
Neuroprospecting with DeepRL agents

Satpreet H. Singh
University of Washington (Seattle)

satsingh@uw.edu

Abstract

A virtuous cycle between neuroscience and deep reinforcement learning is emerg-
ing and the AI community can do much to enable and accelerate it.

Introduction: There is a rich history of cross-pollination between the technological pursuit of
developing artificial intelligence (AI) and the scientific endeavor to understand biological intelligence
[1, 2, 3, 4]. Deep Neural Networks (DNNs), which are now ubiquitous in AI systems, were initially
inspired by the brain. Coming full circle, DNNs now form the basis of the leading models of neuronal
systems (e.g. perceptual, cognitive, motor control) and have eclipsed traditional mathematical
models in their ability to explain experimental data [5]. While these studies have predominantly
used supervised learning to train their networks, a small but steadily growing set of recent studies
investigating complex naturalistic behavior and high-level cognitive functions such as meta-learning,
decision-making and control [6, 7, 8, 9, 10, 11] have instead used used deep reinforcement learning
(DRL) [12, 13] to train their neural network models in the agent setting. Recent perspectives, written
for an audience with a background in neurobiology, discuss the opportunities that this alternative
framework offers to neuroscience [14, 15]. Here we describe some of the current technological
and algorithmic challenges in this emerging niche that AI researchers could help address, and also
highlight some potential opportunities for cross-pollination with AI.

Design and analysis of DeepRL agents: Like many other scientific domains in recent years, neuro-
science has embraced the use of DNNs to learn models that mimic the function of a specific neuronal
system. This trend was accelerated by the availability of cheaper computing power, large labeled
training datasets (such as in computer vision or NLP) and user-friendly deep-learning frameworks.
Similarly, recent neuroscientific studies using DRL are benefiting from the ongoing development
and standardization of DRL training frameworks [16] and physics simulators [17, 18, 19]. However,
much work remains to be done to realize the true potential of this new paradigm.

As summarized in Figure 1a, we believe that there are three dimensions along which the currently
AI-focused DRL ecosystem can be developed further in the aid of such neuroscientific studies.
First, biophysical complexity can be incorporated into DRL agents across several modeling levels.
Unlike current studies in decision making that assume action spaces that directly imply decisions,
more realistic motor-control could emerge by embodying agents in a biomechanical body model
[20, 21, 22, 23]. Artificial neural networks (ANNs) are coarse approximations of real biological
circuits that do not account for information stored in individual neuronal spikes or on the timescale
of spike timing differences. Using spiking neural networks, along with emerging techniques for
reward-based training [24, 25, 26] could lead to more biologically plausible models. Furthermore,
constraining network wiring using connectomes from model organisms [27, 28, 29] could provide a
fine-grained correspondence between biological circuits and trained ANNs.

Second, tasks and simulators tailored to neuroscience could produce agents with more biologically
plausible neural computations and richer behavioral repertoires. Unlike most current studies that focus
on one sensory modality, providing agents with multiple senses in flexible or procedural high-fidelity
3D virtual-reality environments [30, 31] could further capture further biological complexity and
simulate more realistic perception. Similarly, while current studies train networks on individual tasks
[32, 33, 34, 35], training agents on multiple tasks [36, 21] or using auxiliary objectives that might not
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Figure 1: (a) Dimensions along which DRL frameworks and agents can be improved to support
neuroscience. (b) Closing the loop between real-world experiments and artificial agent models (Open
source rodent experiment clipart credit: [61]).

be aligned with the agent’s primary task (such as minimizing metabolic cost [37, 34]), could produce
agents with not just a richer repertoire of behaviors, but also more complex neural activity structures
with shared task-representations, shared task-dynamics and task-specific adaptations [38, 39, 40, 41].

Third, the core algorithms and strategies for training agents could also be adapted to the goals
of this scientific niche. Learning algorithms that respect biological constraints (e.g. excitation-
inhibition balance, Dale’s law) have received attention in the supervised-learning setting [42, 43] but
not in the reinforcement-learning setting. Other directions for methodological innovation in agent
training include using meta-algorithms like evolution [44], exploiting environmental symmetries
or other regularities in training [45], using offline methods to directly ground agent behavior in
recorded animal behavior [46], using algorithms constrained by morphology [47], and using complex
biologically-inspired training curricula [48, 49, 50].

Neuroscientists train task-solving DNNs to generate hypotheses for how neural systems implementing
distributed computation solve problems in perception, cognition or other psychological capabilities
[2]. Trained task-solving ANNs and agents often exhibit behavioral features or neural dynamics that
resemble their biological counterparts. This makes them useful as tools for generating hypotheses
of behavior and neural computation in conditions where neural recording, or experiments might
be challenging or expensive. Such hypotheses could guide future real-world experiments (Figure
1b). See [51, 52] for striking recent examples of such artificial-network inspired neuroscience
experiments. Moreover, the process of designing an optimization objective for training such networks
provides insights into systems at an abstract level that descriptive approaches typically cannot [53, 54].
Currently popular methods for neural network understanding [55, 56] are focused on comparing the
responses of feedforward networks to a library of stimuli, and, by design, do not take into account the
order or amount of stimuli previously seen by the network. Though alternative approaches developed
for use with RNNs do take stimulus history into consideration [57, 58, 59], they do not account for the
network being deployed in a closed-loop agent setting where the network’s current state determines
it’s next action, which in turn affects the next observation seen by it. New theoretical development is
required for comparing RNN-based agents, specifically to deal with small differences in how agents
react to stimuli, that result in compounding differences over behavior trajectories [60].

Neuroprospecting: The well-established practice of searching in nature for molecules, microorgan-
isms, plants, and other species containing biochemical or genetic information of commercial value is
known as bioprospecting. In a similar spirit, we use the term neuroprospecting to refer to the search
for mechanisms, architectures and algorithms implemented in neurobiological systems that could
inspire new approaches in AI. As artificial agent designs and analyses become increasingly sophis-
ticated, more are more opportunities arise for extracting biological middleware that could inspire
advances in artificial intelligence. This could potentially allow artificial systems to behave more like
biological creatures, that are known to be born with sophisticated innate capabilities [62], and be
more vastly more robust and swift to adapt in complex real-world environments [63, 64]. A virtuous
cycle between real-world experiments and increasingly complex yet biologically grounded artificial
models could benefit both the neuroscience and machine intelligence communities [65, 66, 4, 67].
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