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Abstract

Recent advances in diffusion-based image editing have enabled highly realistic and acces-
sible manipulation of facial images, raising serious concerns about biometric privacy and
malicious misuse. FaceLock, introduced in Edit Away and My Face Will Not Stay: Personal
Biometric Defense against Malicious Generative Editing, proposes an optimization-based
defense that embeds subtle perturbations into images at publication time to induce identity
distortion in downstream generative edits. The method claims prompt-agnostic effectiveness
and strong performance across multiple editing scenarios, supported by open-source code.
In this paper, we present a systematic reproducibility study of FaceLock that evaluates
its technical, quantitative, and qualitative reproducibility. We assess whether the reported
results can be obtained using the released codebase, analyze the correspondence between
the paper’s algorithmic description and its implementation, and document ambiguities that
impact reproducibility. We further examine quantitative reproducibility by attempting to
recover the reported performance trends and relative ranking against baselines. We, how-
ever, were not able to reproduce the originally reported performance trends, and our outputs
were generally worse than those presented in the original paper. Beyond that, we expand
the qualitative analysis to a broader set of image—prompt pairs and an additional, harder
facial dataset to better test generalization behavior. While we obtained some successful
outputs, only a small fraction of our qualitative results matched the consistently high qual-
ity reported by the authors. Finally, we introduce an extension to the FaceLock method
that helps with robustness, and we critically examine the evaluation criteria used to mea-
sure defense effectiveness, highlighting limitations of prompt fidelity as a primary metric
and arguing for a more explicit consideration of the trade-off between identity protection
and preservation of the original image. We provide a link to our (currently anonymous and
private) GitHub repository B

1 Introduction

In recent years, rapid progress in generative models for image editing, particularly diffusion-based meth-
ods, has enabled increasingly realistic transformations through natural language prompts, allowing facial
attributes, expressions, and even semantic context to be altered with minimal effort and high visual fidelity
(Brooks et al| (2022); Shuai et al.| (2024)). While these advances unlock powerful creative applications,
they also introduce significant privacy concerns when applied to images of real individuals. The ease with
which facial images can be manipulated raises the risk of malicious misuse, including identity alteration,
impersonation, non-consensual content creation, and misinformation (Korshunov & Marcel| (2018)); [Tolosana
et al.| (2020)). Once an image is publicly released, its owner typically has little control over how it may be
edited by third parties using powerful generative tools, creating an asymmetry between image ownership
and editing capability that motivates the need for defensive mechanisms to protect biometric identity while
naturally preserving the ability to share images online.

In response to these concerns, recent work has proposed biometric defense systems that modify images
in subtle ways to disrupt downstream generative editing (Chen et al. (2023)); (Choi et al| (2024); [Salman

Thttps://anonymous.4open.science/r/revisiting_ facelock-F4D7
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et al| (2023)). By embedding carefully designed perturbations at the time of image publication, some
approaches aim to maintain visual fidelity of images while preventing unauthorized transformations, while
others target complete image distortion, always without relying on platform-level enforcement. Within
this paradigm, the paper "Edit Away and My Face Will Not Stay: Personal Biometric Defense against
Malicious Generative Editing" (Wang et al.| (2024)) introduces FaceLock, an optimization-based defense
pipeline designed to operate under these principles. The work is particularly notable because, in contrast to
much of the prior literature, it frames defense in terms of inducing biometric distortion in the edited output
rather than making the protected image difficult to edit or completely deforming it. The authors report
strong quantitative and qualitative performance across multiple metrics and editing scenarios, provide an
open-source implementation, and evaluate their method on Celeba-HQ (Karras et al.| (2017))), a publicly
available dataset . Taken together, the methodological novelty, strong empirical claims, and open-source
accessibility makes FaceLock a compelling candidate for reproducibility analysis.

Therefore, in this study, we conduct a systematic reproducibility assessment of FaceLock across multiple
dimensions. We examine whether the reported results can be obtained using the released codebase, assess
the clarity and completeness of the experimental setup, and analyze the correspondence between the paper’s
algorithmic descriptions and their implementation. We further evaluate quantitative reproducibility by as-
sessing whether the main performance trends and relative ranking of FaceLock against proposed baselines
can be recovered. Beyond these considerations, we extend the qualitative analysis by expanding the set of
visual examples to better characterize FaceLock’s behavior under image-prompt pairs and by incorporating
an additional facial dataset. Finally, we introduce an extension to the FaceLock method that helps with
robustness over editing seeds, and we critically examine the evaluation criteria used to assess defense effec-
tiveness, arguing for evaluations that more explicitly capture the trade-off between biometric protection and
preservation of the original image.

2 Scope of Reproducibility

The goal of our reproducibility study is to systematically evaluate the claims presented in |[Wang et al.| (2024])
with respect to their reproducibility across technical, quantitative, and qualitative dimensions. We also
propose a new evaluation pipeline that we argue is more fair and effective for assessing biometric defense in
generative editing settings. More explicitly, we investigate the following points:

e Technical reproducibility: determining whether the results reported by the authors can be ob-
tained by executing the released code and following the documented experimental setup. This
includes verifying the clarity and completeness of installation instructions, dataset preparation pro-
cedures, and configuration of hyperparameters. We also assess the fidelity of the algorithmic de-
scriptions against the actual implementation, noting ambiguities that may hinder reproducibility
and discrepancies that raise the question of whether or not the implemented FaceLock method is
what is described in the paper.

¢ Quantitative reproducibility: attempting to recover the performance trends reported in the orig-
inal paper. We focus on whether FaceLock’s claimed overall quality and superiority over baseline
defenses persists under reproduction. Our reproduction experiments are conducted on a representa-
tive subset of the full evaluation data described by the authors. As a result, our findings emphasize
ranking replication rather than exact numeric agreement with published metrics.

e Qualitative reproducibility and generalization analysis: expanding the set of visual examples
to include a broader range of source image and editing prompt pairs, and testing FaceLock across a
new facial dataset that were not part of the original evaluation, namely FaceForensics++ (Rossler
et al.| (2019))). This allows us to assess how stable the defense behavior is when image content differs
from the CelebA-HQ (Karras et al.| (2017)) distribution used by the authors.

e Critique of evaluation criteria: examining the suitability of existing metrics for indicating and
measuring defense effectiveness. We also propose additional measures that help capture the trade-off
between biometric protection and preservation of the original image in publication time.
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e Method extension: Building on the observations from our reproducibility study, particularly
the identified shortcomings, we propose an extension to FaceLock that improves robustness to the
randomness inherent in diffusion-based editing.

3 Methodology

3.1 Problem Setup

The authors of [Wang et al.| (2024)), from now on referred to as the Authors, consider the problem of
protecting an individual’s biometric identity against malicious generative image editing. Given a facial
image released publicly by its owner, the threat model assumes that an adversary may apply arbitrary
diffusion-based editing methods with unconstrained natural language prompts. Different from most previous
work in the field, the goal of the defense is not to prevent editing itself or completely distort the image, but
to ensure that whatever the edited output looks like, it no longer preserves the subject’s biometric identity.
Importantly, the defense must operate prior to image publication, without access to the adversary’s prompts
or editing model. Following that, there’s an unmeasured expectation that the protected image should remain
visually natural and as close as possible to the original image so as not to affect sharing it instead of the
original one.

Under this formulation, the defense produces a protected image by adding an optimization-computed subtle
perturbation to the original input. The Authors define success in terms of low prompt fidelity and identity
distortion in the edited results, which we’ll further discuss in later sections. Specifically, after a protected
image is edited, the resulting output should not follow what the prompt required and be dissimilar to the
original identity in facial recognition embedding space. This framing shifts the objective from edit obstruction
to biometric disruption, although they still account for low prompt fidelity, and emphasizes robustness across
a wide range of prompts rather than protection against a predefined set of transformations.

3.2 Diffusion Model

All generative editing experiments in this work rely on pretrained diffusion-based image editing models.
These models are used both to test a defense pipeline implementation via editing and within some defense
pipelines themselves. The Authors use InstructPix2Pix (Brooks et al.| (2022)), a model that operates using
latent diffusion and is publicly available through the Hugging Face Diffusers library (von Platen et al.
(2022)). The released model checkpoint E| is fully pretrained and is used as-is in both the Authors’ and our
experiments.

3.3 Defense Models

We evaluate three image-level biometric defense methods: FaceLock, which is the primary focus of our
reproducibility study, and two main defenses the Authors used as baselines, PhotoGuard (Choi et al.| (2024)))
and EditShield (Chen et al.| (2023)). All three methods compute image-specific perturbations prior to the
image editing process, but they differ substantially in their optimization objectives and their reliance on the
underlying generative model.

3.3.1 PhotoGuard

PhotoGuard is a diffusion-based image protection method that generates adversarial perturbations via
gradient-based optimization in the latent space of a diffusion model. Unlike approaches relying on im-
plicit guidance, it explicitly differentiates through the generative pipeline by optimizing the input through
the VAE encoder (Kingma & Welling| (2022))) of Stable Diffusion, back-propagating gradients through the
encoding process to manipulate the latent representation. Concretely, PhotoGuard applies projected gra-
dient descent to update the input image by minimizing the distance between its latent representation and
a predefined target latent, while constraining the perturbation using an /., budget and spatial masking to

2https:/ /huggingface.co/timbrooks/instruct-pix2pix
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restrict changes to selected regions and keep pixel values valid. Because the perturbations are tightly coupled
to diffusion internals, the method requires white-box access to the VAE encoder.

3.3.2 EditShield

EditShield is an image-level defense against instruction-guided diffusion-based editing that disrupts the im-
age conditioning signal by perturbing the latent representation used to guide the diffusion process. Unlike
FaceLock, it does not aim to distort identity, but instead interferes with editing itself by optimizing pertur-
bations so that the VAE latent of the protected image deviates from that of the original image, reducing
the effectiveness of downstream edits. Formally, EditShield maximizes a latent inconsistency loss between
the VAE-encoded latents of the original and protected images, while preserving visual fidelity through an ¢,
image-space regularizer. To improve robustness against common transformations, it further applies Expec-
tation over Transformation (Athalye et al.|(2018))), optimizing the latent inconsistency over a distribution of
editing conditions while keeping the generation pipeline fixed.

3.3.3 Facelock

FaceLock is an image-level biometric protection method designed to disrupt identity preservation in diffusion-
based image editing models. Given an input image, FaceLock computes a bounded adversarial perturbation
by optimizing directly in pixel space under an f,, constraint. Rather than attempting to prevent edits
from occurring or completely messing them up, the method aims to ensure that any edited output no
longer preserves the original subject’s biometric identity. The optimization objective combines two terms
that balance identity distortion against visual fidelity. Specifically, it includes a face recognition loss that
maximizes identity discrepancy between the protected and original images using a pretrained face recognition
model, and a perceptual similarity loss based on LPIPS (Zhang et al.| (2018])) to preserve visual fidelity.

FaceLock relies on pretrained face recognition and alignment models to define its identity-based optimization
objective. Identity embeddings are computed using the ViT-KPRPE architecture (Kim et al.|(2024)), trained
with the AdaFace loss (Kim et al.| (2023)) on the WebFace4dM dataset E| (Zhu et al| (2021)) available on
Hugging Face). Prior to identity comparison, facial regions are extracted and aligned using a DFA-MobileNet
face alignment modelﬁ (Kim et al.[(2024)). These models are used exclusively during the defense optimization
process to guide perturbation generation and are not involved in the downstream image editing stage.

3.3.4 FacelLock Extension: EoT FacelLock

We introduce EoT FaceLock, an extension of FaceLock designed to improve robustness to the stochasticity
of diffusion-based editing. While the name is inspired by Expectation over Transformation from Athalye et
al., our approach does not apply explicit transformations to the input image. Instead, it targets a failure
mode observed in our qualitative study: high sensitivity to the random seed used during editing. This issue
is particularly evident in Figure [§] where we attempt to reproduce the qualitative examples from Figure 6
of Wang et al.| (2024) and find that FaceLock can succeed or fail depending on seed choice.

The core idea is to optimize the adversarial perturbation under an expectation over diffusion randomness,
rather than for a single deterministic editing trajectory. Concretely, we simulate stochastic diffusion behavior
during defense optimization by injecting scheduler-consistent noise into the VAE latent of the adversarial
image at randomly sampled timesteps from the later denoising stages. We also replace the deterministic
use of the latent mean with a (reparameterized) latent sample, introducing additional stochasticity. The
defense loss is then computed as the average face-recognition loss over multiple such noisy latent samples,
and gradients are taken through this expectation. This encourages the protected image to remain identity-
disruptive under different diffusion noise realizations, improving robustness across seeds.

Shttps: / /huggingface.co/minchul/cvlface_adaface_vit_base_kprpe_ webface4m
4https://huggingface.co/minchul /cvlface. DFA_ mobilenet
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Figure 1: EoT FaceLock (Expectation over Diffusion Randomness).

Inputs: original image x; adversarial image at ith iteration x?; VAE encoder E, decoder D; scheduler noise function of
diffusion editing pipeline N(+,t); face recognition model frr; face recognition loss Lrr; EoT samples K; late diffusion
timestep range T .

Output: protected image Z.

Procedure:

1. Set £+ 0

2. Fork=1,...,K:
(a) Sample timestep ¢t ~ T
(b) Encode latent distribution (u, o) <+ E(z?)
(c) Sample (reparameterized) latent z <— p+ 0 ©n
(d) Add scheduler-consistent noise 2 < N(z,t)
(e) Decode &% < D(2)
(f) Accumulate £ + £+ Lpr (fFR(a%"”)7 fFR(x))

3. Average £ < (/K

3.4 Datasets and Processing

The Authors primarily evaluate FaceLock on CelebA-HQ (Karras et al.| (2017)), providing a download link
and reporting experiments on 2000 images, though the paper does not specify the split used. Since the
CelebA-HQ validation set contains exactly 2000 images (compared to 28,000 training images), we infer that
evaluation was likely performed on the validation split.

A key reproducibility issue is the mismatch between the dataset resolution (1024 x 1024) and the released
FaceLock implementation, which is configured for 512 x 512 inputs. Running the pipeline at full resolution
did not fit in the 40GB A100 GPU memory available to us, and while memory can be reduced by removing
unnecessary gradient computations, this is undocumented and requires manual code changes. Even with these
fixes, the pipeline remains unstable at 1024 x 1024 due to numerical overflows, and the codebase contains
no resizing logic despite pointing users to a higher-resolution dataset. The expected input resolution is only
mentioned once in (Wang et al. (2024]) in Table A2 of the appendix, forcing users to infer the correct setup
and implement their own resizing procedure.

We ran experiments on 1000 randomly selected images from the presumed validation split. Although this
might reduce our ability to match the exact absolute performances reported, such a large fraction of the data
should already provide consistent results and enable comparative evaluation across baselines, the primary
focus of this work. To run the pipeline, we additionally apply explicit resizing using bicubic interpolation.

3.4.1 Additional Dataset: FaceForensics+-+

To assess the generalizability of FaceLock beyond the CelebA-HQ and the additional Flickr-Faces-HQ (Karras
et al. (2019)) mentioned in the appendix of Wang et al.| (2024)), we extend our evaluation to FaceForensics++
(Rossler et al.| (2019)), a large-scale benchmark for facial manipulation detection that contains real-world
and manipulated online videos under varying compression levels. Compared to CelebA-HQ and Flickr-Faces-
HQ, which consist of high-quality, well-centered face images, FaceForensics++ is more challenging due to
lower visual fidelity, motion blur, compression artifacts, and higher variability in pose, illumination, and
background, with faces not always centered and sometimes multiple faces per frame. We experiment on
the 1000 benchmark frames, matching our CelebA-HQ evaluation size. To align with the released FaceLock
implementation, we preprocessed each image by detecting faces and cropping around the largest detected
face (when multiple faces were present), then resized all images to 512 x 512 using bicubic interpolation.

3.5 Experimental Setup

Having discussed the datasets and associated preprocessing, we now describe the experimental setup used
in our reproduction study and highlight inconsistencies encountered in the released implementation. We
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first edited the original images using the 25 prompts provided by the Authors, spanning three categories -
facial feature modifications, accessory adjustments, and background alterations - to cover a broad range of
instruction-guided editing scenarios. We then defended the original images with PhotoGuard, EditShield
and FaceLock, edited the defended images using the same prompts, and evaluated the resulting outputs. To
reduce stochastic effects, we followed the Authors’ recommended procedure of keeping the editing process
consistent between original and defended images, including the same seed. For all editing pipelines, we
followed the hyperparameter configurations reported in the appendix of the original paper (Table [1).

Table 1: Editing pipeline configuration used in our experiments, following the appendix hyperparameter
settings from the original paper.

Editing Model Inference Steps  Image Guidance Scale  Text Guidance Scale Random Seed

Instruct-Pix2Pix 50 1.5 7.5 42

For the defense pipelines, in turn, we used the hyperparameters reported by the Authors for FaceLock (Table
, but left the default defense parameters as they were for the baselines since the they never mention these
parameter in (Wang et al.| (2024).

Table 2: FaceLock defense configuration used in our experiments, following the appendix hyperparameter
settings from the original paper.

Perturbation Budget (¢)  Step Size (o) Optimization Steps (N)  Weighting Parameter (\)
0.02 0.003 100 0.2

While we executed the released implementation as provided to avoid introducing additional deviations, we
observed multiple discrepancies between the paper and the code that may affect reproducibility. First,
Algorithm 1 in the appendix states that the perturbation should be initialized from a normal distribution
N(0,TI). In contrast, the released code initializes the perturbation by sampling from a uniform distribution
U(—¢,¢€). This difference in initialization is not documented and may influence optimization behavior.

More critically, the optimization objective implemented in the code does not seem to correspond to Equation
(5) of the paper, which defines the core FaceLock method. In the paper, frg is weighted by A, whereas in the
implementation this term (loss_lpips) is not multiplied by A at all. Instead, the weighting parameter is
applied to a regularization term (loss_encoder) that is not described anywhere in the paper. Moreover, the
feature embedding loss is only activated after the first 25% of optimization steps, and the identity distortion
loss frr (Loss_cvl in the code) is only enabled after 35% of the iterations. In summary, the loss computation
that would theoretically lead to the perturbation § is rather implemented as:

loss = —108Scv1 * 150,358 + 0.2 - 10SSencoder + 108Sipips * 1i>0.25N

We ratify that this staged optimization strategy is neither described nor motivated in the paper, despite
Equation (5) being presented as the central methodological contribution, and it resembles the EditShield
optimization objective with a few tweaks.

As for EoT FaceLock, we aimed to eliminate several of the arbitrary design choices we discussed. While we
found the regularizer empirically important and therefore retained it, we removed the heuristic conditions
controlling when loss_cvl and loss_lpips begin to take effect, and introduced an explicit weighting factor
p for the frg term. Since this variant is explicitly designed for robustness, we also observed that the loss
converges in substantially fewer iterations. All differences are summarized in Table [3]

Finally, the feature embedding disparity is computed using the LPIPS model in the implementation, even
though LPIPS is introduced in the paper solely as an evaluation metric. Since FaceLock achieves strong
LPIPS scores in the reported experiments, we believe that this design choice is important to disclose: the
performance on LPIPS is not an emergent property of the method, but rather a direct consequence of
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Table 3: EoT FaceLock defense configuration changes from vanilla FaceLock.

Loss Objective Optimization Steps (N)  Regularizer Weight (A)  Image Feat. Ext. Weight (p)

—losscyl + A - 10SSencoder + £ * 10SSIpips 30 0.2 0.8

optimizing for it. While optimizing for a given metric is not inherently problematic, the lack of transparency
may lead readers to misinterpret the results.

Now to evaluate our experimental setup, we initially follow the methodology outlined in the original pa-
per, assessing two main factors: prompt fidelity, which quantifies the disruption caused by editing through
CLIP-S (Radford et al.|(2021)), PSNR, SSIM (Wang et al.| (2004)) and LPIPS scores, and image integrity,
which measures how closely the edited image resembles the original through CLIP-I and FR scores. Once
reproducibility is done, we repurposed the prompt fidelity metrics to assess image integrity between the
original and defended images, an additional evaluation pipeline we better discuss in the next section.

4 Results

We now present the results of our evaluation from both quantitative and qualitative perspectives. The
quantitative analysis provides a numerical comparison of FaceLock’s (Wang et al.| (2024)) performance across
multiple metrics, focusing on its relative behavior compared to baseline methods and highlighting cases where
we were unable to reproduce the performance trends reported by the Authors. The qualitative analysis offers
complementary insights into the model’s behavior, capturing nuanced failure modes that are not always
reflected in aggregate metrics and that, in some cases, differ from the interpretation presented in the original

paper.
4.1 Quantitative Results

As shown in Table [d] we were unable to reproduce several key results reported in the original paper. Impor-
tantly, this discrepancy does not primarily concern the absolute metric values, which are expected to vary
given that our experiments were conducted on a subset of the data. Instead, our concerns center on the
reproducibility of the reported performance trends and, in particular, the relative ranking between methods.

In our experiments, EditShield (Chen et al.|(2023)) generally achieves better scores than the other methods.
By contrast, both FaceLock and the version of PhotoGuard (Choi et al.| (2024)) used in our experiments,
consistent with the authors’ original setup, performed a bit worse, with FaceLock consistently underperform-
ing PhotoGuard in our evaluation. As a result, we are unable to confirm the Authors’ claim that FaceLock
provides state-of-the-art defense performance.

Table 4: Quantitative evaluation on prompt fidelity (CLIP-S, PSNR, SSIM, LPIPS) and image integrity
(CLIP-I, FR). Arrows (1 or ) indicate whether a higher or lower value is preferred for a successful defense.
All results are averaged over the 25 prompts for editing.

Prompt Fidelity Image Integrity
Method CLIP-S | PSNR | SSIM | LPIPS 1 CLIP-I | FR |
PhotoGuard 0.1123 £ 0.0321 17.78 £ 1.74 0.6464 £ 0.0455 0.3847 £ 0.0431 0.7528 £ 0.0994 0.7044 £ 0.2098
EditShield 0.1073 £ 0.0277 18.31 £+ 2.34 0.5655 + 0.0740 0.4626 + 0.0498 0.7162 £+ 0.1040 0.6042 £ 0.2336
FaceLock 0.1133 £ 0.0373 24.83 £ 2.20 0.7755 £+ 0.0403 0.2573 £+ 0.0274 0.8455 £ 0.0753 0.8207 £ 0.1167
Simple FaceLock 0.0997 + 0.0193 15.79 + 1.59 0.6271 £ 0.0839 0.3840 + 0.0840 0.5705 £+ 0.0623 0.2477 £+ 0.1205
EoT FaceLock 0.1133 £ 0.0379 25.47 £ 2.12 0.7913 £ 0.0366 0.2378 £ 0.0247 0.8504 £ 0.0734 0.7807 £+ 0.1018

PhotoGuard and EditShield achieve better prompt fidelity scores than FaceLock, but we view this difference
as expected and not particularly informative. The former are designed to either suppress or distort editing,
whereas FaceLock prioritizes removing biometric identity regardless of prompt adherence. This highlights a
limitation in the evaluation protocol: prompt fidelity is an ill-suited metric for comparing defenses with such
fundamentally different objectives. Despite this, the Authors report unexpectedly strong prompt fidelity for
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FaceLock, achieving the best SSIM (Wang et al.| (2004))) and LPIPS (Zhang et al.| (2018])) and staying close
to baselines on other metrics, which we found surprising and were unable to reproduce. In our experiments,
FaceLock behaved more consistently with its stated identity-focused design, reinforcing our view that prompt
fidelity gives a weak perspective for comparing the defenses.

Turning to image integrity, unlike prompt fidelity metrics, which we argued are poorly aligned with Face-
Lock’s objective, these metrics are more relevant for evaluating FaceLock, and we therefore view their
inclusion as a valuable step. However, FaceLock’s performance does not follow the trends reported in the
original paper and instead yields the worst results among baselines. Notably, FaceLock produces image
integrity scores that are even worse than PhotoGuard, despite PhotoGuard being primarily designed for edit
prevention and typically incurring low integrity only when it fails. This suggests that the proposed pipeline
is unreliable and makes it difficult to determine when FaceLock meaningfully influences editing, a point
we further substantiate in our qualitative analysis. Consequently, we were unable to confirm the Authors’
claim that FaceLock achieves state-of-the-art performance even under their own proposed image integrity
evaluation pipeline.

At the same time, the proposed metrics still create comparability issues across different defense goals. Low
facial recognition (FR) similarity is meaningful for FaceLock (and also relevant for EditShield), but inap-
propriate for edit-prevention methods that preserve identity by design like PhotoGuard. Lastly, we find the
introduced CLIP-I (Radford et al. (2021)) score problematic as well. Even within FaceLock, CLIP-I can
vary widely depending on whether identity removal occurs via heavy visual distortion or more subtle facial
changes, yet both outcomes may represent equally valid defenses and CLIP-I will only support one.

Following this analysis, we find that EoT FaceLock achieves largely the same results as vanilla FaceLock
across most metrics, with the exception of FR, where it yields a modest improvement. This is expected, since
EoT was designed to increase robustness to diffusion randomness (editing seeds). Notably, the improvement
appears specifically on the metric we argue is most meaningful for evaluating FaceLock’s objective. However,
while EoT improves FR relative to FaceLock, its performance still remains far from the EditShield baseline,
indicating that further improvements to the FaceLock-like methods are necessary.

Now more broadly, these difficult comparisons highlight a misalignment between current evaluation practices
and the diversity of defense objectives: edit-prevention methods should be evaluated primarily using prompt
fidelity, while disruption defenses should instead be assessed via facial recognition measures. That said, both
categories require an explicit analysis of the trade-off between defense effectiveness and corruption of the
protected image in order to properly contextualize their capabilities. Motivated by these observations, we
propose an additional evaluation framework that directly captures this trade-off.

4.1.1 Additional Evaluation Pipeline

We propose evaluating image integrity prior to editing by comparing the original image to its protected
counterpart using PSNR, SSIM, LPIPS, and CLIP-I. The first three capture low-level visual similarity and
are particularly informative when defenses apply subtle perturbations, allowing us to quantify how much a
protection method interferes with the original image. The latter, in contrast, measures high-level semantic
similarity and is most relevant to identify defenses that introduce substantial distortions that may destroy
image content. In such cases, downstream edits probably become meaningless and biometric information
may be removed the cost of no longer being able to publish the intended image.

To illustrate this failure mode, we introduce a deliberately flawed baseline, Simple FaceLock, which uses
FaceLock’s face recognition and alignment models to locate facial landmarks, expands a face bounding box
by 25%, and replaces the corresponding region with uniform noise U(—1,1). While this trivially removes
biometric identity (Figure , it does so by destroying the face at publication time, making it impractical as
a defense. Despite its obvious shortcomings, Simple FaceLock still achieves strong scores on several metrics
used in prior work (Table , exposing the key limitation of current evaluation protocols we talked about.

We additionally report the performance of all evaluated methods under our proposed additional evaluation
pipeline in Table 5} Under this framework, FaceLock’s behavior can be interpreted more clearly: although it
achieves lower defense scores than EditShield in our reproducibility study, it substantially better preserves the
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Figure 2: Comparison of defenses and edits on defended images for PhotoGuard, EditShield, FaceLock, and
Simple FaceLock.
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original image at publication time, making the trade-off between protection and image degradation explicit.
However, since PhotoGuard is more effective than FaceLock while also preserving image quality somewhat
better, FaceLock does not appear to offer the strongest balance among the evaluated methods. Finally, EoT
FaceLock marginally improves image preservation and, together with its higher FR score, establishes itself
as a consistent improvement over vanilla FaceLock.

Table 5: Quantitative evaluation on image integrity prior to editing (PSNR, SSIM, LPIPS and CLIP-I).

Visual Similarity Semantic Similarity
Method PSNR 1 SSIM 1 LPIPS | CLIP-1 t
PhotoGuard 38.1396 + 1.7429 0.9508 + 0.0149 0.1341 + 0.0220 0.9808 + 0.0116
EditShield 34.4462 + 1.0001 0.8678 4+ 0.0178 0.3106 + 0.0359 0.9608 4+ 0.0148
FaceLock 37.8254 + 1.6081 0.9447 4+ 0.0140 0.1776 + 0.0270 0.9760 + 0.0112
Simple FaceLock 18.4474 + 0.9062 0.8061 4+ 0.0182 0.2409 + 0.0214 0.6914 4+ 0.0501
EoT FaceLock 38.0837 + 1.6880 0.9494 4+ 0.0140 0.1611 + 0.0251 0.9780 + 0.0110

By contrast, Simple FaceLock performs poorly under our additional evaluation, showing that defense ef-
fectiveness cannot be assessed in isolation. Our framework captures this failure quantitatively, numerically
demonstrating that it is not a viable defense. A similar issue arises for EditShield, which achieves strong
defense scores but substantially degrades image quality by adding heavy noise across the entire image.

4.2 Qualitative Results

We complement our quantitative analysis with a qualitative evaluation to better understand FaceLock’s be-
havior. In our reproduction, we observe substantial differences from the original paper’s qualitative results,
with many failure cases across diverse image—prompt pairs. We analyze these discrepancies systematically
by comparing edits on original versus protected images, and contrasting successful and failed cases to con-
textualize the quantitative gaps.

From an intuitive criterion for successful defense for FaceLock’s facial biometric information removal objec-
tive, we find that for most prompts across the evaluated dataset, only a very small fraction of images are
defended. We present a set of examples in Figure |3] including cases not highlighted in the original paper, to
illustrate the dominant behaviors we observed in practice. We also provide a deeper dive into the examples
in the appendix (Figures [f] [6] and [7), showcasing much more image-prompt pairs, spanning all prompt
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categories, and including some of the sporadic success scenarios, to make sure we enable a broad and fair
overview of the method’s results.

Figure 3: Qualitative comparison of image editing with and without FaceLock defense. Columns show the
original image, edited (original) image, defended image, and edited defended image.

Edit on Edit on

Prompt Original Defended Original Defended

(a) Turn the
person’s hair pink

(b) Add a forest
background

(c) Let the person
turn bald

(d) Let the person
have a tattoo

(e) Let the person
wear a police suit

For most images, we observe little difference between edits applied to the original and protected images, and
the defense typically fails to introduce changes substantial enough to remove biometric identity. For example,
in Figure a), the “pink hair” edit remains effectively unchanged. In other cases, the defense mainly induces
a global color shift rather than identity distortion, leaving facial identity intact and resembling edit disruption
(as in PhotoGuard) rather than FaceLock’s intended mechanism. In the specific instance of Figure 3{(b), the
defended edit is even more visually altered than the original. Having said that, we’ve noticed slightly higher
success rates for background-alteration prompts, where success often stems from blending the face into the
edited background and thereby hiding it.

We observe a recurring link between apparent defense success and failures in the editing process itself. In
some cases (Figure c)), the edit on the original image already produces severe artifacts, making the de-
fended output appear successful only because the edit is unstable rather than because FaceLock meaningfully
intervenes. We also find cases where the edit on the original image is weak or fails, but the same edit is
applied more strongly to the defended image without removing identity (Figure d)), suggesting the defense
can amplify edits and produce the opposite of its intended effect.

With all that in mind, we still observe successful cases that align with FaceLock’s intended goal. For
example, in Figure e), the edit is applied as intended, but the subject’s face is distorted to the point
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that the celebrity doesn’t look the same and the image clearly appears Al-generated/edited. We further
conducted a reproducibility study (Figure [§]) using the exact image—prompt pairs from Figure 6 in [Wang
et al.| (2024), in order to test whether we could replicate their qualitative results. While we were unable
to reproduce all of their examples, experiments across multiple random seeds revealed an important trend:
even though FaceLock performs poorly overall in our evaluation, it often succeeds for some seed. In Figure
[Bl FaceLock succeeds for at least one seed in 5 out of 9 image—prompt pairs. Although this highlights the
potential of the approach, it also demonstrates substantial sensitivity to randomness, which motivated our
implementation of EoT FaceLock.

Our experiments show that EoT FaceLock almost always succeeds in the cases where vanilla FaceLock suc-
ceeds, while also extending success to a few additional scenarios, although the improvement is incremental
rather than transformative. We further evaluated these additional cases across multiple editing seeds, fo-
cusing on examples where EoT FaceLock succeeded but vanilla FaceLock failed under the initial seed. As
illustrated in Figures [d] and [9] EoT FaceLock also remained more consistent across tested seeds, ratifying
the indication of a step towards improved robustness.

Figure 4: Comparison of EoT FaceLock and vanilla FaceLock across different editing seeds. For the initial
seed (42), EoT provided protection while vanilla didn’t. For seed 0, EoT provided better protection than
Vanilla, although not yet ideal. For seed 234, both methods proper (and similar) protection.

Original Seed 42 Seed 0 Seed 234

4.3 Generalization Experiments

Table@reports FaceLock’s quantitative results on FaceForensics++ (Rossler et al.|(2019))), which are broadly
consistent with those obtained on CelebA-HQ (Karras et al.| (2017))). While we observe improved prompt
fidelity (CLIP-S and LPIPS), this is difficult to interpret given our earlier argument that it is not meaningful
for FaceLock’s objective. Similarly, the only statistically significant image integrity improvement is in CLIP-
I, which we also consider an unreliable indicator. Overall, the results lead to the same conclusion: we cannot
support the claim that FaceLock reliably removes biometric identity in edited outputs. On the other hand,
FaceForensics++ is a more diverse and challenging dataset, suggesting that FaceLock’s (limited) performance
generalizes beyond CelebA-HQ, under more realistic conditions and combinations of purification methods
in the wild. Figure [10| shows corresponding qualitative examples on FaceForensics++ across prompts from
the three categories discussed earlier, and the outcomes closely mirror the ones on CelebA-HQ once again,
reinforcing FaceLock’s limited reliability, but consistency.

Table 6: Quantitative evaluation on prompt fidelity for FaceLock on the FaceForensics++ dataset. All
results are averaged over the 25 prompts for editing.

Prompt Fidelity Image Integrity
Method CLIP-S | PSNR | SSIM | LPIPS 1 CLIP-T | FR |
FaceLock  0.0720 £ 0.0258  24.0042 + 2.8763  0.8490 + 0.0475 0.3050 + 0.0400 0.8159 4+ 0.0522  0.8153 £ 0.1378

5 Conclusion

This work highlights both the relevance of biometric defenses against generative image editing and the
conceptual potential of FaceLock (Wang et al.| (2024])). The method builds upon general image defenses such
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as both PhotoGuard and EditShield pipelines (Choi et al.| (2024); |Chen et al.| (2023)) and introduces a shift
in perspective by reframing defense as identity distortion in edited outputs rather than edit suppression or
complete distortion, what constitutes an interesting and promising direction for future research.

We also acknowledge the Authors’ efforts toward reproducibility, including detailed experimental descriptions
across the main paper and appendix, as well as the release of an open-source implementation. However, our
study reveals substantial room for improvement. In particular, reproducibility is hindered by incomplete
specification of dataset splits and random seeds, limited robustness of the codebase to different environments,
and reliance on undocumented assumptions regarding image preprocessing. More critically, we identify
several inconsistencies between the method as described in the paper and its implementation, as well as a
lack of transparency regarding optimization targets, which together pose significant challenges for faithful
reproduction.

Moreover, despite following the provided setup as closely as possible, we were unable to reproduce the
performance trends reported in the original paper and therefore cannot confirm the claim that FaceLock
achieves state-of-the-art performance relative to the proposed baselines. Qualitatively, we observed successful
defenses directly attributable to the defense pipeline in only a small fraction of cases, in contrast to the
uniformly strong examples presented in [Wang et al. (2024). In many instances, apparent successes were
instead correlated with failures or instabilities in the editing process itself.

Finally, our work highlights FaceLock’s lack of robustness to editing seeds and proposes a promising extension
that modestly improves the reliability of biometric distortion without interfering with image quality in
publication time. Beyond these findings, our study underscores the need to reassess evaluation practices in
this field. Different defense paradigms pursue fundamentally different objectives and should not be evaluated
using the same set of metrics. We argue for the importance of contextualizing evaluation metrics according to
defense goals and, most importantly, for explicitly measuring the trade-off between protection effectiveness
and image distortion at publication time, which we propose in this work with our additional evaluation
pipeline.

6 Limitations and Future Work

Although we consider this a comprehensive reproducibility study, examining both quantitative and quali-
tative aspects of the main claims in the FaceLock paper (Wang et al.| (2024)) as well as the surrounding
baseline methods, our work still has several limitations and naturally motivates future work. We did not
systematically explore hyperparameters for either the defense or editing pipelines, focusing instead on the
configurations reported by the authors. Likewise, we did not comprehensively test architectural alterna-
tives included in the codebase, primarily running the setup emphasized as best-performing in the paper:
InstructPix2Pix (Brooks et al.| (2022)) for editing and the VGG-based backbone (Simonyan & Zisserman
(2015)) for LPIPS feature extraction (Zhang et al.| (2018)), rather than alternatives such as Stable Diffusion
image-to-image (Meng et al| (2022))) or AlexNet-/SqueezeNet-based LPIPS backbones (Krizhevsky et al.
(2012); Tandola et al.| (2016])). We also did not reproduce all auxiliary experiments from the original paper,
such as the full ablation studies.

Despite these limitations, we believe our study remains valuable by reassessing the method in depth, doc-
umenting reproducibility issues, and contributing an extension to FaceLock and a proposal for a better
evaluation pipeline. For future work, reproducibility efforts could fill the remaining gaps by systematically
testing hyperparameter and architectural sensitivity, and completing reproduction of the remaining auxil-
iary experiments. We also believe that our robustness-oriented extension, EoT FaceLock, could be further
investigated and improved through more hyperparameter tuning or by incorporating new strategies to bet-
ter handle the stochasticity inherent in diffusion-based editing. More broadly, we encourage future work in
the field to incorporate our proposed evaluation framework, which explicitly captures the trade-off between
biometric protection effectiveness and distortion of the protected image at publication time, enabling more
principled comparisons across methods with fundamentally different defense objectives.
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A Additional Qualitative Results

The figures below present more qualitative results for FaceLock, PhotoGuard and EditShield (Wang et al.
(2024); |Choi et al.| (2024));|Chen et al. (2023))) on specific cases of image editing on Celeba-HQ images (Karras
et al| (2017)), spanning the three categories reported by the Authors: modification of facial attributes,
accessory addition and background modification. The results are separated into the original image, protected
images after applying the defense pipelines, and finally the edits on both the original image and the protected
images.

—

A.1 Qualitative Results on Facial Feature Modification

. . FaceLock PhotoGuard EditShield | Edit on Edit with  Edit with  Edit with
Original

Defense Defense Defense Original Facelock PhotoGuard EditShield

Figure 5: Prompt: "Let the person grow a mustach"
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A.2 Qualitative Results on Accessory Addition

Original

FaceLock
Defense

PhotoGuard EditShield

Defense

Defense

Edit on
Original

Edit with
Facelock

Edit with  Edit with
PhotoGuard EditShield
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Figure 6: Prompt:
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A.3 Qualitative Results on Background Modification

FaceLock PhotoGuard EditShield | Edit on Edit with Edit with  Edit with

Original Defense Defense Defense Original Facelock PhotoGuard EditShield

Figure 7: Prompt: "Add a city skyline background"
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B Reproducibility of Wang et al. (2024) Figure 6

Edit with Edit with Edit with Bdit with L4t With

. . FaceLock Facelock
Original Def Facelock Facelock Facelock Facelock d
etense seed 0 seed 13 seed 32 seed 234 i‘;‘; 4

Figure 8: FaceLock on images of IWang et al.l <[2024[) Figure 6 for multiple seeds. From top to bottom,
prompts are: 1. "Let the person have a tattoo"; 2. "Let the person wear purple makeup'; 3. "Turn the
person’s hair pink"; 4. "Let the person wear a police suit"; 5. "Let it be snowy"; 6. "Set the background in a
library"; 7. "Change the background to a beach."
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C Additional Qualitative Results for EoT FacelLock

Seed 42

Original

Seed 234

a
y

E

ﬂ\
oT

Vanilla EoT Vanilla Vanilla

Figure 9: Comparisons of EoT FaceLock and vanilla FaceLock for a few image-prompt pairs for which EoT
provided more defense effectiveness, more stability across editing seeds, or both.
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D Qualitative Results of Generalization Experiment

Edit on Edit on
Original Defended

= -

Prompt Original Defended

(a) Turn the
person’s hair pink

(b) Let the person
wear a police suit

(c) Add a library
background

Figure 10: Qualitative results for FaceLock on FaceForensics++ dataset (Rossler et al| (2019)). Columns
show the original image, defended image, edit on the original image, and edit on the defended image. Each
prompt is shown for three different source portraits.
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