© ®©® N O g A~ W N =

21
22
23
24
25
26
27
28
29
30
31
32
33
34

LOBSTUR: A Local Bootstrap Framework for
Tuning Unsupervised Representations
in Graph Neural Networks

Anonymous Author(s)
Affiliation
Address

email

Abstract

Graph Neural Networks (GNNs) are increasingly used in conjunction with un-
supervised learning techniques to learn powerful node representations, but their
deployment is hindered by their high sensitivity to hyperparameter tuning and
the absence of established methodologies for selecting the optimal models. To
address these challenges, we propose LOBSTUR-GNN (Local Bootstrap for
Tuning Unsupervised Representations in GNNs), a novel framework designed
to adapt bootstrapping techniques for unsupervised graph representation learning.
LOBSTUR-GNN tackles two main challenges: (a) adapting the bootstrap edge
and feature resampling process to account for local graph dependencies in cre-
ating alternative versions of the same graph, and (b) establishing robust metrics
for evaluating learned representations without ground-truth labels. Using locally
bootstrapped resampling and leveraging Canonical Correlation Analysis (CCA)
to assess embedding consistency, LOBSTUR provides a principled approach for
hyperparameter tuning in unsupervised GNNs. We validate the effectiveness and
efficiency of our proposed method through extensive experiments on established
academic datasets, showing an 65.9% improvement in the classification accuracy
compared to an uninformed selection of hyperparameters. Finally, we deploy our
framework on a real-world application, thereby demonstrating its validity and
practical utility in various settings.

1 Introduction

With the expanding availability of network and spatial data in the sciences, Graph Neural Networks
(GNNs) have emerged as a compelling approach to identify interaction patterns within complex
systems. In many of these applications, scientists are increasingly interested in using GNNs in
conjunction with unsupervised learning techniques for learning informative representations, due to
the paucity of available labeled data, or as a way of automatically detecting structure or patterns (Zhu
et al., [2018; [Dong and Zhang| [2022; |Lamurias et al., 2022} [Le et al., [2020). Within the methods
community, on the other hand, recent advances in unsupervised node representation learning seem
to have primarily been driven by contrastive learning (Stokes et al.| 2020; [Zhang et al.,[2021; | You
et al.| [2021)). This popular self-supervised learning framework has indeed demonstrated impressive
performance for learning rich and versatile data representations across various domains. However, in
the graph-setting, despite their promising results on academic benchmarks, these methods are not
tuning-free, making them difficult to deploy in real-world applications. In fact, they rely heavily on
selecting appropriate values for several of their hyperparameters, but incorrect hyperparameter values
can lead to severely distorted data representations.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

35
36
37
38
39
40

41
42
43
44
45
46

47
48

49
50
51
52
53
54
55
56
57

58

59
60
61

62
63
64
65
66

67
68
69
70

71
72
73
74
75
76

77
78

79
80

Despite the empirical importance of hyperparameter tuning, there is currently no valid hyperparameter
selection procedure for unsupervised GNN representation learning. In the methods community, new
unsupervised learning approaches are commonly tested on established benchmark datasets, with
hyperparameters selected based on performance in a downstream node classification task. However,
this procedure essentially converts the problem into a supervised learning setting, making it unsuitable
for genuinely unsupervised, real-world use cases.

Hyperparameter tuning in unsupervised settings is made difficult by two main challenges: (a) the
absence of a clear ground truth or statistical framework for unsupervised learning, and (b) the lack
of an established metric to evaluate the learned embeddings. To our knowledge, the only study that
attempts to measure the quality of latent representations is that of | Tsitsulin et al., which empirically
evaluates various metrics. Yet, without a proper inference framework, pinpointing a suitable metric
remains a significant challenge.

Contributions. In this paper, we propose the first bootstrapped-based method for selecting hyperpa-
rameters for unsupervised GNN representation learning. More specifically,

1. We cast the learning of representations as an estimation problem: we posit that the learned
representations correspond to a learned low-dimensional manifold, which must therefore be
consistent under a noise model, as explicited in Section [z}

2. To generate independent copies of the same graph, we propose a bootstrap procedure based
on nonparametric modeling of the graph as a graphon[Su et al| (2020) (Section[2.)).

3. To evaluate the quality of the embeddings learned on independent copies of the same graph
in the absence of labels, we suggest using Canonical Correlation Analysis (Hotelling, |1936))
as a translation- and rotation-invariant tool to quantify the stability of the learned embedding

spaces (Section [2.2)).

2 Proposed Methodology

Establishing a framework for hyperparameter tuning in unsupervised learning requires us to address
two fundamental questions: what are we aiming to estimate, and where does the randomness come
from?

In the graph setting, the data is presented in two modalities: a feature matrix, and an adjacency matrix.
Unsupervised learning can be framed as learning what information is shared across modalities, and
what information is specific to each one in a condensed format. This approach is typically described
in the data-integration literature using a latent variable space model |Bishop| (1998); |Hoff et al.[(2002),
which we adapt here for the graph domain.

Inference setting. We consider a graph G on n nodes with features X € R"*P and denote by
A € {0,1}™*™ its corresponding (binary) adjacency matrix. We assume the graph is sampled from a
graphon W (see for instance |Gao et al.) — a non-parametric random graph model—, and that node
features are a noisy transformation of the latent variable U;:

Vi € [n], U; ~ Unif([0, 1]),
Vj € [n], A;; ~ Bernoulli(W (U;, U;)), D
Xi ~g(Us) + €,

where W (U;, U;) denotes the graphon function evaluated at the latent positions U; and Uy, €; denotes
some independent, mean-zero noise, and g ~ [0, 1] — RP? is a feature-generating function or feature
map, which deterministically maps the latent position U; € [0, 1] of node i to a p-dimensional feature
vector. This model allows us to reason on the randomness of the generation procedure without
making assumptions on the specifics of the graph generation process. While graphons are known to
generate dense graphs, their output can be sparsified by scaling W by a sparsity factor that tends to 0

asn — 00, e.8. P = log(n) (Davison and Austern, 2023} |Gaucher and Kloppl 2021}).

n

The quality of the learned embeddings might be evaluated based on their reproducibility, or the
alignment between the latent structure stemming from representations learned on one dataset to those
learned on another. Devising a criterion leveraging this notion would require two main components:

81
82

83

84
85
86
87
88
89

90
91

92
93
94
95
96

97

98
99
100
101
102

103
104

105
106
107
108

110
111
112
113
114
115
116
17
118

Original Graph Node Sampling Edge Sampling Network Bootstrap VGAE Nonparametric Rewiring

24 24 24 24
L 2316 1 23 ;1 2316 5 2316 24 1 2316 ; 2316

10

Figure 1: Illustration of different techniques for generating new copies of a simple graph (left-most
image). The original graph has a distinctive community structure. Note that node sampling or edge
sampling randomly removes either nodes or edges, disrupting the original graph structure.

(a) a data generation procedure, to create independent draws of the same datasets (Section[2.1)), and
(b) a metric to measure the alignment between representations (Section [2.2)).

2.1 A Local Graph Bootstrapping Procedure

In the GNN literature, data splitting and resampling are usually done in one of two ways: by
resampling the nodes or by resampling the edges. However, in the unsupervised setting, these
two sampling procedures are not necessarily suitable: (a) this type of sampling can considerably
disrupt the structure of the graph (by thinning nodes or edges, respectively), as reflected in Figure[T}
Table [6]and Figure[7]in the Appendix, and (b) these procedures require the specification of the node
(respectively edge) drop rate.

Instead, we propose a nonparametric technique for resampling graphs based on the model detailed in
(), thus requiring minimal assumptions about the underlying graph structure.

The Oracle Case We begin by assuming that, for each latent variable U;, we have oracle knowledge
of its k-nearest neighbors. We denote the resulting directed k-nearest neighbor graph as G, Under
sufficiently smooth functions W and g (as defined in the next paragraphs), for a given node 1, its
neighbors in Gy, have similar distributions, and can thus be viewed as alternative realizations of the
same underlying stochastic process (conditioned on U).

We leverage this observation to propose a bootstrap procedure conditioned on the realized U;:

1. Feature resampling: we resample the features of each node by drawing at random a feature
vector from one of k-nearest neighbors. This ensures preserving the covariance between
features by sampling full vectors.

2. Edge rewiring: let N, (i) denote the m'” closest neighbor of node ¢ according to the
oracle graph Gyy,. For each pair of node (¢, j), sample an edge with probability p;; =
3 an:l AN, (i),;» effectively estimating the underlying probability P[A;; = 1|U;, U;]. An
efficient procedure for resampling is presented in Algorithm 2}

th

To extend this procedure to generate marginally-resampled graphs, we propose simply sampling with
replacement nodes (which effectively implies resampling the U;), and applying the same procedure
as above. The whole procedure is described in more detail in Algorithm [3] In either case (marginally
or conditionally on U), this framework preserves local latent-space similarities while generating
plausible bootstrap replicates of the graph.

The Noisy Setting The resampling procedure highlighted in the previous paragraph requires oracle
knowledge of the kNN graph on the latent U. In practice, the graph G, has to be estimated from
the data. To this end, we suggest to use an empirical kNN graph from the adjacency matrix. While
some might argue that it is better to use 2 kNN based on features and toplogy, the kNN induced by
the features (and used to resample edges), in practice, might not be as reliable as the one induced
by the edges (see Table[5]in the Appendix). This is because, in high-dimensional feature spaces,
kNN suffers from the curse of dimensionality, making it difficult to ensure the consistency of the
kNN graph. As an alternative, one can define the kNN graph solely based on the graph structure
for all components of the algorithm. While this approach does not guarantee theoretical consistency

119
120

121

122
123
124

125
126
127
128
129
130
131
132

134
135
136

137

138

140
141
142
143
144

145
146
147
148
149
150

151

Statistic Graphon (n = 500) Cora Citeseer Twitch

True Ours True Ours True Ours True Ours
V| 500 500+0 2708 2708+0 3327 332740 1912 191240
€] 769 757.94+2.5 5278 5171.78+7.34 4552 4127.78+10.93 31299 31082.05+22.83
Avg. Degree 3.08 3.03+0.01 3.90 3.824+0.01 2.74 2.48+0.01 32.74 32.514+0.02
Density 0.01 0.01+0 0.00 0.00+0 0.00 0.00+0 0.02 0.02+0
Clustering Coefficient 0.01 0.01+0 0.24 0.05+0 0.14 0.03+£0 0.32 0.17+0
Connected Components 29.00 31+2 78 67.91+6.70 438 635.09+11.87 1.00 1.14+0.39
Giant Component Size ~ 471.00 467+3 2485 2620.80+10.80 2120 2418.12+35.69 1912 1911.724+0.77
Assortativity -0.04 -0.08+0.03 -0.07 -0.07+£0 0.05 -0.08+0 -0.23 -0.29+0
PageRank Sum 249.5 249.54+0 1353.50 135340 1663 1663+0 955.50 955.5+0
Transitivity 0.01 0.01+0 0.09 0.03+0 0.13 0.04+0 0.13 0.08+0
Number of Triangles 7 54+2.3 1630 471427 1167 304.6+19.59 173510 105534.514+1904.54

Table 1: Graph statistics for synthetic graphon data, citation networks (Cora, Citeseer), and a social
network (Twitch) (Huang et al.,|2023)). We generated 500 bootstrap samples and report the mean
and standard deviation. The size of the neighborhood (k) used for sample generation is fixed at 20.
Results for additional datasets and different graphon settings are included in Appendix @

in estimating the relevant quantities, it exhibits promising empirical performance, as shown in the
experiments (Section [3).

2.1.1 Validation of Bootstrap Samples

To evaluate the quality of bootstrapped samples, we propose bootstrapping different graphs (synthetic
and real), and to compare key graph statistics, including node and edge counts, average degree, and
degree distribution, against those of the original graph.

Table[I] summarizes these comparisons for a synthetic graphon function and three well-established
graph benchmarks. Additional results for more datasets and graphon settings, including the effect of
the choice of k, are provided in Appendix While not exhaustive, these comparisons help assess
whether the structural properties of the original graph are preserved in the bootstrapped samples. In
particular, we note that our approach typically produces graphs with a closer average degree and
edge count than other methods (see for instance Table[6|and Figure[7]in the Appendix). When the
underlying graph is a graphon, our model is in fact very good at reproducing graphs with the similar
statistics (see Table[7][8] 0] [I0). On real datasets, our method seems to produce reasonable copies of
the same graph as well, as reflected by similar average degrees and number of connected components
(Table[IT]and [I2). However, the graphon assumption upon which our method relies seems to hit a
limit in the ability of the method to reproduce a graph with as many triangles (see results Cora in
Table[T).

2.2 CCA-based Evaluation Metrics

If the generation of independent copies of the same graph poses a significant challenge, determining
an appropriate evaluation metric in the absence of known labels poses another.

We note that we cannot use this objective as our hyperparameter tuning criterion: (a) the loss function
is designed to optimize the model’s internal objective, which may not necessarily reflect meaningful
patterns or structures in the data, and (b) the scale of the loss function can vary with different
hyperparameters. To ensure robust evaluation, it is essential to employ a separate, universal metric
that directly evaluates the learned embeddings to assess model performance.

We propose to measure the consistency of embeddings out of the pair of models as such universal
metric; however, the scale and location can in fact vary greatly from one run to the next. To remedy
these issues, we propose here using a procedure based on Canonical Correlation Analysis (CCA)
(Hotelling}, [1936)). Canonical correlation analysis is a classical method for finding the correspondence
between two datasets on the same samples by finding linear transformations of X and Y that
maximizes their correlation. The CCA objective can be written as a prediction problem:

U,ve arg min XU -YV|%
UERP1X7, V ERP2X" 2)

subjectto UTXRxU =1,, VISyV =1I,.

where X x and Xy denote the covariance matrices of X and Y respectively.

152
153
154
155
156
157

158
159

161

162

163
164
165
166
167
168

170
171
172
173
174
175
176
177

Spleen TNBC CRC
A ACC Mean SD AUC Mean SD AUC Mean SD

0.000001 0.4114 56,955 23,032 0.7566 4,765 3,617 0.8039 26,385 3,812
0.00001 0.4135 58,398 30,425 0.7487 5,217 4,284 0.8039 26,699 3,746
0.0001 0.4146 40,017 12,422 0.7249 4,734 3,348 0.8170 25,972 5,934
0.001 04128 21,741 5,732 0.7513 3,781 1,782 0.7974 8,844 1,893
0.01 0.3691 42,336 1,970 0.7328 3,425 1,566 0.8431 6,425 1,319
0.1 0.3986 50,351 2,550 0.8757 3,149 1,111 0.9412 5940 1,538

1 0.3914 55,264 2,788 0.8307 3,516 1,309 0.9346 5,543 889

10 0.3184 61,804 2,339 0.8704 3,689 1,443 0.8627 5951 1,301

Table 2: For each dataset, the first column reports the downstream task performance, while the second
and third columns present the mean and standard deviation of the evaluation metric defined in (2).
We adopt the architecture from Zhang et al.[(2021) and fix all hyperparameters except for A in the
CCA-SSG loss (8). Using Algorithm [3] the minimum average distances are achieved at Ays = 0.001
for the mouse spleen dataset (Goltsev et al., 2018)), Arngc = 0.1 for Triple Negative Breast Cancer
(TNBC) (Keren et al.l [2018]), and Acrc = 1.0 for colorectal cancer (CRC) (Schiirch et al., [2020).
Notably, strong downstream performance coincides with improved embedding alignment, as indicated
by lower average distances reported in the second column for each dataset.

As we seek to evaluate unsupervised representations, we assume that we have generated 3n; inde-
pendent versions of graphs with the procedure described in Section 2.1} For each generated graph
i € [2np), we learn an unsupervised representation of the nodes: H; = GNN,(G;, 0), where 6 indi-
cates the tunable hyperparameters. We propose evaluating the quality of the learned representation
by comparing the alignment of the embeddings learned by different models on replicas of the same
dataset as per (2).

The solution to the CCA problem (2) has a closed-form expression. Let Uy, Vj be the left and right
singular vectors of the cross-covariance matrix:

cort(H;, Hy) = S S, S5 = UphoVy

where 3 1, 1s the empirical covariance of embeddings from dataset ¢, and)y H,H; 18 the empirical
cross-covariance of embeddings from datasets ¢ and j. The solutions to (2) are

Ao =12 .

U(Zv.])_ZH7 UO) V(laj)_EHj VO' (3)
and we can compute the alignment between versions of the dataset as:

alignment = || H,U (i,) — H;V (i, 5)|| r,

where the alignment is evaluated and aggregated over the bootstrapped samples i, j € [np], i # j.

2.2.1 Validation of the Evaluation Metric

We evaluate the validity of our metric (2)) on three biological datasets: spleen (Goltsev et al., 2018),
the MIBI-TOF breast cancer (Keren et al.,[2018), and colorectal cancer (CRC) dataset (Schiirch et al.}
2020). Each dataset comprises multiple graphs, allowing us to assess the validity of our proposed
metric independently of the graph bootstrapping procedure. In spleen dataset (Goltsev et al.,
2018)), each graph contains 81,148 nodes and corresponds to a full tissue section from a single mouse.
We evaluate across 3 different mice, totaling over 240k cells processed. In breast cancer dataset
(Keren et al., [2018), each tissue graph has 5,162 nodes on average, and we analyze 41 patient samples,
for a total of over 211k nodes across the cohort. In colorectal cancer dataset|Schiirch et al. (2020)),
each graph has 6,302 nodes on average, evaluated across 33 patient samples, adding up to more than
207k nodes. Table 2] presents both the evaluation of our metric () along with the downstream task
performance measured in Area Under the Curve (AUC-ROC). In addition, visualizations provided in
Appendix Figure [§ further support the utility of our metric in guiding the hyperparameter selection
(e.g., the regularization strength parameter \), effectively recovering biologically meaningful cell
microenvironments. Detailed descriptions of the datasets and downstream tasks are provided in

Appendix

178

179

181
182
183
184
185
186
187

188

189
190
191
192
193
194
195
196
197

198
199
200
201
202
203

204

205
206
207
208
209

2.3 Proposed Hyperparameter Tuning Framework

We now describe the full procedure, which we call LOBSTUR (Local Bootstrap for Tuning
Unsupervised Representations in GNNs). We first generate 3n; bootstrap graphs using the lo-
cal resampling scheme (Section [2.1). For each candidate set of hyperparameters § € ©, we train
unsupervised GNNs on the bootstrap replicates, g; and g;n, , respectively, i € [np]. We first filter
out degenerate embeddings using StableRank (See Appendix for the details of an additional step
to safeguard our pipeline against degeneracies) and evaluate the stability of the embeddings on on
Jit2ny,t € [np] by computing CCA alignment (Section . Finally, we select the hyperparameters
that minimize the CCA distance, which yields a principled and label-free choice. Our full procedure
is highlighted in Algorithm 3]in the Appendix [B]

Dataset Default Ours «o-ReQ pseudo-x RankME NESum SelfCluster Stable Rank Coherence

Classification tasks

Cora 0.36 0.65 0.66 0.54 0.63 0.63 0.69 0.59 0.47
PubMed 0.62 0.81 0.75 0.75 0.75 0.75 0.82 0.75 0.76
Citeseer 0.32 0.51 0.51 0.51 0.51 0.51 0.48 0.51 0.22
CS 0.47 0.79 0.86 0.72 0.86 0.86 0.86 0.86 0.76
Photo 0.29 0.73 0.79 0.79 0.79 0.79 0.57 0.81 0.69
Computers 0.37 0.57 0.45 0.57 0.45 0.39 0.39 0.57 0.65
Regression tasks
Chicago 0.39 0.34 0.35 0.35 0.35 0.35 0.35 0.29 0.40
Anaheim 0.13 0.23 0.12 0.18 0.18 0.12 0.23 0.18 0.12
Twitch 0.47 0.52 0.15 0.15 0.15 0.15 0.46 0.15 0.48
Education 0.23 0.26 0.33 0.33 0.33 0.33 0.33 0.33 0.26
Avg clf 0.41 0.68 0.67 0.65 0.66 0.65 0.63 0.68 0.59
Avg reg 0.30 0.34 0.24 0.25 0.25 0.24 0.34 0.24 0.32

Table 3: Downstream task (classification or regression) performance of the best model and hyper-
parameters chosen by each criterion. The best value is bolded and the second best is underlined.
We compare to the BGRL (Thakoor et al.,|2021)) with default hyperparameters (fmr = 0.5, edr =
0.25, A = 10~2) in the left-most column.

3 Experiments

We demonstrate the validity of our entire framework on GNN benchmark datasets such as Cora,
Citeseer, and Pubmed. We show that hyperparameter and model selection using our suggested frame-
work results in robust, high downstream task performance on benchmark datasets, thereby indicating
embeddings of good quality. More specifically, we consider the task of learning unsupervised GNN
embeddings using four different methods (CCA-SSG, BGRL, DGI, and GRACE, see Appendix Q),
and choosing the correct set of hyperparameters in each method. Note that we do not look at the
classification accuracy ahead of time and use them for choosing the model and hyperparameters.
Instead, we only report them after choosing the model to validate the approach, reflecting a more
practical scenario to apply unsupervised GNNs on real datasets.

In Table[3] we report the downstream task performance (classification or regression) of the model
chosen by our framework (Algorithm and metrics proposed in Tsitsulin et al.[(2023). Our method
shows a robust performance and achieves either the best or the second best performance compared to
the existing metrics for 7 out of 10 datasets, and achieving the best overall accuracy. A similar table
reporting the performance by different GNN architectures (Thakoor et al., 2021} [Zhang et al., 2021}
Zhu et al.| [2020) is presented in Table in the Appendix.

4 Conclusion

We presented LOBSTUR, a framework for hyperparameter tuning in unsupervised GNNs. By
combining local graph bootstrap with CCA-based stability metrics, LOBSTUR provides the first
principled, label-free procedure for model selection in this domain. Results on benchmarks and
biological datasets demonstrate robustness and practical utility. Extensions to block-bootstrap suggest
promise for larger graphs, making this a foundation for future work (see Appendix [D.4} [E).

210

211
212

213
214

215
216

217
218

219
220

221
222

223
224

225
226

227
228

229

231
232

233
234

235
236
237

239

240

241
242

243
244

245
246

247
248
249

250
251

252

References

Bates, S., Hastie, T., and Tibshirani, R. (2024). Cross-validation: What does it estimate and how well
does it do it? Journal of the American Statistical Association, 119(546):1434—1445.

Belkin, M. and Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and
clustering. Advances in neural information processing systems, 14.

Bishop, C. M. (1998). Latent variable models. In Learning in graphical models, pages 371-403.
Springer.

Castillo-Pédez, S., Ferndndez-Casal, R., and Garcia-Soidédn, P. (2019). A nonparametric bootstrap
method for spatial data. Computational Statistics & Data Analysis, 137:1-15.

Chen, K. and Lei, J. (2018). Network cross-validation for determining the number of communities in
network data. Journal of the American Statistical Association, 113(521):241-251.

Davison, A. and Austern, M. (2023). Asymptotics of network embeddings learned via subsampling.
Journal of Machine Learning Research, 24(138):1-120.

Dong, K. and Zhang, S. (2022). Deciphering spatial domains from spatially resolved transcriptomics
with an adaptive graph attention auto-encoder. Nature communications, 13(1):1739.

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1):1
- 26.

Efron, B. (2012). Bayesian inference and the parametric bootstrap. The annals of applied statistics,
6(4):1971.

Fu, W. and Perry, P. O. (2017). Estimating the number of clusters using cross-validation.
Gao, C., Lu, Y., and Zhou, H. H. (2015). Rate-optimal graphon estimation.

Garrido, Q., Balestriero, R., Najman, L., and Lecun, Y. (2023). Rankme: Assessing the downstream
performance of pretrained self-supervised representations by their rank.

Gaucher, S. and Klopp, O. (2021). Maximum likelihood estimation of sparse networks with missing
observations. Journal of Statistical Planning and Inference, 215:299-329.

Goltsev, Y., Samusik, N., Kennedy-Darling, J., Bhate, S., Hale, M., Vazquez, G., Black, S., and
Nolan, G. P. (2018). Deep profiling of mouse splenic architecture with codex multiplexed imaging.
Cell, 174(4):968-981.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc., New York, NY, USA.

Hoff, P. D. (2007). Modeling homophily and stochastic equivalence in symmetric relational data.

Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to social network
analysis. Journal of the american Statistical association, 97(460):1090-1098.

Horowitz, J. L. (2019). Bootstrap methods in econometrics. Annual Review of Economics, 11(1):193—
224,

Hotelling, H. (1936). Relations between two sets of variates. In Biometrika, pages 321-337.
Biometrika, 28(3/4).

Hua, T., Wang, W., Xue, Z., Ren, S., Wang, Y., and Zhao, H. (2021). On feature decorrelation in
self-supervised learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9598-9608.

Huang, K., Jin, Y., Candes, E., and Leskovec, J. (2023). Uncertainty quantification over graph with
conformalized graph neural networks. NeurIPS.

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1):193-218.

253
254

255
256
257

258
259

260
261

262
263
264

265

266

267

268
269

270

271
272

273
274

275

276
277
278

279
280
281

282

284
285

286
287

288
289

290
291

292

294
295

Jing, L., Vincent, P., LeCun, Y., and Tian, Y. (2022). Understanding dimensional collapse in
contrastive self-supervised learning.

Keren, L., Bosse, M., Marquez, D., Angoshtari, R., Jain, S., Varma, S., Yang, S.-R., Kurian, A.,
Van Valen, D., West, R., et al. (2018). A structured tumor-immune microenvironment in triple
negative breast cancer revealed by multiplexed ion beam imaging. Cell, 174(6):1373—-1387.

Kipf, T. N. and Welling, M. (2016). Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308.

Lamurias, A., Tibo, A., Hose, K., Albertsen, M., and Nielsen, T. D. (2022). Graph neural networks
for microbial genome recovery. arXiv preprint arXiv:2204.12270.

Le, V., Quinn, T. P,, Tran, T., and Venkatesh, S. (2020). Deep in the bowel: highly interpretable
neural encoder-decoder networks predict gut metabolites from gut microbiome. BMC genomics,
21(4):1-15.

Leiner, J. and Ramdas, A. (2024). Graph fission and cross-validation.
Levin, K. and Levina, E. (2021). Bootstrapping networks with latent space structure.
Li, T, Levina, E., and Zhu, J. (2020). Network cross-validation by edge sampling.

Neufeld, A., Dharamshi, A., Gao, L. L., and Witten, D. (2023). Data thinning for convolution-closed
distributions.

Perry, P. O. (2009). Cross-validation for unsupervised learning.

Politis, D. N. and Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical
Association, 89(428):1303-1313.

Roy, O. and Vetterli, M. (2007). The effective rank: A measure of effective dimensionality. In 2007
15th European signal processing conference, pages 606—610. IEEE.

Rubin, D. B. (1981). The bayesian bootstrap. The annals of statistics, pages 130-134.

Schiirch, C. M., Bhate, S. S., Barlow, G. L., Phillips, D. J., Noti, L., Zlobec, 1., Chu, P., Black,
S., Demeter, J., Mcllwain, D. R., et al. (2020). Coordinated cellular neighborhoods orchestrate
antitumoral immunity at the colorectal cancer invasive front. Cell, 182(5):1341-1359.

Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., MacNair, C. R.,
French, S., Carfrae, L. A., Bloom-Ackermann, Z., et al. (2020). A deep learning approach to
antibiotic discovery. Cell, 180(4):688-702.

Su, Y., Wong, R. K., and Lee, T. C. (2020). Network estimation via graphon with node features.
IEEE Transactions on Network Science and Engineering, 7(3):2078-2089.

Thakoor, S. et al. (2021). Large-scale representation learning on graphs via bootstrapping. arXiv
preprint arXiv:2102.06514.

Thakoor, S., Tallec, C., Azar, M. G., Azabou, M., Dyer, E. L., Munos, R., Velickovi¢, P., and Valko,
M. (2023). Large-scale representation learning on graphs via bootstrapping.

Tibshirani, R. and Walther, G. (2005). Cluster validation by prediction strength. Journal of Computa-
tional and Graphical Statistics, 14(3):511-528.

Tsitsulin, A., Munkhoeva, M., and Perozzi, B. (2023). Unsupervised embedding quality evaluation.
In Topological, Algebraic and Geometric Learning Workshops 2023, pages 169—188. PMLR.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y. (2021). Graph contrastive learning with
augmentations.

Zhang, H., Wu, Q., Yan, J., Wipf, D., and Yu, P. S. (2021). From canonical correlation analysis to
self-supervised graph neural networks.

296
297
298

299
300

Zhu, Q., Shah, S., Dries, R., Cai, L., and Yuan, G.-C. (2018). Identification of spatially associated
subpopulations by combining scrnaseq and sequential fluorescence in situ hybridization data.
Nature biotechnology, 36(12):1183-1190.

Zhu, Y., Xu, Y., Yu, F, Liu, Q., Wu, S., and Wang, L. (2020). Deep graph contrastive representation
learning. arXiv preprint arXiv:2006.04131.

301

302

303
304

305

306

307
308

309

311

312

313
314

315

316
317

318

319
320

321
322
323
324

325

326
327

A Theoretical Results

A.1 Definitions
Throughout this manuscript, we assume the same conventions as in the general literature on graphon
estimation (see, for instance, |Gao et al.|(2015); |Gaucher and Klopp|(2021))).

In particular, for a function f : [0, 1] x [0,1] — [0, 1], the derivative operator is defined by
oi+k
Vief(z,y) = Wf(%y%
and we adopt the convention Voo f(z,y) = f(x,y).
dD:ffi;éiéi:;l A.1 (Holder class for Graphon functions (from|Gao et al.[(2015))). The Holder norm is

= max sup |Vif(z,
7, = | max | sw |Vief(z.y)
V; —Vief@,y
+ max sup | jkf(z/a y)]k;f(z_a\-y J)|)
Jtk=|a] (z,y)#(z’,y’) €D (|.’L‘ -z ‘ + |y) |)o¢ o
The Holder class is defined by

Ha(M) = {||flls. <M : f(z,y) = fy,2) forz >y},

where o > 0 is the smoothness parameter and M > 0 is the size of the class, which is assumed to be
a constant.

Definition A.2 (Distance Measures). For nodes i,j € [n]:
dr(i,j) =|U; — U;| (Latent distance)
dr(i,5) = || Xi — Xj|l2 (Feature distance)
de (i, j) = length of shortest path from to j (Graph distance)

Note that in the actual implementation, other graph distances are available as an option, but for the
analysis purpose, we assume D¢ (-, -) is a shortest-path distance.

Definition A.3 (k-NN Neighborhoods). For node ::
NY (i) = {j : U; is among k-nearest neighbors of U, }
NiX (i) = {j : X; is among k-nearest neighbors of X}
NE (i) = {j : node j is among k-nearest neighbors of node 7}

where X; = g(U;) + €; , and U; ~ Unif [0, 1]. The neighborhood is determined by corresponding
distance. For example, the neighborhood in the latent space is determined by latent distance.

A.2 Consistency of Feature Resampling
The following theorem characterizes the consistency of the procedure in deriving nodes with similar
features.

Theorem A.4. Assume that Gy, the directed k- nearest neighbor graph induced by the latent variable
{U; Y, is known, with k such that lim,, % = 0. Suppose g is an a-Holder-continuous function
on the interval [0, 1], so that there exists a constant C such that: |g(U;) — g(U;)| < C|U; — U;|* for
o> 0.

Let X denote the domain of the features (so that for each node 1, its features are denoted X; € X).
Then, the procedure described in Algorithm[l|is asymptotically consistent in that for any set A € X:

Vj e Nknn(l), ll)m |P(X7 S A‘Uj) —]P(Xi S A|Ul)| =0,
n oo
where Nynn (i) denotes a set containing k-nearest neighbors of i in the latent space.

Proof. The proof follows a similar argument to the previous theorem and is deferred to Appendix [A]

10

328
329
330

331
332

333

335
336

338

339

340
341
342

343

344

345
346

347

Remark A.5. We note that the noise €; on the features does not need to be globally identically
distributed for the previous construction to hold. Instead, since the procedure only relies on the
k-nearest neighborhood of each node, it suffices to assume that these properties hold locally.

Proof. Under (1)), Vi, X; = g(U;) + ¢;, where ¢; is independent, identically distributed centered
noise, and g(U;) is the expectation of X given the latent U;. Since the € are assumed to be i.i.d, we
can write for any nodes ¢ and j:
d
X =g(Ui) +¢5 = g(Us) + X; — g(Uj).

The quantity g(U;) — g(U) represents the bias in using the expectation X;; to approximate the
distribution of X;, and since g is assumed to be Holder-continuous: ||g(U;) — (I < ClU; = U,

Consider now j to be chosen to be one of the k-nearest neighbors of node i. |U; — U;|* is
a monotonously decreasing function of n, and with high probability (over the distribution of
Up,---,Uy), we have |U; — Uj| < 00%, for all 5 € N(U;), and a constant ¢g. Therefore,
lg(U;) — g(U;)|| tends to O (in probability) as n goes to co. Therefore, by Slutsky’s lemma,

as n goes to 0o, {Xj|Uj}jeNkm(i) iXi\Ui. O
A.3 Consistency of Edge Resampling

The following theorem highlights the consistency of the edge rewiring procedure.

Theorem A.6. Suppose that the k,-nearest neighbor graph Gy, induced by the latent variables

{U; Y1, is known, where k,, is such that lim,,_, oo k— =0, and lim,, , o k,, = 0o. Suppose that W is
an a-Holder graphon function (Gao et al.| |2015)) (see definition n in the Appendix) with o« € (0, 1].

Then, the quantity p;; = k— anzl A, (i),j IS a consistent estimator of p;; in the sense that:

Proof. Letting N, (i) denote the k" closest neighbor of node i according to the oracle graph Gy,

For any pair of nodes (¢, j), as we are resampling, we are effectively replacing the underlying
connection probability P[A;; = 1|U;, U;] by:

. 1
Pij = 3¢ > ANy
k=1
We decompose the risk of this estimator as:
E[(P[Ai; = 105, U] - pi;)?| = Bias® + Variance

where

Bias = P[A;; = 1|U;, U;] — E[py;]

k
1
7 Z 1_1 - 1‘U717U} [m(" - 1|UN’” 7’)7U])
Tk oo 4
1< i
Variance = E (k: mz::1(P[YN (1),5 = 1‘UN j] - ANm(i),j)>

By assumption, since W is assumed to be a-Holder, as emphasized in |Gao et al.| (2015)), when
a € (0,1], a function f € H, (M) satisfies the Lipschitz condition

|f(zy) = f2'y)| < M(Jo—2'| + |y —v/])",)
Therefore, we have:

11

348
349
350

351

352

353

354

355

356
357
358
359
360

k
. 1
|Bias| = |P[A;; = 1|U;, U] — - > PNy = HUn,

1n

> Uil
(6)

The quantity |U; — Up,,|“ (with m a k-nearest neighbor of 7) is a monotonously decreasing function
of n, and with high probability (over the distribution of U, - - , U,,), we have |U; — Upn |2 < co &,
for all m € N(U;), and a constant cy. Therefore, as n goes to infinity, lim,,_,, [Bias| = 0.

Similarly, for the variance:

K 2
) 1
Variance = (k > P, 0.5 = UUn,.), Uj) = Aniii m))
m=1
1 o)
=2 2 PN = UON, (0, Ui (1 = Py, = HUN) U))
m=1
1
< —.
~k
As k — oo, this converges to 0.
This shows that p;; is a consistent estimator of p;;.
O

A.4 Additional Proofs

The assertion that the distance to a k-nearest neighbor is small with high probability is a standard
result in non-parametric statistics, which can be made precise with a probabilistic bound. Let {U; }1_,
be n points drawn i.i.d. from a Uniform[0, 1] distribution. For a given point U;, let Dy, be the distance
to its k-th nearest neighbor. We aim to show that for a constant ¢, the probability P(Dy, > cok/n) is
exponentially small.

Consider an interval I of radius » = ¢ok/n centered at U;. The number of points, Ny, falling within
this interval follows a Binomial distribution, N; ~ Binomial(n,p), where p is the length of the
interval, p = 2r = 2¢pk/n. The expected number of points in I is thus p = np = 2¢pk. The event
that the k-th neighbor is farther than r away, { Dy, > r}, is equivalent to the event that the interval
I contains fewer than & points, { N; < k}. We can bound this probability using a Chernoff bound
for the lower tail of a binomial distribution, which states that P(N; < (1 — &)u) < e~% #/2 for
d € (0,1). By setting ¢p = 1, we have y = 2k. To bound P(N; < k), we can set the threshold
(1 —9)u = k, which gives (1 — §)2k = k, or 6 = 1/2. Applying the bound yields:

P(N; < k) <P(N; < k) < e~ (/2*@R)/2 — o—k/4

12

361

362

363

364

365
366
367
368
369
370
371
372
373
374

375
376
377
378
379

B Proposed Algorithms in Section 2]

B.1 Nonparametric Graph Bootstrap

Algorithm 1 Non-parametric Resampling of Node Features

1: Input: Graph G with node features {X;}!_, Gknn k-nearest neighbor graph on U.
2: for each node i € [n] do

3: Identify the set of neighboring nodes N (i) = {j : j ~ i} in the graph Gy,

4: Construct the candidate set for resampling: C; = {X;} U {X,};en(i)-

5: Resample the feature vector for node ¢ by selecting a vector uniformly from C;: X}V ~
Umf(CZ)

6: end for

7: Output: Resampled node features { XV }7 .

Algorithm 2 Non-parametric Resampling of Edges

1: Input: Graph G = (V, £) with n = |V| nodes; flattened list of edge stems
L={ulueE[0}U{v]|veE]1]}

where F € RI€1¥2 and k-nearest neighbor graph Gy, on U.

. Initialize an empty graph G’ with n nodes.

while 1len(Z) > 0 do
Sample a source node u uniformly at random from L and remove it: u < pop(L).
Sample a target node v from

BANE N

k
v~ LN <U Ny (NE‘"(u))) ;

m=1

where N4 (i) denotes the set of neighbors of node i in G, and NX™(v) denotes the m-th
nearest neighbor of node w in Gyyy.
6: Remove the selected node v from L.
7: Add an undirected edge between u and v in G'.
8: end while
9

: Output: Resampled edge structure { A}V }7, ;.

B.2 Full Tuning Procedure

B.3 Adjustment for Dimensional Collapse

Our proposed alignment metric is grounded in a straightforward statistical method, Canonical
Correlation Analysis (CCA). The strength of this method lies in its assessment of correlations
between representations. However, because it accounts for different variances, this method may
struggle to accurately reflect the quality of embeddings in the presence of dimensional collapse
(Hua et al.,2021). Dimensional collapse, a phenomenon common in self-supervised representation
learning, occurs when the learned representations are confined to a low-dimensional manifold. For
example, when training a model with an embedding dimension of p = 2, dimensional collapse may
result in embeddings that lie along a single line (reduced to a one-dimensional representation) or form
a blob. In such cases, although the embeddings lack informative structure, their alignment across
different samples may still be high, leading to an over-inflated metric.

The StableRank metric (Tsitsulin et al., [2023)) is defined as Zi 01-2 / o%, where o; are the singular
values of the embeddings H € R"*? in descending order, and assesses the numerical rank of the
embedding space. We will use this metric to filter out embeddings that are clearly suboptimal (Jing
et al.| 2022)) before applying our CCA-based metric to tune hyperparameters. An alternative choice
for the threshold metric could be RankMe proposed by (Garrido et al.| (2023)).

13

380

382
383
384
385
386
387

388

389
390
391
392

393
394
395
396

397
398
399

400
401

402
403

404
405

406
407

Algorithm 3 Hyperparameter Tuning Procedure

1: Imput: An input graph G and a set of hyperparameters © from which to choose an optimal value.

2: Create 3ny, bootstrap samples of the graph, denoted as {Gl}f’;”i (Algorithm , .
3: for each value 6 € © do
4. fori=1,...,2n, do
Train an unsupervised GNN, f;(-,) on G.
end for
for each pair of models f;(-,0) and fi4n, (-, 0) withi € {1,--- ,ny} do
Compute the distance between embeddings from models f; and f;1,, on the test graph

PR

Gitony:) A
di(0) = £(fi(Giyany: 0), fisn, (Giran,,0)),

where /(-) is some metric, like the one we proposed in Section
9: end for
10: end for ~ ~

11: Choose the optimal hyperparameters: 6 = argmin d(#), where d(f) is the average
0€O,StableRank>1

distance across ¢ € [ny), and t is the StableRank threshold.

Choice of the Threshold. We turn to the problem of selecting a stable-rank threshold. We suggest
using the reasonable lower bound for the latent (effective) dimension as sufficient. For Tables|3|and
[16] we set the threshold to ¢ = 2. This choice ensures that the embeddings retain a minimum effective
dimensionality, preventing collapse to a single line. Consequently, our alignment metric accurately
measures meaningful signal alignment rather than trivial, collapsed patterns. It is important to
highlight the trade-off associated with this threshold: setting a higher threshold enhances robustness
but may inadvertently exclude beneficial models, while a lower threshold allows greater model
diversity but risks increased variability and potential collapse of representations.

C Summary of Selected Unsupervised GNNs

CCA-SSG: CCA-SSG (Zhang et al., 2021) is inspired by statistical canonical correlation analy-
sis(CCA) that constructs the loss on the feature-level rather than instance-level discrimination, which
is typical in contrastive methods. They augment the original graph in a random fashion by dropping
edges or masking the node features to make a pair of graphs for learning.

L=|Za—ZplP+XZjZa— 1} + 1125275 — 1||7 (®)

invariance term decorrelation term

Although their model structure is relatively simple and does not require a parametrized mutual
information estimator or additional projection network, they still have the issue of choosing
hyperparameters (e.g. A) which has a non-negligible impact on the model performance.

GRACE: Contrastive learning or self-supervised method has gotten increasing attention as they
do not require label availability as supervised GNN does. Deep Graph Contrastive Representation
Learning(GRACE) (Zhu et al.| 2020) is one of the popular graph constrastive learning methods.

1. For each iteration, GRACE generates two graph views, G1,Go, by either randomly removing
edges or randomly masking node features.

2. LetU = f(X1,A),V = f(Xs, Ay) be the embedded representation of two graph views,
and their corresponding node features and adjacency matrices.

3. Positive samples: For any node v;, its corresponding representation in another view wu; is
treated as natural positive pair.

4. Negative samples: For given node v;, any nodes in another view uy; are treated as negative
pair.

14

408

409

410
411
412
413
414
415
416
417
418

419

420
421
422
423
424
425

5. Node-wise objective:
e@(ui,vi)/T

N N
O(uiwi)/T O(u;vg)/T O(ui,ug)/T
fuiva)/ +Z]].k;£i€ (us,06)/ +Z]].k;£i€ (us,ue)/

the positive pair k=1 k=1

é(ui, ’Ui) = IOg

inter-view negative pairs intra-view negative pairs

. N
6. Overall loss function: £ = 5% >0, [£(us,v;) + £(vi, u;)]
7. Optimization: apply stochastic gradient descent.

DGI: Deep Graph Infomax (Stokes et al., 2020) is another option for the unsupervised graph
representation learning. DGI optimizes the mutual information between the local patch representation
of the graph and the overall high-level summaries.
R - =
£= (2 EoxnllogPlii 1+ 3 B allog(1 = Dl)

j=1

BGRL: Large-Scale Representation Learning on Graphs via Bootstrapping(BGRL) (Thakoor et al.,
2023) similar to CCA-SSG, BGRL uses node and feature masking to augment the original graph. At
the core of BGRL is a bootstrapping mechanism that updates the target representations gradually,
borrowing ideas from consistency regularization and contrastive learning. Unlike contrastive learning
methods that require negative samples, BGRL avoids the computational overhead associated with
negative sampling by using a bootstrapping approach. This involves maintaining two networks: an
online network that is updated using gradients and a target network that is slowly updated with the
parameters of the online network. This setup encourages the embeddings to become more stable and
consistent over iterations.

1. Update the online encoder:

N— ~ 7T
00, 6) = — = Zl _ZaoHeq

2. Update the target encoder: § < 7¢ + (1 — 7)0

GCA: Graph Contrastive Learning with Augmentations (GCA) (You et al., [2021) introduces a
contrastive learning framework designed specifically for graph data. GCA applies data augmentation
techniques on both the node features and graph structure, creating different views of the same
node. The central idea is to maximize the agreement between the representations of the same node
in different augmented views, while ensuring that the representations of different nodes remain
distinguishable.

The contrastive loss is designed to encourage the representations of different views, a and b of the
same node 7, with temperature scaling 7.
1071
b

L
Loca =~ > —log =3 ;
N = =1 exp(sim(z, z}) /7)
where sim(z;, 2;) = 2] z;/(||zi]| - ||2;]|) is a cosine similarity.

VGAE: Variational Graph Autoencoder (VGAE) (Kipf and Welling,, 2016)) is a framework designed
for learning graph embeddings through variational inference. It is a probabilistic approach that
leverages both graph structure and node features to infer latent node representations. VGAE aims to
model the underlying distribution of the graph data, capturing the uncertainty in the embeddings by
using a variational autoencoder architecture. This setup allows VGAE to generate robust embeddings
that generalize well to unseen nodes or links. The model consists of an encoder that approximates
the posterior distribution over latent variables and a decoder that reconstructs the graph from these
variables.

exp(sim(z¢,z?)/7)

The loss function comprises two components: a reconstruction loss that encourages the model to
accurately predict the adjacency matrix, and a regularization term in the form of the KL-divergence,
which ensures the latent variables follow the prior distribution.

15

438

439

440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

456
457
458
459
460

461
462

463
464

466
467
468

470
471
472
473
474
475
476

1. Update the encoder by maximizing the evidence lower bound (ELBO):
L =Eqz1x,0logp(Al2)] - KL(¢(Z|X, A)|[p(Z))

2. The prior over the latent variables Z is typically set to a standard Gaussian: p(Z) = N (0, I).

D Additional Literature Review

D.1 Cross-Validation

In the supervised learning literature, cross-validation (CV) (Hastie et al.,[2001} Tibshirani and Walther|
2005) stands as a fundamental strategy for selecting hyperparameters and evaluating models. In
the usual (Euclidean) setting, this technique involves partitioning the dataset into distinct subsets: a
"training set" for model training and a "test set" for its evaluation. The partitioning is justified by
the independence between observations, which implies that the subsamples still follow the same
distribution as the original data. A commonly used method is K -fold cross-validation, where the
dataset is divided into K subsets or folds. For simplicity, we assume there are n samples, and
each fold has m data points so that n = K x m. We denote a set of index for the k-th fold as
Ii,. The model is trained K times, each time using K — 1 folds for training and the remaining
fold for validation. Evaluation of the validation set is performed through an appropriate evaluation
function £(-) measuring the discrepancy between the observations y; and their predicted values

9 = f(24,0). This loss is usually taken to be the mean squared error(MSE) in the regression case,
(MSE;, = %n Zi eI, (y; — g},;)Q), or to be the classification accuracy in the classification setting. By
averaging this metric over all k folds, cross-validation provides a reliable estimate of the model’s

prediction error on unseen data.

While the implementation and practice of cross-validation is simple and straightforward, its interpre-
tation has only recently been investigated in work by |Bates et al.|(2024)). The authors’ key finding
is that the cross-validation does not estimate the prediction error for the model trained on a specific
dataset but rather the “average" prediction error across all possible training datasets from the same

distribution.
V) 1 11
— R Nk
Err :ﬁZei:?ZEZE(f(xi,ﬂ(RTH))
=1 k=1 1€1,
The intuition is the inner summation in Equation[J]estimates the prediction error of the model at hand,
and the outer summation calculates the empirical average over all possible training sets of the same

size. In the previous equation, 6(—*) denotes the parameters of the model fitted on all but the k"
fold, and f(z;,0(—*)) indicates the estimator of 3.

D.2 Cross-Validation for Unsupervised Learning

Despite the popularity and simplicity of the cross-validation procedure, its application in unsupervised
learning has been relatively underexplored, largely due to the absence of clear evaluation metrics.
Perry|(2009)) addressed this gap by examining cross-validation in unsupervised settings and proposing
several solutions, with a focus on methods utilizing Singular Value Decomposition (SVD). Among
the strategies reviewed, two are particularly relevant for this discussion. The first is a traditional
hold-out method, where a portion of the data is set aside for validation, and the second involves
treating random elements of the dataset as "missing values." For a detailed explanation of these
methods, refer to |Perry| (2009), Chapter 5. However, it is important to note that these methods were
originally designed for conventional, independent, tabular data for unsupervised tasks. In this study,
we build on Perry’s framework, focusing on its connection to graph neural networks (GNNs) and
extending its use to evaluate unsupervised learning methods in the context of GNNs in Section[2.2]

For the hold-out method, we randomly partition the data Z € R™*? into (%), where Z; € R™"1*P

is a training set, Zo € R"2*P ig a test set, and ny + no = n. We want to approximate the test
data by projecting it onto the principal spaces of the training data. To do so, one can calculate the
k-dimensional reduced SVD of Z;, where Z; (k) = \/(n)U1 D (k)V;. Project the test set onto the

16

477
478
479

480
481

482

483
484

485
486

487

488
489

490

494

504

510
511
512
513
514
515
516

517

518
519

521
522

principal space of Z;.

5 5T (5 5 T 5 T

Zo(k) = ZaZ1(k) (Z1(k)Z1(k) ') Z1(k) = ZoVi V.
X denotes the pseudo-inverse of X . The performance ban be evaluated using 5 loss, || Zo— Za (k)||%.
Although this method cannot be used in practice because the loss is a decreasing function with k, the
idea of using projection to compute the projection error for unsupervised tasks was insightful.

The second is called either missing value strategy or Wold hold-outs. Instead of simply splitting the
data, one could randomly select the indices I € Z, which denote the missing elements. Then, Z; =

* oW * oW
find the decomposition of Z7(k) = Uy Dy, V,:. There are many options() including the one proposed
by |Perry| (2009). The performance can again be evaluated using ||Ux DV, — Z; ||% 7

; similarly, Z7 = { . Apply k-rank missing value SVD algorithm to

The last method is basically to convert the unsupervised task into the supervised task, and called
Gabriele hold-outs. Given the data, we could randomly permute the row and column so that we have

the following decomposition PT ZQ = (g; g;z) where P and (are the permutation matrices.

There is continuing work on applying this hold-out approach (especially Gabriele’s hold-out on
clustering analysis |Fu and Perry| (2017).

D.3 Cross Validation for Network Analysis

There have been relatively few studies (Li et al.| [2020; [Hoff] 2007; |Chen and Lei| 2018) on the
cross-validation of network data. In|L1 et al.| (2020), the key assumption for the entire analysis is
that the edge is the realization of independent Bernoulli random variables, and the probability of
connection M, which is realized by the observed adjacency matrix A, is approximately of low rank.
The edge cross-validation proposed in this study is different from traditional node-splitting methods
in that the random dropping applies to the connected pair of nodes. The model by |Chen and Lei
(2018) is particularly designed for determining the number of communities within the network data,
as well as choosing between the regular stochastic block model and the degree-corrected stochastic
block model(DCSBM). The core idea is a block-wise node-pair splitting, which is then combined
with an integrated step of community recovery using sub-blocks of the adjacency matrix.

Leiner and Ramdas|(2024) introduces another cross-validation method for graphs but approaches the
problem from a different angle. The study applies data thinning to data following convolution-closed
distributions by [Neufeld et al.| (2023)). This procedure creates data folds that maintain the same
distribution as the original data, are independent of each other, and sum to the original random
variable. A canonical example of it is a normal variable. Given data X ~ (u,0?), with unknown
parameter of interest ;. Through data thinning algorithm, we could thin X into X1 ~ N (ex, €202)
and X ~ N((1 — €)u, (1 — €)?02), where these two thinned variables are independent to each
other. |Leiner and Ramdas| (2024)) is an extension of this concept to graph data, applying data thinning
to node features while treating the adjacency matrix as fixed.

However, all these statistical methods heavily rely on the certain generation mechanism of underlying
networks, such as the stochastic block model (Chen and Lei} 2018)) or low-rank structure of expected
value of adjacency matrix (Li et al.,|2020). The assumptions of the aforementioned approaches on
which part of the graph is a random component are also different. |[Leiner and Ramdas| (2024) treats
the graph structural component (V, E') as non-random and the node feature as random; however, |Li
et al.| (2020) treats edge as then random realization based on statistical graph generation model, such
as stochastic block model.

D.4 Bootstrap

The bootstrap (Efron, [1979) has been widely used as a non-parametric method for estimating the
distribution of a statistic through resampling with replacement. This method is useful because it does
not rely on assumptions about the underlying distribution, making it applicable across various fields
where such assumptions are challenging. The validity of the bootstrap is supported by its consistency
(Horowitz, 2019) under mild assumptions, where the bootstrap distribution converges to the true

17

523 sampling distribution as the sample size increases. However, the validity of the bootstrap relies on
524 having access to independent samples, an assumption violated in the graph case. We thus consider
525 two distinct scenarios, depending on the nature of the graph at hand:

526 * For graphs with short-range dependencies, such as for instance, spatial graphs: we propose
527 to apply a graph-based block bootstrap method, inspired by its use in time series and spatial
528 statistics (Politis and Romano, [1994; (Castillo-Péaez et al., [2019). The block bootstrap is
529 based on the assumption that the dependency structure is well contained within the small
530 neighborhood that we could assume independence among these neighborhoods. We extend
531 the application of the block bootstrap to the graph case here by splitting the graph into
532 smaller (non-overlapping) neighborhoods of size B, and creating new graphs based on
533 replacing each of these neighborhoods by sampling with replacement from the total set
534 of possible neighborhoods (see Algorithm[)). Similar to the spatial setting (Castillo-Pdez
535 et al.,|2019), the size of the blocks is crucial to the success of the procedure. To guide the
536 choice of the neighborhood, we propose using descriptive graph statistics (see next section)
537 to generate graphs with similar characteristics.

538 » For graphs with long-range dependencies, For non-spatial and homophilic graphs, we
539 propose to use an extension of network bootstrap by [Levin and Levinal (2021). In this
540 work, [Levin and Levinal (2021)) consider random dot product graphs (RDPG) where the edge
541 connectivity is determined by the inner product of the latent positions H of two nodes: for
542 each edge A;; between node i and j, A;; ~ Bernouilli(H] H;). The crux of this method
543 is that by converting an observed network into its latent positions, we can leverage the
544 independence among its latent variables. In our setting, we propose to extend this setting to
545 larger classes of graphs by learning node representations H; = GN N (X, A) of the graph
546 (see Algorithm|[5).

Algorithm 4 Resample Graphs through Block Bootstrap

1: Input: Spatial coordinates x_coord, y_coord, grid_size, n_samples.
2: Output: Block bootstrapped graphs samples.
3: for i = 1 to n_samples do
4: Step 1: Shuffle Data Points
5 Create a grid over the spatial domain using coordinates x_coord and y_coord.
6: Shuffle the grids to create new patched data, shu f fled_data.
7: Step 2: Convert Shuffled Data to Graphs
8: Convert shuf fled_data into a graph by the method of choice (e.g. k-NN or radius graph)
9: Store the graph samples[i] = G
10: end for

Algorithm 5 Resample Graphs through Network Bootstrap

1: Imput: Graph G, embedding dimension d, n_samples, neighborhood size k
2: Output: Bootstrapped graph samples samples

3: Generate spectral embedding H of adjacency matrix using top d eigenvectors
4: for i = 1 to n_samples do

5: Sample indices bootstrap_idx from H with replacement
6: Generate new graph A from bootstrapped latent positions
7: Initialize node features x as zeros in the new graph G
8: for each node i in G do
9: Calculate distances from node 7 to all other nodes in H
10: Sort distances and find nearest neighbors (based on neighborhood size k)
11: Randomly select a neighbor and assign its features to node ¢
12: end for R
13: Store the generated graph G in the sample set samples
14: end for

s47 Bayesian Bootstrap |Rubin| (1981) introduces the Bayesian bootstrap (BB) as a nonparametric
s4g alternative to traditional Bayesian inference, sidestepping the need for explicit likelihood functions.

18

549
550
551
552
553
554
555

556

558
559
560
561
562
563

564
565
566
567
568
569
570

571
572
573
574
575
576
577

578
579
580

Unlike the frequentist bootstrap, which resamples data with replacement, the Bayesian bootstrap as-
signs Dirichlet-distributed random weights to observed data points, generating a posterior distribution
for parameters of interest. Specifically, for a dataset X = {1, z2, ..., 2, }, instead of sampling with
replacement as in the frequentist bootstrap, the Bayesian bootstrap draws a random probability vector
p = (p1,p2, ..., pn) froma Dir(1,1,...,1) distribution, ensuring that y .., p;, =1 and p; > 0.
This randomized weighting serves as a Bayesian nonparametric prior, effectively treating the empirical
distribution of the data as the prior distribution.

Efron| (2012)) explores the relationship between Bayesian inference and the parametric bootstrap,
demonstrating how frequentist resampling techniques can be adapted to estimate posterior distribu-
tions. The key insight of this work is that the parametric bootstrap, traditionally used to approximate
sampling distributions, can serve as an efficient computational tool for Bayesian inference when
paired with importance sampling. [Efron|(2012)) shows that bootstrap reweighting can be used to
transform frequentist confidence intervals into Bayesian credible intervals. This approach provides
a bridge between the two paradigms, enabling frequentist methods to yield posterior distributions
without relying on Markov Chain Monte Carlo (MCMC) techniques.

The Bayesian bootstrap provides a perspective for interpreting the proposed nonparametric graph
rewiring, particularly when edge resampling is guided by shared neighborhood structure. Just as
the BB assigns Dirichlet-distributed weights to data points to construct a posterior distribution,
the graph rewiring process can be seen as assigning probabilistic weights to edges based on local
graph structure, thereby producing alternative realizations of the same graph. In this context, the
neighborhood-weighted resampling in LOBSTUR aligns with Bayesian importance sampling, where
the rewired edges represent a form of pseudo-posterior distribution over network structures.

Extended VGAE Approach Inspired by Kipf and Welling|(2016)), we tried using the Variational
Graph Autoencoder(VGAE) as a new graph sampler. The extension was needed as the original
method only reconstructed the adjacency matrix. The proposed loss function includes a feature
reconstruction component alongside the edge reconstruction and KL divergence losses. With the edge
decoder designed by the original work, the feature decoder generates reconstructed node features, and
the reconstruction loss for features is based on the sum of squared differences between the original
and reconstructed features.

The total loss used for training consists of three parts: the KL divergence loss regularizing the latent
variables, the edge reconstruction loss, and the feature reconstruction loss, scaled by a regularization
parameter \. The overall objective is:

KL
Total Loss = — +1oss4 + A x lossx
n

In our implementation, the parameter A\ controls the weight of the feature reconstruction in the loss.
This allows the model to focus primarily on learning the graph structure while still incorporating
node feature information.

19

581

582

583
584

585
586
587
588

D.4.1 Experiments: Block Bootstrap

num_nodes: Quantie 61 out of 100 num_edges: Quantle 84 outof 100 avg_degroe: Quantie 99 outof 100

density: Quantie 83 out o 100

H H
« 1 "

o o
Zo0 23000 sz omw w20 w20 wis oot ooniz 3 om0 oo

a
avg_custe e2toutorton s iy

giant_compon

"

0 o i
7E0D €000 00D B0 G000 8GO0 0000 52000 00 0825 0m0 0835 0840 0815 080 0855 080

o100

0575 0w 07 owm oS 0se osen 05

H
h
H
ransitiy:

TG0 MO 20000 122000 126000 126000
aigonvoctor

o
MO0 20000 2000 124000 126000 o573 o574 0575 o576 o877
contralty pagorankc ar

nsiivy

26 27

25
rum_triangies o

Figure 2: Block Bootstrap for Mouse Spleen data. Distribution of graph statistics of bootstrapped
graphs. The principle is to see if the graph statistics of the original graph is within the extremity of
the distribution of generated samples. The red dotted line indicates the statistics computed on the
original graph. Most of the graph statistics do not lie at the extremity of the distribution of graph
statistics by bootstrapped samples.

degree_distribution (inf count: 0) clustering_coefficient (inf count: 0) eigenvector_centraliy (inf count: 0) pagerank (inf count: 0) num_triangles (inf count: 0)

within_sample

Frequency

005 010 015 020 001 002 003 004 005 006 001 002 003 004 005 006 007 00 02 04 06 0025 0050 0075 0100 0125
Value Value Value Value

Figure 3: Block Bootstrap for Mouse Spleen data. Distribution of node-level statistics of bootstrapped
graphs. The orange-colored distribution represents the JS divergence between the bootstrapped
samples and the original graph, and the blue-colored distribution represents among bootstrapped
samples divergence. The more the two distributions overlap, the bootstrapped samples ‘mimic’ the
original graph well in terms of node-level statistics.

D.5 Evaluating Embedding Qualities

In Section[2.2] we propose a stability metric. There are few works proposing metrics to evaluate the
quality of unsupervised embeddings, although they are not intended for hyperparameter tuning.

Alignment-based metrics Our first family of metrics focuses on measuring how well two em-
beddings align with each other. Suppose we have two embeddings, H; and H;, produced by the
same learning procedure but on different graph folds. We propose two discretized versions of (2)),
measuring how much two embeddings align with each other.

20

589
590

591
592
593
594
595

596
597
598
599
600
601
602
603
604
605

606
607
608
609

611
612
613
614
615
616

617

618
619

1. Label Matching: The first thing we can think of is to make the label from the embedding
from each fold, which follows the “converting to the supervised task™ convention.

(a) Determine the clusters on embeddings using simple clustering algorithm such K-
Nearest Neighbor or Gaussian Mixture Model(GMM)

(b) Use widely used clustering evaluation metrics, such as Adjusted Rand Index(ARI) by
Hubert and Arabie|(1985) or Normalized Mutual Index(NMI), to see the labels from
H; and H agree to each other.

2. Neighborhood Matching: If the model is able to extract enough of the latent structure of
data, the model trained on the different folds of a graph should be similar. With this reasoning,
we can evaluate the model by how much of the neighborhoods in the embedding agree with
each other. To avoid the usage of data twice, we will evaluate the neighborhood from H;
and H; and report the ratio of overlapping neighbors. To construct the neighborhood in the
embedding space, we will use the simple k-Nearest algorithm with varying sizes of k. For
each node on output embeddings, H; and H, we first find the m-nearest neighbors. Then
for node-level neighbor-kept ratio is defined as N;(m) = # of overlapped neighbors/m,
where m < k is the neighbor size. Graph-level ratio can be calculated by simply averaging
over the nodes, N (m) = >, N;(m).

Direct Embedding Quality Metrics Beyond measuring alignment between two embeddings, one
can also evaluate an embedding’s internal quality or degree of collapse. These methods offer a
complementary view: even if two embeddings align with each other, they could both be suffering
from dimension collapse or poor distribution of singular vectors.

1. RankMe: |Garrido et al.[(2023) proposes RankMe a metric to measure the effective di-
mension of embeddings to quantify the embedding collapse in self-supervised learning.
To overcome the numerical instability of the exact rank computation, for example, due to
round-off error, they propose an alternative to use Shannon entropy of normalized singular
values. The formula was originally proposed by [Roy and Vetterli| (2007) and then applied to
dimension collapse context by |Garrido et al.[(2023). Formally,

min(n,p)
(

. O H)
RankMe(H) = exp | — prlogpy |, withpy = ——~— + e
; lo(H)]x

2. Metrics proposed in Tsitsulin et al.| (2023): [Tsitsulin et al.|(2023) further extended the
approaches and proposed four different metrics to evaluate the embedding quality in terms of
embedding collapse and stability perspective. The key differences between their experiment
setting and ours are, first, [Tsitsulin et al.| (2023) only consider the graph structure, not the
node features, and second, they do not change the model parameters but change the level
of perturbation on the structure (edge dropping or node masking). Let H € R™*P be an
embedding obtained from the trained unsupervised model of choice.

(a) Coherence: The coherence metric measures how concentrated the rows of the singular
vector matrix U are. A low coherence indicates that the energy is spread more uniformly
across all rows (good for compressed sensing), while a high coherence suggests that
the energy is concentrated in a few rows, which can indicate a poorly distributed set of
singular vectors.

NUE - n
Coherence(H) = w’
D

where U € R™*P is reduced left singular matrix of H € R"*P,

(b) Stable Rank: It is the quantity called a ‘numerical rank” (or effective rank) in numerical
analysis.

H 2
Stable Rank(H) = ” H|||§ ,
2

where ||H||r denotes the Frobenius norm, |H||% = 3" 02, and ||H||2 = o1, where
o1 > 09 > --- > g, denotes the singular values of H.

(c) Pseudo-condition number: Let SVD of the embedding H be H = ULV T,
=2 01
rp(H) = | H|, | H, "= —

n

21

620

621
622
623
624
625

626
627
628
629

630
631
632
633

634

635
636
637
638
639
640
641
642

(d) SelfCluster: The idea is to estimate how much the embeddings are clustered in the

embedding space compared to random distribution on a sphere. Let H € R™ P be the
normalized embeddings.

CNHHT|[F—n-nx(n-1)/d
B n?—n—-nx(n-1)/d

SelfCluster(H)

E Scalability

While our framework performs well on graphs of moderate size (up to 19k nodes, e.g., the Pubmed
citation network), scalability remains a challenge. The bootstrapping procedure and CCA-based
evaluation introduce significant additional computation, which can limit applicability to larger
graphs. In particular, when applying our method to the OGBN-Arxiv dataset (over 170k nodes), we
encountered substantial runtime challenges that made the process very time-consuming.

The main limitation, however, stems from the need to train multiple graph neural networks (GNNs)
during the bootstrapping process. This requirement significantly increases the computational cost,
but it is essential to ensure robust hyperparameter selection, especially in high-precision applications
such as finance or biomedical domains, where reliability and unbiased evaluation are critical.

To address scalability challenges, we have begun exploring two strategies (1) block bootstrapping
where the graph is partitioned into smaller subgraphs and bootstrapping is applied within blocks; and
(2) approximate rewiring schemes to reduce computational overhead during resampling. Preliminary
results for block bootstrapping, presented in[D.4] suggest that this direction holds promise.

E.1 Alternative Algorithm for Scalability

Algorithm 6 Approximate Edge Rewiring via A2

1: Input: Graph G = (V, &) with n = |V| nodes, flattened list of edge stems L = {u | u € E[:
0]} U{v |v € E[;,1]}, where E € RI€1X2 and the squared adjacency matrix A2 representing
2-hop connectivity strengths between nodes.

2: Initialize an empty graph G’ = (V, £’) with n nodes.

Compute the sparse adjacency matrix A of G and symmetrize it to ensure it is undirected.

4: Compute the matrix product A?> = A x A, remove self-loops by setting the diagonal of A? to
zero, and eliminate any zero entries.

5: while 1len(L) > 0 do

Sample a source node u uniformly at random from the list L, and remove it from L.

7: Retrieve the set of candidate nodes v for u, where each candidate v satisfies 4%, > 0 and

v # u, and where v € L.

If no such candidate exists, discard u and continue to the next iteration.

9: Otherwise, sample a target node v from the set of candidates according to the normalized

weights given by A2, .

10: Remove the sampled node v from the list L.

11: Add an undirected edge between u and v in the graph G’.

12: end while

13: Output: Bootstrapped graph G’ with resampled edge structure.

w

a

o]

The original edge rewiring algorithm (Algorithm 2]explores a node’s local 1-hop neighborhood at
each iteration. For a randomly selected node w, it first identifies its k-nearest neighbors based on some
graph-based distance, then for each k-nearest neighbor m, it retrieves all direct neighbors N4 (m) in
the original graph. The node u samples a new connection v from this dynamically built candidate set,
with probabilities weighted by the frequency of appearance across different m. This ensures that edge
resampling captures local neighborhood information around each node. However, this procedure
incurs high computational cost because it needs to explore multiple neighborhoods at every rewiring
step.

The approximate algorithm (Algorithm [6) instead precomputes the 2-hop neighborhood connectivity
of the graph by squaring the adjacency matrix, yielding A?. Here, A € R™*" is the (symmetric)

22

643
644

645
646
647
648
649
650
651
652
653
654

655
656
657
658
659
660

661
662
663
664
665
666
667

adjacency matrix of the graph, and Afj counts the number of distinct 2-hop paths between nodes ¢
and 7. In this setting, each node u directly samples a target node v from the 2-hop neighbors based
on their weighted connection strength given by A2 . The sampling probability is proportional to the
number of 2-hop paths between u and v, i.e.,

AZ
Zv’ €C(u) A72w’ ,

where C(u) is the set of candidates for node u with positive 2-hop connectivity and available stems.
If no candidates are found, the algorithm discards w and continues.

P(vlu) =

The relationship between Algorithm [2]and the approximate method (Algorithm [6)) depends on the
degree of each node and the choice of k for the k-nearest neighbor graph. Specifically, whether the
candidate set in the original method is larger or smaller than the set of direct neighbors depends on
the comparison between a node’s degree and the size of k. If a node u has a low degree, meaning it is
connected to only a few nodes in the original graph, then the k-nearest neighbor (k-NN) graph will
forcefully connect it to k other nodes based on feature similarity or graph distance, even if u does
not have that many direct connections. In this case, the k-NN set can be larger than the direct 1-hop
neighbor set. The original algorithm supplements the missing local structure by adding neighbors
based on external feature similarity rather than existing edges. Consequently, when deg(u) < k, the
original rewiring may result in a broader candidate set than the direct neighborhood.

On the other hand, if a node « has a high degree, meaning it is already connected to many nodes in
the adjacency graph, then the k-nearest neighbor graph selects only a subset of its many neighbors.
Here, k-NN acts as a filter, choosing the most “important” or closest k£ neighbors, possibly ignoring
others. In this case, because k is smaller than the degree, the k-NN candidate set becomes smaller
than the full direct neighborhood. When deg(u) > k, the original algorithm is thus more restrictive
compared to simply traversing all direct neighbors.

Therefore, the original algorithm is not always narrower or broader by default; it depends on the
relative size of a node’s degree and k. This behavior is different from the approximate method using
A2, where no such filtering exists. The approximate method (Algorithm [6)) uses all nodes that are
reachable in exactly two hops, without considering feature space distances or k-nearest neighbor
constraints. As a result, the approximate method includes any node with a 2-hop path from a node w,
potentially adding candidates that would never have been explored in the original method, especially
when the node’s degree is small and the k-NN graph must reach out to faraway nodes.

23

668

669
670
671

672
673
674
675

677

678

679

680

681

682

683

684

685

686

687

688

689
690
691
692
693

695
696

F GNN Experiment Details

We use benchmark datasets for node classification, including Cora, Pubmed, and Citeseer, and test
our framework on node regression datasets from [Huang et al.|(2023). We summarize the datasets
used to demonstrate the entire hyperparameter tuning procedure in Table [

We consider various benchmark datasets for node classification tasks, including Cora, Pubmed,
Citeseer. Additionally, we have tested our framework on a few datasets for the node regression by
Huang et al.| (2023)). To demonstrate our full framework for hyperparameter tuning, we used the
following datasets, and their details are summarized in Table E}

Dataset Num Nodes Num Edges Num Classes Description Source
Cora 2708 5429 7 Citation network PyTorch Geometric
Citeseer 3327 4732 6 Citation network PyTorch Geometri
Pubmed 19717 44338 3 Citation network PyTorch Geometric
Amazon Photo 7650 119081 8 Product co-purchasing network PyTorch Geometric
Amazon Computers 13752 245861 10 Product co-purchasing network PyTorch Geometric
Coauthor CS 18333 81894 15 Coauthorship network PyTorch Geometric
Anaheim 914 3881 - Graph of transportation networks Conformalized GNN (Huang et al.|[2023}
ChicagoSketch 2176 15104 - Urban traffic network (sketch) Conformalized GNN (Huang et al.|[2023}
County Education 3234 12717 — County-level education metrics (2012) Conformalized GNN (Huang et al.|[2023)
Twitch PTBR 1912 3170 - Brazilian Twitch interactions Conformalized GNN (Huang et al.|[2023}

Table 4: Summary of benchmark datasets used for the experiments, including both classification and
regression datasets.

The followings are tested combinations of hyperparameters, including different types of unsupervised
GNN models.

model: {CCA-SSG, DGI, BGRL, GRACE}

* feature masking rate (FMR): {0.05,0.25,0.5,0.75}

* edge dropping rate (EDR): {0.05,0.25,0.5,0.75}

* A (CCA-SSG, BGRL) or 7 (GRACE): {107°,107%,1073,1072,10~%, 1.0, 10.0}
* number of layers: 2

* hidden dimension: 256

* output dimension (p): 8

* learning rate: 1073

e epochs: 500

¢ number of simulations for each dataset (n): 20

F.1 Computer Resources Used

The experiments in this study were conducted using a combination of personal and institutional
computational resources. Preliminary analyses and prototyping were performed on a MacBook Pro
with an Intel Core i7 processor and 16GB of RAM. For larger-scale experiments, including graph
bootstrapping and downstream evaluations, we used high-performance computing resources provided
by the institution’s research cluster, which includes access to multi-core CPUs and GPU-enabled
nodes. While execution time varied by dataset and task, typical runs for clustering and evaluation
completed within a few hours. Detailed resource specifications and runtime profiles are available
upon request to support reproducibility.

24

697

698

699
700
701
702

703
704
705
706
707

709
710

71

712
713
714
715
716

G Additional Tables and Figures

CCA-55G withA = 0.1 CCA-55G with A = 0.01 CCA-55G with A = 0.001
Classification Accuracy: 70.9% Classification Accuracy: 70.4% Classification Accuracy: 70.4%

04 04

02

02

oo
00

03 -02 -01 00 01 0z 03 04 06 -04 -62 00 02 o0& 06 08 06 -04 -02 00 02 04 06 08

Figure 4: Citeseer: Model trained by different hyperparameters. 2D Visualization through PCA. The
learned representations vary by the choice of hyperparameters.

G.1 Validation of Metrics

Synthetic Datasets. The motivation for using synthetic data is that we know the exact data-
generating process (DGP), enabling us to replicate the dataset and focus on validating our metric. By
controlling the DGP, we remove confounding factors related to real-world data and can better isolate
and evaluate the performance of algorithms and metrics.

In this synthetic dataset generation, we create spatially structured data using a simple Gaussian blob.
We first define n cluster centers and standard deviations to simulate spatial groupings in a 2D space,
which belong to distinct clusters. For each point, we generate a 32-dimensional feature vector, with
features generated from Laplacian eigenmap by Belkin and Niyogi/ (2001). The final dataset includes
2D spatial coordinates, cluster labels, and 32-dimensional feature vectors. We generated 15 copies of
graphs following the same (and known) data-generating process. We run the procedure (Algorithm 3)
and compute the metrics’ average and prediction accuracy (Figure [5)). Our proposed metric matches
the clustering alignments (NMI, ARI) and shows a strong negative correlation with accuracy.

k-NN Graph (k=10) 0.98 + 0.01 0.99 * 0.01 0.95 + 0.08 5 08 3 *163.05 0.72£034

0.93 £0.14 0.92 £ 0.16 0.9 +£0.18 0.89 £ 0.21 346.87 £ 251.77 0.73 £0.35

0.91 £0.2 0.89 £0.23 0.92 £ 0.14 0.9 £0.22 E} +131.06 0.66 + 0.32

0.94 £ 0.05 0.95 £ 0.05 0.92 £ 0.12 0.92 £ 0.15 3 +119.31 0.73 £0.35

0.98 £ 0.01 0.92 £ 0.12 0.9 +£0.17 342.85 £ 108.51 0.71 £ 0.33

0.99 £ 0.02 0.99 £ 0.02 0.98 + 0.02 0.99 £ 0.01 188.53 + 162.76 0.74 £ 0.35

01 001 0001 0.0001 1e-05 1e-06 1e-07

0.96 + 0.06 0.97 + 0.06 95 + 0.0 170.13 + 79.8 0.74 £ 0.35
0.98 £ 0.02 0.94 £ 0.08 0.96 £ 0.06 0.74 £ 0.35

0.99 £ 0.01 1.0 £ 0.01 0.94 + 0.05 240.02 £ 39.63 0.73 £ 0.35

0.98 + 0.01 0.99 + 0.01 0.97 = 0.02 0.98 + 0.02 178.8 + 36.83 0.74 £ 0.35

1000 500 100 10

0.98 £ 0.01 0.99 £ 0.01 0.85 £ 0.18 0. .24 251.2 £72.93 0.72 £ 0.34

x gmm_nmi3 gmm_ari3 knn_nmi3 knn_ari3 cca_dist acc

(@ (b)

Figure 5: Summary of synthetic dataset and experiment results. The proposed metric and prediction
accuracy show a strong negative Spearman rank correlation (-0.71).

G.1.1 Application to Spatial Single-Cell Datasets

There is a growing demand for robust computational tools that can extract biologically meaningful
representations across heterogeneous samples. In such applications, it is crucial to obtain consistent
and high-quality embeddings that generalize across samples while preserving fine-grained spatial
structure. Our proposed metric is particularly well-suited for this goal, as it evaluates the stability
and informativeness of unsupervised embeddings without requiring labeled data. When annotations

25

7
718

719
720
721
722
723

725
726
727
728

729
730
731
732
733
734
735
736
737

739
740

741
742
743
744
745
746
747

are available, we further demonstrate that our method aligns closely with manual labels, exhibiting
strong spatial continuity and biological interpretability across a range of datasets.

Mouse Spleen (CODEX) We apply our procedure to a high-resolution spatial proteomics dataset
of the mouse spleen from [Goltsev et al.] (2018). This dataset, generated using CO-Detection by
Indexing (CODEX), provides single-cell spatial and phenotypic profiles of immune cells across
intact spleen tissue. With over 30 measured protein markers, it enables precise mapping of cell
types, functional states, and spatial interactions at sub-tissue resolution. The dataset preserves key
anatomical compartments—including T cell zones, B cell follicles, and red and white pulp—and
highlights how spatial arrangement corresponds to immune function, such as structured lymphocyte
zones and compartmentalized myeloid populations. We also have an access to the expert annotated
lables, which we report the accuracy against it in Table 2] Figure[§also refelects varying quality of
learned embeddings by the choice of \.

A:1e-06 A:1e-05 A :0.0001 A:0.001

N

Figure 6: Visualizations of mouse spleen CODEX data based on the output of CCA-SSG model with
different \ settings. We can observe that depending on the choice of A, the quality of expression
varies a lot. When A becomes too large, the learned representation fail to recover the underlying cell
environments. See Section [2.2.1] for the setup.

Triple Negative Breast Cancer Dataset The dataset from Keren et al. comprises MIBI-TOF
imaging data from 41 TNBC patients, capturing the spatial expression of 36 proteins across tumor,
immune, and regulatory markers at subcellular resolution. Tumors are classified into three immune
architectures—cold, mixed, and compartmentalized—based on spatial patterns of immune infiltration,
cell type organization, and marker expression. Compartmentalized tumors are linked to the best
survival outcomes. Mixed tumors, featuring intermingled tumor and immune cells with high CD8+
T cell and checkpoint marker expression, may benefit from immunotherapy. Cold tumors show
sparse immune presence and poor prognosis. Among these, the mixed and compartmentalized tumor
microenvironments (TMEs) represent favorable immune architectures that the authors aim to recover,
as they are identified through a combination of cell type composition, spatial organization, and marker
expression profiles. We predict such group (mixed vs. comparatmentalized) based on the learned
embeddings. The AUC for the prediction is reported in Table 2}

Colorectal Cancer Dataset The colorectal cancer (CRC) dataset from Schiirch et al.| (2020)) in-
cludes 140 tissue regions from 35 advanced-stage CRC patients, profiled using FFPE-CODEX
imaging with 56 protein markers to identify diverse cell populations within the tumor microenviron-
ment (TME). The study identified nine distinct cellular neighborhoods (CNs) through unsupervised
clustering of spatial co-occurrence patterns, revealing how the spatial organization of immune and
stromal cells shapes immune responses. Two major immune architectures emerged (1) Crohn’s-like
reaction (CLR), associated with structured immune infiltration and favorable outcomes, and (2)

26

748
749
750
751
752

753

diffuse inflammatory infiltration (DII), marked by disorganized immune presence and poor prognosis.
These TMEs, distinguished by differences in cell types, spatial arrangements, and marker expression,
represent the patterns the authors aim to recover, as they reflect clinically relevant immune organi-
zation associated with patient survival. The AUC for the predicting such group (CLR vs. DII) is
reported in Table[2]

G.2 Validation of Bootstrap Samples

True Solution 1 Solution 2 (graph k-NN)

Number of Nodes 2708 2708+0 2708+0
Number of Edges 5278 5200.54+9 5171.78+7.34
Average Degree 3.8980 3.84+0.01 3.82+0.01
Density 0.0014 0+0 0+0
Avg Clustering Coefficient ~ 0.2407 0.01£0 0.05+0
Avg Connected Component 78 13.16£3.26 67.91£6.7
Giant Component Size 2485 2684.28+6.51 2620.38+10.78
Assortativity -0.0659 -0.06+0 -0.07+0
PageRank 1353.5 1353.5+0 1353.5+0
Transitivity 0.0935 0.01£0 0.03+0
Number of Triangles 1630 133.96+11.62 471.48+27.11

Table 5: Graph statistics for Cora illustrating the two solutions suggested in Section[2.1} We see the
clear deviation on graph statistics, especially the average connected component and the number of
triangles when we follow the Solution 1.

Method + kNN
Cosine Graphon Number of Triangles Average Degree , Number of Connected C Average Clustering Coefficient

o010 —
- . f =
s
. 0009 1 1071
3 102 x10°
B 0
"B Ezo@s
.

0.007 o A 4 of i
- s - .

0006 T3 T % 2 T T8 R 7T 7 3

0005 £ £ £ £

g o g g o i g o]

00 02 04 06 08 10

p=001, =05

°
g

raphon Value

Cosine Graphon
0010

3

08 0.008

05 00062
]

04 0,004 &
s

02 0.002

00
%0 o2 04 06 08 10

p=001, n=2

Figure 7: Visualization of the statistics obtained by different methods. The left most plot in each row
corresponds to a visualization of the graphon function W (x, y) = p * (1 + cos(nm - (z — y)))/2, for
p = 0.01 and different values of 7. Each row presents a visualization of 10 instances of a resampling
of a graphon generated according to W using different methods.

27

754

756
757

True

Edge Drop Node Drop Ours NB VAE
Assortativity -0.0345 0+0 0+0 0+0 0+0 -0.44+0.05
Avg ClusterCoefficient 0 0+0 0+0 0+0 0+0 0.12+0.01
Avg Degree 0.12 0.12+0 0.1+0.01 0.08+0 0.04+0.02 2.63+0.47
Density 0.0002 0+0 0+0 0+0 0+0 0.01+0
Giant Component Size 3 2.93+0.26 2.53+0.5 2.79+0.4 4.12+1.36 90.08+8.22
Scenario 1 Num Connected Components 470 471.13+0.87 380.72+2.44 480+1.15 492.81+3.52 410.89+8.21
Num Edges 30 28.87+0.87 19.28+2.44 20+1.15 8.82+5.12 657.73+118.12
Num Nodes 500 500£0 400+0 500+0 500£0 500+0
Num Triangles 0 0+0 0+0 0+0 1.48+2.22 3060.65£1108.48
PageRank 249.5 249.5+0 199.5+0 249.5+0 249.5+0 249.5+0
Transitivity 0 0+0 0+0 0+0 0.33+0.31 0.47+0.05
Assortativity -0.0227 -0.02+0.01 -0.02+0.04 -0.02+0.03 0.01+0.04 0.04+0.04
Avg ClusterCoefficient 0.0064 0.01+0 0.01+0 0.01+0 0.02+0.01 0.16+0.01
Avg Degree 3.224 3.1+0.02 2.58+0.07 3.2+0.01 3.68+0.29 3.13+0.09
Density 0.0065 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0
Giant Component Size 479 475.02+2.21 360.97£6.3 481.21+2.64 407.42+11.16 70.91+7.09
Scenario 2 Num Connected Components 18 21.41+1.81 33.23+4.71 17.89+1.25 91.93£10.74 391.57+4.03
Num Edges 806 77411442 515.92+13.17 801.17+1.81 921+71.47 782.12+21.59
Num Nodes 500 500£0 400+0 500£0 500£0 500+0
Num Triangles 7 6.16+0.89 3.59+1.35 5.42+2.36 68.31+21.3 4469.92+189.99
PageRank 249.5 249.5+0 199.5+0 249.5+0 249.5+0 249.5+0
Transitivity 0.0083 0.01+0 0.01+0 0.01+0 0.04+0.01 0.69+0.01
Assortativity -0.0227 -0.02+0.01 -0.02+0.04 -0.01+0.03 0.01+0.04 -0.58+0.06
Avg ClusterCoefficient 0.0064 0.01+0 0.01+0 0.01+0 0.02+0.01 0.11+0.02
Avg Degree 3.224 3.1+0.02 2.58+0.07 3.21+0.01 3.68+0.29 1.28+0.18
Density 0.0065 0.01+0 0.01+0 0.01+0 0.01+0 0+0
Giant Component Size 479 475.02+2.21 360.97+6.3 481.2+2.77 407.42+11.16 49.52+10.72
Scenario 3 Num Connected Components 18 21.41+1.81 33.23+4.71 17.84+1.28 91.93+10.74 421.24+11.14
Num Edges 806 77411442 515.92+13.17 801.7+1.61 921£71.47 321.11+45.67
Num Nodes 500 5000 4000 500£0 500+0 500+0
Num Triangles 7 6.16+0.89 3.59+1.35 5.74+2.34 68.31+21.3 798.48+165.04
PageRank 249.5 249.5+0 199.5+0 249.5+0 249.5+0 249.5+0
Transitivity 0.0083 0.01+0 0.01+0 0.01+0 0.04+0.01 0.46+0.06
Assortativity -0.0833 0+0 0+0 0+0 0+0 -0.02+0.11
Avg ClusteringCoefficient 0 0+0 0+0 0+0 0+0.01 0.23+0.01
Avg Degree 0.104 0.1+0 0.08+0.01 0.07+0.01 0.04+0.02 7.39+0.37
Density 0.0002 0+0 0+0 0+0 0+0 0.01x0
Giant Component Size 3 3+0.06 2.77+0.42 2.58+0.49 4.28+1.43 81.19+7.89
Scenario 4 Num Connected Components 474 475.1+0.82 383.45+2.4 482.85+1.29 492.15+3.75 350.19+9.04
Num Edges 26 24.9+0.82 16.55+2.4 17.15+1.29 9.68+5.66 1847.28+91.84
Num Nodes 500 500+0 400+0 500+0 500+0 500+0
Num Triangles 0 0+0 0+0 0+0 1.75+2.65 19727.094£959.62
PageRank 249.5 249.5+0 199.5+0 249.5+0 249.5+0 249.5+0
Transitivity 0 0+0 0+0 0+0 0.34+0.32 0.75+0.02

Table 6: Comparison of all sampling methods on graphon model as posited in Equation|l] The
ground truth graphon is generated with n = 500, p = 150, k = 20. For each methods, 500 (bootstrap)
samples are generated. For edge and node drop, we randomly remove 20% of edges or nodes
(and corresponding edges). Our proposed nonparametric bootstrap consistently achieves significant
similarities with the ground truth graph under different scenarios.

We analyze four scenarios (each in Table[7} [B} [0} and

[T0) of recovering the underlying dependency by

our proposed nonparametric bootstrap method either through graph-knn or feature-knn. The graph is
generated by the model posited in Equation [T| with varying graphon function W and feature generator

g.

28

graph-kNN

feature-kNN

Original

k=5 k=20

= k=50 k=5 k=20 k=50
Assortativity 0+0 0+0 0+0
Avg ClusterCoefficient 0 00 0+0 0+0 0+0 0+0 0+0
Avg Degree 0.02 0+0 0+0 0+0 0+0 0£0 0+0
Density 0.0002 0+0 0+0 0+0 0+0 0+0 0+0
Giant Component Size 2 1+0 1+0 1+0 1+0 1+0 1+0
n=100 Num Connected Components 99 100£0 1000 100£0 1000 100£0 1000
Num Edges 1 0£0 0+0 0£0 0+0 0£0 00
Num Nodes 100 100£0 100£0 100£0 100£0 100£0 100£0
Num Triangles 0 0+0 0+0 0+0 0+0 0+0 0+0
PageRank 49.5 49.5+0 49.5+0 49.5+0 49.5+0 49.5+0 49.5+0
Transitivity 0 0+0 0+0 0+0 0+0 0+0 0+0
Assortativity -0.0345 0£0 0+0 0£0 0+0 0£0 0+0
Avg ClusterCoefficient 0 00 0+0 0+0 0+0 0+0 0+0
Avg Degree 0.12 0+0 0.01+0 0.02+0 0.04+0.01 0.08+0 0.11+0
Density 0.0002 0+0 00 0+0 0+0 0+0 0+0
Giant Component Size 3 2.04+0.82 2.32+0.47 2.34+0.47 240 2.79+0.4 2.94+0.24
n=500 Num Connected Components 470 498.96+0.82 497.07+0.82 495.4+0.96 489.19+1.61 480£1.15 472.94+0.86
Num Edges 30 1.04+0.82 2.93+0.82 4.6+0.96 10.81+1.61 20+1.15 27.06+0.86
Num Nodes 500 500+0 500+0 500+0 500+0 500+0 500+0
Num Triangles 0 0+0 0+0 0+0 0+0 0+0 0+0
PageRank 249.5 249.5+0 249.5+0 249.5+0 249.5+0 249.5+0 249.5+0
Transitivity 0 0£0 0+0 0£0 0+0 0£0 0+0
Assortativity -0.112 -0.39+0.15 -0.36+0.14 -0.33+0.13 0+0 -0.01+0.11 -0.02+0.08
Avg ClusterCoefficient 0 0+0 0+0 0+0 0+0 0+0 0+0
Avg Degree 0.182 0.03+0.01 0.03+0.01 0.04+0.01 0.09+0.01 0.14+0 0.17£0
Density 0.0002 0£0 00 0£0 0+0 0£0 00
Giant Component Size 4 3.45+0.5 3.42+0.49 3.46+0.51 3.374£0.49 4.06+0.6 4.23+0.48
n=1000 Num Connected Components 909 984.21+£2.87 983.32+2.82 980.71+£2.92 955.1#2.99 928.42+2.25 916.2+1.51
Num Edges 91 15.79£2.87 16.68+2.82 19.29+2.92 44.9+2.99 71.6+2.24 83.81+£1.51
Num Nodes 1000 1000+0 1000£0 1000x0 1000£0 1000£0 1000£0
Num Triangles 0 0+0 0+0 0+0 0+0 0.02+0.13 0£0.06
PageRank 499.5 499.5+0 499.5+0 499.5+0 499.5+0 499.5+0 499.5+0
Transitivity 0 0+0 0+0 0+0 0+0 0.01+0.04 0£0.01

Table 7: Scenario 1: the graph structure is highly localized (W (u, v) = 1{[u — v] < 0.01}), leading
to disconnected components and the failure of graph-based kNN, while features (N (5u, 0.01)) exhibit

a strong correlation with the latent variable u, enabling feature-based kNN success. The greyed-out
cells indicate values that are unavailable.

29

graph-kNN feature-kNN
Original k=5 k=20 k=50 k=5 k=20 k=50
Assortativity 0.2884 -0.24+0.16 -0.12+0.18 -0.13+0.17 -0.01+0.19 -0.11+0.17 -0.1+0.17
Avg ClusterCoefficient 0 0+0 0+0 0+0 0+0 0+0 0+0
Avg Degree 0.66 0.37£0.03 0.49+0.03 0.6+0.02 0.53+0.03 0.63+0.02 0.65+0.01
Density 0.0067 0+0 0+0 0.01+0 0.01+0 0.01+0 0.01+0
Giant Component Size 8 6.15+1.21 6.36+1.4 5.97+1.23 5.22+1.26 5.86+1.25 6.09+1.39
n=100 Num Connected Components 67 81.9+1.59 7554145 70.24+1.24 73.58+1.56 68.5+0.79 67.6+0.56
Num Edges 33 18.27+1.57 24.54+1.44 29.78+1.24 26.44+1.55 31.52+0.79 32.41+0.55
Num Nodes 100 100+0 100+0 100+0 100+0 100+0 100+0
Num Triangles 0 0+0 0.02+0.15 0.02+0.13 0.01£0.12 0.01£0.12 0.01+0.12
PageRank 49.5 49.5+0 49.5+0 49.5+0 49.5+0 49.5+0 49.5+0
Transitivity 0 0£0 0.01£0.03 0£0.03 0£0.03 0£0.02 0£0.02
Assortativity -0.0359 -0.12£0.03 -0.08+0.03 -0.08+0.03 -0.04+0.03 -0.02+0.03 -0.01£0.04
Avg ClusterCoefficient 0.0052 0£0 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0
Avg Degree 3.076 2.91+0.02 3.03+0.01 3.02+0.01 2.96+0.02 3.06+0.01 3.07+0
Density 0.0062 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0
Giant Component Size 471 463.59+3.66 466.91+3.48 468.15+£3.02 466.85+3.11 469.38+2.64 469.54+2.58
n=500 Num Connected Components 29 34.37+£2.24 31.73£1.94 31.15¢1.79 32.07+1.91 29.84+1.27 29.66+1.23
Num Edges 769 727.53+5.05 757.88+2.53 756.11+2.92 740.32+4.78 764.09+£1.75 767.16+1.04
Num Nodes 500 5000 5000 5000 5000 5000 5000
Num Triangles 7 4.08+2.01 5.03+2.33 5.09+2.33 4.5442.05 5.37+2.38 5.48+2.33
PageRank 249.5 249.5+0 249.5+0 249.5+0 249.5+0 249.5+0 249.5+0
Transitivity 0.0087 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0
Assortativity 0.0122 -0.05£0.02 -0.03£0.02 -0.04+0.02 -0.01£0.02 0£0.02 0£0.02
Avg ClusterCoefficient 0.0078 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0
Avg Degree 6.594 6.37+0.02 6.56+0.01 6.59+0 6.5+0.01 6.58+0 6.59+0
Density 0.0066 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0
Giant Component Size 999 998.74+0.5 998.98+0.13 999+0.06 998.94+0.26 998.99+0.08 998.99+0.15
n=1000 Num Connected Components 2 2.25+0.5 2.02+0.13 2+0.06 2.06+0.25 2.01+0.08 2.01£0.1
Num Edges 3297 3185.15£9.77 3281.22+3.6 3293.46+1.6 3248.4+6.06 3289.46+2.37 3294.19+1.49
Num Nodes 1000 10000 10000 1000£0 1000£0 1000£0 10000
Num Triangles 50 40.6+6.86 47.34+6.66 48.53+6.7 46.97+6.8 50.03+7.75 50.54+7.07
PageRank 499.5 499.5+0 499.5+0 499.5+0 499.5+0 499.5+0 499.5+0
Transitivity 0.0069 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0

Table 8: Scenario 2 has a well-structured graph (W (u,v) = 1—Ju—v

but highly oscillatory features (sin(10u) + A(0,0.1)) disrupt feature-based KNN.

30

), ensuring graph kNN success,

graph-kNN

feature-kNN

Original k=5 k=20 k=50 k=5 k=20 k=50
Assortativity -0.0344 -0.15+0.14 -0.08+0.15 -0.06+0.14 -0.05+0.15 -0.09+0.16 -0.08+0.15
Avg ClusterCoefficient 0 0+0 0+0.01 0+0.01 0+0.01 0+0.01 0+0.01
Avg Degree 0.78 0.56+0.03 0.66+0.03 0.74+0.02 0.65+0.03 0.75+0.01 0.77+0.01
Density 0.0079 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0
Giant Component Size 13 10.37+2.03 10.83+3.2 13.93+3.78 10.35+3.12 13.05+3.86 13.88+3.95
n=100 Num Connected Components 62 72.71£1.53 67.23+1.49 63.09+1.09 67.71£1.65 62.69+0.85 61.78+0.7
Num Edges 39 27.91+1.45 32.95+1.43 37.19+1 32.46+1.63 37.52+0.73 38.46+0.56
Num Nodes 100 100+0 100+0 100+0 100+0 100£0 1000
Num Triangles 0 0.01+0.09 0.1+0.31 0.12+0.34 0.09+0.31 0.1+0.3 0.11x0.32
PageRank 495 49.5+0 49.5+0 49.5+0 49.5+0 49.5+0 49.5+0
Transitivity 0 0+0.01 0.01+0.04 0.01+0.03 0.01+0.04 0.01+0.03 0.01+0.03
Assortativity -0.009 -0.09+0.03 -0.09+0.03 -0.11£0.03 -0.05+0.03 -0.02+0.04 -0.02+0.03
Avg ClusterCoefficient 0.00575685 0+0 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0
Avg Degree 3.228 3.07+0.02 3.19+0.01 3.19+0.01 3.15+0.01 3.21+0.01 3.22+0
Density 0.0065 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0
Giant Component Size 479 473.05+3 474.67+2.97 476.17£2.19 476.13%2.16 476.77+2.06 476.69+2.09
n=500 Num Connected Components 22 26.44+2 24.65+1.57 23.92+1.34 23.9+1.29 23.14+0.99 23.14%1.01
Num Edges 807 766.71%5.09 796.85+2.43 796.3£2.54 787.46+3.64 802.61x1.64 805.05%1.07
Num Nodes 500 500+0 500+0 500+0 500+0 500+0 5000
Num Triangles 8 4.08+2.03 5.18+2.31 5.23+2.25 4.94£2.15 5.97+2.44 6.02+2.59
PageRank 249.5 249.5+0 249.5+0 249.5+0 249.5+0 249.5+0 249.5+0
Transitivity 0.0094 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0
Assortativity 0.0014 -0.06+0.02 -0.03+0.02 -0.06+0.02 0+0.02 0.01£0.02 0.01x0.02
Avg ClusterCoefficient 0.0077 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0
Avg Degree 6.584 6.36+0.02 6.55+0.01 6.58+0 6.53+0.01 6.57+0 6.58+0
Density 0.0066 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0
Giant Component Size 997 996.68+0.63 996.94+0.31 996.99+0.15 996.97+0.19 996.96+0.28 996.98+0.2
n=1000 Num Connected Components 4 4.3+0.57 4.04+0.19 4.01£0.1 4.03+0.19 4.02+0.15 4.01£0.11
Num Edges 3292 3179.28+10.22 3276.36+3.69 3288.4%1.53 3262.62+4.73 3285.76+2.2 3289.42+1.38
Num Nodes 1000 1000+0 1000+0 10000 1000+0 1000+0 1000+0
Num Triangles 60 47.84+7.03 49.117.17 50.94+7.08 50.74+6.88 55.12+6.99 55.54+7.53
PageRank 499.5 499.5+0 499.5+0 499.5+0 499.5+0 499.5+0 499.5+0
Transitivity 0.0082 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0 0.01+0

Table 9: Scenario 3 maintains a structured graph (W (u,v) = 1 —|u—wv]) and smooth feature variation
(N (5u,0.01)), leading to the success of both methods.

31

graph-kNN

feature-kNN

Original k=5 k=20 k=50 k=5 k=20 k=50
Assortativity 00 0+0 0+0
Avg ClusterCoefficient 0 0+0 0+0 0+0 00 00 00
Avg Degree 0.02 0+0 0+0 0+0 0+0 0+0 0+0
Density 0.00020202 0+0 0+0 0£0 0£0 0£0 0£0
Giant Component Size 2 1+0 1+0 1+0 1+0 1+0 1+0
n=100 Num Connected Components 99 100+0 100+0 100+0 100£0 100£0 100£0
Num Edges 1 0+0 0+0 0£0 0£0 0£0 0£0
Num Nodes 100 100+0 100+0 100+0 100+0 1000 1000
Num Triangles 0 0+0 0+0 00 00 0+0 0+0
PageRank 49.5 49.5+0 49.5+0 49.5+0 49.5+0 49.5+0 49.5+0
Transitivity 0 0+0 0+0 0+0 0+0 0+0 0+0
Assortativity -0.2 0+0 -0.34+0.19 00 0+0 0£0 -0.15£0.1
Avg ClusterCoefficient 0 0+0 0+0 0+0 00 00 00
Avg Degree 0.12 0.02+0.01 0.03+0.01 0.04+0.01 0.04+0.01 0.08+0.01 0.11x0
Density 0.00024048 0+0 0+0 0£0 0£0 0£0 0£0
Giant Component Size 3 2.89+0.31 3.11+0.32 3.07+0.26 2.8+0.4 3+0.04 3.16+0.37
n=500 Num Connected Components 470 494.14+1.63 491.73£1.63 489.81+1.48 489.6+1.66 480.53£1.37 472.85+1.03
Num Edges 30 5.86£1.63 8.27+1.63 10.19+1.48 10.4+1.66 19.47+1.37 27.15£1.03
Num Nodes 500 500+0 500+0 500+0 500+0 5000 5000
Num Triangles 0 0+0 0+0 00 00 0+0 0+0
PageRank 2495 249.5+0 249.5+0 249.5+0 249.5+0 249.5+0 249.5+0
Transitivity 0 0+0 0+0 0+0 0+0 0+0 0+0
Assortativity 0.14150943 -0.15+0.16 -0.08+0.15 -0.06+0.13 -0.09+0.08 0£0.1 0£0.1
Avg ClusterCoefficient 0 0+0 0+0 0+0 00 00 00
Avg Degree 0.208 0.05+0.01 0.05+0.01 0.06+0.01 0.09+0.01 0.17+0 0.19+0
Density 0.00020821 0+0 0+0 0£0 0£0 0£0 0£0
Giant Component Size 7 6.31+0.8 6.18+0.86 6.21+0.86 3.39+0.6 4.58+0.75 5.22+0.98
n=1000 Num Connected Components 896 976.5+¢2.95 975.11%2.75 970.02+2.58 953.18+3.15 916.91+2.48 904+1.75
Num Edges 104 2371294 25154276 30.18+2.55 46.824#3.15 83.11x2.48 96.01x1.74
Num Nodes 1000 10000 1000+0 1000+0 1000+0 10000 10000
Num Triangles 0 0+0 0+0 0+0 00 0.02+0.13 0.01+0.09
PageRank 499.5 499.5+0 499.5+0 499.5+0 499.5+0 499.5+0 499.5+0
Transitivity 0 0+0 0+0 0+0 0+0 0+0.03 0+0.01

Table 10: Scenario 4 combines a fragmented graph (W (u, v) = 1{|u — v] < 0.01}) with oscillatory
features (sin(10u) + A(0, 0.1)), making the problem hard for both graph- and feature-based kNN.
The greyed-out cells indicate values that are unavailable.

32

Statistic Original k=3 k=5 k=7 k=10 k=15 k=20 k=50

Number of Nodes 2708 2708+0 2708+0 27080 2708+0 2708+0 2708+0 2708+0
Number of Edges 5278 4793.52+14.73 4962.71+13.23 5035.19£12.52 5087.69+10.33 5154.9249.11 5171.78+7.34 5196.15+7.42
Average Degree 3.90 3.540.01 3.67+0.01 3.7240.01 3.76x0.01 3.81x0.01 3.820.01 3.840.01
Density 0.00 0£0 0£0 0£0 0£0 0£0 0£0 0£0
Avg Clustering Coefficient 0.24 0.1x0.01 0.09x0 0.08+0 0.07£0 0.06+0 0.05£0 0.03x0
Cora Avg Connected Component 78 136.32+6.99 114.71£6.76 97.29+7.3 97.52+7 62.44+6.95 67.91£6.7 42.54+6.08
Giant Component Size 2485 2479.92+19.9 2530.81£21.35 2571.64£18.39 2580.51+14.08 2625.44+11.64 2620.38+10.78 2652.33+9.41
Assortativity -0.07 -0.09+0 -0.09+0 -0.08+0 -0.08+0 -0.08+0 -0.07+0 -0.08+0
PageRank 1353 1353.5+0 1353.520 1353.5£0 1353.5+0 1353.5+0 1353.5+0 1353.520
Transitivity 0.09 0.04£0 0.04£0 0.04£0 0.03£0 0.03£0 0.03£0 0.02£0
Number of Triangles 1630 716.03+32.22 664.18+29.42 623.48+29.33 575.85+29.4 512.85+27.32 471.48+27.11 319.15+21.65
Number of Nodes 3327 3327+0 3327x0 3327x0 3327+0 3327+0 3327+0 3327x0
Number of Edges 4552 3846. 3 3951 .58 3997.51£13.36 4031.65£12.6 4059.15+11.71 4127.78+10.93 4150.58+11.39
Average Degree 274 2.3120.01 2.3840.01 2.440.01 2.42+0.01 2.4410.01 2.480.01 2.5¢0.01
Density 0.00 0£0 0£0 0£0 0£0 0£0 0£0 0£0
Avg Clustering Coefficient 0.14 0.05£0 0.05£0 0.04£0 0.04£0 0.04£0 0.03£0 0.03x0
Citeseer Avg Connected Component 438 868.13+12.49 848.01£10.31 840.08+11.44 830.0710.87 795.53£10.75 635.09+11.87 570.92+13.67
Giant Component Size 2120 1934.25442.19 2010.02+32.77 2043.56+31.79 2063.28+31.07 2098.62+36.32 2418.12435.69 2585.67+23.96
Assortativity 0.05 -0.02+0.01 -0.01£0.01 -0.01£0.01 0£0.01 0.01£0.01 -0.08+0 -0.1£0
PageRank 1663 16630 16630 16630 16630 16630 16630 16630
Transitivity 0.13 0.07£0 0.07£0 0.06+0 0.05£0 0.05£0 0.04£0 0.03x0
Number of Triangles 1167 574.04+29.17 550.58+28.97 520.69+27.43 462.24+27.24 431.58+25.85 304.6+19.59 227.62+16.37
Number of Nodes 2176 21760 2176x0 2176x0 21760 21760 21760 2176x0
Number of Edges 15104 14505.33£22.7 14811.91£17.53 14914.4+14.51 14956.5£12.89 14999.55+11.49 15014.23£10.28 15066.34+5.57
Average Degree 13.88 13.33£0.02 13.61£0.02 13.71£0.01 13.7540.01 13.79£0.01 13.840.01 13.85£0.01
Density 0.01 0.01x0 0.01£0 0.01£0 0.01x0 0.01x0 0.01x0 0.01x0
Avg Clustering Coefficient 0.57 0.19x0 0.17£0 0.16+0 0.14£0 0.130 0.12+0 0.08+0
ChicagoSketch Avg Connected Component 1 120 120 120 120 120 120 120
Giant Component Size 2176 21760 2176+0 21760 21760 21760 21760 21760
Assortativity 0.65 0.31x0.01 0.3£0.01 0.3+0.01 0.31£0.01 0.31£0.01 0.29+0.01 0.13£0.01
PageRank 1087 1087.5+0 1087.5x0 1087.5£0 1087.5+0 1087.5+0 1087.5+0 1087.5x0
Transitivity 0.56 0.19£0 0.17£0 0.16£0 0.14£0 0.13£0 0.12£0 0.08+0
Number of Triangles 38240 11919.95£119.57 11097.95+105.45 10402.11£108.83 9577.65£106.85 8637.74£102.45 8006.58+95.13 5592.24+76.04
Number of Nodes 1912 191220 1912£0 19120 19120 19120 19120 19120
Number of Edges 31299 30803.01£27.13 30985.09+25.09 31049.84+24.48 31076.91£23.3 31084.55+23.33 31082.05+22.83 31058.76+25.23
Average Degree 32.74 32.2240.03 32.4140.03 32.48+0.03 32.51£0.02 32.5240.02 32.51£0.02 32.4940.03
Density 0.02 0.02+0 0.02+0 0.02+£0 0.02+0 0.02+0 0.02+0 0.02+0
Avg Clustering Coefficient 0.32 0.17£0 0.17£0 0.17£0 0.17£0 0.17£0 0.17£0
Twitch_PTBR Avg Connected Component 1.00 1.17£0.4 1.2+0.44 1.2620.5 1.19£0.44 1.1420.39 1.07£0.25
Giant Component Size 1912 1911.64+0.84 1911.59+0.9 1911.47£1.01 1911.61+0.88 1911.72+0.77 1911.87£0.5
Assortativity -0.23 -0.3£0 -0.3x0 -0.320 -0.29+0 -0.29+0 -0.28+0
PageRank 955 955.50 955.50 955.50 955.50 955.50 955.5+0
Transitivity 0.13 0.08+0 0.08+0 0.08+0 0.08+0 0.08+0 0.08+0 0.08+0
Number of Triangles 173510 103368.74+1614.98 102572.23£1741.49 103379.78+1759.64 104007.92+1678.98 105301.1£1862.01 105534.51+1904.54 106230.23£1900.76
Number of Nodes 3234 3234+0 3234x0 32340 3234£0 3234£0 3234£0 3234x0
Number of Edges 12717 12449.4+13.31 12567.43£9.6 12593.18+8.39 12606.58+8.34 12616.48+7.7 12615.12+£7.79 12608.38+8.42
Average Degree 7.86 7.7£0.01 7.77£0.01 7.79+0.01 7.8+0.01 7.8+0 7.8+0 7.8+0.01
Density 0.00 0£0 0£0 0£0 0£0 0£0 0£0
Avg Clustering Coefficient 0.43 0.19+0 0.15£0 0.14£0 0.12+0 0.12+0 0.12+0
Education Avg Connected Component 17.00 2.24%0.5 1.13£0.37 1.14£0.36 1.27£0.55 1.64+0.79 4.14£1.56
Giant Component Size 3109 3155.56+2.16 3233.87+0.37 3233.86+0.36 3233.360.79 3230.86+1.56
Assortativity 0.14 0.02+0.01 0.02+0.01 0.02+0.01 0.02+0.01 0.03£0.01 0.04£0.01
PageRank 1616.50 1616.5+0 1616.5x0 1616.5+0 1616.5+0 1616.5+0 1616.5+0 1616.5+0
Transitivity 0.39 0.19x0 0.16x0 0.15£0 0.13£0 0.12+0 0.12+0 0.11x0
Number of Triangles 6490 5402.03+65.45 4712.47£56.84 4356.54£57.62 3980.89£58.92 3569.63+54.37 3486.89+53.63 3346.53+48.62
Number of Nodes 914 9140 914£0 9140 9140 9140 9140 914£0
Number of Edges 3881 3557.23x17.18 3744.01£10.86 3804.45+8.77 3845.48+5.53 3855.53+4.2 3858.74+4.21 3855.93+4.51
Average Degree 8.49 7.78+0.04 8.19+0.02 8.3240.02 8.410.01 8.44+0.01 8.44+0.01 8.4420.01
Density 0.01 0.010 0.01£0 0.01£0 0.01£0 0.01£0 0.01x0 0.01£0
Avg Clustering Coefficient 0.55 0.19£0.01 0.16+0.01 0.14£0 0.12+0 0.11x0 0.09+0 0.05+0
Anaheim Avg Connected Component 1.00 1.1720.42 1.120.33 1.09£0.29 1.05£0.22 1.020.15 1.010.1 1.01£0.08
Giant Component Size 914 913.82+0.44 913.89+0.35 913.90.36 913.95+0.25 913.98+0.15 913.99+0.1 913.99+0.08
Assortativity 0.71 0.51£0.01 0.45£0.01 0.41£0.01 0.39+0.01 0.39£0.01 0.39£0.01 0.15£0.01
PageRank 456 456.5+0 456.5+0 456.5£0 456.5+0 456.5+0 456.5+0 456.5+0
Transitivity 0.60 0.2x0 0.16x0 0.14£0 0.12£0 0.11x0 0.1x0 0.06x0
Number of Triangles 7162 1968.36+46.38 1779.38+43.05 1575.97+39.58 1438.32+38.23 1270.53+35.34 1163.42+32.96 768.93+28.73

Table 11: Graph statistics of bootstrapped samples generated by Algorithm [2fwith varying neighbor-
hood size (k).

33

759
760
761
762
763
764
765
766

Original Edge Drop Node Drop Ours Network Bootstrap VAE
Assortativity -0.07 -0.07+0 -0.07 £0.01 -0.07+0 -0.03 +0.03 -043+0
Avg Clustering Coefficient 0.24 022+0 0.17 £0.01 0.05+0 0.02+0.01 05+0
Avg Degree 3.90 3.74 +0.01 2.63+0.07 3.82+0.01 2.11+0.18 10.04 £ 0.05
Density 0.00 0+0 0£0 00 00 0+0
Giant Component Size 2485 2457.77 £ 9.09 1819.98 +30.29 2620.38+10.78 1090.22 + 41.05 1931.32 +£9.06
Cora Num Connected Components 78 100.12 4.7 587.49 + 16.74 67.91+6.7 1595.93 + 38.78 777.68 £ 9.06
Num Edges 5278 5066.1 + 11.78 3382.72+87.72 5171.78+7.34 2857.55 +244.83 13598.31 + 67.26
Num Nodes 2708 2708 =0 2569.6 +9.32 2708+0 2708 =0 2708 + 0
Num Triangles 1630.00 1441.03 £20.11 835.13 £63.84 471.48+27.11 801.19 + 338.24 78345.91 + 643.03
Pagerank 1353.50 1353.5+0 1294.43 +4.23 1353.5+0 1353.5+0 1353.5+0
Transitivity 0.09 0.09+0 0.09 +0.01 0.03+0 0.07 +0.01 0120
Assortativity -0.23 -0.23+0 -0.23+0.01 -0.29+0 0+0 -0.45+0
Avg Clustering Coefficient 0.32 0.25+0 0.26+0.01 0.17+0 0+0 0.41+0
Avg Degree 32.74 26.19+0 21.87+0.84 32.51+0.02 00 19.89+0.04
Density 0.02 0.01x0 0.01+0 0.02+0 0+0 0.01+0
Giant Component Size 1912 1883.96+4.76 1506+5.9 1911.72+0.77 1+0 893.77+7.03
TwitchPTBR ~ Num Connected Components 1.00 28.12+4.49 325.55+8.23 1.14+0.39 191240 1016.37+6.87
Num Edges 31299 25039+0 20029.75+776.17 31082.05+22.83 0+0 19010.87+40.09
Num Nodes 1912 1912+0 1831.36%7.18 1912+0 1912+0 1912+0
Num Triangles 173510 88756.59+980.58 89048.18+9052.57 105534.51+1904.54 0x0 332319.47+623.05
Pagerank 955.50 955.5+0 921.843.18 955.5+0 955.5+0 955.5+0
Transitivity 0.13 0.1+0 0.13+0 0.08+0 0£0 0.31+0
Assortativity 0.65 456.5+0 44121 £2.15 0.29+0.01 456.5+0 456.5+0
Avg Clustering Coefficient 0.57 00 0+0 0.12+0 0£0 00
Avg Degree 13.88 048+0 0.6+0.01 13.8+0.01 0+0 0.59+0.01
Density 0.01 0+0 0£0 0.01x0 00 0+0
Giant Component Size 2176 2175.97 £ 0.18 1739.89 £ 0.44 21760 1+0 703.59 + 6.77
ChicagoSketch Num Connected Components 1.00 1.03+0.16 349.83 £7.54 10 2176 £ 0 1473.41 £6.77
Num Edges 15104 12083 +0 9658.73 £46.97 15014.23+10.28 0+0 9156.6 + 85.77
Num Nodes 2176 2176 £0 2088.77 +7.54 2176+0 2176 0 2176 £0
Num Triangles 38240 19576.4 + 101.57 19554 +325.13 8006.58+95.13 0+0 83059.43 + 1685.2
Pagerank 1087.50 1087.5+0 1051.19 £3.29 1087.5+0 1087.5+0 1087.5+0
Transitivity 0.56 045+0 0.56+0 0.12+0 0£0 0510
Assortativity 0.14 0.11+0.01 0.33+0.02 0.03+0.01 0+0 -024+0
Avg Clustering Coefficient 043 0340 036+0 0.12+0 00 0.37+£0
Avg Degree 7.86 6.29+0 5.58 £0.02 7.8+0 0+0 16.63 +£0.07
Density 0.00 0£0 0+0 00 0£0 0010
Giant Component Size 3109 3103.63 £2.38 2478.84 + 8.39 3233.36+0.79 2.34+0.94 1826.67 +7.86
Eduation Num Connected Components 17 25.11£2.6 539.85 + 8.69 1.64+0.79 323181+ 1.71 1408.33 £ 7.86
Num Edges 12717 10173 +0 8654.72 + 30.07 12615.1247.79 2.94+291 26887.73 + 118.84
Num Nodes 3234 3234+0 3104.69 + 8.44 323440 3234+0 3234+0
Num Triangles 6490 3321.39 £32.58 3321.02 +37.46 3486.89+53.63 0.96 +2.18 257887.78 +2061.14
Pagerank 1616.50 1616.5+0 1562.58 +3.73 1616.5+0 1616.5+0 1616.5+0
Transitivity 0.39 0.32+0 039+0 0.12+0 0.36 + 0.48 035+0
Assortativity 0.71 0.6+0.01 0.69 +0.02 0.39+0.01 -0.15 £ 0.02
Avg Clustering Coefficient 0.55 0.44 £0.01 0.46 +0.01 0.09+0 0.22+0
Avg Degree 8.49 6.79+0 5.66 +0.08 8.44+0.01 5.06 +£0.07
Density 0.01 00 00 0.01+0 00
Giant Component Size 914 0.01£0 0.01£0 913.99+0.1 0.01£0
Anaheim Num Connected Components 1.00 0+0 0+0 1.01£0.1 00
Num Edges 3881 911.49 £2.43 727.17 £3.63 3858.74+4.21 121.87 + 13.67
Num Nodes 914 28+1.45 149.32 +5.24 91440 645.81 £5.49
Num Triangles 7162 31040 2483.09 +37.24 1163.42+32.96 2311.09 +£32.23
Pagerank 456.50 914+0 877.31 £4.94 456.5+0 914+£0
transitivity 0.60 3661.41 £51.07 3667.47 £ 152.92 0.1+0 14770.14 + 386.77

Table 12: Graph statistics of bootstrapped samples generated by Algorithm [2fwith & = 20, simple
generation with Edge or Node Drop (with p = 0.2), and network bootstrap (NB) (Levin and Levina,
2021) and the extended VAE approach in Appendix{D.4] The best values among our method, NB
and VAE are bolded, and the second best values are underlined. The simple split methods largely
distort the original connectivity structure, reflected in the Giant Component Size or the Number of
Connected Components. Our proposed local bootstrap consistently mimics the original graph in
terms of the reported graph statistics. The greyed-out cells indicate values that are unavailable due to
instability encountered during training.

Remark G.1. When the graph structure is sufficiently informative for the underlying latent variable
distribution (see the differences in Table[7)and Table 0] for the graph-kNN case), the bootstrapped
graphs show noticeable robustness to the choice of k (the number of nearest neighbors). For example,
with 500 nodes and k=20, the bootstrapped graph retains about 98% of the original edges and
recovers approximately 70% of its triangles (see Table [§]for detailed statistics). Increasing k produces
progressively denser graphs with more edges and higher average degrees, but it also tends to lower
the clustering coefficient and reduce the number of triangles. Conversely, using a very small k leads
to sparser graphs that may preserve more local structure—reflected by higher clustering coefficients
and relatively more triangles per edge—but can underrepresent global connectivity, often resulting

34

767
768
769
770

771

in many small components. On real datasets, setting £ = 20 typically recovers an edge count close
to that of the original graph, though it still underestimates the original triangle count (see Table [TT).
Nonetheless, our proposed method produces graphs whose triangle counts more closely match the
original than those generated by other methods (see Table [T2).

G.3 Validation of the Entire Framework (Algorithm [3)

A=100

A=001

o

> &
O os
I B o
3 os %
o o ® °
Lo ot %
03 ...]
66 70 72 74 76 78 80 52 68 70 72 74 76 78 69 70 71 72 73 74 15 76 735 740 745 750 755 760 765 770 775
Log(cca_dist) Log(cca_dist) edr Log(cca_dist) Log(cca_dist)
0.05 © 025 © 05 ® 075

(a) Our CCA-based metrics discussed in Section@

A=001 A=04

oy o

B os

g o XA 3

3o S 2 o @

2 []
<., 8% Qo 4%

03)

14 15 16 17 18 19 20 21 15 16 17 18 19 20 21 16 17 18 19 20 16 17 18 19 20
Log(rankme) Log(rankme) edr Log(rankme) Log(rankme)
0.05 o 025 o 05 ® 075

(b) RankMe metric by |Garrido et al.{(2023)

A=10 A=100

A=0.01

£3
°

Accuracy

04

03) %. e
830 25 20 -15 -10 05 00 30 25 20 -5 -10 05 35 -30 25 20 -15 -10 05 35 30 -25 20 -15 -10 -05
Log(self_clustering) Log(self_clustering) e Log(self_clustering) Log(self_clustering)
0.05 © 025)05 ® 075

(¢) SelfCluster by Tsitsulin et al|(2023)

A=001 A=01 A=10 A=100

Accuracy

04

30 35 40 45 50 55 30 35 40 45 50 55 30 35 40 45 50 20 22 24 26 28 30 32 34
Log(coherence) Log(coherence) odr Log(coherence) Log(coherence)
0.05 o 025 o 05 ® 075

(d) Coherence by Tsitsulin et al.|(2023)

Figure 8: Visualizations of metrics value and classification accuracy on Cora. The CCA-SSG
model is trained on set of hyperparameter combinations including A, edge drop rate
(EDR), and feature masking rate (FMR). Each point denotes the each combination of hyperparameters.
The color denotes the edge dropping rate with blue dots referring small value (edr = 0.05) whereas
the red dot referring to the large value (edr = 0.75). In this dataset, a clear negative correlation is
noted for our metrics across all combinations of hyperparameters.

35

Dataset Default Ours «o-ReQ pseudo-<x RankME NESum SelfCluster Stable Rank Coherence

Cora 0.36 0.4 0.4 0.57 0.55 0.4 0.4 0.57 0.54
PubMed 0.62 0.68 0.67 0.74 0.67 0.67 0.69 0.74 0.74
Citeseer 0.32 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

CS 0.47 0.71 0.82 0.75 0.75 0.82 0.82 0.75 0.82
Chicago 0.39 034 035 0.35 0.35 0.35 0.35 0.29 0.4
Anaheim 0.13 0.23 0.12 0.18 0.18 0.12 0.23 0.18 0.12
Education ~ 0.23 0.26 0.18 0.17 0.18 0.16 0.18 0.26 0.21
Avg_clf 0.44 0.55 0.58 0.62 0.60 0.58 0.58 0.62 0.63
Avg_reg 0.25 0.28 0.22 0.23 0.24 0.21 0.25 0.24 0.24

Table 13: Downstream task (classification or regression) performance of the BGRL with hyperpa-
rameters chosen by each criteria. We compare to the BGRL (Thakoor et al.,2021)) with the default
parameters in the left-most column, fmr = 0.5, edr = 0.25, A\ = 10~2. The best value is bolded and
the second best is underlined.

Dataset Default Ours «-ReQ pseudo-x RankME NESum SelfCluster Stable Rank Coherence

Cora 0.35 0.65 0.66 0.67 0.63 0.63 0.69 0.59 0.47
PubMed 0.49 0.81 0.82 0.56 0.56 0.56 0.82 0.82 0.76
Citeseer 0.38 0.51 0.53 0.51 0.53 0.53 0.53 0.51 0.22

CS 0.65 0.79 0.86 0.86 0.86 0.86 0.86 0.86 0.76

Photo 0.32 0.73 0.58 0.53 0.53 0.73 0.73 0.73 0.69

Computers 0.42 0.57 0.66 0.57 0.66 0.66 0.66 0.57 0.65
Anaheim 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38
Twitch 0.47 0.52 0.15 0.15 0.15 0.15 0.46 0.15 0.48
Education 0.29 0.26 0.33 0.33 0.33 0.33 0.33 0.33 0.26
Avg_clf 0.44 0.68 0.69 0.62 0.63 0.66 0.72 0.68 0.59
Avg_reg 0.38 0.39 0.29 0.29 0.29 0.29 0.39 0.29 0.37

Table 14: Downstream task (classification or regression) performance of the CCA-SSG with hyperpa-
rameters chosen by each criteria. We compare to the CCA-SSG (Zhang et al., [2021) with the default
parameters in the left-most column, fmr = 0.5, edr = 0.25, A\ = 10~%. The best value is bolded and
the second best is underlined.

Dataset Default Ours «o-ReQ pseudo-x RankME NESum SelfCluster Stable Rank Coherence

Cora 0.64 0.68 0.54 0.54 0.54 0.54 0.5 0.54 0.42
PubMed 078 0.75 0.75 0.75 0.75 0.75 0.75 0.79
Citeseer 0.53 0.55 0.51 0.51 0.51 0.51 0.48 0.51 0.44

CS 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.61
Photo 0.71 0.83 0.79 0.79 0.79 0.79 0.57 0.81 0.41
Computers 0.45 0.45 0.45 0.45 0.39 0.39 0.39 0.39
Avg_clf 0.63 0.67 0.63 0.63 0.63 0.62 0.57 0.62 0.50

Table 15: Downstream task (classification or regression) performance of the GRACE with hyper-
parameters chosen by each criteria. We compare to the GRACE (Zhu et al., 2020) with the default
parameters in the left-most column, fmr = 0.5, edr = 0.25, 7 = 1. The best value is bolded and the
second best is underlined. The greyed-out cells indicate values that are unavailable due to instability
encountered during training.

36

Ours Literature Tsitsulin et al.|(2023)

CCAdist () «a-ReQ(|) pseudo-x (1) RankMe (1) NEsum (1) SelfCluster (J) Stable Rank (1) Coherence ({)

Cora -0.6596 -0.2414 0.2036 0.1998 0.2738 0.017 0.1146 0.2914
PubMed -0.7702 -0.2379 0.1422 0.2048 0.4854 -0.0103 0.0532 0.127
Citeseer -0.2014 -0.3183 0.2842 0.2781 0.2518 -0.3156 0.0609 -0.295

CS 0.1875 -0.5459 0.5356 0.5577 0.5608 -0.4376 0.1899 -0.3776

Photo -0.3797 -0.2886 0.274 0.3155 0.2698 -0.5009 0.4722 -0.3782

Computers -0.2433 -0.1943 0.0777 0.2498 0.2875 -0.0714 0.3322 -0.283
Chicago -0.1225 0.6618 -0.6887 -0.6667 -0.3284 0.3701 -0.451 0.1446
Anaheim -0.1528 0.352 -0.3273 -0.3091 -0.1757 0.2337 -0.0864 -0.0543
Twitch -0.5858 0.6246 -0.4868 -0.5414 -0.4852 0.3034 -0.2921 0.2839
Education -0.3464 0.4286 -0.4315 -0.3548 -0.0065 0.0171 0.0917 -0.1247
Avg_clf -0.3445 -0.3044 0.2529 0.3010 0.3549 -0.2198 0.2038 -0.1526
Avg_reg -0.3019 0.5168 -0.4836 -0.4680 -0.2490 0.2311 -0.1845 0.0624

Table 16: Spearman correlation between each metric and the node classification accuracy (R2 if the
predicted value is continuous) across different models and sets of hyperparameters. The higher the
absolute value is, the better with the sign aligning with the arrow. We note that many other metrics
lose their intended direction for some dataset. For example, the high StableRank should indicate the
better performance but the real relationship turns out to be reversed for Chicago, Aneheim and Twitch
dataset.

37

	Introduction
	Proposed Methodology
	A Local Graph Bootstrapping Procedure
	Validation of Bootstrap Samples

	CCA-based Evaluation Metrics
	Validation of the Evaluation Metric

	Proposed Hyperparameter Tuning Framework

	Experiments
	Conclusion
	Theoretical Results
	Definitions
	Consistency of Feature Resampling
	Consistency of Edge Resampling
	Additional Proofs

	Proposed Algorithms in Section 2
	Nonparametric Graph Bootstrap
	Full Tuning Procedure
	Adjustment for Dimensional Collapse

	Summary of Selected Unsupervised GNNs
	Additional Literature Review
	Cross-Validation
	Cross-Validation for Unsupervised Learning
	Cross Validation for Network Analysis
	Bootstrap
	Experiments: Block Bootstrap

	Evaluating Embedding Qualities

	Scalability
	Alternative Algorithm for Scalability

	GNN Experiment Details
	Computer Resources Used

	Additional Tables and Figures
	Validation of Metrics
	Application to Spatial Single-Cell Datasets

	Validation of Bootstrap Samples
	Validation of the Entire Framework (Algorithm 3)

