 2.5M. Since it already has Qwen2.5-Coder-7B and 14B
version models, we directly use them for evaluation.

• SQL-R1 (Ma et al., 2025). SQL-R1 is further trained on OmniSQL with RL. The training data
for RL is sourced from a 5K subset of SynSQL-2.5M. Since it already has open-source Qwen2.5-
Coder-7B and 14B version models, we directly use them for evaluation.

Note that for a fair comparison, we strictly adhere to the original input–output formats and benchmark
configurations of every baseline. Specifically, for TableLLM and Table-R1, as they are both trained
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Table 3: Detailed hyperparameters used in our paper.

Stage Hyperparameter Value
Global max number of rounds T 10

SFT

learning rate 1e-5
lr scheduler type cosine

warmup ratio 0.1
batch size 16

training epoch 3
cutoff length 8192

SFT+RL

learning rate 1e-6
lr warmup style constant
lr warmup steps 20

batch size 32
mini batch size 4
training epoch 1

max prompt length 2048
max response length 8192

clip ratio low εlow 0.2
clip ratio high εhigh 0.28
rollout temperature 0.7

rollout topp 1.0
rollout group size G 4
γ scheduler type cosine
γ peak value 0.9
γ valley value 0.05

length reward lmin 256
length reward lmax 1024

Inference
temperature 0.7

topp 0.95
batch size 5

on TableInstruct, we evaluate them with the same prompt used in TableInstruct and converted each
table file from all the benchmarks into the string representation required by their task settings before
inserting it into the prompt. For OmniSQL and SQL-R1, which are both trained on Text-to-SQL tasks,
we follow their native prompts and ask the models to generate complete SQL statements directly
based on the table schema and the user query. In addition, we uniformly transform all benchmark
data files into the .sqlite format via scripts to match their task requirements.

F TRAINING AND INFERENCE DETAILS

We use LlamaFactory (Zheng et al., 2024) for SFT training and verl (Sheng et al., 2025) for RL
training. For SFT, our learning rate is 1e− 5 with a warmup ratio of 0.1 and a cosine decay schedule.
Our global batch size is set to 16. For RL, we use a learning rate of 1e − 6. The batch size is 32
with a mini batch size of 4. The rollout temperature is 0.7, the top-p is 1.0, and the group size G is
4. We schedule γ via cosine decay, annealing from a peak of 0.9 to a valley of 0.05. At test time,
we fix the temperature to 0.7, top-p to 0.95, and an inference batch size of 5 for all evaluations.
For all the processes, the maximum number of interaction rounds T is set to 10. Each of the
training experiments can be run on a machine with 8 80G A100 GPUs within 2 days. The detailed
hyperparameters employed in DATAMIND are presented in Tab.3.

G MORE RESULTS

G.1 MORE BASE MODELS.

We primarily conduct experiments with the Qwen family, as it is widely acknowledged that Qwen
exhibits stronger reasoning capacity and higher plasticity during RL training (Gandhi et al., 2025;
Wang et al., 2025b). To verify the universality of our DataMind pipeline on different kinds of base
models, we additionally train Llama-3.1-8B-Instruct (Meta, 2024) on DATAMIND-14K and the results
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are reported in Tab.4. It can be observed that the DATAMIND pipeline transfers robustly across model
families. Llama-8B not only surpasses Llama-70B but also performs on par with strong baselines. Its
pass@3 further approaches the level of DeepSeek-V3.1 and DATAMIND-7B.

Table 4: Results of Llama-8B Model compared with other baselines.

Backbone Method DABench TableBench BIRD Avg.

pass@1 pass@3 pass@1 pass@3 pass@1 pass@3 pass@1 pass@3

DeepSeek-V3.1
ReAct

81.32 89.49 72.52 81.68 57.89 68.12 70.58 79.76
GPT-5 78.21 85.21 69.93 78.37 60.17 65.19 69.44 76.26

Llama-3.3-70B
ReAct

69.78 80.16 55.47 70.36 59.10 68.58 61.45 73.03
Qwen-2.5-72B 75.33 86.38 65.44 76.21 60.30 69.49 67.02 77.36

Qwen-2.5-Coder-7B DATAMIND 77.30 87.94 67.60 79.39 59.41 69.88 68.10 79.07
Llama-3.1-8B-Instruct DATAMIND 73.67 87.16 64.49 76.46 58.52 69.56 65.56 77.73

G.2 MORE BASELINES.

Data Interpreter has been embedded into the MetaGPT framework3 as an off-the-shelf analytics
tool. Despite our best effort to decouple its pipeline and run it in isolation, we are unable to
reproduce the reported 94.93% GPT-4o score on DABench and it also cannot be adapted to SQL
tasks. The same discrepancy has been independently acknowledged in another paper (You et al.,
2025). Our reproduction results are shown in Tab.5. It can be found that task-specific scaffolds do
not consistently outperform the vanilla ReAct paradigm, and prompts engineering for one model
may fail to generalize to others. We believe that the greatest truths are the simplest. This is also why
we believe agent training, rather than prompt engineering and scaffold constructing, is the more
promising path.

Table 5: Results of Data Interpreter compared with other baselines.

Backbone Method DABench TableBench

pass@1 pass@3 pass@1 pass@3

DeepSeek-V3.1 ReAct 81.32 89.49 72.52 81.68
Data Interpreter 67.70 80.93 61.98 74.52

Qwen-2.5-72B ReAct 75.33 86.38 65.44 76.21
Data Interpreter 62.26 75.10 49.90 58.84

Qwen-2.5-Coder-7B
ReAct 15.05 35.41 11.70 28.63
Data Interpreter 54.09 65.37 27.99 41.82
DATAMIND 77.30 87.94 67.60 79.39

Qwen-2.5-Coder-14B
ReAct 71.21 83.27 56.96 69.97
Data Interpreter 60.70 74.71 40.71 55.82
DATAMIND 80.29 88.72 70.95 81.81

G.3 MORE BENCHMARKS.

Table 6: Results on QRData.

Backbone Method QRData

pass@1 pass@3

DeepSeek-V3.1 ReAct 60.75 75.67
Qwen-2.5-72B ReAct 60.50 72.75
Qwen-2.5-7B DATAMIND 57.66 69.34
Qwen-2.5-14B DATAMIND 62.04 77.62

To demonstrate that DATAMIND can generalize to
more challenging data-analysis benchmarks, we fur-
ther evaluate on QRData (Liu et al., 2024), a dataset
that features intricate causal-reasoning tasks and re-
lies heavily on domain commonsense knowledge. We
compare our DATAMIND-7B and DATAMIND-14B
agents against the strongest open-source and closed-
source models; results are reported in Tab.6. Our 14B

model still achieves the best performance, benefiting from the comprehensive coverage of data-
analysis types and domains in DATAMIND-12K, as well as the consistent performance gains brought
by our stable agent training strategy. Our 7B model also delivers competitive results. However,
constrained by its parameter count, it lacks the domain-specific knowledge required, which prevents
it from achieving equally impressive performance.

3https://github.com/FoundationAgents/MetaGPT.
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G.4 MORE EVALUATION METRICS.

Table 7: Rouge-L Results of various methods
compared with our model-as-judge.

Backbone Method TableBench

Rouge-L pass@1

DeepSeek-V3.1
ReAct

19.64 72.52
Qwen-2.5-72B 17.93 65.44

Qwen-2.5-7B
TableLLM 11.33 9.81
Table-R1 13.86 25.49
DATAMIND 23.41 76.47

To further validate the soundness of our model-as-
judge protocol, we re-score the descriptive tasks in
TableBench with Rouge-L and contrast these scores
with the ratings previously assigned by GPT-4o-mini.
The comparison is reported in Tab.7. The result-
ing rankings align closely with those produced by
our model-as-judge. Nevertheless, Rouge-L clearly
fails to capture true model performance. It over-
emphasizes surface lexical and sentence overlap with
the gold label rather than answer correctness. This

renders the performance differences among models marginal. Even the powerful DeepSeek-V3.1
attains a very low Rouge-L score, underscoring the rationality and fairness of employing a judge
model for evaluation.

H DATA CONTAMINATION ANALYSIS

Table 8: Table Header Overlap Ratio between
DATAMIND and all the benchmarks.

DABench TableBench BIRD

DATAMIND 1.29% 0.00% 0.02%

To the best of our knowledge, the DABench data
files are harvested from GitHub, whereas the tables
in TableBench are extracted from Wikipedia, with
neither overlapping with the corpora we curate. We
sample the training split of BIRD and adopt syn-
thetically generated schemas provided by OmniSQL.

Consequently, our sources are also disjoint from the BIRD test set. To quantify this claim, we
compute the header-overlap ratio between every table in DATAMIND-12K and the headers of each
benchmark in Tab.8. The resulting overlap is exactly 0% (or statistically indistinguishable from 0%)
for every benchmark, demonstrating that DATAMIND-12K introduces no data contamination into the
evaluation.

I PROMPTS USED IN OUR PAPER

I.1 TRAINING AND EVALUATION PROMPT

Training and Evaluation Prompt

You are an expert-level data analyst and statistician who solves any data challenge through
rigorous logic, systematic planning, and deep investigation. Your primary task is to answer
user questions by analyzing the provided data source. You can solve the given problem step
by step by utilizing Python code execution (for CSV files) or SQL queries (for database files)
to support your reasoning.

# Problem-Solving Protocol
1. You should think through the problem logically, outlining your reasoning process in
<think> and </think> tags.
2. After reasoning, write the appropriate code to execute your plan. Place your code between
<code> and </code> tags.
- For CSV files and Excel files, write Python code using libraries like pandas, numpy, sklearn,
etc. to analyze the data. The format should be:
‘‘‘python
<your python code here>
‘‘‘
- For database files, you should only use the ’get_db_info’ function to view the database
structure information and ’execute_sql’ function to execute sql queries, and save the results.
Example:
‘‘‘python
get_db_info()
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‘‘‘
or
‘‘‘python
execute_sql(sql="a valid SQL query here", output_path="result.csv")
‘‘‘
3. The execution results will be returned in <interpreter> and </interpreter> tags.
4. Every time you get the code execution result, you must conduct reasoning and analyze
these results carefully between <think> and </think>. If the result indicates an error or
unexpected behavior, explain the issue and rewrite the previous step code. If the result
indicates the code ran successfully, analyze whether the original problem has been fully
solved.
- If it has been solved, explain your reasoning and then provide the final answer wrapped in
<answer>...</answer>.
- If not, continue reasoning and provide the next step of code based on your previous correct
code.
4. Whenever you’re confident about the result, you can directly provide your answer to the
question inside <answer>...</answer>.
- For CSV files and excel files, you should directly provide your answer. Make it concise and
to the point. (e.g. <answer>The final answer is 3, ...</answer>)
- For database files, you must tell me the file name of the result CSV file. (e.g. <answer>The
final answer is saved in the CSV file named ’result.csv’.</answer>)

# CSV File and Excel File Analysis Notes
1. Load data from ’data/files’ directory using the specified CSV or Excel filename. Temporary
files can be saved to ’data/tmp’.
2. In your first step, you should use print() to inspect the data columns, the first 3 rows, and
the type of the columns and so on to understand the data structure.
3. If you want to get the value of a variable in your code, you must print it out using print()
(e.g., print(f"max: {{max}}")) to understand the current value and state of variables.
4. Only proceed to the next step of code if the current step is written correctly. Each step
must build on the previous code.

# Database File Analysis Notes
1. You can only use sqlite database engine to execute your SQL queries.
2. In your first step, use get_db_info() to inspect the database schema.
3. In your answer, you must provide the file name of the result CSV file. Make sure the
answer file has been saved in the current directory.

# Additional Notes:
1. Avoid including irrelevant commentary outside of the designated tags <think>, <code>,
<interpreter>, and <answer>.
2. If the last step is not correct, you should first conduct a deep analysis of the previous step
and then rewrite the code to fix the issue.
3. Keep your responses concise, structured, and directly tied to the original question.

# Data Source
**The data source path is ’{data_source_path}’.**

Figure 9: Prompt for Training and Evaluation.
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I.2 QUERY SYNTHESIS PROMPT

Query Synthesis Prompt

You are a data analysis expert and assistant. Your task is to generate high-quality,
insightful data analysis questions based on a given data file’s metadata, headers, and
column descriptions. You always consider the semantics of the data and produce questions
that can support exploratory data analysis, business understanding, or hypothesis gen-
eration. Your output should be clear, structured, and directly usable for data analysis planning.

# Objective
Based on the information from the data file and the specified question type, generate
one unique and meaningful exploratory data analysis (EDA) question. The phrasing
and structure of the question must closely follow the style of the provided examples be-
low. The goal is to generate questions that can reveal various types of insights from the dataset.

—

## Here is some meta information about the data file:

### Description:
{description.replace(’#’, ’###’)}

### Header:
{meta_info[’head’]}

### Columns:
{meta_info[’columns’]}

### Columns Type:
{meta_info[’type’]}

### Columns Range:
{meta_info[’range’]}

### Columns Unique Values:
{meta_info[’unique’]}

### Row Number:
{meta_info[’row_count’]}

### Column Number
{meta_info[’column_count’]}

—

## EDA Question Types with Short Descriptions
1. **Aggregation** - Summarize data values to understand overall patterns or trends, such as
calculating averages, totals, or maximums. Often used to quantify general behavior across a
dataset.
2. **Ranking** - Identify and compare items based on specific metrics to determine their
relative standing, often highlighting the highest, lowest.
3. **Counting** - Determine the number of items that meet specific conditions or criteria.
This typically involves filtering data and counting matching entries.
4. **Comparison** - Compare values across data points to identify differences, similarities,
or extremes, often focusing on identifying the highest, lowest, or range between values.
5. **Domain Specific** - Analyze data within a specific field or context using domain
knowledge to interpret results, answer specialized questions, or derive insights meaningful to
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that area.
6. **Causal Analysis** - Analyzing relationships beyond correlation, often requiring
controlled experiments or advanced statistical methods to infer causality.
7. **Statistical Analysis** - Apply statistical measures (e.g., median, standard deviation,
variance, growth rate) to summarize, describe, or evaluate patterns and variability within the
data.
8. **Correlation Analysis** - Measure the strength and direction of the relationship between
two quantitative variables, typically using a correlation coefficient to assess how closely the
variables move together.
9. **Arithmetic Calculation** - Perform basic mathematical operations (e.g., addition,
subtraction, multiplication, division) to compute totals, differences, or projections based on
the given data.
10. **Descriptive Analysis** - Provide an overview of the dataset by explaining its structure,
key columns, and any observable patterns or trends. Focus on summarizing what the data
shows without drawing causal inferences.
11. **Impact Analysis** - Analyze relationships between variables to determine how one
factor influences another. This involves identifying trends, correlations, or causations within
the data to assess impact over time or across categories.
12. **Fact Checking** - Retrieve and verify multiple related facts across different data
points to answer a question. This requires connecting and cross-referencing information from
various parts of a dataset.
13. **Anomaly Detection** - Identify data points that significantly differ from the expected
pattern or norm, potentially indicating errors, outliers, or unusual behavior.
14. **Multi-hop Numerical Reasoning** - Perform numerical reasoning that requires
combining multiple pieces of information or steps. This often involves intermediate
calculations or logical sequencing to reach the final answer.
15. **Time-based Calculation** - Analyze data across time periods to identify trends,
changes, or cumulative values, often involving comparisons between different time intervals
or calculating growth rates over time.
16. **Distribution Analysis** - Analyze how data values are distributed for a given variable
or across groups. This includes assessing normality (e.g., via the Shapiro-Wilk test),
skewness, kurtosis, or comparing distributions between groups using statistical tests (e.g., the
Mann-Whitney U). It helps in understanding the shape, spread, and symmetry of the data,
and whether it meets assumptions required for other analyses.
17. **Feature Engineering** - Create, transform, combine, or extract variables to enhance
data quality or modeling potential. This includes generating new columns, deriving ratios
or indicators, aggregating related values, or reformatting data to reveal deeper patterns or
prepare for predictive analysis.
18. **Comprehensive Data Preprocessing** - Perform a sequence of data cleaning and
preparation steps to ensure the dataset is ready for analysis or modeling. This includes
handling missing values, transforming data types, encoding categorical variables, normalizing
or scaling numerical features, and correcting inconsistencies. The goal is to produce a clean,
well-structured, and analysis-ready dataset.

—

## Analysis Question Type Focus

### Primary Question Type:
The question should primarily focus on the given type:
{question_info[’question_type’]}

—

## Requirements:
- Return exactly one data analysis question per execution.
- The question should mainly focus on the specified question type:

26



Published as a conference paper at ICLR 2026

{question_info[’question_type’]} - Use clear, concise, and practical language suitable for
data analysts.
- The question should be grounded in the context and structure of the data file.
- **The phrasing and style of the question must closely mirror the examples provided**. This
includes using similar formats, tones, and syntactic patterns.
- **Follow the same linguistic conventions as the examples**. For example, if the examples
use formulations like "What is the difference between...", "How many...", or "Which of the
following...", then your generated question must follow similar patterns to ensure stylistic
consistency.
- **Output format must include**:
- The question inside ‘<question>...</question>‘
- A short description inside ‘<description>...</description>‘
- The question type inside ‘<type>...</type>‘

—

## Template Enforcement
You are strictly required to follow the templates provided for the question type below:
{get_question_template(question_info[’question_template’])}

- You must use the template to generate the corresponding question.
- Generate the question by using the template with relevant columns, values, or descriptions
from the dataset.
- Do not introduce new question styles, structures, or alternative phrasings.

This is a hard constraint, not a suggestion.

—

## Here are some examples:
{question_info[’question_example’]}

—
## Now, generate a high-quality EDA question:

Figure 10: Prompt for Query Synthesis.

I.3 TRAJECTORY SAMPLING PROMPT

Trajectory Sampling Prompt

You are a Data Analysis Assistant who can solve the given problem step by step with utilizing
a code execution tool to support your reasoning.

1. You should think through the data analysis problem logically, outlining your rea-
soning process in the <reasoning>...</reasoning> tags.

2. After reasoning, you can write Python code if necessary and use print() state-
ments to inspect key values to support your reasoning. Remember to place your Python code
inside <code>‘‘‘python ... ‘‘‘</code> tags. You may use libraries like pandas, numpy,
sklearn, etc.

3. User will execute the code and return results in <interpreter>...</interpreter>.
Every time you get the code execution result, you must conduct reasoning and analyze these
results carefully between <reasoning> and </reasoning>, following this process:
Whether the result indicates an error or unexpected behavior, explain the issue and rewrite
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the previous step code, or the result indicates the code ran successfully, analyze whether the
original problem has been fully solved.
- If it has been solved, explain your reasoning and then provide the final answer wrapped in
<answer>...</answer>.
- If not, continue reasoning and provide the next step of code based on your previous correct
code.

4. Whenever you’re confident about the result, you can directly provide your an-
swer to the question inside <answer>...</answer>.

5. Format Example:
- Code Format:
<reasoning>
Your reasoning here, step by step, explaining your thought process and how you will approach
the problem.
</reasoning>

<code>
‘‘‘python
Your Python code here, using print() statements to inspect variables.
‘‘‘
</code>

- Answer Format:
<reasoning>
Your final reasoning here. Summarize the solution to the question.
</reasoning>

<answer>
Your final answer to the question, keep your answer as brief as possible while ensuring it is
complete, concise, and clearly stated. **No longer than 1024 words.**
</answer>

6. Important Notes:
- To read data files, load from the ’{file_dir}’ using the file ’{question[’filename’]}’.
- **If you want to get the value of a variable in your code, you must print it out using print()
(e.g., print(f"max: {{max}}"))** to understand the current value and state of variables. Try
to use one or two print() statements in one single step to avoid overwhelming the user with
too many outputs.
- Don’t use visualization libraries like matplotlib or seaborn, as the user will not be able to
see the plots.
- Only proceed to the next step of code if the current step is written correctly. Each step must
build on the previous code.
- Avoid including irrelevant commentary outside of the designated tags <reasoning>, <code>,
<interpreter>, and <answer>.
- Keep your responses concise, structured, and directly tied to the original question.

7. When beginning to solve a problem, you are encouraged to follow these two ini-
tial steps as a general guideline (not a rigid rule):
- Step 1: Load the Excel file specified in the question using pandas.read_excel() from the path
’{file_dir}/{question["filename"]}’. Then, inspect the dataset structure by printing:
- the first 3 rows using df.head(3)
- the list of column names using df.columns
- optionally, the data types using df.dtypes if helpful for understanding column types.
- Step 2: Analyze the question to determine which columns or rows in the dataset are relevant.
Then apply appropriate operations to those columns/rows to address the problem.
- For complex tasks, you may adapt or break the second step into smaller sub-tasks and solve
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them incrementally. This approach helps manage complexity and ensures accurate reasoning
throughout the analysis.
- Error Handling: If your code contains a bug or raises an exception during execution, first
focus on debugging and resolving the issue before proceeding with solving the main problem.

{get_few_shot(question[’question_type’])}

Figure 11: Prompt for Trajectory Sampling.

I.4 JUDGE MODEL PROMPT

Judge Model Prompt (Self-consistency)

You are a precision evaluation system. Your task is to determine whether three AI-generated
answers are equivalent and fully correct. Use the following evaluation criteria:

1. Semantic Equivalence: For descriptive questions, all answers must express the
same meaning, even if phrased differently.
2. Numerical Agreement: For numerical/calculation questions, any numeric values must be
within 3% of each other. Convert all units to be comparable before comparing. If a number is
derived through a formula, check that the process is logically sound.
3. Completeness: The final answer must fully address all aspects of the original question. Do
not ignore implicit sub-questions.
4. Source Traceability: Identify which answer (1, 2, or 3) most clearly and accurately
represents the final synthesized answer.

Respond using:
- <reasoning>...</reasoning>. Please use this tag to think through the evaluation process step
by step, explaining your reasoning and how you will choose the best answer. Be careful to
consider all three answers.
- <correct>...</correct>. Use ’yes’ or ’no’ to indicate whether all three answers are
semantically equivalent and fully correct. It’s fine if the differences are justifiable.
- <number>...</number>. Use 1, 2, or 3 to choose the single best answer that should be used
as the final response. If you cannot determine a clear best answer, choose the one that is most
complete and accurate.

### Question
question

### Answer 1
answer_1

### Answer 2
answer_2

### Answer 3
answer_3

Evaluate standard:
1. Are all three answers semantically equivalent and/or numerically consistent (≤3%
difference)?
2. Do all three answers fully resolve the original question without omissions?
3. Which single answer is the best basis for a final polished response?

Respond in this format:
<reasoning>...</reasoning>
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<correct>yes</correct> or <correct>no</correct>
<number>...</number>

Figure 12: Prompt for Consistency Judge Model.

Judge Model Prompt (Reward)

You are a fair and professional evaluator. Your task is to assess how closely an AI assistant’s
answer matches the provided ground truth for a given question. You are to provide a
numerical score for how well the response answers the question based on the ground truth
answer.
Your evaluation should focus on the assistant’s answer to the question. Begin your evaluation
by comparing the assistant’s answer with the ground_truth answer. Identify and correct any
mistakes. Be as objective as possible.

Evaluate the correctness (0 for incorrect, 1 for correct) of the predicted answer to the question:

Question: {question}

Predicted answer: {pred_answer}

Ground truth answer: {ground_truth}

Rules for judgment:
1. For numerical questions, any result within 3% of the ground truth answer is considered
correct. Please compare abs(Predicted answer)/abs(True answer) with 3% to make your
decision.
2. For multiple-choice questions, an exact match is required.
3. The answer should be clear and complete.
4. The calculation process alone is not considered correct.

Wrap your reasoning inside <thought></thought> and wrap the accuracy score in-
side <score></score> tags. Keep your reasoning concise, no more than 3-5 clear and
informative sentences. Avoid repetition or unnecessary elaboration. Only output the
reasoning and score using the required tags. Follow the output format as shown in the
example below:

<thought>The predicted answer is 115624, which exactly matches the ground truth.
The relative error is 0, well within the 3% threshold. The answer is clear, correct, and directly
responds to the question.</thought>
<score>1</score>

Figure 13: Prompt for Reward Judge Model.
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