
LOBSTUR: A Local Bootstrap Framework for
Tuning Unsupervised Representations

in Graph Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Graph Neural Networks (GNNs) are increasingly used in conjunction with un-1

supervised learning techniques to learn powerful node representations, but their2

deployment is hindered by their high sensitivity to hyperparameter tuning and3

the absence of established methodologies for selecting the optimal models. To4

address these challenges, we propose LOBSTUR-GNN (Local Bootstrap for5

Tuning Unsupervised Representations in GNNs), a novel framework designed6

to adapt bootstrapping techniques for unsupervised graph representation learning.7

LOBSTUR-GNN tackles two main challenges: (a) adapting the bootstrap edge8

and feature resampling process to account for local graph dependencies in cre-9

ating alternative versions of the same graph, and (b) establishing robust metrics10

for evaluating learned representations without ground-truth labels. Using locally11

bootstrapped resampling and leveraging Canonical Correlation Analysis (CCA)12

to assess embedding consistency, LOBSTUR provides a principled approach for13

hyperparameter tuning in unsupervised GNNs. We validate the effectiveness and14

efficiency of our proposed method through extensive experiments on established15

academic datasets, showing an 65.9% improvement in the classification accuracy16

compared to an uninformed selection of hyperparameters. Finally, we deploy our17

framework on a real-world application, thereby demonstrating its validity and18

practical utility in various settings.19

1 Introduction20

With the expanding availability of network and spatial data in the sciences, Graph Neural Networks21

(GNNs) have emerged as a compelling approach to identify interaction patterns within complex22

systems. In many of these applications, scientists are increasingly interested in using GNNs in23

conjunction with unsupervised learning techniques for learning informative representations, due to24

the paucity of available labeled data, or as a way of automatically detecting structure or patterns (Zhu25

et al., 2018; Dong and Zhang, 2022; Lamurias et al., 2022; Le et al., 2020). Within the methods26

community, on the other hand, recent advances in unsupervised node representation learning seem27

to have primarily been driven by contrastive learning (Stokes et al., 2020; Zhang et al., 2021; You28

et al., 2021). This popular self-supervised learning framework has indeed demonstrated impressive29

performance for learning rich and versatile data representations across various domains. However, in30

the graph-setting, despite their promising results on academic benchmarks, these methods are not31

tuning-free, making them difficult to deploy in real-world applications. In fact, they rely heavily on32

selecting appropriate values for several of their hyperparameters, but incorrect hyperparameter values33

can lead to severely distorted data representations.34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Despite the empirical importance of hyperparameter tuning, there is currently no valid hyperparameter35

selection procedure for unsupervised GNN representation learning. In the methods community, new36

unsupervised learning approaches are commonly tested on established benchmark datasets, with37

hyperparameters selected based on performance in a downstream node classification task. However,38

this procedure essentially converts the problem into a supervised learning setting, making it unsuitable39

for genuinely unsupervised, real-world use cases.40

Hyperparameter tuning in unsupervised settings is made difficult by two main challenges: (a) the41

absence of a clear ground truth or statistical framework for unsupervised learning, and (b) the lack42

of an established metric to evaluate the learned embeddings. To our knowledge, the only study that43

attempts to measure the quality of latent representations is that of Tsitsulin et al., which empirically44

evaluates various metrics. Yet, without a proper inference framework, pinpointing a suitable metric45

remains a significant challenge.46

Contributions. In this paper, we propose the first bootstrapped-based method for selecting hyperpa-47

rameters for unsupervised GNN representation learning. More specifically,48

1. We cast the learning of representations as an estimation problem: we posit that the learned49

representations correspond to a learned low-dimensional manifold, which must therefore be50

consistent under a noise model, as explicited in Section 2.51

2. To generate independent copies of the same graph, we propose a bootstrap procedure based52

on nonparametric modeling of the graph as a graphon Su et al. (2020) (Section 2.1).53

3. To evaluate the quality of the embeddings learned on independent copies of the same graph54

in the absence of labels, we suggest using Canonical Correlation Analysis (Hotelling, 1936)55

as a translation- and rotation-invariant tool to quantify the stability of the learned embedding56

spaces (Section 2.2).57

2 Proposed Methodology58

Establishing a framework for hyperparameter tuning in unsupervised learning requires us to address59

two fundamental questions: what are we aiming to estimate, and where does the randomness come60

from?61

In the graph setting, the data is presented in two modalities: a feature matrix, and an adjacency matrix.62

Unsupervised learning can be framed as learning what information is shared across modalities, and63

what information is specific to each one in a condensed format. This approach is typically described64

in the data-integration literature using a latent variable space model Bishop (1998); Hoff et al. (2002),65

which we adapt here for the graph domain.66

Inference setting. We consider a graph G on n nodes with features X ∈ Rn×p, and denote by67

A ∈ {0, 1}n×n its corresponding (binary) adjacency matrix. We assume the graph is sampled from a68

graphon W (see for instance Gao et al.) — a non-parametric random graph model–, and that node69

features are a noisy transformation of the latent variable Ui:70

∀i ∈ [n], Ui ∼ Unif([0, 1]),
∀j ∈ [n], Aij ∼ Bernoulli(W (Ui, Uj)),

Xi ∼ g(Ui) + ϵi,

(1)

where W (Ui, Uj) denotes the graphon function evaluated at the latent positions Ui and Uj , ϵi denotes71

some independent, mean-zero noise, and g ∼ [0, 1]→ Rp is a feature-generating function or feature72

map, which deterministically maps the latent position Ui ∈ [0, 1] of node i to a p-dimensional feature73

vector. This model allows us to reason on the randomness of the generation procedure without74

making assumptions on the specifics of the graph generation process. While graphons are known to75

generate dense graphs, their output can be sparsified by scaling W by a sparsity factor that tends to 076

as n→∞, e.g. ρn = log(n)
n (Davison and Austern, 2023; Gaucher and Klopp, 2021).77

The quality of the learned embeddings might be evaluated based on their reproducibility, or the78

alignment between the latent structure stemming from representations learned on one dataset to those79

learned on another. Devising a criterion leveraging this notion would require two main components:80

2

0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

1718

19

20

21 22

23 24

Original Graph

0

1

2

4

5

6

7

9

1012

13
15

17

19

20

21 22

23

Node Sampling

0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

1718

19

20

21 22

23 24

Edge Sampling

0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

1718

19

20

21 22

23 24

Network Bootstrap

0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

1718

19

20

21 22

23 24

VGAE

0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

1718

19

20

21 22

23 24

Nonparametric Rewiring

Figure 1: Illustration of different techniques for generating new copies of a simple graph (left-most
image). The original graph has a distinctive community structure. Note that node sampling or edge
sampling randomly removes either nodes or edges, disrupting the original graph structure.

(a) a data generation procedure, to create independent draws of the same datasets (Section 2.1), and81

(b) a metric to measure the alignment between representations (Section 2.2).82

2.1 A Local Graph Bootstrapping Procedure83

In the GNN literature, data splitting and resampling are usually done in one of two ways: by84

resampling the nodes or by resampling the edges. However, in the unsupervised setting, these85

two sampling procedures are not necessarily suitable: (a) this type of sampling can considerably86

disrupt the structure of the graph (by thinning nodes or edges, respectively), as reflected in Figure 1,87

Table 6 and Figure 7 in the Appendix, and (b) these procedures require the specification of the node88

(respectively edge) drop rate.89

Instead, we propose a nonparametric technique for resampling graphs based on the model detailed in90

(1), thus requiring minimal assumptions about the underlying graph structure.91

The Oracle Case We begin by assuming that, for each latent variable Ui, we have oracle knowledge92

of its k-nearest neighbors. We denote the resulting directed k-nearest neighbor graph as Gknn. Under93

sufficiently smooth functions W and g (as defined in the next paragraphs), for a given node i, its94

neighbors in Gknn have similar distributions, and can thus be viewed as alternative realizations of the95

same underlying stochastic process (conditioned on U).96

We leverage this observation to propose a bootstrap procedure conditioned on the realized Ui:97

1. Feature resampling: we resample the features of each node by drawing at random a feature98

vector from one of k-nearest neighbors. This ensures preserving the covariance between99

features by sampling full vectors.100

2. Edge rewiring: let Nm(i) denote the mth closest neighbor of node i according to the101

oracle graph Gknn. For each pair of node (i, j), sample an edge with probability p̂ij =102

1
k

∑k
m=1 ANm(i),j , effectively estimating the underlying probability P[Aij = 1|Ui, Uj]. An103

efficient procedure for resampling is presented in Algorithm 2.104

To extend this procedure to generate marginally-resampled graphs, we propose simply sampling with105

replacement nodes (which effectively implies resampling the Ui), and applying the same procedure106

as above. The whole procedure is described in more detail in Algorithm 3. In either case (marginally107

or conditionally on U), this framework preserves local latent-space similarities while generating108

plausible bootstrap replicates of the graph.109

The Noisy Setting The resampling procedure highlighted in the previous paragraph requires oracle110

knowledge of the kNN graph on the latent U . In practice, the graph Gknn has to be estimated from111

the data. To this end, we suggest to use an empirical kNN graph from the adjacency matrix. While112

some might argue that it is better to use 2 kNN based on features and toplogy, the kNN induced by113

the features (and used to resample edges), in practice, might not be as reliable as the one induced114

by the edges (see Table 5 in the Appendix). This is because, in high-dimensional feature spaces,115

kNN suffers from the curse of dimensionality, making it difficult to ensure the consistency of the116

kNN graph. As an alternative, one can define the kNN graph solely based on the graph structure117

for all components of the algorithm. While this approach does not guarantee theoretical consistency118

3

Statistic Graphon (n = 500) Cora Citeseer Twitch
True Ours True Ours True Ours True Ours

|V| 500 500±0 2708 2708±0 3327 3327±0 1912 1912±0
|E| 769 757.9±2.5 5278 5171.78±7.34 4552 4127.78±10.93 31299 31082.05±22.83
Avg. Degree 3.08 3.03±0.01 3.90 3.82±0.01 2.74 2.48±0.01 32.74 32.51±0.02
Density 0.01 0.01±0 0.00 0.00±0 0.00 0.00±0 0.02 0.02±0
Clustering Coefficient 0.01 0.01±0 0.24 0.05±0 0.14 0.03±0 0.32 0.17±0
Connected Components 29.00 31±2 78 67.91±6.70 438 635.09±11.87 1.00 1.14±0.39
Giant Component Size 471.00 467±3 2485 2620.80±10.80 2120 2418.12±35.69 1912 1911.72±0.77
Assortativity -0.04 -0.08±0.03 -0.07 -0.07±0 0.05 -0.08±0 -0.23 -0.29±0
PageRank Sum 249.5 249.5±0 1353.50 1353±0 1663 1663±0 955.50 955.5±0
Transitivity 0.01 0.01±0 0.09 0.03±0 0.13 0.04±0 0.13 0.08±0
Number of Triangles 7 5±2.3 1630 471±27 1167 304.6±19.59 173510 105534.51±1904.54

Table 1: Graph statistics for synthetic graphon data, citation networks (Cora, Citeseer), and a social
network (Twitch) (Huang et al., 2023). We generated 500 bootstrap samples and report the mean
and standard deviation. The size of the neighborhood (k) used for sample generation is fixed at 20.
Results for additional datasets and different graphon settings are included in Appendix G.2.

in estimating the relevant quantities, it exhibits promising empirical performance, as shown in the119

experiments (Section 3).120

2.1.1 Validation of Bootstrap Samples121

To evaluate the quality of bootstrapped samples, we propose bootstrapping different graphs (synthetic122

and real), and to compare key graph statistics, including node and edge counts, average degree, and123

degree distribution, against those of the original graph.124

Table 1 summarizes these comparisons for a synthetic graphon function and three well-established125

graph benchmarks. Additional results for more datasets and graphon settings, including the effect of126

the choice of k, are provided in Appendix G.2. While not exhaustive, these comparisons help assess127

whether the structural properties of the original graph are preserved in the bootstrapped samples. In128

particular, we note that our approach typically produces graphs with a closer average degree and129

edge count than other methods (see for instance Table 6 and Figure 7 in the Appendix). When the130

underlying graph is a graphon, our model is in fact very good at reproducing graphs with the similar131

statistics (see Table 7, 8, 9, 10). On real datasets, our method seems to produce reasonable copies of132

the same graph as well, as reflected by similar average degrees and number of connected components133

(Table 11 and 12). However, the graphon assumption upon which our method relies seems to hit a134

limit in the ability of the method to reproduce a graph with as many triangles (see results Cora in135

Table 1).136

2.2 CCA-based Evaluation Metrics137

If the generation of independent copies of the same graph poses a significant challenge, determining138

an appropriate evaluation metric in the absence of known labels poses another.139

We note that we cannot use this objective as our hyperparameter tuning criterion: (a) the loss function140

is designed to optimize the model’s internal objective, which may not necessarily reflect meaningful141

patterns or structures in the data, and (b) the scale of the loss function can vary with different142

hyperparameters. To ensure robust evaluation, it is essential to employ a separate, universal metric143

that directly evaluates the learned embeddings to assess model performance.144

We propose to measure the consistency of embeddings out of the pair of models as such universal145

metric; however, the scale and location can in fact vary greatly from one run to the next. To remedy146

these issues, we propose here using a procedure based on Canonical Correlation Analysis (CCA)147

(Hotelling, 1936). Canonical correlation analysis is a classical method for finding the correspondence148

between two datasets on the same samples by finding linear transformations of X and Y that149

maximizes their correlation. The CCA objective can be written as a prediction problem:150

Û , V̂ ∈ argmin
U∈Rp1×r, V ∈Rp2×r

∥XU − Y V ∥2F

subject to UTΣXU = Ir, V TΣY V = Ir.

(2)

where ΣX and ΣY denote the covariance matrices of X and Y respectively.151

4

Spleen TNBC CRC
λ ACC Mean SD AUC Mean SD AUC Mean SD

0.000001 0.4114 56,955 23,032 0.7566 4,765 3,617 0.8039 26,385 3,812
0.00001 0.4135 58,398 30,425 0.7487 5,217 4,284 0.8039 26,699 3,746
0.0001 0.4146 40,017 12,422 0.7249 4,734 3,348 0.8170 25,972 5,934
0.001 0.4128 21,741 5,732 0.7513 3,781 1,782 0.7974 8,844 1,893
0.01 0.3691 42,336 1,970 0.7328 3,425 1,566 0.8431 6,425 1,319
0.1 0.3986 50,351 2,550 0.8757 3,149 1,111 0.9412 5,940 1,538
1 0.3914 55,264 2,788 0.8307 3,516 1,309 0.9346 5,543 889

10 0.3184 61,804 2,339 0.8704 3,689 1,443 0.8627 5,951 1,301

Table 2: For each dataset, the first column reports the downstream task performance, while the second
and third columns present the mean and standard deviation of the evaluation metric defined in (2).
We adopt the architecture from Zhang et al. (2021) and fix all hyperparameters except for λ in the
CCA-SSG loss (8). Using Algorithm 3, the minimum average distances are achieved at λMS = 0.001
for the mouse spleen dataset (Goltsev et al., 2018), λTNBC = 0.1 for Triple Negative Breast Cancer
(TNBC) (Keren et al., 2018), and λCRC = 1.0 for colorectal cancer (CRC) (Schürch et al., 2020).
Notably, strong downstream performance coincides with improved embedding alignment, as indicated
by lower average distances reported in the second column for each dataset.

As we seek to evaluate unsupervised representations, we assume that we have generated 3nb inde-152

pendent versions of graphs with the procedure described in Section 2.1. For each generated graph153

i ∈ [2nb], we learn an unsupervised representation of the nodes: Hi = GNNi(Gi, θ), where θ indi-154

cates the tunable hyperparameters. We propose evaluating the quality of the learned representation155

by comparing the alignment of the embeddings learned by different models on replicas of the same156

dataset as per (2).157

The solution to the CCA problem (2) has a closed-form expression. Let U0, V0 be the left and right
singular vectors of the cross-covariance matrix:

corr(Hi, Hj) = Σ̂
−1/2
Hi

Σ̂HiHj
Σ̂

−1/2
Hj

= U0Λ0V
⊤
0 ,

where Σ̂Hi is the empirical covariance of embeddings from dataset i, and Σ̂HiHj is the empirical158

cross-covariance of embeddings from datasets i and j. The solutions to (2) are159

Û(i, j) = Σ̂
−1/2
Hi

U0, V̂ (i, j) = Σ̂
−1/2
Hj

V0. (3)

and we can compute the alignment between versions of the dataset as:160

alignment = ∥HiÛ(i, j)−Hj V̂ (i, j)∥F ,
where the alignment is evaluated and aggregated over the bootstrapped samples i, j ∈ [nb], i ̸= j.161

2.2.1 Validation of the Evaluation Metric162

We evaluate the validity of our metric (2) on three biological datasets: spleen (Goltsev et al., 2018),163

the MIBI-TOF breast cancer (Keren et al., 2018), and colorectal cancer (CRC) dataset (Schürch et al.,164

2020). Each dataset comprises multiple graphs, allowing us to assess the validity of our proposed165

metric (2) independently of the graph bootstrapping procedure. In spleen dataset (Goltsev et al.,166

2018), each graph contains 81,148 nodes and corresponds to a full tissue section from a single mouse.167

We evaluate across 3 different mice, totaling over 240k cells processed. In breast cancer dataset168

(Keren et al., 2018), each tissue graph has 5,162 nodes on average, and we analyze 41 patient samples,169

for a total of over 211k nodes across the cohort. In colorectal cancer dataset Schürch et al. (2020),170

each graph has 6,302 nodes on average, evaluated across 33 patient samples, adding up to more than171

207k nodes. Table 2 presents both the evaluation of our metric (2) along with the downstream task172

performance measured in Area Under the Curve (AUC-ROC). In addition, visualizations provided in173

Appendix Figure 6 further support the utility of our metric in guiding the hyperparameter selection174

(e.g., the regularization strength parameter λ), effectively recovering biologically meaningful cell175

microenvironments. Detailed descriptions of the datasets and downstream tasks are provided in176

Appendix G.1.1.177

5

2.3 Proposed Hyperparameter Tuning Framework178

We now describe the full procedure, which we call LOBSTUR (Local Bootstrap for Tuning179

Unsupervised Representations in GNNs). We first generate 3nb bootstrap graphs using the lo-180

cal resampling scheme (Section 2.1). For each candidate set of hyperparameters θ ∈ Θ, we train181

unsupervised GNNs on the bootstrap replicates, gi and gi+nb
, respectively, i ∈ [nb]. We first filter182

out degenerate embeddings using StableRank (See Appendix B.3 for the details of an additional step183

to safeguard our pipeline against degeneracies) and evaluate the stability of the embeddings on on184

gi+2nb
, i ∈ [nb] by computing CCA alignment (Section 2.2). Finally, we select the hyperparameters185

that minimize the CCA distance, which yields a principled and label-free choice. Our full procedure186

is highlighted in Algorithm 3 in the Appendix B.187

Dataset Default Ours α-ReQ pseudo-κ RankME NESum SelfCluster Stable Rank Coherence
Classification tasks

Cora 0.36 0.65 0.66 0.54 0.63 0.63 0.69 0.59 0.47
PubMed 0.62 0.81 0.75 0.75 0.75 0.75 0.82 0.75 0.76
Citeseer 0.32 0.51 0.51 0.51 0.51 0.51 0.48 0.51 0.22
CS 0.47 0.79 0.86 0.72 0.86 0.86 0.86 0.86 0.76
Photo 0.29 0.73 0.79 0.79 0.79 0.79 0.57 0.81 0.69
Computers 0.37 0.57 0.45 0.57 0.45 0.39 0.39 0.57 0.65

Regression tasks

Chicago 0.39 0.34 0.35 0.35 0.35 0.35 0.35 0.29 0.40
Anaheim 0.13 0.23 0.12 0.18 0.18 0.12 0.23 0.18 0.12
Twitch 0.47 0.52 0.15 0.15 0.15 0.15 0.46 0.15 0.48
Education 0.23 0.26 0.33 0.33 0.33 0.33 0.33 0.33 0.26

Avg clf 0.41 0.68 0.67 0.65 0.66 0.65 0.63 0.68 0.59
Avg reg 0.30 0.34 0.24 0.25 0.25 0.24 0.34 0.24 0.32

Table 3: Downstream task (classification or regression) performance of the best model and hyper-
parameters chosen by each criterion. The best value is bolded and the second best is underlined.
We compare to the BGRL (Thakoor et al., 2021) with default hyperparameters (fmr = 0.5, edr =
0.25, λ = 10−2) in the left-most column.

3 Experiments188

We demonstrate the validity of our entire framework on GNN benchmark datasets such as Cora,189

Citeseer, and Pubmed. We show that hyperparameter and model selection using our suggested frame-190

work results in robust, high downstream task performance on benchmark datasets, thereby indicating191

embeddings of good quality. More specifically, we consider the task of learning unsupervised GNN192

embeddings using four different methods (CCA-SSG, BGRL, DGI, and GRACE, see Appendix C),193

and choosing the correct set of hyperparameters in each method. Note that we do not look at the194

classification accuracy ahead of time and use them for choosing the model and hyperparameters.195

Instead, we only report them after choosing the model to validate the approach, reflecting a more196

practical scenario to apply unsupervised GNNs on real datasets.197

In Table 3, we report the downstream task performance (classification or regression) of the model198

chosen by our framework (Algorithm 3) and metrics proposed in Tsitsulin et al. (2023). Our method199

shows a robust performance and achieves either the best or the second best performance compared to200

the existing metrics for 7 out of 10 datasets, and achieving the best overall accuracy. A similar table201

reporting the performance by different GNN architectures (Thakoor et al., 2021; Zhang et al., 2021;202

Zhu et al., 2020) is presented in Table 13, 14, 15 in the Appendix.203

4 Conclusion204

We presented LOBSTUR, a framework for hyperparameter tuning in unsupervised GNNs. By205

combining local graph bootstrap with CCA-based stability metrics, LOBSTUR provides the first206

principled, label-free procedure for model selection in this domain. Results on benchmarks and207

biological datasets demonstrate robustness and practical utility. Extensions to block-bootstrap suggest208

promise for larger graphs, making this a foundation for future work (see Appendix D.4, E).209

6

References210

Bates, S., Hastie, T., and Tibshirani, R. (2024). Cross-validation: What does it estimate and how well211

does it do it? Journal of the American Statistical Association, 119(546):1434–1445.212

Belkin, M. and Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and213

clustering. Advances in neural information processing systems, 14.214

Bishop, C. M. (1998). Latent variable models. In Learning in graphical models, pages 371–403.215

Springer.216

Castillo-Páez, S., Fernández-Casal, R., and García-Soidán, P. (2019). A nonparametric bootstrap217

method for spatial data. Computational Statistics & Data Analysis, 137:1–15.218

Chen, K. and Lei, J. (2018). Network cross-validation for determining the number of communities in219

network data. Journal of the American Statistical Association, 113(521):241–251.220

Davison, A. and Austern, M. (2023). Asymptotics of network embeddings learned via subsampling.221

Journal of Machine Learning Research, 24(138):1–120.222

Dong, K. and Zhang, S. (2022). Deciphering spatial domains from spatially resolved transcriptomics223

with an adaptive graph attention auto-encoder. Nature communications, 13(1):1739.224

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1):1225

– 26.226

Efron, B. (2012). Bayesian inference and the parametric bootstrap. The annals of applied statistics,227

6(4):1971.228

Fu, W. and Perry, P. O. (2017). Estimating the number of clusters using cross-validation.229

Gao, C., Lu, Y., and Zhou, H. H. (2015). Rate-optimal graphon estimation.230

Garrido, Q., Balestriero, R., Najman, L., and Lecun, Y. (2023). Rankme: Assessing the downstream231

performance of pretrained self-supervised representations by their rank.232

Gaucher, S. and Klopp, O. (2021). Maximum likelihood estimation of sparse networks with missing233

observations. Journal of Statistical Planning and Inference, 215:299–329.234

Goltsev, Y., Samusik, N., Kennedy-Darling, J., Bhate, S., Hale, M., Vazquez, G., Black, S., and235

Nolan, G. P. (2018). Deep profiling of mouse splenic architecture with codex multiplexed imaging.236

Cell, 174(4):968–981.237

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning. Springer238

Series in Statistics. Springer New York Inc., New York, NY, USA.239

Hoff, P. D. (2007). Modeling homophily and stochastic equivalence in symmetric relational data.240

Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to social network241

analysis. Journal of the american Statistical association, 97(460):1090–1098.242

Horowitz, J. L. (2019). Bootstrap methods in econometrics. Annual Review of Economics, 11(1):193–243

224.244

Hotelling, H. (1936). Relations between two sets of variates. In Biometrika, pages 321–337.245

Biometrika, 28(3/4).246

Hua, T., Wang, W., Xue, Z., Ren, S., Wang, Y., and Zhao, H. (2021). On feature decorrelation in247

self-supervised learning. In Proceedings of the IEEE/CVF International Conference on Computer248

Vision, pages 9598–9608.249

Huang, K., Jin, Y., Candes, E., and Leskovec, J. (2023). Uncertainty quantification over graph with250

conformalized graph neural networks. NeurIPS.251

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1):193–218.252

7

Jing, L., Vincent, P., LeCun, Y., and Tian, Y. (2022). Understanding dimensional collapse in253

contrastive self-supervised learning.254

Keren, L., Bosse, M., Marquez, D., Angoshtari, R., Jain, S., Varma, S., Yang, S.-R., Kurian, A.,255

Van Valen, D., West, R., et al. (2018). A structured tumor-immune microenvironment in triple256

negative breast cancer revealed by multiplexed ion beam imaging. Cell, 174(6):1373–1387.257

Kipf, T. N. and Welling, M. (2016). Variational graph auto-encoders. arXiv preprint258

arXiv:1611.07308.259

Lamurias, A., Tibo, A., Hose, K., Albertsen, M., and Nielsen, T. D. (2022). Graph neural networks260

for microbial genome recovery. arXiv preprint arXiv:2204.12270.261

Le, V., Quinn, T. P., Tran, T., and Venkatesh, S. (2020). Deep in the bowel: highly interpretable262

neural encoder-decoder networks predict gut metabolites from gut microbiome. BMC genomics,263

21(4):1–15.264

Leiner, J. and Ramdas, A. (2024). Graph fission and cross-validation.265

Levin, K. and Levina, E. (2021). Bootstrapping networks with latent space structure.266

Li, T., Levina, E., and Zhu, J. (2020). Network cross-validation by edge sampling.267

Neufeld, A., Dharamshi, A., Gao, L. L., and Witten, D. (2023). Data thinning for convolution-closed268

distributions.269

Perry, P. O. (2009). Cross-validation for unsupervised learning.270

Politis, D. N. and Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical271

Association, 89(428):1303–1313.272

Roy, O. and Vetterli, M. (2007). The effective rank: A measure of effective dimensionality. In 2007273

15th European signal processing conference, pages 606–610. IEEE.274

Rubin, D. B. (1981). The bayesian bootstrap. The annals of statistics, pages 130–134.275

Schürch, C. M., Bhate, S. S., Barlow, G. L., Phillips, D. J., Noti, L., Zlobec, I., Chu, P., Black,276

S., Demeter, J., McIlwain, D. R., et al. (2020). Coordinated cellular neighborhoods orchestrate277

antitumoral immunity at the colorectal cancer invasive front. Cell, 182(5):1341–1359.278

Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., MacNair, C. R.,279

French, S., Carfrae, L. A., Bloom-Ackermann, Z., et al. (2020). A deep learning approach to280

antibiotic discovery. Cell, 180(4):688–702.281

Su, Y., Wong, R. K., and Lee, T. C. (2020). Network estimation via graphon with node features.282

IEEE Transactions on Network Science and Engineering, 7(3):2078–2089.283

Thakoor, S. et al. (2021). Large-scale representation learning on graphs via bootstrapping. arXiv284

preprint arXiv:2102.06514.285

Thakoor, S., Tallec, C., Azar, M. G., Azabou, M., Dyer, E. L., Munos, R., Veličković, P., and Valko,286

M. (2023). Large-scale representation learning on graphs via bootstrapping.287

Tibshirani, R. and Walther, G. (2005). Cluster validation by prediction strength. Journal of Computa-288

tional and Graphical Statistics, 14(3):511–528.289

Tsitsulin, A., Munkhoeva, M., and Perozzi, B. (2023). Unsupervised embedding quality evaluation.290

In Topological, Algebraic and Geometric Learning Workshops 2023, pages 169–188. PMLR.291

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y. (2021). Graph contrastive learning with292

augmentations.293

Zhang, H., Wu, Q., Yan, J., Wipf, D., and Yu, P. S. (2021). From canonical correlation analysis to294

self-supervised graph neural networks.295

8

Zhu, Q., Shah, S., Dries, R., Cai, L., and Yuan, G.-C. (2018). Identification of spatially associated296

subpopulations by combining scrnaseq and sequential fluorescence in situ hybridization data.297

Nature biotechnology, 36(12):1183–1190.298

Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., and Wang, L. (2020). Deep graph contrastive representation299

learning. arXiv preprint arXiv:2006.04131.300

9

A Theoretical Results301

A.1 Definitions302

Throughout this manuscript, we assume the same conventions as in the general literature on graphon303

estimation (see, for instance, Gao et al. (2015); Gaucher and Klopp (2021)).304

In particular, for a function f : [0, 1]× [0, 1]→ [0, 1], the derivative operator is defined by305

∇jkf(x, y) =
∂j+k

(∂x)j(∂y)k
f(x, y),

and we adopt the convention ∇00f(x, y) = f(x, y).306

Definition A.1 (Hölder class for Graphon functions (from Gao et al. (2015))). The Hölder norm is307

defined as308

∥f∥Hα
= max

j+k≤⌊α⌋
sup

x,y∈D

∣∣∇jkf(x, y)
∣∣

+ max
j+k=⌊α⌋

sup
(x,y)̸=(x′,y′)∈D

|∇jkf(x, y)−∇jkf(x
′, y′)|

(|x− x′|+ |y − y′|)α−⌊α⌋ .

The Hölder class is defined by309

Hα(M) =
{
∥f∥Hα

≤M : f(x, y) = f(y, x) for x ≥ y
}
,

where α > 0 is the smoothness parameter and M > 0 is the size of the class, which is assumed to be310

a constant.311

Definition A.2 (Distance Measures). For nodes i, j ∈ [n]:312

dL(i, j) = |Ui − Uj | (Latent distance)
dF (i, j) = ∥Xi −Xj∥2 (Feature distance)
dG(i, j) = length of shortest path from i to j (Graph distance)

Note that in the actual implementation, other graph distances are available as an option, but for the313

analysis purpose, we assume DG(·, ·) is a shortest-path distance.314

Definition A.3 (k-NN Neighborhoods). For node i:315

NU
k (i) = {j : Uj is among k-nearest neighbors of Ui}
NX

k (i) = {j : Xj is among k-nearest neighbors of Xi}
NG

k (i) = {j : node j is among k-nearest neighbors of node i}
where Xi = g(Ui) + ϵi , and Ui ∼ Unif [0, 1]. The neighborhood is determined by corresponding316

distance. For example, the neighborhood in the latent space is determined by latent distance.317

A.2 Consistency of Feature Resampling318

The following theorem characterizes the consistency of the procedure in deriving nodes with similar319

features.320

Theorem A.4. Assume that Gk, the directed k- nearest neighbor graph induced by the latent variable321

{Ui}ni=1 is known, with k such that limn→∞
k
n = 0. Suppose g is an α-Hölder-continuous function322

on the interval [0, 1], so that there exists a constant C such that: |g(Ui)− g(Uj)| ≤ C|Ui −Uj |α for323

α > 0.324

Let X denote the domain of the features (so that for each node i, its features are denoted Xi ∈ X).
Then, the procedure described in Algorithm 1 is asymptotically consistent in that for any set A ∈ X :

∀j ∈ Nknn(i), lim
n→∞

|P(Xj ∈ A|Uj)− P(Xi ∈ A|Ui)| = 0,

where Nknn(i) denotes a set containing k-nearest neighbors of i in the latent space.325

Proof. The proof follows a similar argument to the previous theorem and is deferred to Appendix A.326

327

10

Remark A.5. We note that the noise ϵi on the features does not need to be globally identically328

distributed for the previous construction to hold. Instead, since the procedure only relies on the329

k-nearest neighborhood of each node, it suffices to assume that these properties hold locally.330

Proof. Under (1), ∀i, Xi = g(Ui) + ϵi, where ϵi is independent, identically distributed centered
noise, and g(Ui) is the expectation of X given the latent Ui. Since the ϵ are assumed to be i.i.d, we
can write for any nodes i and j:

Xi
d
= g(Ui) + ϵj = g(Ui) +Xj − g(Uj).

The quantity g(Ui) − g(Uj) represents the bias in using the expectation Xj to approximate the331

distribution of Xi, and since g is assumed to be Hölder-continuous: ∥g(Ui)−g(Uj)∥ ≤ C|Ui−Uj |α.332

Consider now j to be chosen to be one of the k-nearest neighbors of node i. |Ui − Uj |α is333

a monotonously decreasing function of n, and with high probability (over the distribution of334

U1, · · · , Un), we have |Ui − Uj | ≤ c0
k
n , for all j ∈ N (Ui), and a constant c0. Therefore,335

∥g(Ui) − g(Uj)∥ tends to 0 (in probability) as n goes to ∞. Therefore, by Slutsky’s lemma,336

as n goes to∞, {Xj |Uj}j∈Nknn(i)
d→ Xi|Ui.337

A.3 Consistency of Edge Resampling338

The following theorem highlights the consistency of the edge rewiring procedure.339

Theorem A.6. Suppose that the kn-nearest neighbor graph Gkn
induced by the latent variables340

{Ui}ni=1 is known, where kn is such that limn→∞
kn

n = 0, and limn→∞ kn =∞. Suppose that W is341

an α-Hölder graphon function (Gao et al., 2015) (see definition A.1 in the Appendix) with α ∈ (0, 1].342

Then, the quantity p̂ij =
1
kn

∑kn

m=1 ANm(i),j is a consistent estimator of pij in the sense that:

lim
n→∞

p̂ij = P[Aij |Ui, Uj].

Proof. Letting Nk(i) denote the kth closest neighbor of node i according to the oracle graph Gknn.343

For any pair of nodes (i, j), as we are resampling, we are effectively replacing the underlying
connection probability P[Aij = 1|Ui, Uj] by:

p̂ij =
1

K

K∑
k=1

ANk(i),j

We decompose the risk of this estimator as:

E
[
(P[Aij = 1|Ui, Uj]− p̂ij)

2
]
= Bias2 + Variance

where344

Bias = P[Aij = 1|Ui, Uj]− E[p̂ij]

=
1

k

k∑
m=1

(
P[Aij = 1|Ui, Uj]− P[YNm(i),j = 1|UNm(i), Uj]

)
Variance = E

(1

k

k∑
m=1

(P[YNm(i),j = 1|UNm(i), Uj]−ANm(i),j)

)2


(4)

By assumption, since W is assumed to be α-Hölder, as emphasized in Gao et al. (2015), when345

α ∈ (0, 1], a function f ∈ Hα(M) satisfies the Lipschitz condition346

∣∣f(x, y)− f
(
x′, y′

)∣∣ ≤M
(∣∣x− x′∣∣+ ∣∣y − y′

∣∣)α, (5)

Therefore, we have:347

11

|Bias| =

∣∣∣∣∣P[Aij = 1|Ui, Uj]−
1

k

k∑
m=1

P[YNm(i),j = 1|UNm(i), Uj]

∣∣∣∣∣
≤ 1

k

k∑
m=1

M |Ui − UNm(i)|α.

(6)

The quantity |Ui − Um|α (with m a k-nearest neighbor of i) is a monotonously decreasing function348

of n, and with high probability (over the distribution of U1, · · · , Un), we have |Ui − Um|2 ≤ c0
k
n ,349

for all m ∈ N (Ui), and a constant c0. Therefore, as n goes to infinity, limn→∞ |Bias| = 0.350

Similarly, for the variance:351

Variance = E

(1

k

k∑
m=1

(P[YNm(i),j = 1|UNm(i), Uj]−ANm(i),j)

)2


=
1

k2

k∑
m=1

P[YNm(i),j = 1|UNm(i), Uj](1− P[YNm(i),j = 1|UNm(i), Uj])

≤ 1

k
.

(7)

As k →∞, this converges to 0.352

This shows that p̂ij is a consistent estimator of pij .353

354

A.4 Additional Proofs355

The assertion that the distance to a k-nearest neighbor is small with high probability is a standard356

result in non-parametric statistics, which can be made precise with a probabilistic bound. Let {Ui}ni=1357

be n points drawn i.i.d. from a Uniform[0, 1] distribution. For a given point Ui, let Dk be the distance358

to its k-th nearest neighbor. We aim to show that for a constant c0, the probability P(Dk > c0k/n) is359

exponentially small.360

Consider an interval I of radius r = c0k/n centered at Ui. The number of points, NI , falling within
this interval follows a Binomial distribution, NI ∼ Binomial(n, p), where p is the length of the
interval, p = 2r = 2c0k/n. The expected number of points in I is thus µ = np = 2c0k. The event
that the k-th neighbor is farther than r away, {Dk > r}, is equivalent to the event that the interval
I contains fewer than k points, {NI < k}. We can bound this probability using a Chernoff bound
for the lower tail of a binomial distribution, which states that P(NI ≤ (1 − δ)µ) ≤ e−δ2µ/2 for
δ ∈ (0, 1). By setting c0 = 1, we have µ = 2k. To bound P(NI < k), we can set the threshold
(1− δ)µ = k, which gives (1− δ)2k = k, or δ = 1/2. Applying the bound yields:

P(NI < k) ≤ P(NI ≤ k) ≤ e−(1/2)2(2k)/2 = e−k/4

12

B Proposed Algorithms in Section 2361

B.1 Nonparametric Graph Bootstrap362

Algorithm 1 Non-parametric Resampling of Node Features

1: Input: Graph G with node features {Xi}ni=1, Gknn k-nearest neighbor graph on U .
2: for each node i ∈ [n] do
3: Identify the set of neighboring nodes N(i) = {j : j ∼ i} in the graph Gknn,
4: Construct the candidate set for resampling: Ci = {Xi} ∪ {Xj}j∈N(i).
5: Resample the feature vector for node i by selecting a vector uniformly from Ci: Xnew

i ∼
Unif(Ci).

6: end for
7: Output: Resampled node features {Xnew

i }ni=1.

Algorithm 2 Non-parametric Resampling of Edges

1: Input: Graph G = (V, E) with n = |V| nodes; flattened list of edge stems

L = {u | u ∈ E[:, 0]} ∪ {v | v ∈ E[:, 1]},

where E ∈ R|E|×2, and k-nearest neighbor graph Gknn on U .
2: Initialize an empty graph G′ with n nodes.
3: while len(L) > 0 do
4: Sample a source node u uniformly at random from L and remove it: u← pop(L).
5: Sample a target node v from

v ∼ L ∩

(
k⋃

m=1

NA

(
N knn

m (u)
))

,

where NA(i) denotes the set of neighbors of node i in G, and N knn
m (u) denotes the m-th

nearest neighbor of node u in Gknn.
6: Remove the selected node v from L.
7: Add an undirected edge between u and v in G′.
8: end while
9: Output: Resampled edge structure {Anew

ij }ni,j=1.

B.2 Full Tuning Procedure363

B.3 Adjustment for Dimensional Collapse364

Our proposed alignment metric is grounded in a straightforward statistical method, Canonical365

Correlation Analysis (CCA). The strength of this method lies in its assessment of correlations366

between representations. However, because it accounts for different variances, this method may367

struggle to accurately reflect the quality of embeddings in the presence of dimensional collapse368

(Hua et al., 2021). Dimensional collapse, a phenomenon common in self-supervised representation369

learning, occurs when the learned representations are confined to a low-dimensional manifold. For370

example, when training a model with an embedding dimension of p = 2, dimensional collapse may371

result in embeddings that lie along a single line (reduced to a one-dimensional representation) or form372

a blob. In such cases, although the embeddings lack informative structure, their alignment across373

different samples may still be high, leading to an over-inflated metric.374

The StableRank metric (Tsitsulin et al., 2023) is defined as
∑

i σ
2
i /σ

2
1 , where σi are the singular375

values of the embeddings H ∈ Rn×p in descending order, and assesses the numerical rank of the376

embedding space. We will use this metric to filter out embeddings that are clearly suboptimal (Jing377

et al., 2022) before applying our CCA-based metric to tune hyperparameters. An alternative choice378

for the threshold metric could be RankMe proposed by Garrido et al. (2023).379

13

Algorithm 3 Hyperparameter Tuning Procedure

1: Input: An input graph G and a set of hyperparameters Θ from which to choose an optimal value.

2: Create 3nb bootstrap samples of the graph, denoted as {Ĝi}3nb
i=1 (Algorithm 1 , 2).

3: for each value θ ∈ Θ do
4: for i = 1, . . . , 2nb do
5: Train an unsupervised GNN, fi(·, θ) on Ĝi.
6: end for
7: for each pair of models fi(·, θ) and fi+nb

(·, θ) with i ∈ {1, · · · , nb} do
8: Compute the distance between embeddings from models fi and fi+nb

on the test graph
Ĝi+2nb

:
di(θ) = ℓ

(
fi(Ĝi+2nb

, θ), fi+nb
(Ĝi+2nb

, θ)
)
,

where ℓ(·) is some metric, like the one we proposed in Section 2.2.
9: end for

10: end for
11: Choose the optimal hyperparameters: θ̂ = argmin

θ∈Θ,StableRank≥t
d̄(θ), where d̄(θ) is the average

distance across i ∈ [nb], and t is the StableRank threshold.

Choice of the Threshold. We turn to the problem of selecting a stable-rank threshold. We suggest380

using the reasonable lower bound for the latent (effective) dimension as sufficient. For Tables 3 and381

16, we set the threshold to t = 2. This choice ensures that the embeddings retain a minimum effective382

dimensionality, preventing collapse to a single line. Consequently, our alignment metric accurately383

measures meaningful signal alignment rather than trivial, collapsed patterns. It is important to384

highlight the trade-off associated with this threshold: setting a higher threshold enhances robustness385

but may inadvertently exclude beneficial models, while a lower threshold allows greater model386

diversity but risks increased variability and potential collapse of representations.387

C Summary of Selected Unsupervised GNNs388

CCA-SSG: CCA-SSG (Zhang et al., 2021) is inspired by statistical canonical correlation analy-389

sis(CCA) that constructs the loss on the feature-level rather than instance-level discrimination, which390

is typical in contrastive methods. They augment the original graph in a random fashion by dropping391

edges or masking the node features to make a pair of graphs for learning.392

L = ∥Z̃A − Z̃B∥2︸ ︷︷ ︸
invariance term

+λ ∥Z̃⊤
A Z̃A − I∥2F + ∥Z̃⊤

B Z̃B − I∥2F︸ ︷︷ ︸
decorrelation term

(8)

Although their model structure is relatively simple and does not require a parametrized mutual393

information estimator or additional projection network, they still have the issue of choosing394

hyperparameters (e.g. λ) which has a non-negligible impact on the model performance.395

396

GRACE: Contrastive learning or self-supervised method has gotten increasing attention as they397

do not require label availability as supervised GNN does. Deep Graph Contrastive Representation398

Learning(GRACE) (Zhu et al., 2020) is one of the popular graph constrastive learning methods.399

1. For each iteration, GRACE generates two graph views, G̃1, G̃2, by either randomly removing400

edges or randomly masking node features.401

2. Let U = f(X̃1, Ã1), V = f(X̃2, Ã2) be the embedded representation of two graph views,402

and their corresponding node features and adjacency matrices.403

3. Positive samples: For any node vi, its corresponding representation in another view ui is404

treated as natural positive pair.405

4. Negative samples: For given node vi, any nodes in another view uk ̸=i are treated as negative406

pair.407

14

5. Node-wise objective:

ℓ(ui, vi) = log
eθ(ui,vi)/τ

eθ(ui,vi)/τ︸ ︷︷ ︸
the positive pair

+

N∑
k=1

1k ̸=ie
θ(ui,vk)/τ

︸ ︷︷ ︸
inter-view negative pairs

+

N∑
k=1

1k ̸=ie
θ(ui,uk)/τ

︸ ︷︷ ︸
intra-view negative pairs

6. Overall loss function: ℓ = 1
2N

∑N
i=1

[
ℓ(ui, vi) + ℓ(vi, ui)

]
408

7. Optimization: apply stochastic gradient descent.409

DGI: Deep Graph Infomax (Stokes et al., 2020) is another option for the unsupervised graph
representation learning. DGI optimizes the mutual information between the local patch representation
of the graph and the overall high-level summaries.

L =
1

N +M

(N∑
i=1

E(X,A)[logD(⃗hi, s⃗)] +

M∑
j=1

E(X,A)[log(1−D(⃗̃hi, ⃗̃s]
)

BGRL: Large-Scale Representation Learning on Graphs via Bootstrapping(BGRL) (Thakoor et al.,410

2023) similar to CCA-SSG, BGRL uses node and feature masking to augment the original graph. At411

the core of BGRL is a bootstrapping mechanism that updates the target representations gradually,412

borrowing ideas from consistency regularization and contrastive learning. Unlike contrastive learning413

methods that require negative samples, BGRL avoids the computational overhead associated with414

negative sampling by using a bootstrapping approach. This involves maintaining two networks: an415

online network that is updated using gradients and a target network that is slowly updated with the416

parameters of the online network. This setup encourages the embeddings to become more stable and417

consistent over iterations.418

1. Update the online encoder:

ℓ(θ, ϕ) = − 2

N

N−1∑
i=0

Z̃(1,i)H̃
⊤
(2,i)

∥Z̃(1,i)∥∥H̃⊤
(2,i)∥

2. Update the target encoder: θ ← τϕ+ (1− τ)θ419

GCA: Graph Contrastive Learning with Augmentations (GCA) (You et al., 2021) introduces a420

contrastive learning framework designed specifically for graph data. GCA applies data augmentation421

techniques on both the node features and graph structure, creating different views of the same422

node. The central idea is to maximize the agreement between the representations of the same node423

in different augmented views, while ensuring that the representations of different nodes remain424

distinguishable.425

The contrastive loss is designed to encourage the representations of different views, a and b of the
same node i, with temperature scaling τ .

LGCA =
1

N

N∑
i=1

− log
exp(sim(zai , z

b
i)/τ)∑N

j=1 exp(sim(zai , z
b
j)/τ)

where sim(zi, zj) = zTi zj/(∥zi∥ · ∥zj∥) is a cosine similarity.426

VGAE: Variational Graph Autoencoder (VGAE) (Kipf and Welling, 2016) is a framework designed427

for learning graph embeddings through variational inference. It is a probabilistic approach that428

leverages both graph structure and node features to infer latent node representations. VGAE aims to429

model the underlying distribution of the graph data, capturing the uncertainty in the embeddings by430

using a variational autoencoder architecture. This setup allows VGAE to generate robust embeddings431

that generalize well to unseen nodes or links. The model consists of an encoder that approximates432

the posterior distribution over latent variables and a decoder that reconstructs the graph from these433

variables.434

The loss function comprises two components: a reconstruction loss that encourages the model to435

accurately predict the adjacency matrix, and a regularization term in the form of the KL-divergence,436

which ensures the latent variables follow the prior distribution.437

15

1. Update the encoder by maximizing the evidence lower bound (ELBO):

L = Eq(Z|X,A)[log p(A|Z)]−KL(q(Z|X,A)||p(Z))

2. The prior over the latent variables Z is typically set to a standard Gaussian: p(Z) = N (0, I).438

D Additional Literature Review439

D.1 Cross-Validation440

In the supervised learning literature, cross-validation (CV) (Hastie et al., 2001; Tibshirani and Walther,441

2005) stands as a fundamental strategy for selecting hyperparameters and evaluating models. In442

the usual (Euclidean) setting, this technique involves partitioning the dataset into distinct subsets: a443

"training set" for model training and a "test set" for its evaluation. The partitioning is justified by444

the independence between observations, which implies that the subsamples still follow the same445

distribution as the original data. A commonly used method is K-fold cross-validation, where the446

dataset is divided into K subsets or folds. For simplicity, we assume there are n samples, and447

each fold has m data points so that n = K × m. We denote a set of index for the k-th fold as448

Ik. The model is trained K times, each time using K − 1 folds for training and the remaining449

fold for validation. Evaluation of the validation set is performed through an appropriate evaluation450

function ℓ(·) measuring the discrepancy between the observations yi and their predicted values451

ŷi = f̂(xi, θ). This loss is usually taken to be the mean squared error(MSE) in the regression case,452

(MSEk = 1
m

∑
i∈Ik

(yi − ŷi)
2), or to be the classification accuracy in the classification setting. By453

averaging this metric over all k folds, cross-validation provides a reliable estimate of the model’s454

prediction error on unseen data.455

While the implementation and practice of cross-validation is simple and straightforward, its interpre-456

tation has only recently been investigated in work by Bates et al. (2024). The authors’ key finding457

is that the cross-validation does not estimate the prediction error for the model trained on a specific458

dataset but rather the “average" prediction error across all possible training datasets from the same459

distribution.460

Êrr
(CV)

=
1

n

n∑
i=1

ei =
1

K

K∑
k=1

1

m

∑
i∈Ik

ℓ(f̂(xi, θ̂
(−k)), yi). (9)

The intuition is the inner summation in Equation 9 estimates the prediction error of the model at hand,461

and the outer summation calculates the empirical average over all possible training sets of the same462

size. In the previous equation, θ̂(−k) denotes the parameters of the model fitted on all but the kth463

fold, and f̂(xi, θ̂
(−k)) indicates the estimator of y.464

D.2 Cross-Validation for Unsupervised Learning465

Despite the popularity and simplicity of the cross-validation procedure, its application in unsupervised466

learning has been relatively underexplored, largely due to the absence of clear evaluation metrics.467

Perry (2009) addressed this gap by examining cross-validation in unsupervised settings and proposing468

several solutions, with a focus on methods utilizing Singular Value Decomposition (SVD). Among469

the strategies reviewed, two are particularly relevant for this discussion. The first is a traditional470

hold-out method, where a portion of the data is set aside for validation, and the second involves471

treating random elements of the dataset as "missing values." For a detailed explanation of these472

methods, refer to Perry (2009), Chapter 5. However, it is important to note that these methods were473

originally designed for conventional, independent, tabular data for unsupervised tasks. In this study,474

we build on Perry’s framework, focusing on its connection to graph neural networks (GNNs) and475

extending its use to evaluate unsupervised learning methods in the context of GNNs in Section 2.2.476

For the hold-out method, we randomly partition the data Z ∈ Rn×p into
(
Z1

Z2

)
, where Z1 ∈ Rn1×p

is a training set, Z2 ∈ Rn2×p is a test set, and n1 + n2 = n. We want to approximate the test
data by projecting it onto the principal spaces of the training data. To do so, one can calculate the
k-dimensional reduced SVD of Z1, where Ẑ1(k) =

√
(n)Û1D̂1(k)V̂1. Project the test set onto the

16

principal space of Z1.

Ẑ2(k) = Z2Ẑ1(k)
⊤
(Ẑ1(k)Ẑ1(k)

⊤)†Ẑ1(k) = Z2V̂1V̂
⊤
1 .

X† denotes the pseudo-inverse of X . The performance ban be evaluated using ℓ2 loss, ∥Z2−Ẑ2(k)∥2F .477

Although this method cannot be used in practice because the loss is a decreasing function with k, the478

idea of using projection to compute the projection error for unsupervised tasks was insightful.479

The second is called either missing value strategy or Wold hold-outs. Instead of simply splitting the480

data, one could randomly select the indices I ∈ I, which denote the missing elements. Then, ZI =481 { Zi i ∈ I
∗ o.w ; similarly, ZĪ =

{ Zi i /∈ I
∗ o.w . Apply k-rank missing value SVD algorithm to482

find the decomposition of ZĪ(k) = UkDkV
⊤
k . There are many options() including the one proposed483

by Perry (2009). The performance can again be evaluated using ∥UkDkV
⊤
k − ZI∥2F,I484

The last method is basically to convert the unsupervised task into the supervised task, and called485

Gabriele hold-outs. Given the data, we could randomly permute the row and column so that we have486

the following decomposition P⊤ZQ =

(
Z11 Z12

Z21 Z22

)
, where P and Q are the permutation matrices.487

There is continuing work on applying this hold-out approach (especially Gabriele’s hold-out on488

clustering analysis Fu and Perry (2017).489

D.3 Cross Validation for Network Analysis490

There have been relatively few studies (Li et al., 2020; Hoff, 2007; Chen and Lei, 2018) on the491

cross-validation of network data. In Li et al. (2020), the key assumption for the entire analysis is492

that the edge is the realization of independent Bernoulli random variables, and the probability of493

connection M , which is realized by the observed adjacency matrix A, is approximately of low rank.494

The edge cross-validation proposed in this study is different from traditional node-splitting methods495

in that the random dropping applies to the connected pair of nodes. The model by Chen and Lei496

(2018) is particularly designed for determining the number of communities within the network data,497

as well as choosing between the regular stochastic block model and the degree-corrected stochastic498

block model(DCSBM). The core idea is a block-wise node-pair splitting, which is then combined499

with an integrated step of community recovery using sub-blocks of the adjacency matrix.500

Leiner and Ramdas (2024) introduces another cross-validation method for graphs but approaches the501

problem from a different angle. The study applies data thinning to data following convolution-closed502

distributions by Neufeld et al. (2023). This procedure creates data folds that maintain the same503

distribution as the original data, are independent of each other, and sum to the original random504

variable. A canonical example of it is a normal variable. Given data X ∼ (µ, σ2), with unknown505

parameter of interest µ. Through data thinning algorithm, we could thin X into X(1) ∼ N(ϵµ, ϵ2σ2)506

and X(2) ∼ N((1 − ϵ)µ, (1 − ϵ)2σ2), where these two thinned variables are independent to each507

other. Leiner and Ramdas (2024) is an extension of this concept to graph data, applying data thinning508

to node features while treating the adjacency matrix as fixed.509

However, all these statistical methods heavily rely on the certain generation mechanism of underlying510

networks, such as the stochastic block model (Chen and Lei, 2018) or low-rank structure of expected511

value of adjacency matrix (Li et al., 2020). The assumptions of the aforementioned approaches on512

which part of the graph is a random component are also different. Leiner and Ramdas (2024) treats513

the graph structural component (V,E) as non-random and the node feature as random; however, Li514

et al. (2020) treats edge as then random realization based on statistical graph generation model, such515

as stochastic block model.516

D.4 Bootstrap517

The bootstrap (Efron, 1979) has been widely used as a non-parametric method for estimating the518

distribution of a statistic through resampling with replacement. This method is useful because it does519

not rely on assumptions about the underlying distribution, making it applicable across various fields520

where such assumptions are challenging. The validity of the bootstrap is supported by its consistency521

(Horowitz, 2019) under mild assumptions, where the bootstrap distribution converges to the true522

17

sampling distribution as the sample size increases. However, the validity of the bootstrap relies on523

having access to independent samples, an assumption violated in the graph case. We thus consider524

two distinct scenarios, depending on the nature of the graph at hand:525

• For graphs with short-range dependencies, such as for instance, spatial graphs: we propose526

to apply a graph-based block bootstrap method, inspired by its use in time series and spatial527

statistics (Politis and Romano, 1994; Castillo-Páez et al., 2019). The block bootstrap is528

based on the assumption that the dependency structure is well contained within the small529

neighborhood that we could assume independence among these neighborhoods. We extend530

the application of the block bootstrap to the graph case here by splitting the graph into531

smaller (non-overlapping) neighborhoods of size B, and creating new graphs based on532

replacing each of these neighborhoods by sampling with replacement from the total set533

of possible neighborhoods (see Algorithm 4). Similar to the spatial setting (Castillo-Páez534

et al., 2019), the size of the blocks is crucial to the success of the procedure. To guide the535

choice of the neighborhood, we propose using descriptive graph statistics (see next section)536

to generate graphs with similar characteristics.537

• For graphs with long-range dependencies, For non-spatial and homophilic graphs, we538

propose to use an extension of network bootstrap by Levin and Levina (2021). In this539

work, Levin and Levina (2021) consider random dot product graphs (RDPG) where the edge540

connectivity is determined by the inner product of the latent positions H of two nodes: for541

each edge Aij between node i and j, Aij ∼ Bernouilli(HT
i Hj). The crux of this method542

is that by converting an observed network into its latent positions, we can leverage the543

independence among its latent variables. In our setting, we propose to extend this setting to544

larger classes of graphs by learning node representations Hi = GNN(X,A) of the graph545

(see Algorithm 5).546

Algorithm 4 Resample Graphs through Block Bootstrap

1: Input: Spatial coordinates x_coord, y_coord, grid_size, n_samples.
2: Output: Block bootstrapped graphs samples.
3: for i = 1 to n_samples do
4: Step 1: Shuffle Data Points
5: Create a grid over the spatial domain using coordinates x_coord and y_coord.
6: Shuffle the grids to create new patched data, shuffled_data.
7: Step 2: Convert Shuffled Data to Graphs
8: Convert shuffled_data into a graph by the method of choice (e.g. k-NN or radius graph)
9: Store the graph samples[i] = G

10: end for

Algorithm 5 Resample Graphs through Network Bootstrap

1: Input: Graph G, embedding dimension d, n_samples, neighborhood size k
2: Output: Bootstrapped graph samples samples
3: Generate spectral embedding H of adjacency matrix using top d eigenvectors
4: for i = 1 to n_samples do
5: Sample indices bootstrap_idx from H with replacement
6: Generate new graph Â from bootstrapped latent positions
7: Initialize node features x as zeros in the new graph Ĝ

8: for each node i in Ĝ do
9: Calculate distances from node i to all other nodes in H

10: Sort distances and find nearest neighbors (based on neighborhood size k)
11: Randomly select a neighbor and assign its features to node i
12: end for
13: Store the generated graph Ĝ in the sample set samples
14: end for

Bayesian Bootstrap Rubin (1981) introduces the Bayesian bootstrap (BB) as a nonparametric547

alternative to traditional Bayesian inference, sidestepping the need for explicit likelihood functions.548

18

Unlike the frequentist bootstrap, which resamples data with replacement, the Bayesian bootstrap as-549

signs Dirichlet-distributed random weights to observed data points, generating a posterior distribution550

for parameters of interest. Specifically, for a dataset X = {x1, x2, ..., xn}, instead of sampling with551

replacement as in the frequentist bootstrap, the Bayesian bootstrap draws a random probability vector552

p = (p1, p2, ..., pn) from a Dir(1, 1, . . . , 1) distribution, ensuring that
∑n

i=1 pi = 1 and pi > 0.553

This randomized weighting serves as a Bayesian nonparametric prior, effectively treating the empirical554

distribution of the data as the prior distribution.555

Efron (2012) explores the relationship between Bayesian inference and the parametric bootstrap,556

demonstrating how frequentist resampling techniques can be adapted to estimate posterior distribu-557

tions. The key insight of this work is that the parametric bootstrap, traditionally used to approximate558

sampling distributions, can serve as an efficient computational tool for Bayesian inference when559

paired with importance sampling. Efron (2012) shows that bootstrap reweighting can be used to560

transform frequentist confidence intervals into Bayesian credible intervals. This approach provides561

a bridge between the two paradigms, enabling frequentist methods to yield posterior distributions562

without relying on Markov Chain Monte Carlo (MCMC) techniques.563

The Bayesian bootstrap provides a perspective for interpreting the proposed nonparametric graph564

rewiring, particularly when edge resampling is guided by shared neighborhood structure. Just as565

the BB assigns Dirichlet-distributed weights to data points to construct a posterior distribution,566

the graph rewiring process can be seen as assigning probabilistic weights to edges based on local567

graph structure, thereby producing alternative realizations of the same graph. In this context, the568

neighborhood-weighted resampling in LOBSTUR aligns with Bayesian importance sampling, where569

the rewired edges represent a form of pseudo-posterior distribution over network structures.570

Extended VGAE Approach Inspired by Kipf and Welling (2016), we tried using the Variational571

Graph Autoencoder(VGAE) as a new graph sampler. The extension was needed as the original572

method only reconstructed the adjacency matrix. The proposed loss function includes a feature573

reconstruction component alongside the edge reconstruction and KL divergence losses. With the edge574

decoder designed by the original work, the feature decoder generates reconstructed node features, and575

the reconstruction loss for features is based on the sum of squared differences between the original576

and reconstructed features.577

The total loss used for training consists of three parts: the KL divergence loss regularizing the latent
variables, the edge reconstruction loss, and the feature reconstruction loss, scaled by a regularization
parameter λ. The overall objective is:

Total Loss =
KL
n

+ lossA + λ× lossX

In our implementation, the parameter λ controls the weight of the feature reconstruction in the loss.578

This allows the model to focus primarily on learning the graph structure while still incorporating579

node feature information.580

19

D.4.1 Experiments: Block Bootstrap581

Figure 2: Block Bootstrap for Mouse Spleen data. Distribution of graph statistics of bootstrapped
graphs. The principle is to see if the graph statistics of the original graph is within the extremity of
the distribution of generated samples. The red dotted line indicates the statistics computed on the
original graph. Most of the graph statistics do not lie at the extremity of the distribution of graph
statistics by bootstrapped samples.

Figure 3: Block Bootstrap for Mouse Spleen data. Distribution of node-level statistics of bootstrapped
graphs. The orange-colored distribution represents the JS divergence between the bootstrapped
samples and the original graph, and the blue-colored distribution represents among bootstrapped
samples divergence. The more the two distributions overlap, the bootstrapped samples ‘mimic’ the
original graph well in terms of node-level statistics.

D.5 Evaluating Embedding Qualities582

In Section 2.2, we propose a stability metric. There are few works proposing metrics to evaluate the583

quality of unsupervised embeddings, although they are not intended for hyperparameter tuning.584

Alignment-based metrics Our first family of metrics focuses on measuring how well two em-585

beddings align with each other. Suppose we have two embeddings, Hi and Hj , produced by the586

same learning procedure but on different graph folds. We propose two discretized versions of (2),587

measuring how much two embeddings align with each other.588

20

1. Label Matching: The first thing we can think of is to make the label from the embedding589

from each fold, which follows the “converting to the supervised task” convention.590

(a) Determine the clusters on embeddings using simple clustering algorithm such K-591

Nearest Neighbor or Gaussian Mixture Model(GMM)592

(b) Use widely used clustering evaluation metrics, such as Adjusted Rand Index(ARI) by593

Hubert and Arabie (1985) or Normalized Mutual Index(NMI), to see the labels from594

Hi and Hj agree to each other.595

2. Neighborhood Matching: If the model is able to extract enough of the latent structure of596

data, the model trained on the different folds of a graph should be similar. With this reasoning,597

we can evaluate the model by how much of the neighborhoods in the embedding agree with598

each other. To avoid the usage of data twice, we will evaluate the neighborhood from Hi599

and Hj and report the ratio of overlapping neighbors. To construct the neighborhood in the600

embedding space, we will use the simple k-Nearest algorithm with varying sizes of k. For601

each node on output embeddings, Hi and Hj , we first find the m-nearest neighbors. Then602

for node-level neighbor-kept ratio is defined as Ni(m) = # of overlapped neighbors/m,603

where m ≤ k is the neighbor size. Graph-level ratio can be calculated by simply averaging604

over the nodes, N(m) =
∑

i Ni(m).605

Direct Embedding Quality Metrics Beyond measuring alignment between two embeddings, one606

can also evaluate an embedding’s internal quality or degree of collapse. These methods offer a607

complementary view: even if two embeddings align with each other, they could both be suffering608

from dimension collapse or poor distribution of singular vectors.609

1. RankMe: Garrido et al. (2023) proposes RankMe a metric to measure the effective di-
mension of embeddings to quantify the embedding collapse in self-supervised learning.
To overcome the numerical instability of the exact rank computation, for example, due to
round-off error, they propose an alternative to use Shannon entropy of normalized singular
values. The formula was originally proposed by Roy and Vetterli (2007) and then applied to
dimension collapse context by Garrido et al. (2023). Formally,

RankMe(H) = exp

− min(n,p)∑
k=1

pk log pk

 , with pk =
σk(H)

∥σ(H)∥1
+ ϵ.

2. Metrics proposed in Tsitsulin et al. (2023): Tsitsulin et al. (2023) further extended the610

approaches and proposed four different metrics to evaluate the embedding quality in terms of611

embedding collapse and stability perspective. The key differences between their experiment612

setting and ours are, first, Tsitsulin et al. (2023) only consider the graph structure, not the613

node features, and second, they do not change the model parameters but change the level614

of perturbation on the structure (edge dropping or node masking). Let H ∈ Rn×p be an615

embedding obtained from the trained unsupervised model of choice.616

(a) Coherence: The coherence metric measures how concentrated the rows of the singular
vector matrix U are. A low coherence indicates that the energy is spread more uniformly
across all rows (good for compressed sensing), while a high coherence suggests that
the energy is concentrated in a few rows, which can indicate a poorly distributed set of
singular vectors.

Coherence(H) =
maxi ∥Ui∥22 · n

p
,

where U ∈ Rn×p is reduced left singular matrix of H ∈ Rn×p.617

(b) Stable Rank: It is the quantity called a ‘numerical rank” (or effective rank) in numerical
analysis.

Stable Rank(H) =
∥H∥2F
∥H∥22

,

where ∥H∥F denotes the Frobenius norm, ∥H∥2F =
∑

σ2
i , and ∥H∥2 = σ1, where618

σ1 ≥ σ2 ≥ · · · ≥ σn denotes the singular values of H .619

(c) Pseudo-condition number: Let SVD of the embedding H be H = UΣV ⊤.

κp(H) = ∥H∥p∥H†∥p
p=2
=

σ1

σn

21

(d) SelfCluster: The idea is to estimate how much the embeddings are clustered in the
embedding space compared to random distribution on a sphere. Let H̃ ∈ Rn×p be the
normalized embeddings.

SelfCluster(H) =
∥H̃H̃⊤∥F − n− n× (n− 1)/d

n2 − n− n× (n− 1)/d

E Scalability620

While our framework performs well on graphs of moderate size (up to 19k nodes, e.g., the Pubmed621

citation network), scalability remains a challenge. The bootstrapping procedure and CCA-based622

evaluation introduce significant additional computation, which can limit applicability to larger623

graphs. In particular, when applying our method to the OGBN-Arxiv dataset (over 170k nodes), we624

encountered substantial runtime challenges that made the process very time-consuming.625

The main limitation, however, stems from the need to train multiple graph neural networks (GNNs)626

during the bootstrapping process. This requirement significantly increases the computational cost,627

but it is essential to ensure robust hyperparameter selection, especially in high-precision applications628

such as finance or biomedical domains, where reliability and unbiased evaluation are critical.629

To address scalability challenges, we have begun exploring two strategies (1) block bootstrapping630

where the graph is partitioned into smaller subgraphs and bootstrapping is applied within blocks; and631

(2) approximate rewiring schemes to reduce computational overhead during resampling. Preliminary632

results for block bootstrapping, presented in D.4, suggest that this direction holds promise.633

E.1 Alternative Algorithm for Scalability634

Algorithm 6 Approximate Edge Rewiring via A2

1: Input: Graph G = (V, E) with n = |V| nodes, flattened list of edge stems L = {u | u ∈ E[:
, 0]} ∪ {v | v ∈ E[:, 1]}, where E ∈ R|E|×2, and the squared adjacency matrix A2 representing
2-hop connectivity strengths between nodes.

2: Initialize an empty graph G′ = (V, E ′) with n nodes.
3: Compute the sparse adjacency matrix A of G and symmetrize it to ensure it is undirected.
4: Compute the matrix product A2 = A× A, remove self-loops by setting the diagonal of A2 to

zero, and eliminate any zero entries.
5: while len(L) > 0 do
6: Sample a source node u uniformly at random from the list L, and remove it from L.
7: Retrieve the set of candidate nodes v for u, where each candidate v satisfies A2

uv > 0 and
v ̸= u, and where v ∈ L.

8: If no such candidate exists, discard u and continue to the next iteration.
9: Otherwise, sample a target node v from the set of candidates according to the normalized

weights given by A2
uv .

10: Remove the sampled node v from the list L.
11: Add an undirected edge between u and v in the graph G′.
12: end while
13: Output: Bootstrapped graph G′ with resampled edge structure.

The original edge rewiring algorithm (Algorithm 2 explores a node’s local 1-hop neighborhood at635

each iteration. For a randomly selected node u, it first identifies its k-nearest neighbors based on some636

graph-based distance, then for each k-nearest neighbor m, it retrieves all direct neighbors NA(m) in637

the original graph. The node u samples a new connection v from this dynamically built candidate set,638

with probabilities weighted by the frequency of appearance across different m. This ensures that edge639

resampling captures local neighborhood information around each node. However, this procedure640

incurs high computational cost because it needs to explore multiple neighborhoods at every rewiring641

step.642

The approximate algorithm (Algorithm 6) instead precomputes the 2-hop neighborhood connectivity
of the graph by squaring the adjacency matrix, yielding A2. Here, A ∈ Rn×n is the (symmetric)

22

adjacency matrix of the graph, and A2
ij counts the number of distinct 2-hop paths between nodes i

and j. In this setting, each node u directly samples a target node v from the 2-hop neighbors based
on their weighted connection strength given by A2

uv . The sampling probability is proportional to the
number of 2-hop paths between u and v, i.e.,

P (v|u) = A2
uv∑

v′∈C(u) A
2
uv′

,

where C(u) is the set of candidates for node u with positive 2-hop connectivity and available stems.643

If no candidates are found, the algorithm discards u and continues.644

The relationship between Algorithm 2 and the approximate method (Algorithm 6) depends on the645

degree of each node and the choice of k for the k-nearest neighbor graph. Specifically, whether the646

candidate set in the original method is larger or smaller than the set of direct neighbors depends on647

the comparison between a node’s degree and the size of k. If a node u has a low degree, meaning it is648

connected to only a few nodes in the original graph, then the k-nearest neighbor (k-NN) graph will649

forcefully connect it to k other nodes based on feature similarity or graph distance, even if u does650

not have that many direct connections. In this case, the k-NN set can be larger than the direct 1-hop651

neighbor set. The original algorithm supplements the missing local structure by adding neighbors652

based on external feature similarity rather than existing edges. Consequently, when deg(u) < k, the653

original rewiring may result in a broader candidate set than the direct neighborhood.654

On the other hand, if a node u has a high degree, meaning it is already connected to many nodes in655

the adjacency graph, then the k-nearest neighbor graph selects only a subset of its many neighbors.656

Here, k-NN acts as a filter, choosing the most “important” or closest k neighbors, possibly ignoring657

others. In this case, because k is smaller than the degree, the k-NN candidate set becomes smaller658

than the full direct neighborhood. When deg(u) ≥ k, the original algorithm is thus more restrictive659

compared to simply traversing all direct neighbors.660

Therefore, the original algorithm is not always narrower or broader by default; it depends on the661

relative size of a node’s degree and k. This behavior is different from the approximate method using662

A2, where no such filtering exists. The approximate method (Algorithm 6) uses all nodes that are663

reachable in exactly two hops, without considering feature space distances or k-nearest neighbor664

constraints. As a result, the approximate method includes any node with a 2-hop path from a node u,665

potentially adding candidates that would never have been explored in the original method, especially666

when the node’s degree is small and the k-NN graph must reach out to faraway nodes.667

23

F GNN Experiment Details668

We use benchmark datasets for node classification, including Cora, Pubmed, and Citeseer, and test669

our framework on node regression datasets from Huang et al. (2023). We summarize the datasets670

used to demonstrate the entire hyperparameter tuning procedure in Table 4.671

We consider various benchmark datasets for node classification tasks, including Cora, Pubmed,672

Citeseer. Additionally, we have tested our framework on a few datasets for the node regression by673

Huang et al. (2023). To demonstrate our full framework for hyperparameter tuning, we used the674

following datasets, and their details are summarized in Table 4.675

Dataset Num Nodes Num Edges Num Classes Description Source

Cora 2708 5429 7 Citation network PyTorch Geometric
Citeseer 3327 4732 6 Citation network PyTorch Geometri
Pubmed 19717 44338 3 Citation network PyTorch Geometric

Amazon Photo 7650 119081 8 Product co-purchasing network PyTorch Geometric
Amazon Computers 13752 245861 10 Product co-purchasing network PyTorch Geometric

Coauthor CS 18333 81894 15 Coauthorship network PyTorch Geometric
Anaheim 914 3881 – Graph of transportation networks Conformalized GNN (Huang et al., 2023)

ChicagoSketch 2176 15104 – Urban traffic network (sketch) Conformalized GNN (Huang et al., 2023)
County Education 3234 12717 – County-level education metrics (2012) Conformalized GNN (Huang et al., 2023)

Twitch PTBR 1912 3170 – Brazilian Twitch interactions Conformalized GNN (Huang et al., 2023)

Table 4: Summary of benchmark datasets used for the experiments, including both classification and
regression datasets.

The followings are tested combinations of hyperparameters, including different types of unsupervised676

GNN models.677

• model: {CCA-SSG, DGI, BGRL, GRACE}678

• feature masking rate (FMR): {0.05, 0.25, 0.5, 0.75}679

• edge dropping rate (EDR): {0.05, 0.25, 0.5, 0.75}680

• λ (CCA-SSG, BGRL) or τ (GRACE): {10−5, 10−4, 10−3, 10−2, 10−1, 1.0, 10.0}681

• number of layers: 2682

• hidden dimension: 256683

• output dimension (p): 8684

• learning rate: 10−3685

• epochs: 500686

• number of simulations for each dataset (nb): 20687

F.1 Computer Resources Used688

The experiments in this study were conducted using a combination of personal and institutional689

computational resources. Preliminary analyses and prototyping were performed on a MacBook Pro690

with an Intel Core i7 processor and 16GB of RAM. For larger-scale experiments, including graph691

bootstrapping and downstream evaluations, we used high-performance computing resources provided692

by the institution’s research cluster, which includes access to multi-core CPUs and GPU-enabled693

nodes. While execution time varied by dataset and task, typical runs for clustering and evaluation694

completed within a few hours. Detailed resource specifications and runtime profiles are available695

upon request to support reproducibility.696

24

G Additional Tables and Figures697

Figure 4: Citeseer: Model trained by different hyperparameters. 2D Visualization through PCA. The
learned representations vary by the choice of hyperparameters.

G.1 Validation of Metrics698

Synthetic Datasets. The motivation for using synthetic data is that we know the exact data-699

generating process (DGP), enabling us to replicate the dataset and focus on validating our metric. By700

controlling the DGP, we remove confounding factors related to real-world data and can better isolate701

and evaluate the performance of algorithms and metrics.702

In this synthetic dataset generation, we create spatially structured data using a simple Gaussian blob.703

We first define n cluster centers and standard deviations to simulate spatial groupings in a 2D space,704

which belong to distinct clusters. For each point, we generate a 32-dimensional feature vector, with705

features generated from Laplacian eigenmap by Belkin and Niyogi (2001). The final dataset includes706

2D spatial coordinates, cluster labels, and 32-dimensional feature vectors. We generated 15 copies of707

graphs following the same (and known) data-generating process. We run the procedure (Algorithm 3)708

and compute the metrics’ average and prediction accuracy (Figure 5). Our proposed metric matches709

the clustering alignments (NMI, ARI) and shows a strong negative correlation with accuracy.710

(a) (b)

Figure 5: Summary of synthetic dataset and experiment results. The proposed metric and prediction
accuracy show a strong negative Spearman rank correlation (-0.71).

G.1.1 Application to Spatial Single-Cell Datasets711

There is a growing demand for robust computational tools that can extract biologically meaningful712

representations across heterogeneous samples. In such applications, it is crucial to obtain consistent713

and high-quality embeddings that generalize across samples while preserving fine-grained spatial714

structure. Our proposed metric is particularly well-suited for this goal, as it evaluates the stability715

and informativeness of unsupervised embeddings without requiring labeled data. When annotations716

25

are available, we further demonstrate that our method aligns closely with manual labels, exhibiting717

strong spatial continuity and biological interpretability across a range of datasets.718

Mouse Spleen (CODEX) We apply our procedure to a high-resolution spatial proteomics dataset719

of the mouse spleen from Goltsev et al. (2018). This dataset, generated using CO-Detection by720

Indexing (CODEX), provides single-cell spatial and phenotypic profiles of immune cells across721

intact spleen tissue. With over 30 measured protein markers, it enables precise mapping of cell722

types, functional states, and spatial interactions at sub-tissue resolution. The dataset preserves key723

anatomical compartments—including T cell zones, B cell follicles, and red and white pulp—and724

highlights how spatial arrangement corresponds to immune function, such as structured lymphocyte725

zones and compartmentalized myeloid populations. We also have an access to the expert annotated726

lables, which we report the accuracy against it in Table 2. Figure 6 also refelects varying quality of727

learned embeddings by the choice of λ.728

Figure 6: Visualizations of mouse spleen CODEX data based on the output of CCA-SSG model with
different λ settings. We can observe that depending on the choice of λ, the quality of expression
varies a lot. When λ becomes too large, the learned representation fail to recover the underlying cell
environments. See Section 2.2.1 for the setup.

Triple Negative Breast Cancer Dataset The dataset from Keren et al. (2018) comprises MIBI-TOF729

imaging data from 41 TNBC patients, capturing the spatial expression of 36 proteins across tumor,730

immune, and regulatory markers at subcellular resolution. Tumors are classified into three immune731

architectures—cold, mixed, and compartmentalized—based on spatial patterns of immune infiltration,732

cell type organization, and marker expression. Compartmentalized tumors are linked to the best733

survival outcomes. Mixed tumors, featuring intermingled tumor and immune cells with high CD8+734

T cell and checkpoint marker expression, may benefit from immunotherapy. Cold tumors show735

sparse immune presence and poor prognosis. Among these, the mixed and compartmentalized tumor736

microenvironments (TMEs) represent favorable immune architectures that the authors aim to recover,737

as they are identified through a combination of cell type composition, spatial organization, and marker738

expression profiles. We predict such group (mixed vs. comparatmentalized) based on the learned739

embeddings. The AUC for the prediction is reported in Table 2.740

Colorectal Cancer Dataset The colorectal cancer (CRC) dataset from Schürch et al. (2020) in-741

cludes 140 tissue regions from 35 advanced-stage CRC patients, profiled using FFPE-CODEX742

imaging with 56 protein markers to identify diverse cell populations within the tumor microenviron-743

ment (TME). The study identified nine distinct cellular neighborhoods (CNs) through unsupervised744

clustering of spatial co-occurrence patterns, revealing how the spatial organization of immune and745

stromal cells shapes immune responses. Two major immune architectures emerged (1) Crohn’s-like746

reaction (CLR), associated with structured immune infiltration and favorable outcomes, and (2)747

26

diffuse inflammatory infiltration (DII), marked by disorganized immune presence and poor prognosis.748

These TMEs, distinguished by differences in cell types, spatial arrangements, and marker expression,749

represent the patterns the authors aim to recover, as they reflect clinically relevant immune organi-750

zation associated with patient survival. The AUC for the predicting such group (CLR vs. DII) is751

reported in Table 2.752

G.2 Validation of Bootstrap Samples753

True Solution 1 Solution 2 (graph k-NN)
Number of Nodes 2708 2708±0 2708±0
Number of Edges 5278 5200.54±9 5171.78±7.34
Average Degree 3.8980 3.84±0.01 3.82±0.01

Density 0.0014 0±0 0±0
Avg Clustering Coefficient 0.2407 0.01±0 0.05±0
Avg Connected Component 78 13.16±3.26 67.91±6.7

Giant Component Size 2485 2684.28±6.51 2620.38±10.78
Assortativity -0.0659 -0.06±0 -0.07±0

PageRank 1353.5 1353.5±0 1353.5±0
Transitivity 0.0935 0.01±0 0.03±0

Number of Triangles 1630 133.96±11.62 471.48±27.11
Table 5: Graph statistics for Cora illustrating the two solutions suggested in Section 2.1. We see the
clear deviation on graph statistics, especially the average connected component and the number of
triangles when we follow the Solution 1.

Figure 7: Visualization of the statistics obtained by different methods. The left most plot in each row
corresponds to a visualization of the graphon function W (x, y) = ρ ∗ (1 + cos(ηπ · (x− y)))/2, for
ρ = 0.01 and different values of η. Each row presents a visualization of 10 instances of a resampling
of a graphon generated according to W using different methods.

27

True Edge Drop Node Drop Ours NB VAE

Scenario 1

Assortativity -0.0345 0±0 0±0 0±0 0±0 -0.44±0.05
Avg ClusterCoefficient 0 0±0 0±0 0±0 0±0 0.12±0.01

Avg Degree 0.12 0.12±0 0.1±0.01 0.08±0 0.04±0.02 2.63±0.47
Density 0.0002 0±0 0±0 0±0 0±0 0.01±0

Giant Component Size 3 2.93±0.26 2.53±0.5 2.79±0.4 4.12±1.36 90.08±8.22
Num Connected Components 470 471.13±0.87 380.72±2.44 480±1.15 492.81±3.52 410.89±8.21

Num Edges 30 28.87±0.87 19.28±2.44 20±1.15 8.82±5.12 657.73±118.12
Num Nodes 500 500±0 400±0 500±0 500±0 500±0

Num Triangles 0 0±0 0±0 0±0 1.48±2.22 3060.65±1108.48
PageRank 249.5 249.5±0 199.5±0 249.5±0 249.5±0 249.5±0

Transitivity 0 0±0 0±0 0±0 0.33±0.31 0.47±0.05

Scenario 2

Assortativity -0.0227 -0.02±0.01 -0.02±0.04 -0.02±0.03 0.01±0.04 0.04±0.04
Avg ClusterCoefficient 0.0064 0.01±0 0.01±0 0.01±0 0.02±0.01 0.16±0.01

Avg Degree 3.224 3.1±0.02 2.58±0.07 3.2±0.01 3.68±0.29 3.13±0.09
Density 0.0065 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Giant Component Size 479 475.02±2.21 360.97±6.3 481.21±2.64 407.42±11.16 70.91±7.09
Num Connected Components 18 21.41±1.81 33.23±4.71 17.89±1.25 91.93±10.74 391.57±4.03

Num Edges 806 774.11±4.42 515.92±13.17 801.17±1.81 921±71.47 782.12±21.59
Num Nodes 500 500±0 400±0 500±0 500±0 500±0

Num Triangles 7 6.16±0.89 3.59±1.35 5.42±2.36 68.31±21.3 4469.92±189.99
PageRank 249.5 249.5±0 199.5±0 249.5±0 249.5±0 249.5±0

Transitivity 0.0083 0.01±0 0.01±0 0.01±0 0.04±0.01 0.69±0.01

Scenario 3

Assortativity -0.0227 -0.02±0.01 -0.02±0.04 -0.01±0.03 0.01±0.04 -0.58±0.06
Avg ClusterCoefficient 0.0064 0.01±0 0.01±0 0.01±0 0.02±0.01 0.11±0.02

Avg Degree 3.224 3.1±0.02 2.58±0.07 3.21±0.01 3.68±0.29 1.28±0.18
Density 0.0065 0.01±0 0.01±0 0.01±0 0.01±0 0±0

Giant Component Size 479 475.02±2.21 360.97±6.3 481.2±2.77 407.42±11.16 49.52±10.72
Num Connected Components 18 21.41±1.81 33.23±4.71 17.84±1.28 91.93±10.74 421.24±11.14

Num Edges 806 774.11±4.42 515.92±13.17 801.7±1.61 921±71.47 321.11±45.67
Num Nodes 500 500±0 400±0 500±0 500±0 500±0

Num Triangles 7 6.16±0.89 3.59±1.35 5.74±2.34 68.31±21.3 798.48±165.04
PageRank 249.5 249.5±0 199.5±0 249.5±0 249.5±0 249.5±0

Transitivity 0.0083 0.01±0 0.01±0 0.01±0 0.04±0.01 0.46±0.06

Scenario 4

Assortativity -0.0833 0±0 0±0 0±0 0±0 -0.02±0.11
Avg ClusteringCoefficient 0 0±0 0±0 0±0 0±0.01 0.23±0.01

Avg Degree 0.104 0.1±0 0.08±0.01 0.07±0.01 0.04±0.02 7.39±0.37
Density 0.0002 0±0 0±0 0±0 0±0 0.01±0

Giant Component Size 3 3±0.06 2.77±0.42 2.58±0.49 4.28±1.43 81.19±7.89
Num Connected Components 474 475.1±0.82 383.45±2.4 482.85±1.29 492.15±3.75 350.19±9.04

Num Edges 26 24.9±0.82 16.55±2.4 17.15±1.29 9.68±5.66 1847.28±91.84
Num Nodes 500 500±0 400±0 500±0 500±0 500±0

Num Triangles 0 0±0 0±0 0±0 1.75±2.65 19727.09±959.62
PageRank 249.5 249.5±0 199.5±0 249.5±0 249.5±0 249.5±0

Transitivity 0 0±0 0±0 0±0 0.34±0.32 0.75±0.02

Table 6: Comparison of all sampling methods on graphon model as posited in Equation 1. The
ground truth graphon is generated with n = 500, p = 150, k = 20. For each methods, 500 (bootstrap)
samples are generated. For edge and node drop, we randomly remove 20% of edges or nodes
(and corresponding edges). Our proposed nonparametric bootstrap consistently achieves significant
similarities with the ground truth graph under different scenarios.

We analyze four scenarios (each in Table 7, 8, 9, and 10) of recovering the underlying dependency by754

our proposed nonparametric bootstrap method either through graph-knn or feature-knn. The graph is755

generated by the model posited in Equation 1 with varying graphon function W and feature generator756

g.757

28

graph-kNN feature-kNN

Original k = 5 k=20 k=50 k = 5 k=20 k=50

n= 100

Assortativity 0±0 0±0 0±0

Avg ClusterCoefficient 0 0±0 0±0 0±0 0±0 0±0 0±0

Avg Degree 0.02 0±0 0±0 0±0 0±0 0±0 0±0

Density 0.0002 0±0 0±0 0±0 0±0 0±0 0±0

Giant Component Size 2 1±0 1±0 1±0 1±0 1±0 1±0

Num Connected Components 99 100±0 100±0 100±0 100±0 100±0 100±0

Num Edges 1 0±0 0±0 0±0 0±0 0±0 0±0

Num Nodes 100 100±0 100±0 100±0 100±0 100±0 100±0

Num Triangles 0 0±0 0±0 0±0 0±0 0±0 0±0

PageRank 49.5 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0

Transitivity 0 0±0 0±0 0±0 0±0 0±0 0±0

n=500

Assortativity -0.0345 0±0 0±0 0±0 0±0 0±0 0±0

Avg ClusterCoefficient 0 0±0 0±0 0±0 0±0 0±0 0±0

Avg Degree 0.12 0±0 0.01±0 0.02±0 0.04±0.01 0.08±0 0.11±0

Density 0.0002 0±0 0±0 0±0 0±0 0±0 0±0

Giant Component Size 3 2.04±0.82 2.32±0.47 2.34±0.47 2±0 2.79±0.4 2.94±0.24

Num Connected Components 470 498.96±0.82 497.07±0.82 495.4±0.96 489.19±1.61 480±1.15 472.94±0.86

Num Edges 30 1.04±0.82 2.93±0.82 4.6±0.96 10.81±1.61 20±1.15 27.06±0.86

Num Nodes 500 500±0 500±0 500±0 500±0 500±0 500±0

Num Triangles 0 0±0 0±0 0±0 0±0 0±0 0±0

PageRank 249.5 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0

Transitivity 0 0±0 0±0 0±0 0±0 0±0 0±0

n=1000

Assortativity -0.112 -0.39±0.15 -0.36±0.14 -0.33±0.13 0±0 -0.01±0.11 -0.02±0.08

Avg ClusterCoefficient 0 0±0 0±0 0±0 0±0 0±0 0±0

Avg Degree 0.182 0.03±0.01 0.03±0.01 0.04±0.01 0.09±0.01 0.14±0 0.17±0

Density 0.0002 0±0 0±0 0±0 0±0 0±0 0±0

Giant Component Size 4 3.45±0.5 3.42±0.49 3.46±0.51 3.37±0.49 4.06±0.6 4.23±0.48

Num Connected Components 909 984.21±2.87 983.32±2.82 980.71±2.92 955.1±2.99 928.42±2.25 916.2±1.51

Num Edges 91 15.79±2.87 16.68±2.82 19.29±2.92 44.9±2.99 71.6±2.24 83.81±1.51

Num Nodes 1000 1000±0 1000±0 1000±0 1000±0 1000±0 1000±0

Num Triangles 0 0±0 0±0 0±0 0±0 0.02±0.13 0±0.06

PageRank 499.5 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0

Transitivity 0 0±0 0±0 0±0 0±0 0.01±0.04 0±0.01

Table 7: Scenario 1: the graph structure is highly localized (W (u, v) = 1{|u− v| < 0.01}), leading
to disconnected components and the failure of graph-based kNN, while features (N (5u, 0.01)) exhibit
a strong correlation with the latent variable u, enabling feature-based kNN success. The greyed-out
cells indicate values that are unavailable.

29

graph-kNN feature-kNN

Original k = 5 k=20 k=50 k = 5 k=20 k=50

n= 100

Assortativity 0.2884 -0.24±0.16 -0.12±0.18 -0.13±0.17 -0.01±0.19 -0.11±0.17 -0.1±0.17

Avg ClusterCoefficient 0 0±0 0±0 0±0 0±0 0±0 0±0

Avg Degree 0.66 0.37±0.03 0.49±0.03 0.6±0.02 0.53±0.03 0.63±0.02 0.65±0.01

Density 0.0067 0±0 0±0 0.01±0 0.01±0 0.01±0 0.01±0

Giant Component Size 8 6.15±1.21 6.36±1.4 5.97±1.23 5.22±1.26 5.86±1.25 6.09±1.39

Num Connected Components 67 81.9±1.59 75.54±1.45 70.24±1.24 73.58±1.56 68.5±0.79 67.6±0.56

Num Edges 33 18.27±1.57 24.54±1.44 29.78±1.24 26.44±1.55 31.52±0.79 32.41±0.55

Num Nodes 100 100±0 100±0 100±0 100±0 100±0 100±0

Num Triangles 0 0±0 0.02±0.15 0.02±0.13 0.01±0.12 0.01±0.12 0.01±0.12

PageRank 49.5 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0

Transitivity 0 0±0 0.01±0.03 0±0.03 0±0.03 0±0.02 0±0.02

n=500

Assortativity -0.0359 -0.12±0.03 -0.08±0.03 -0.08±0.03 -0.04±0.03 -0.02±0.03 -0.01±0.04

Avg ClusterCoefficient 0.0052 0±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Avg Degree 3.076 2.91±0.02 3.03±0.01 3.02±0.01 2.96±0.02 3.06±0.01 3.07±0

Density 0.0062 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Giant Component Size 471 463.59±3.66 466.91±3.48 468.15±3.02 466.85±3.11 469.38±2.64 469.54±2.58

Num Connected Components 29 34.37±2.24 31.73±1.94 31.15±1.79 32.07±1.91 29.84±1.27 29.66±1.23

Num Edges 769 727.53±5.05 757.88±2.53 756.11±2.92 740.32±4.78 764.09±1.75 767.16±1.04

Num Nodes 500 500±0 500±0 500±0 500±0 500±0 500±0

Num Triangles 7 4.08±2.01 5.03±2.33 5.09±2.33 4.54±2.05 5.37±2.38 5.48±2.33

PageRank 249.5 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0

Transitivity 0.0087 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

n=1000

Assortativity 0.0122 -0.05±0.02 -0.03±0.02 -0.04±0.02 -0.01±0.02 0±0.02 0±0.02

Avg ClusterCoefficient 0.0078 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Avg Degree 6.594 6.37±0.02 6.56±0.01 6.59±0 6.5±0.01 6.58±0 6.59±0

Density 0.0066 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Giant Component Size 999 998.74±0.5 998.98±0.13 999±0.06 998.94±0.26 998.99±0.08 998.99±0.15

Num Connected Components 2 2.25±0.5 2.02±0.13 2±0.06 2.06±0.25 2.01±0.08 2.01±0.1

Num Edges 3297 3185.15±9.77 3281.22±3.6 3293.46±1.6 3248.4±6.06 3289.46±2.37 3294.19±1.49

Num Nodes 1000 1000±0 1000±0 1000±0 1000±0 1000±0 1000±0

Num Triangles 50 40.6±6.86 47.34±6.66 48.53±6.7 46.97±6.8 50.03±7.75 50.54±7.07

PageRank 499.5 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0

Transitivity 0.0069 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Table 8: Scenario 2 has a well-structured graph (W (u, v) = 1−|u−v|), ensuring graph kNN success,
but highly oscillatory features (sin(10u) +N (0, 0.1)) disrupt feature-based kNN.

30

graph-kNN feature-kNN

Original k = 5 k=20 k=50 k = 5 k=20 k=50

n= 100

Assortativity -0.0344 -0.15±0.14 -0.08±0.15 -0.06±0.14 -0.05±0.15 -0.09±0.16 -0.08±0.15

Avg ClusterCoefficient 0 0±0 0±0.01 0±0.01 0±0.01 0±0.01 0±0.01

Avg Degree 0.78 0.56±0.03 0.66±0.03 0.74±0.02 0.65±0.03 0.75±0.01 0.77±0.01

Density 0.0079 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Giant Component Size 13 10.37±2.03 10.83±3.2 13.93±3.78 10.35±3.12 13.05±3.86 13.88±3.95

Num Connected Components 62 72.71±1.53 67.23±1.49 63.09±1.09 67.71±1.65 62.69±0.85 61.78±0.7

Num Edges 39 27.91±1.45 32.95±1.43 37.19±1 32.46±1.63 37.52±0.73 38.46±0.56

Num Nodes 100 100±0 100±0 100±0 100±0 100±0 100±0

Num Triangles 0 0.01±0.09 0.1±0.31 0.12±0.34 0.09±0.31 0.1±0.3 0.11±0.32

PageRank 49.5 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0

Transitivity 0 0±0.01 0.01±0.04 0.01±0.03 0.01±0.04 0.01±0.03 0.01±0.03

n=500

Assortativity -0.009 -0.09±0.03 -0.09±0.03 -0.11±0.03 -0.05±0.03 -0.02±0.04 -0.02±0.03

Avg ClusterCoefficient 0.00575685 0±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Avg Degree 3.228 3.07±0.02 3.19±0.01 3.19±0.01 3.15±0.01 3.21±0.01 3.22±0

Density 0.0065 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Giant Component Size 479 473.05±3 474.67±2.97 476.17±2.19 476.13±2.16 476.77±2.06 476.69±2.09

Num Connected Components 22 26.44±2 24.65±1.57 23.92±1.34 23.9±1.29 23.14±0.99 23.14±1.01

Num Edges 807 766.71±5.09 796.85±2.43 796.3±2.54 787.46±3.64 802.61±1.64 805.05±1.07

Num Nodes 500 500±0 500±0 500±0 500±0 500±0 500±0

Num Triangles 8 4.08±2.03 5.18±2.31 5.23±2.25 4.94±2.15 5.97±2.44 6.02±2.59

PageRank 249.5 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0

Transitivity 0.0094 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

n=1000

Assortativity 0.0014 -0.06±0.02 -0.03±0.02 -0.06±0.02 0±0.02 0.01±0.02 0.01±0.02

Avg ClusterCoefficient 0.0077 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Avg Degree 6.584 6.36±0.02 6.55±0.01 6.58±0 6.53±0.01 6.57±0 6.58±0

Density 0.0066 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Giant Component Size 997 996.68±0.63 996.94±0.31 996.99±0.15 996.97±0.19 996.96±0.28 996.98±0.2

Num Connected Components 4 4.3±0.57 4.04±0.19 4.01±0.1 4.03±0.19 4.02±0.15 4.01±0.11

Num Edges 3292 3179.28±10.22 3276.36±3.69 3288.4±1.53 3262.62±4.73 3285.76±2.2 3289.42±1.38

Num Nodes 1000 1000±0 1000±0 1000±0 1000±0 1000±0 1000±0

Num Triangles 60 47.84±7.03 49.11±7.17 50.94±7.08 50.74±6.88 55.12±6.99 55.54±7.53

PageRank 499.5 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0

Transitivity 0.0082 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Table 9: Scenario 3 maintains a structured graph (W (u, v) = 1−|u−v|) and smooth feature variation
(N (5u, 0.01)), leading to the success of both methods.

31

graph-kNN feature-kNN

Original k = 5 k=20 k=50 k = 5 k=20 k=50

n= 100

Assortativity 0±0 0±0 0±0

Avg ClusterCoefficient 0 0±0 0±0 0±0 0±0 0±0 0±0

Avg Degree 0.02 0±0 0±0 0±0 0±0 0±0 0±0

Density 0.00020202 0±0 0±0 0±0 0±0 0±0 0±0

Giant Component Size 2 1±0 1±0 1±0 1±0 1±0 1±0

Num Connected Components 99 100±0 100±0 100±0 100±0 100±0 100±0

Num Edges 1 0±0 0±0 0±0 0±0 0±0 0±0

Num Nodes 100 100±0 100±0 100±0 100±0 100±0 100±0

Num Triangles 0 0±0 0±0 0±0 0±0 0±0 0±0

PageRank 49.5 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0

Transitivity 0 0±0 0±0 0±0 0±0 0±0 0±0

n=500

Assortativity -0.2 0±0 -0.34±0.19 0±0 0±0 0±0 -0.15±0.1

Avg ClusterCoefficient 0 0±0 0±0 0±0 0±0 0±0 0±0

Avg Degree 0.12 0.02±0.01 0.03±0.01 0.04±0.01 0.04±0.01 0.08±0.01 0.11±0

Density 0.00024048 0±0 0±0 0±0 0±0 0±0 0±0

Giant Component Size 3 2.89±0.31 3.11±0.32 3.07±0.26 2.8±0.4 3±0.04 3.16±0.37

Num Connected Components 470 494.14±1.63 491.73±1.63 489.81±1.48 489.6±1.66 480.53±1.37 472.85±1.03

Num Edges 30 5.86±1.63 8.27±1.63 10.19±1.48 10.4±1.66 19.47±1.37 27.15±1.03

Num Nodes 500 500±0 500±0 500±0 500±0 500±0 500±0

Num Triangles 0 0±0 0±0 0±0 0±0 0±0 0±0

PageRank 249.5 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0

Transitivity 0 0±0 0±0 0±0 0±0 0±0 0±0

n=1000

Assortativity 0.14150943 -0.15±0.16 -0.08±0.15 -0.06±0.13 -0.09±0.08 0±0.1 0±0.1

Avg ClusterCoefficient 0 0±0 0±0 0±0 0±0 0±0 0±0

Avg Degree 0.208 0.05±0.01 0.05±0.01 0.06±0.01 0.09±0.01 0.17±0 0.19±0

Density 0.00020821 0±0 0±0 0±0 0±0 0±0 0±0

Giant Component Size 7 6.31±0.8 6.18±0.86 6.21±0.86 3.39±0.6 4.58±0.75 5.22±0.98

Num Connected Components 896 976.5±2.95 975.11±2.75 970.02±2.58 953.18±3.15 916.91±2.48 904±1.75

Num Edges 104 23.71±2.94 25.15±2.76 30.18±2.55 46.82±3.15 83.11±2.48 96.01±1.74

Num Nodes 1000 1000±0 1000±0 1000±0 1000±0 1000±0 1000±0

Num Triangles 0 0±0 0±0 0±0 0±0 0.02±0.13 0.01±0.09

PageRank 499.5 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0

Transitivity 0 0±0 0±0 0±0 0±0 0±0.03 0±0.01

Table 10: Scenario 4 combines a fragmented graph (W (u, v) = 1{|u− v| < 0.01}) with oscillatory
features (sin(10u) +N (0, 0.1)), making the problem hard for both graph- and feature-based kNN.
The greyed-out cells indicate values that are unavailable.

32

Statistic Original k=3 k=5 k=7 k=10 k=15 k=20 k=50

Cora

Number of Nodes 2708 2708±0 2708±0 2708±0 2708±0 2708±0 2708±0 2708±0
Number of Edges 5278 4793.52±14.73 4962.71±13.23 5035.19±12.52 5087.69±10.33 5154.92±9.11 5171.78±7.34 5196.15±7.42
Average Degree 3.90 3.54±0.01 3.67±0.01 3.72±0.01 3.76±0.01 3.81±0.01 3.82±0.01 3.84±0.01

Density 0.00 0±0 0±0 0±0 0±0 0±0 0±0 0±0
Avg Clustering Coefficient 0.24 0.1±0.01 0.09±0 0.08±0 0.07±0 0.06±0 0.05±0 0.03±0
Avg Connected Component 78 136.32±6.99 114.71±6.76 97.29±7.3 97.52±7 62.44±6.95 67.91±6.7 42.54±6.08

Giant Component Size 2485 2479.92±19.9 2530.81±21.35 2571.64±18.39 2580.51±14.08 2625.44±11.64 2620.38±10.78 2652.33±9.41
Assortativity -0.07 -0.09±0 -0.09±0 -0.08±0 -0.08±0 -0.08±0 -0.07±0 -0.08±0

PageRank 1353 1353.5±0 1353.5±0 1353.5±0 1353.5±0 1353.5±0 1353.5±0 1353.5±0
Transitivity 0.09 0.04±0 0.04±0 0.04±0 0.03±0 0.03±0 0.03±0 0.02±0

Number of Triangles 1630 716.03±32.22 664.18±29.42 623.48±29.33 575.85±29.4 512.85±27.32 471.48±27.11 319.15±21.65

Citeseer

Number of Nodes 3327 3327±0 3327±0 3327±0 3327±0 3327±0 3327±0 3327±0
Number of Edges 4552 3846.33±15.1 3951.45±13.58 3997.51±13.36 4031.65±12.6 4059.15±11.71 4127.78±10.93 4150.58±11.39
Average Degree 2.74 2.31±0.01 2.38±0.01 2.4±0.01 2.42±0.01 2.44±0.01 2.48±0.01 2.5±0.01

Density 0.00 0±0 0±0 0±0 0±0 0±0 0±0 0±0
Avg Clustering Coefficient 0.14 0.05±0 0.05±0 0.04±0 0.04±0 0.04±0 0.03±0 0.03±0
Avg Connected Component 438 868.13±12.49 848.01±10.31 840.08±11.44 830.07±10.87 795.53±10.75 635.09±11.87 570.92±13.67

Giant Component Size 2120 1934.25±42.19 2010.02±32.77 2043.56±31.79 2063.28±31.07 2098.62±36.32 2418.12±35.69 2585.67±23.96
Assortativity 0.05 -0.02±0.01 -0.01±0.01 -0.01±0.01 0±0.01 0.01±0.01 -0.08±0 -0.1±0

PageRank 1663 1663±0 1663±0 1663±0 1663±0 1663±0 1663±0 1663±0
Transitivity 0.13 0.07±0 0.07±0 0.06±0 0.05±0 0.05±0 0.04±0 0.03±0

Number of Triangles 1167 574.04±29.17 550.58±28.97 520.69±27.43 462.24±27.24 431.58±25.85 304.6±19.59 227.62±16.37

ChicagoSketch

Number of Nodes 2176 2176±0 2176±0 2176±0 2176±0 2176±0 2176±0 2176±0
Number of Edges 15104 14505.33±22.7 14811.91±17.53 14914.4±14.51 14956.5±12.89 14999.55±11.49 15014.23±10.28 15066.34±5.57
Average Degree 13.88 13.33±0.02 13.61±0.02 13.71±0.01 13.75±0.01 13.79±0.01 13.8±0.01 13.85±0.01

Density 0.01 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0
Avg Clustering Coefficient 0.57 0.19±0 0.17±0 0.16±0 0.14±0 0.13±0 0.12±0 0.08±0
Avg Connected Component 1 1±0 1±0 1±0 1±0 1±0 1±0 1±0

Giant Component Size 2176 2176±0 2176±0 2176±0 2176±0 2176±0 2176±0 2176±0
Assortativity 0.65 0.31±0.01 0.3±0.01 0.3±0.01 0.31±0.01 0.31±0.01 0.29±0.01 0.13±0.01

PageRank 1087 1087.5±0 1087.5±0 1087.5±0 1087.5±0 1087.5±0 1087.5±0 1087.5±0
Transitivity 0.56 0.19±0 0.17±0 0.16±0 0.14±0 0.13±0 0.12±0 0.08±0

Number of Triangles 38240 11919.95±119.57 11097.95±105.45 10402.11±108.83 9577.65±106.85 8637.74±102.45 8006.58±95.13 5592.24±76.04

Twitch_PTBR

Number of Nodes 1912 1912±0 1912±0 1912±0 1912±0 1912±0 1912±0 1912±0
Number of Edges 31299 30803.01±27.13 30985.09±25.09 31049.84±24.48 31076.91±23.3 31084.55±23.33 31082.05±22.83 31058.76±25.23
Average Degree 32.74 32.22±0.03 32.41±0.03 32.48±0.03 32.51±0.02 32.52±0.02 32.51±0.02 32.49±0.03

Density 0.02 0.02±0 0.02±0 0.02±0 0.02±0 0.02±0 0.02±0 0.02±0
Avg Clustering Coefficient 0.32 0.17±0 0.17±0 0.17±0 0.17±0 0.17±0 0.17±0 0.17±0
Avg Connected Component 1.00 1.33±0.55 1.17±0.4 1.2±0.44 1.26±0.5 1.19±0.44 1.14±0.39 1.07±0.25

Giant Component Size 1912 1911.31±1.19 1911.64±0.84 1911.59±0.9 1911.47±1.01 1911.61±0.88 1911.72±0.77 1911.87±0.5
Assortativity -0.23 -0.31±0 -0.3±0 -0.3±0 -0.3±0 -0.29±0 -0.29±0 -0.28±0

PageRank 955 955.5±0 955.5±0 955.5±0 955.5±0 955.5±0 955.5±0 955.5±0
Transitivity 0.13 0.08±0 0.08±0 0.08±0 0.08±0 0.08±0 0.08±0 0.08±0

Number of Triangles 173510 103368.74±1614.98 102572.23±1741.49 103379.78±1759.64 104007.92±1678.98 105301.1±1862.01 105534.51±1904.54 106230.23±1900.76

Education

Number of Nodes 3234 3234±0 3234±0 3234±0 3234±0 3234±0 3234±0 3234±0
Number of Edges 12717 12449.4±13.31 12567.43±9.6 12593.18±8.39 12606.58±8.34 12616.48±7.7 12615.12±7.79 12608.38±8.42
Average Degree 7.86 7.7±0.01 7.77±0.01 7.79±0.01 7.8±0.01 7.8±0 7.8±0 7.8±0.01

Density 0.00 0±0 0±0 0±0 0±0 0±0 0±0 0±0
Avg Clustering Coefficient 0.43 0.19±0 0.17±0 0.15±0 0.14±0 0.12±0 0.12±0 0.12±0
Avg Connected Component 17.00 2.24±0.5 1.2±0.44 1.13±0.37 1.14±0.36 1.27±0.55 1.64±0.79 4.14±1.56

Giant Component Size 3109 3155.56±2.16 3228.04±20.42 3233.87±0.37 3233.86±0.36 3233.73±0.55 3233.36±0.79 3230.86±1.56
Assortativity 0.14 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.03±0.01 0.04±0.01

PageRank 1616.50 1616.5±0 1616.5±0 1616.5±0 1616.5±0 1616.5±0 1616.5±0 1616.5±0
Transitivity 0.39 0.19±0 0.16±0 0.15±0 0.13±0 0.12±0 0.12±0 0.11±0

Number of Triangles 6490 5402.03±65.45 4712.47±56.84 4356.54±57.62 3980.89±58.92 3569.63±54.37 3486.89±53.63 3346.53±48.62

Anaheim

Number of Nodes 914 914±0 914±0 914±0 914±0 914±0 914±0 914±0
Number of Edges 3881 3557.23±17.18 3744.01±10.86 3804.45±8.77 3845.48±5.53 3855.53±4.2 3858.74±4.21 3855.93±4.51
Average Degree 8.49 7.78±0.04 8.19±0.02 8.32±0.02 8.41±0.01 8.44±0.01 8.44±0.01 8.44±0.01

Density 0.01 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0
Avg Clustering Coefficient 0.55 0.19±0.01 0.16±0.01 0.14±0 0.12±0 0.11±0 0.09±0 0.05±0
Avg Connected Component 1.00 1.17±0.42 1.1±0.33 1.09±0.29 1.05±0.22 1.02±0.15 1.01±0.1 1.01±0.08

Giant Component Size 914 913.82±0.44 913.89±0.35 913.9±0.36 913.95±0.25 913.98±0.15 913.99±0.1 913.99±0.08
Assortativity 0.71 0.51±0.01 0.45±0.01 0.41±0.01 0.39±0.01 0.39±0.01 0.39±0.01 0.15±0.01

PageRank 456 456.5±0 456.5±0 456.5±0 456.5±0 456.5±0 456.5±0 456.5±0
Transitivity 0.60 0.2±0 0.16±0 0.14±0 0.12±0 0.11±0 0.1±0 0.06±0

Number of Triangles 7162 1968.36±46.38 1779.38±43.05 1575.97±39.58 1438.32±38.23 1270.53±35.34 1163.42±32.96 768.93±28.73

Table 11: Graph statistics of bootstrapped samples generated by Algorithm 2 with varying neighbor-
hood size (k).

33

Original Edge Drop Node Drop Ours Network Bootstrap VAE

Assortativity -0.07 -0.07 ± 0 -0.07 ± 0.01 -0.07±0 -0.03 ± 0.03 -0.43 ± 0
Avg Clustering Coefficient 0.24 0.22 ± 0 0.17 ± 0.01 0.05±0 0.02 ± 0.01 0.5 ± 0

Avg Degree 3.90 3.74 ± 0.01 2.63 ± 0.07 3.82±0.01 2.11 ± 0.18 10.04 ± 0.05
Density 0.00 0 ± 0 0 ± 0 0±0 0 ± 0 0 ± 0

Giant Component Size 2485 2457.77 ± 9.09 1819.98 ± 30.29 2620.38±10.78 1090.22 ± 41.05 1931.32 ± 9.06
Num Connected Components 78 100.12 ± 4.7 587.49 ± 16.74 67.91±6.7 1595.93 ± 38.78 777.68 ± 9.06

Num Edges 5278 5066.1 ± 11.78 3382.72 ± 87.72 5171.78±7.34 2857.55 ± 244.83 13598.31 ± 67.26
Num Nodes 2708 2708 ± 0 2569.6 ± 9.32 2708±0 2708 ± 0 2708 ± 0

Num Triangles 1630.00 1441.03 ± 20.11 835.13 ± 63.84 471.48±27.11 801.19 ± 338.24 78345.91 ± 643.03
Pagerank 1353.50 1353.5 ± 0 1294.43 ± 4.23 1353.5±0 1353.5 ± 0 1353.5 ± 0

Cora

Transitivity 0.09 0.09 ± 0 0.09 ± 0.01 0.03±0 0.07 ± 0.01 0.12 ± 0

Assortativity -0.23 -0.23±0 -0.23±0.01 -0.29±0 0±0 -0.45±0
Avg Clustering Coefficient 0.32 0.25±0 0.26±0.01 0.17±0 0±0 0.41±0

Avg Degree 32.74 26.19±0 21.87±0.84 32.51±0.02 0±0 19.89±0.04
Density 0.02 0.01±0 0.01±0 0.02±0 0±0 0.01±0

Giant Component Size 1912 1883.96±4.76 1506±5.9 1911.72±0.77 1±0 893.77±7.03
Num Connected Components 1.00 28.12±4.49 325.55±8.23 1.14±0.39 1912±0 1016.37±6.87

Num Edges 31299 25039±0 20029.75±776.17 31082.05±22.83 0±0 19010.87±40.09
Num Nodes 1912 1912±0 1831.36±7.18 1912±0 1912±0 1912±0

Num Triangles 173510 88756.59±980.58 89048.18±9052.57 105534.51±1904.54 0±0 332319.47±623.05
Pagerank 955.50 955.5±0 921.8±3.18 955.5±0 955.5±0 955.5±0

TwitchPTBR

Transitivity 0.13 0.1±0 0.13±0 0.08±0 0±0 0.31±0

Assortativity 0.65 456.5 ± 0 441.21 ± 2.15 0.29±0.01 456.5 ± 0 456.5 ± 0
Avg Clustering Coefficient 0.57 0 ± 0 0 ± 0 0.12±0 0 ± 0 0 ± 0

Avg Degree 13.88 0.48 ± 0 0.6 ± 0.01 13.8±0.01 0 ± 0 0.59 ± 0.01
Density 0.01 0 ± 0 0 ± 0 0.01±0 0 ± 0 0 ± 0

Giant Component Size 2176 2175.97 ± 0.18 1739.89 ± 0.44 2176±0 1 ± 0 703.59 ± 6.77
Num Connected Components 1.00 1.03 ± 0.16 349.83 ± 7.54 1±0 2176 ± 0 1473.41 ± 6.77

Num Edges 15104 12083 ± 0 9658.73 ± 46.97 15014.23±10.28 0 ± 0 9156.6 ± 85.77
Num Nodes 2176 2176 ± 0 2088.77 ± 7.54 2176±0 2176 ± 0 2176 ± 0

Num Triangles 38240 19576.4 ± 101.57 19554 ± 325.13 8006.58±95.13 0 ± 0 83059.43 ± 1685.2
Pagerank 1087.50 1087.5 ± 0 1051.19 ± 3.29 1087.5±0 1087.5 ± 0 1087.5 ± 0

ChicagoSketch

Transitivity 0.56 0.45 ± 0 0.56 ± 0 0.12±0 0 ± 0 0.51 ± 0

Assortativity 0.14 0.11 ± 0.01 0.33 ± 0.02 0.03±0.01 0 ± 0 -0.24 ± 0
Avg Clustering Coefficient 0.43 0.34 ± 0 0.36 ± 0 0.12±0 0 ± 0 0.37 ± 0

Avg Degree 7.86 6.29 ± 0 5.58 ± 0.02 7.8±0 0 ± 0 16.63 ± 0.07
Density 0.00 0 ± 0 0 ± 0 0±0 0 ± 0 0.01 ± 0

Giant Component Size 3109 3103.63 ± 2.38 2478.84 ± 8.39 3233.36±0.79 2.34 ± 0.94 1826.67 ± 7.86
Num Connected Components 17 25.11 ± 2.6 539.85 ± 8.69 1.64±0.79 3231.81 ± 1.71 1408.33 ± 7.86

Num Edges 12717 10173 ± 0 8654.72 ± 30.07 12615.12±7.79 2.94 ± 2.91 26887.73 ± 118.84
Num Nodes 3234 3234 ± 0 3104.69 ± 8.44 3234±0 3234 ± 0 3234 ± 0

Num Triangles 6490 3321.39 ± 32.58 3321.02 ± 37.46 3486.89±53.63 0.96 ± 2.18 257887.78 ± 2061.14
Pagerank 1616.50 1616.5 ± 0 1562.58 ± 3.73 1616.5±0 1616.5 ± 0 1616.5 ± 0

Eduation

Transitivity 0.39 0.32 ± 0 0.39 ± 0 0.12±0 0.36 ± 0.48 0.35 ± 0

Assortativity 0.71 0.6 ± 0.01 0.69 ± 0.02 0.39±0.01 -0.15 ± 0.02
Avg Clustering Coefficient 0.55 0.44 ± 0.01 0.46 ± 0.01 0.09±0 0.22 ± 0

Avg Degree 8.49 6.79 ± 0 5.66 ± 0.08 8.44±0.01 5.06 ± 0.07
Density 0.01 0 ± 0 0 ± 0 0.01±0 0 ± 0

Giant Component Size 914 0.01 ± 0 0.01 ± 0 913.99±0.1 0.01 ± 0
Num Connected Components 1.00 0 ± 0 0 ± 0 1.01±0.1 0 ± 0

Num Edges 3881 911.49 ± 2.43 727.17 ± 3.63 3858.74±4.21 121.87 ± 13.67
Num Nodes 914 2.8 ± 1.45 149.32 ± 5.24 914±0 645.81 ± 5.49

Num Triangles 7162 3104 ± 0 2483.09 ± 37.24 1163.42±32.96 2311.09 ± 32.23
Pagerank 456.50 914 ± 0 877.31 ± 4.94 456.5±0 914 ± 0

Anaheim

transitivity 0.60 3661.41 ± 51.07 3667.47 ± 152.92 0.1±0 14770.14 ± 386.77

Table 12: Graph statistics of bootstrapped samples generated by Algorithm 2 with k = 20, simple
generation with Edge or Node Drop (with p = 0.2), and network bootstrap (NB) (Levin and Levina,
2021) and the extended VAE approach in Appendix-D.4. The best values among our method, NB
and VAE are bolded, and the second best values are underlined. The simple split methods largely
distort the original connectivity structure, reflected in the Giant Component Size or the Number of
Connected Components. Our proposed local bootstrap consistently mimics the original graph in
terms of the reported graph statistics. The greyed-out cells indicate values that are unavailable due to
instability encountered during training.

Remark G.1. When the graph structure is sufficiently informative for the underlying latent variable758

distribution (see the differences in Table 7 and Table 9 for the graph-kNN case), the bootstrapped759

graphs show noticeable robustness to the choice of k (the number of nearest neighbors). For example,760

with 500 nodes and k=20, the bootstrapped graph retains about 98% of the original edges and761

recovers approximately 70% of its triangles (see Table 8 for detailed statistics). Increasing k produces762

progressively denser graphs with more edges and higher average degrees, but it also tends to lower763

the clustering coefficient and reduce the number of triangles. Conversely, using a very small k leads764

to sparser graphs that may preserve more local structure—reflected by higher clustering coefficients765

and relatively more triangles per edge—but can underrepresent global connectivity, often resulting766

34

in many small components. On real datasets, setting k = 20 typically recovers an edge count close767

to that of the original graph, though it still underestimates the original triangle count (see Table 11).768

Nonetheless, our proposed method produces graphs whose triangle counts more closely match the769

original than those generated by other methods (see Table 12).770

G.3 Validation of the Entire Framework (Algorithm 3)771

(a) Our CCA-based metrics discussed in Section 2.2.

(b) RankMe metric by Garrido et al. (2023)

(c) SelfCluster by Tsitsulin et al. (2023)

(d) Coherence by Tsitsulin et al. (2023)

Figure 8: Visualizations of metrics value and classification accuracy on Cora. The CCA-SSG (Zhang
et al., 2021) model is trained on set of hyperparameter combinations including λ, edge drop rate
(EDR), and feature masking rate (FMR). Each point denotes the each combination of hyperparameters.
The color denotes the edge dropping rate with blue dots referring small value (edr = 0.05) whereas
the red dot referring to the large value (edr = 0.75). In this dataset, a clear negative correlation is
noted for our metrics across all combinations of hyperparameters.

35

Dataset Default Ours α-ReQ pseudo-κ RankME NESum SelfCluster Stable Rank Coherence

Cora 0.36 0.4 0.4 0.57 0.55 0.4 0.4 0.57 0.54

PubMed 0.62 0.68 0.67 0.74 0.67 0.67 0.69 0.74 0.74

Citeseer 0.32 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42
CS 0.47 0.71 0.82 0.75 0.75 0.82 0.82 0.75 0.82

Chicago 0.39 0.34 0.35 0.35 0.35 0.35 0.35 0.29 0.4

Anaheim 0.13 0.23 0.12 0.18 0.18 0.12 0.23 0.18 0.12

Education 0.23 0.26 0.18 0.17 0.18 0.16 0.18 0.26 0.21

Avg_clf 0.44 0.55 0.58 0.62 0.60 0.58 0.58 0.62 0.63
Avg_reg 0.25 0.28 0.22 0.23 0.24 0.21 0.25 0.24 0.24

Table 13: Downstream task (classification or regression) performance of the BGRL with hyperpa-
rameters chosen by each criteria. We compare to the BGRL (Thakoor et al., 2021) with the default
parameters in the left-most column, fmr = 0.5, edr = 0.25, λ = 10−2. The best value is bolded and
the second best is underlined.

Dataset Default Ours α-ReQ pseudo-κ RankME NESum SelfCluster Stable Rank Coherence

Cora 0.35 0.65 0.66 0.67 0.63 0.63 0.69 0.59 0.47

PubMed 0.49 0.81 0.82 0.56 0.56 0.56 0.82 0.82 0.76

Citeseer 0.38 0.51 0.53 0.51 0.53 0.53 0.53 0.51 0.22

CS 0.65 0.79 0.86 0.86 0.86 0.86 0.86 0.86 0.76

Photo 0.32 0.73 0.58 0.53 0.53 0.73 0.73 0.73 0.69

Computers 0.42 0.57 0.66 0.57 0.66 0.66 0.66 0.57 0.65

Anaheim 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38
Twitch 0.47 0.52 0.15 0.15 0.15 0.15 0.46 0.15 0.48

Education 0.29 0.26 0.33 0.33 0.33 0.33 0.33 0.33 0.26

Avg_clf 0.44 0.68 0.69 0.62 0.63 0.66 0.72 0.68 0.59

Avg_reg 0.38 0.39 0.29 0.29 0.29 0.29 0.39 0.29 0.37

Table 14: Downstream task (classification or regression) performance of the CCA-SSG with hyperpa-
rameters chosen by each criteria. We compare to the CCA-SSG (Zhang et al., 2021) with the default
parameters in the left-most column, fmr = 0.5, edr = 0.25, λ = 10−4. The best value is bolded and
the second best is underlined.

Dataset Default Ours α-ReQ pseudo-κ RankME NESum SelfCluster Stable Rank Coherence

Cora 0.64 0.68 0.54 0.54 0.54 0.54 0.5 0.54 0.42

PubMed 0.78 0.75 0.75 0.75 0.75 0.75 0.75 0.79
Citeseer 0.53 0.55 0.51 0.51 0.51 0.51 0.48 0.51 0.44

CS 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.61

Photo 0.71 0.83 0.79 0.79 0.79 0.79 0.57 0.81 0.41

Computers 0.45 0.45 0.45 0.45 0.39 0.39 0.39 0.39

Avg_clf 0.63 0.67 0.63 0.63 0.63 0.62 0.57 0.62 0.50

Table 15: Downstream task (classification or regression) performance of the GRACE with hyper-
parameters chosen by each criteria. We compare to the GRACE (Zhu et al., 2020) with the default
parameters in the left-most column, fmr = 0.5, edr = 0.25, τ = 1. The best value is bolded and the
second best is underlined. The greyed-out cells indicate values that are unavailable due to instability
encountered during training.

36

Ours Literature Tsitsulin et al. (2023)

CCA dist (↓) α-ReQ (↓) pseudo-κ (↑) RankMe (↑) NEsum (↑) SelfCluster (↓) Stable Rank (↑) Coherence (↓)

Cora -0.6596 -0.2414 0.2036 0.1998 0.2738 0.017 0.1146 0.2914

PubMed -0.7702 -0.2379 0.1422 0.2048 0.4854 -0.0103 0.0532 0.127

Citeseer -0.2014 -0.3183 0.2842 0.2781 0.2518 -0.3156 0.0609 -0.295

CS 0.1875 -0.5459 0.5356 0.5577 0.5608 -0.4376 0.1899 -0.3776

Photo -0.3797 -0.2886 0.274 0.3155 0.2698 -0.5009 0.4722 -0.3782

Computers -0.2433 -0.1943 0.0777 0.2498 0.2875 -0.0714 0.3322 -0.283

Chicago -0.1225 0.6618 -0.6887 -0.6667 -0.3284 0.3701 -0.451 0.1446

Anaheim -0.1528 0.352 -0.3273 -0.3091 -0.1757 0.2337 -0.0864 -0.0543

Twitch -0.5858 0.6246 -0.4868 -0.5414 -0.4852 0.3034 -0.2921 0.2839

Education -0.3464 0.4286 -0.4315 -0.3548 -0.0065 0.0171 0.0917 -0.1247

Avg_clf -0.3445 -0.3044 0.2529 0.3010 0.3549 -0.2198 0.2038 -0.1526

Avg_reg -0.3019 0.5168 -0.4836 -0.4680 -0.2490 0.2311 -0.1845 0.0624

Table 16: Spearman correlation between each metric and the node classification accuracy (R2 if the
predicted value is continuous) across different models and sets of hyperparameters. The higher the
absolute value is, the better with the sign aligning with the arrow. We note that many other metrics
lose their intended direction for some dataset. For example, the high StableRank should indicate the
better performance but the real relationship turns out to be reversed for Chicago, Aneheim and Twitch
dataset.

37

	Introduction
	Proposed Methodology
	A Local Graph Bootstrapping Procedure
	Validation of Bootstrap Samples

	CCA-based Evaluation Metrics
	Validation of the Evaluation Metric

	Proposed Hyperparameter Tuning Framework

	Experiments
	Conclusion
	Theoretical Results
	Definitions
	Consistency of Feature Resampling
	Consistency of Edge Resampling
	Additional Proofs

	Proposed Algorithms in Section 2
	Nonparametric Graph Bootstrap
	Full Tuning Procedure
	Adjustment for Dimensional Collapse

	Summary of Selected Unsupervised GNNs
	Additional Literature Review
	Cross-Validation
	Cross-Validation for Unsupervised Learning
	Cross Validation for Network Analysis
	Bootstrap
	Experiments: Block Bootstrap

	Evaluating Embedding Qualities

	Scalability
	Alternative Algorithm for Scalability

	GNN Experiment Details
	Computer Resources Used

	Additional Tables and Figures
	Validation of Metrics
	Application to Spatial Single-Cell Datasets

	Validation of Bootstrap Samples
	Validation of the Entire Framework (Algorithm 3)

