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Abstract—Multivariate time series (MTS) are collected for different variables in studying scientific phenomena or monitoring system
health where one time series records the values of one variable for a time period. Among the different variables, it is common that only
a few variables contribute significantly to a specific phenomenon. Furthermore, the variables contributing significantly to different
phenomena are often different. We denote the different variables that contribute to the occurrences of different phenomena as
Phenomenon-specific Variables (PVs). In this paper, we formulate a novel problem of identifying significant PVs from MTS datasets. To
analyze MTS data, feature extraction techniques have been extensively studied. However, most of them identify important global
features for one dataset and do not utilize the temporal order of time series. To solve the newly introduced problem, we propose a
solution framework, CNNmts-X, which is a new variant of the Convolutional Neural Networks (CNN) and can embed other feature
extraction techniques (as X). Furthermore, we design a CNNmts-LR method that implements a new feature identification approach
(LR) as X in the CNNmts-X framework. The LR method leverages both Linear Discriminant Analysis (LDA) and Random Forest (RF).
Our extensive experiments on five real datasets show that the CNNmts-LR method has exhibited much better performance than
several other baseline methods. Using 30% of the PVs discovered from the CNNmts-LR, classifications can achieve better or similar
performance than using all the variables.

Index Terms—Multivariate Time Series (MTS), Convolutional Neural Network (CNN), Linear Discriminant Analysis (LDA), Random
forest (RF), Imbalanced Data
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1 INTRODUCTION

MAny applications collect multivariate time series
(MTS) for different variables where one variable’s

time series records the values of this variable for a time
period. For example, in tracking human-body movement,
multiple sensors (which are treated as variables) are at-
tached to different parts of a body to collect their location
information; In environmental sciences, different sensors are
used to track environmental information such as tempera-
ture and soil moisture. MTS data are typically associated
with corresponding phenomena labeled as classes (e.g.,
walking, sitting, budding). Utilizing both the MTS data
and their corresponding class labels, scientists can conduct
predictions or classifications. Very often, it is desired to
make as accurate predictions or classifications as possible.

However, generating highly accurate predictions is not
sufficient. In many situations, it is even more important to
understand variables that are most critical for phenomena
interpretation or decision making. We observe that, among
all the variables, it is common that only a few variables
contribute significantly to a specific phenomenon. Vari-
able selection can help reduce storage and computational
cost, improve classification performance, or achieve a better
understanding of the data [1]. Furthermore, the variables
contributing significantly to different phenomena are dif-
ferent. For example, in tracking human body movement,
we observe that sensors attached to lower legs can help
better identify walking activities than sensors attached to
upper arms. Thus, it is more useful to monitor different sets

of sensors when a person is conducting different activities
(sitting or walking). Another example is that different PM2.5
composition particles (up to hundreds) may contribute to
different types of diabetes [2]; identifying which PM2.5 par-
ticles contribute to a specific diabete (e.g., Type-2 diabetes)
will help reduce such diseases through air pollution control.
Our observation of different variables contributing to differ-
ent phenomena is also utilized in clustering analysis where
projected clustering (PC) [3], [4] obtains groups of points
that are close in different subsets of dimensions. However,
typical PC does not work well with variable selection on
MTS data. PC treats all the values in a time series as inde-
pendent dimensions (i.e., each time point is a dimension);
thus, the clusters are time-point specific, instead of variable
specific.

We denote the different variables that contribute signifi-
cantly to different phenomena as Phenomenon-specific Vari-
ables (PVs). PVs carry the most critical information for a
specific phenomenon. We formulate a novel problem of identify-
ing significant PVs from multivariate time series. Note that the
solution to this problem is not finding the different features
for better predictions. Instead, we are interested in finding
variables that make critical contributions to the explanation
of specific phenomena (or events).

The proposed problem is different from existing efforts
that analyze time series data. Most existing techniques iden-
tify global features for one dataset (e.g., [5], [6], [7], [8], [9],
[10], [11], [12]). Such global features are used together to
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analyze the different events in one dataset. The PVs are
different from global features because they are specific to
different phenomena. Due to such differences, most existing
techniques cannot be directly utilized to solve our proposed
problem.

Two major challenges need to be addressed to solve
the proposed problem. The first challenge comes from the
large amount of computation from a huge search space.
Assume that the MTS datasets are collected for A variables
and the time series instances correspond to E different
event types, then the possible number of variable subsets is
E·(2A−1), which is the search space of the PVs. The second
challenge comes from the nature of time series, which has
values recorded in a temporal order. Treating these values
with or without temporal order may generate very different
results. A successful example of utilizing the temporal order
of the values is the Shapelets approach [9]. Shapelets ap-
proaches are orthogonal to our methods because Shapelets
approaches identify the important subsequences (for multi-
ple or all variables) in MTS data, while our work detects
the important variables among all the variables. In the
calculation of PVs, we desire to consider the temporal order
of values in each variable’s time series.

This paper proposes a new solution framework,
CNNmts-X to solve the problem. This framework designs
a variant of Convolutional Neural Networks (CNN), de-
noted as CNNmts, and allows flexible utilization of other
feature extraction techniques as X . We also present a new
PV identification algorithm LR, which takes advantage of
both Linear Discriminant Analysis (LDA) [13] and Random
Forest (RF) [14]. CNNmts can capture the temporal order of
values in a time series and LR identifies the PV sets while
reducing the search space. The contributions of this paper
are as follows.

• We formulate the novel problem of discovering signifi-
cant PVs from MTS data.

• We propose a solution framework CNNmts-X to solve
the problem. The CNNmts-X framework includes a new
variant of CNN model, CNNmts, to deal with multivari-
ate time series data. As a side effect, CNNmts can also
be used to classify MTS data with multiple class labels.

• We implement one newly designed oversampling batch
generation strategy in CNNmts to process imbalanced
datasets.

• We present a new PV identification algorithm (LR) that
leverages LDA and RF. And, we implement CNNmts-LR
which embeds LR in CNNmts-X framework to identify
the most important variables.

• We have conducted a deep analysis and mining of the
intermediate results from a CNNmts model.

• We have implemented several baseline approaches and
evaluated the effectiveness and efficiency of our pro-
posed techniques by using five real datasets in different
sizes. The experiments show that CNNmts-LR outper-
forms other methods.

The paper is organized as follows. Section 2 formally defines
the problem and related terminology. Section 3 presents our
proposed CNNmts-X framework and the new LR method.
Section 4 experimentally demonstrates the effectiveness and
efficiency of our proposed approaches using real datasets.

Section 5 discusses the literature. Finally, Section 6 concludes
our work.

2 PROBLEM FORMULATION AND TERMINOLOGY

This section introduces the terminology used to formally
formulate the problem that we are going to solve.
Definition 1. A variable for a multivariate time series is

a factor in the time series. If a multivariate time series
consists of observations for A variables, these variables
are denoted as a1, a2, · · · , aA.

In different applications that collect multivariate time series
data, variables represent different meanings. E.g., in human
body movement, a variable can be a sensor that is attached
to a specific part of a human body.

For each variable, values at different times can be
recorded. Such values form a sequence (or time series).
Formally,
Definition 2. An m-sequence S is in the form of (v1, t1),

(v2, t2), · · ·, (vm, tm) where ti < tj for 1 ≤ i < j ≤ m,
vi is a numerical value recorded for one variable at time
point ti, and m is the length (or the number of temporal
points) of the variable sequence. When the time intervals
between consecutive tis are fixed, this sequence can be
simplified to v1, v2, · · ·, vm. Each sequence is for one
variable.

Definition 3. An event type, denoted as et, is the phe-
nomenon that a study is interested in. Let E denote
the total number of event types. One event type can
have many corresponding instances. An event instance
is represented as eti.

In the study of human body movement, there can be 10-
20 different event types for people’s activities (e.g., sitting,
running). For each specific event type (e.g., sitting), there
can be hundreds or thousands of instances. Event types and
event instances in our problem are analogous to class labels
and instances in classification problems.
Definition 4. A multivariate time series (MTS) contains A

m-sequences. Formally, one MTS can be represented as v1,1 v1,2 · · · v1,m

v2,1 v2,2 · · · v2,m

· · · · · · · · · · · ·
vA,1 vA,2 · · · vA,m

 .

Each MTS corresponds to an event type (e.g., a person
is running) and records the values for all the variables that
contribute to the occurrence of one event.

To study what variables contribute more to an event,
all the variables for which an MTS is collected need to be
investigated. However, as discussed before, among all the
variables, different variables may contribute significantly to
different phenomena.
Definition 5. Phenomena-specific variables (PVs) for an

event type are the variables that contribute significantly
to the occurring of that event type.

Definition 6. The problem of identifying phenomena-
specific variables from MTS data takes as input (i)
a set of MTS associated with event types, and (ii) a
number σ(∈ (0, 1]), and finds the top bσ × Ac variables
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Fig. 1: CNNmts model for MTS (L convolutional layers and L−1 pooling layers)

{ai,1, · · · , ai,bσ×Ac} for each event type eti such that the
chosen variables contribute the most to characterize the
given event type.

3 CONVOLUTIONAL NEURAL NETWORKS BASED
APPROACH

This section presents a new framework CNNmts-X to iden-
tify PVs from multivariate time series.

Convolutional Neural Networks (CNN) are a special
type of neural networks (NN). A CNN has special hidden
layers, convolutional layers. Different from the hidden lay-
ers in regular NN, the nodes in convolutional layers are
only connected to a small region, which is called receptive
field, of the previous layer. The receptive fields are spatially
connected to capture the local spatial connectivity when a
CNN is utilized in image classification. This idea can be
utilized to capture the local temporal connectivity of time
series in MTS analysis.

The CNN model is adopted in our proposed framework
to address the major challenges that are discussed in Sec-
tion 1 because of two major reasons. First, in the analysis
of MTS, it is very necessary to capture the local temporal
connectivity in a time series [10], [15], [16], [17], [18], [19].
I.e., letting a subsequence contribute to one node in the next
layer. Convolutional layers with properly designed kernels
can help us achieve this. Second, CNN has shown good
performance in classifying large amount of data in very high
dimensional space [20], [21]; thus adopting CNN can help
reduce the computational complexity.

The CNN approach is capable of automatically extracting
features from the training datasets and utilizing such fea-
tures to recognize different phenomena. Note that these fea-
tures are combinations of different variables in the original
MTS. This work, however, does not target at purely recogniz-
ing the different phenomena utilizing the combined features. The
purpose of this work, as discussed in Section 1, is to identify
the variables (not combined features) that contribute the
most to specific phenomena. Thus, the original CNN method
cannot directly work to solve this PV identification problem.

The CNNmts-X framework works in two steps: (i) the
first step (Section 3.1) is to construct and train a CNNmts

model, and (ii) the second step (Section 3.2) is to design a PV
Identification (PVI) algorithm to extract significant PVs from
the intermediate results of the CNNmts models. To verify the
effect of PVs, classifications can be utilized.

Phenomenon Variables Time sequences

Playing Basketball (PB) LA 20, 40, 60, 80, 60, 40, 20
LL 4, 6, 5, 6, 5, 5, 6

Playing Basketball (PB) LA 10, 30, 50, 70, 50, 30, 10
LL 3, 5, 4, 4, 5, 4, 3

Rowing Machine (RM) LA 10, 15, 20, 25, 20, 15, 10
LL 4, 8, 12, 16, 12, 8, 4

Elevator UP (EU) LA 20, 70, 120, 170, 220, 270
LL 0, 50, 100, 150, 200, 250

TABLE 1: Toy dataset: LA represents the y-coordinate of
the left arm sensor and LL is the y-coordinate of the left
leg sensor

3.1 Proposed CNNmts model
The first step of the CNNmts-X framework is to train a
variant of the traditional CNN model (CNNmts) for MTS
data. To explain the concepts and the algorithms, we will
use a running example with the toy dataset in Example 1.
Example 1 (MTS toy data). Table 1 shows a toy dataset

with three real phenomena: playing basketball, rowing
machine, and Elevator UP. Assume that there are two
variables representing the height of the sensors attached
to the left arm (LA) and the left leg (LL).

3.1.1 Structure of CNNmts
The CNNmts model is based on and improves the
model in [16]. Given an MTS training instance (Def. 4) v1,1 v1,2 · · · v1,m

· · · · · · · · ·
vA,1 vA,2 · · · vA,m

, Fig. 1 shows the structure of

our CNNmts model. This model contains L convolutional
layers, L−1 pooling layers, and one fully connected layer. In
the first convolutional layer, we apply F 1 filters with kernels
K1

1 , · · · ,K1
F 1 of size 1×k (1< k <m) to the subsequences

gotten by sliding a window (whose length is also k) over an
MTS instance. In particular, a node hi,j in the first convolu-
tional layer H1

1 is calculated as hi,j =
∑j+k−1
l=j vi,l · xl−j+1.

The different kernels differ in their initial values and are
utilized to remove the randomness caused by the kernel ini-
tialization. The first convolutional layer has F 1×A×(m−k+1)
nodes because each time series in an MTS instance has
length m and the number of subsequences gotten from
sliding a length-k window for each variable is m−k+1.

Our CNNmts model applies downsampling to get pool-
ing layers after each convolutional layer. The first pooling
layer is obtained by applying F 1 max pooling filters with
size 1×r to the first convolutional layer. In particular, a node
pi,j in the pooling layer P 1

1 is the maximum value of r corre-
sponding consecutive nodes in the immediate previous con-
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volutional layer H1
1 . I.e., pi,j = maxj+r−1

l=j {hi,l}. The num-
ber of nodes in the first pooling layer is F 1×A×(m−k−r+2).
Our CNNmts model is different from the model in [16]
in that we use sliding windows to get the pooling layers,
while the model in [16] utilizes non-overlapping windows.
We take the sliding window strategy as we observe that
CNN models using sliding windows can achieve more stable
performance in each iteration.

Other convolutional and pooling layers are constructed
in a similar manner although the number of convolutional
kernels, the kernel sizes for different convolutional layers,
and the sizes of pooling filters can be different. The kernel
size of the last convolutional layer is set to be the same
as the length of the time series output from the previous
pooling layer. The last convolutional layer is not followed
by any pooling layer. This is because both the convolutional
kernels and the pooling filters are not mixing values from
different variables, thus the time series of each variable has
been abstracted to exactly one corresponding node in the
last convolutional layer. Suppose that the last convolutional
layer is calculated using FL kernels, then each MTS training
instance is abstracted as FL×A nodes. For n instances, this
layer has n×FL× A nodes. The last convolutional layer
connects to a fully connected layer which generates the
output. The bottom of Fig. 1 shows the size of the matrixes
at the different layers of this CNNmts structure. Table 2
summarizes the meaning of the major symbols in CNNmts.
Example 2. For the dataset in Example 1, E = 3, A = 2,

n = 4, and m = 7. Assume that we set the number
of kernels for the different convolutional layers in a
CNNmts model to be F 1=50, F 2=40, and F 3=30. When
“playing basketball” is the positive class, the first two
instances are positive instances and the last two in-
stances are negative instances. The input to this CNNmts

is 4 × 7 × 2 (n × m × A) and the output of the last
convolutional layer is 4× 30× 2 (n×F 3×A). Similarly,
for the other two phenomena, each phenomenon has an
output object of size 4×30×2. Then, the total number of
output objects is 3×(4×30×2) for all the 3 phenomena.

Symbol Meaning
E # of distinct event types
A # of variables for an MTS dataset
n # of instances for an MTS dataset
m length of one time series in an MTS dataset
F i # of kernels in the ith convolutional layer of CNNmts

TABLE 2: Symbols

3.1.2 CNNmts for multiple event types
Different from existing methods (e.g., [16]), which generally
train one CNN model for all the event types. Our framework
constructs and trains a CNNmts model for each event type
et with the above described structure by treating the dataset
having only two event types (one has et and the other one
has ¬et). For all the E event types, we train E models
in total. The last convolutional layers of all these CNNmts

models contain E×(n×FL×A) nodes. These nodes represent
each variable as different numbers (instead of subsequences)
while encoding the temporal order of the sequences for this
variable. The numbers representing the variables may have
dependency relationships. However, there is no temporal

order among these numbers. Thus, they can be used to
extract PVs without considering the temporal dependency
relationships among values in sequences. Let us use L to
denote these nodes. The next step in Section 3.2 uses L to
extract PVs.

3.1.3 Process imbalanced data
The data for the proposed PV identification problem are
generally very imbalanced (one vs rest), simply applying
existing feature extraction approaches may not work well in
this case. We introduce a new strategy to process imbalanced
data when training the proposed CNNmts.

A CNNmts model is trained with multiple epochs [22]
and its training terminates when it meets certain criteria
such as the model accuracy is good enough. Each epoch
consists of dn/Be iterations (or steps) where B is the num-
ber of instances used in one iteration. In each iteration, the
sampled instances are fed to the model to adjust the model
parameters. The B instances used in one iteration is called
a batch. The batches of each epoch are typically generated
in a random manner: the first batch contains B (out of n)
randomly selected instances. This random-batch generation
strategy generally works well when the data have balanced
event types.

Random batch generation with adjusted coefficients. When
the data is imbalanced, one major issue with the default
batch generation is that the sampled instances in one batch
are imbalanced. A widely utilized strategy to alleviate this
issue is to give different coefficients to different event types.
Instances with rare event types are given higher coefficients
so that they can contribute more in deciding the output.
For example, if a batch contains 10 and 1000 instances
from two event types et1 and et2 respectively, then the
instance coefficients for et1 and et2 can be set to 100 and
1 respectively.

Batch generation with oversampling. We observe that the
strategy of adjusting coefficients may still not work well
when a batch has extremely unbalanced data. At the same
time, we observe that one batch may not utilize all the
necessary instances from rare event types because one batch
only consists of a subset of instances. Given these two
observations, we propose an oversampling strategy, which
has been utilized in processing imbalanced data [23]. This
oversampling strategy works as follows. After getting the B
instances for each batch, we calculate the ratio of instances in
different event types. If the ratio is low (e.g., less than 1/3 for
a dataset with two event types), we sample more instances
from the rare event types to this batch to make the instances
for different event types close-to-be balanced. Then, using
the actual number of instances of different event types in a
batch, we adjust the coefficients of the event types. The sizes
of batches generated by this strategy are bigger than B and
some instances are utilized several times in different batches
for one epoch.

3.2 Extract PVs from intermediate results of CNNmts
model

The second step of the CNNmts-X framework extracts sig-
nificant PVs from L with E×(n×FL×A) nodes. We pro-
pose Algorithm PVI (representing PV Identification, shown
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in Fig. 2) for this step. This algorithm can use different
feature extraction techniques in Step 2(a)iii. Algorithm PVI
calculates an important score that each variable contributes
to every event type by aggregating the variable importance
from all the n instances and FL kernels.

Algorithm: PVI (L, Y , σ, A)
Input:
(1) L: E×n×FL×A array from CNNmts,
(2) Y : the event-type vector for n instances,
(3) σ and A: see problem definition.
Output: PVset: {PV1, PV2, · · · , PVE} where PVet consists of bσ ·Ac
PVs for the event type et
1) Initialize an E×FL×A array ω with score zero;

2) For each event type et (et=1· · ·E)
a) For each kernel f (f=1· · ·FL)

i) Let an n× A matrix Met,f = L[et, 1...n, f, 1...A];

ii) Normalize the values of each variable in Met,f ;

iii) ω[et, f, 1...A] = aggregateInstance(Met,f , Y, et); /*For a fixed
event type et and a kernel f , aggregate the importance of each variable
from all instances*/

3) Γ[1· · ·E, 1· · ·A]= aggregateKernel(ω, σ,E,A, FL); /*Calculate the im-
portance of each variable by combining the effect of the FL kernels*/

4) For each event type et
a) PVet = bσ·Ac variables with top ranks in Γ[et, 1· · ·A];

5) Return PVset:{PV1, PV2, · · · , PVE};

Fig. 2: The framework of PV identification

Specifically, PVI works as follows. It first adds up the
importance scores of each variable from n instances and
saves the scores to an E×FL×A array ω (Step 2, details
see below). The score ω[et, f, ai] denotes the importance of
the i-th variable ai to the event type et when using kernel f
by considering all the instances. Then, it combines the effect
of FL kernels (Step 3). Next, it extracts the PVs for each
event type from the combined ranks Γ (Step 4).

PVI calculates the importance scores ω (Step 2) using
three steps. First, for each distinct event type and each
of the FL kernels, it gets the node values from L, which
form an n×A matrix Met,f (Step 2(a)i). This matrix is
for all the n instances and A variables. Then, from matrix
Met,f , it calculates the importance of each variable to et by
aggregating scores for all the instances (Step 2(a)iii). Before
this step, we conduct column-wise normalization for all the
values in Met,f using the L∞-norm so that all the values for
one variable (in one column) are comparable.
Example 3. Given the data in Example 1, the size of L (the

input for the PVI Algorithm 2) is 3× (4× 30× 2). Step 2
aggregates the features learned from L using F 3 (which
is 30) kernels. The size ofMet,f is (4×2). aggregateInstance
returns the variable importance vector ω[et, f, 2] (A=2) in
Line 2(a)iii and aggregateKernel combines the importance
scores from each kernel. The final PVset is 3× (2× 50%)
if σ is set to be 50% (E is 3 and A is 2).

To further illustrate the procedure of the algorithm and
show how different data structures are changed, Fig. 3
shows a high-level data flow of this algorithm.

3.2.1 A new algorithm LR to calculate variable importance
In the CNNmts-X framework, X can be any feature extrac-
tion technique. We propose a new approach that leverages
both Linear Discriminant Analysis (LDA) [13] and Random
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Fig. 3: Flow chart of PVI

Function: aggregateInstanceLR (Met,f , Y, et)
Input: (1) Met,f : n × A matrix, (2) Y : event vector for n instances, (3) et:
a fixed event type
Output: ωet: a length-A score vector
1) Initialize a length-A vector ωet with returned scores;

2) Create a new length-n vector Y ′

3) For the j-th instance in Y
a) if (Y [j] == et) Y ′[j] = 1

b) else Y ′[j] = 0

4) ModelLDA, ACCLDA=LDA(Met,f , Y ′)

5) ωLDA
et =ModelLDA.coefficient

6) ModelRF , ACCRF =RF(Met,f , Y ′)

7) ωRF
et =ModelRF .important score

8) ωLR
et =ωLDA

et × ACCLDA + ωRF
et × ACC

RF

9) Return ωLR
et ;

Fig. 4: Calculate variable importance using LR

Forest (RF) [14]. LDA identifies linear combinations of vari-
ables as features. Such features can explicitly model the dif-
ference between different classes [24]. However, LDA cannot
directly return the variable importance. We use the weight
values to estimate variable importance since a variable with
higher weight means it contributes more to the combined
feature. RF is another widely used technique to rank the
importance of variables in a regression or classification
problem [25]. RF can directly return the variable importance
but RF focuses on each individual variable instead of the
variable combinations.

To make use of good characteristics of LDA and RF, we
propose a new approach LR to learn a combined variable
importance. Fig. 4 shows this approach as Function aggre-
gateInstanceLR. This function calculates the importance of
all the A variables for a given event type et and keeps them
in a length-A vector ωet (defined at Step 1 in Fig. 4).

More specifically, it creates a new vector Y ′ whose
element values are either zero or one denoting two dis-
tinct event types. Here, only two distinct event types are
used because PVs are used to distinguish one event type
from all the other event types. The value is one when the
corresponding actual event type is et and is zero other-
wise. LDA is conducted using Met,f and the new event



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERIN 6

vector Y ′ (shown from Line 4 to Line 5 in Fig. 4). This
procedure can be formally represented as shown below.M [1, 1] M [1, 2] · · · M [1, A]
M [2, 1] M [2, 2] · · · M [2, A]
· · · · · · · · ·

M [n, 1] M [n, 2] · · · M [n,A]︸ ︷︷ ︸
y′1
y′2
· · ·
y′n︸︷︷︸
→( cet,1 · · · cet,Ac¬et,1· · ·c¬et,A

)
︸ ︷︷ ︸

Met,f Y ′ for et ωLDA
et

Note that the values of the first row of ωLDAet is the same
as the second row. This is because the first row consists
of coefficients that differentiate et and all the other event
types (only ¬et), and the second row has coefficients to
differentiate ¬et from all the other types (only et).

Line 6 and Line 7 in Fig. 4 utilizes RF to evaluate the vari-
able importance. As shown from Lines 4 and 7, the training
accuracies from LDA and RF are both returned. The training
accuracy for each approach is used to weigh the important
scores of the variables. The final variable importance is the
weighted summation of the variable weights returned from
LDA and RF where the weights are the training accuracies
in LDA and RF (Line 8).
Example 4. Let us follow the previous example to explain

Algorithm 4. Met,f is of size 4×2 (n×A) and the size
of Y is 4×1. Line 4 to Line 7 evaluate the variable im-
portance using LDA and RF respectively. For example,
the output of Line 4 and Line 5 is ωLDAet = {0.68, 0.32},
and ACCLDA = 1.0. The output of Line 6 and Line 7 is
ωRFet = {0.55, 0.45}, and ACCRF = 0.75. Line 8 com-
bines the two results and gets the final importance score
vector: ωLRet = {0.68, 0.32}× 1.0 + {0.55, 0.45}× 0.75 =
{1.09, 0.66}. It means that the first variable carries more
information than the second variable. Note that the
numbers are not exactly the same with those calculated
from the model, which show very similar results using
this toy example. We use these numbers here merely for
explanation purpose.

3.2.2 Ensemble variable importance
The last step (step 3) of the Algorithm PVI (Fig. 2) is to
ensemble variable importance for all the kernels based on
the calculated importance scores ω from all the n instances
and FL different kernels. Fig. 5 shows the details of this
step.

Function: aggregateKernel (ω, σ,E,A, FL)
Output: an E×A matrix Γ denoting the importance rank of every variable
to all event types.
1) Initialize Γ to be an E×A matrix;

2) For each distinct event type et
a) Initialize an FL×A rank matrix γ with value zero;

b) For each kernel f and each variable ai,
i) Let γ[f, ai] = the rank (in descending order) of ω[et, f, ai]

among the A elements in ω[et, f, 1 · · ·A]

c) For each variable ai, Γ[et, ai] = aggF
L

f=1γ[f, ai]

3) Return Γ;

Fig. 5: Calculate variable importance by combining results
from different kernels

This function ensembles the importance scores for each
event type. For an event type et, it first ranks the importance
of all the variables for each kernel (Step 2b). The ranking

results are kept in an FL×A rank matrix γ. Then, it calculates
the overall importance of each variable ai for a fixed event
type by aggregating the importance ranks from all the
kernels (Step 2c). The importance ranks of all the variables
to the different kernels Γ are returned to PVI to extract PVs.
Note that we do not directly utilize the importance scores
in ω to extract the significant PVs. Instead, we utilize the
importance ranks. This strategy is to remove the effect of
unbalanced importance scores.

Time: The running time of the CNNmts-X PVI approach
consists of two stages: learning CNNmts and conducting X.
Given a dataset with E events, in the worst case we need
to learn E CNNmts models. We also note that in many real
cases, the number of CNNmts models that we need to train
depends on the number of phenomena that people are inter-
ested in. We may not need to get the important variables for
all the E phenomena. For example, one scientist may only
be interested in two phenomena (among hundreds), then
our method just needs to train two CNNmts models (instead
of hundreds of models) to identify those variables. The exact
time complexity of learning the CNN model is beyond our
control. Thus, we empirically calculate the running time of
the PVI algorithms. The results and analysis can be found in
Section 4.5.

4 EXPERIMENTS

All the methods are implemented using Python 2.7, and
tested on a server with i7-2600 CPU cores @ 3.40GHz and
256GB RAM. TensorFlow (www.tensorflow.org) is used to
build our neural network framework.

4.1 Methods to compare

Method PVI
CNNmts-LR LR is used to identify PVs in CNNmts-X

CNNmts-LDA LDA is used to identify PVs in CNNmts-X
CNNmts-RF RF is used to identify PVs in CNNmts-X

CNNmts-PCA PCA is used to identify PVs in CNNmts-X
CNNmts-CPCA CPCA [5] is used to identify PVs in CNNmts-X

LR LR is used to identify PVs without CNNmts-X
LDA LDA is used to identify PVs without CNNmts-X
RF RF is used to identify PVs without CNNmts-X

PCA PCA is used to identify PVs without CNNmts-X
CPCA CPCA is used to identify PVs without CNNmts-X

BVS-RF Backward Variable Selection with RF
FVS-RF Forward Variable Selection with RF

BVS-CNN Backward Variable Selection with CNNmts

FVS-CNN Forward Variable Selection with CNNmts

SFS-FW-CNN Sequential Forward Selection with CNNmts

TABLE 3: PV selection methods to compare

To better understand the advantages/disadvantages of
different PV identification methods, we compare the effect
of the PVs selected by the proposed method and several
other baseline methods. All the methods are listed in Table 3.

Our proposed method is denoted as CNNmts-LR. We
also adopt LDA and RF alone in the CNNmts-X frame-
work and get two baseline methods CNNmts-LDA and
CNNmts-RF. Furthermore, since Principal Component Anal-
ysis (PCA) [26], [27] is another well-recognized classical
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feature extraction technique, we adopt PCA in the CNNmts-
X framework and get CNNmts-PCA. Another approach
based on Common PCA (CPCA) [5] can identify important
global variables, we adopt CPCA in our framework and get
CNNmts-PCA.

We also compare our proposed method with other
techniques that does not employ our proposed CNNmts-X
framework. Corresponding to the five methods that utilize
CNNmts-X framework, the five baseline approaches are LR,
LDA, RF, PCA, and CPCA. These five baseline methods
learn importance scores of each variable for different event
types and select the variables with the top bσ ·Ac absolute
importance scores as PVs.

The implementation details of CNNmts-LDA, CNNmts-
RF, CNNmts-PCA, CNNmts-CPCA, LR, LDA, PCA, CPCA,
and RF are in [28].

PVs can also be identified by using other existing vari-
able selection approaches with slight changes. We compare
our methods with three other such approaches, Forward
wrapper Variable Selection (FVS), Backward wrapper Vari-
able Selection (BVS), and Sequential Forward Selection with
Fixed Width (SFS-FW) [11]. FVS and BVS are the most
basic representatives. SFS-FW is the newest recommended
method before 2013, which has similar performance to FVS
and is more efficient [12]. More recent works either focus
on specific data domains (e.g., [29], [30], [31]) or specific
classifiers (e.g., the work in [32] improves the classification
performance of KNN, but not other classifiers). Some recent
approaches may gain better classification performance but
the time cost is generally much higher than SFS-FW [33],
[34]. All these methods are wrapper methods, which need
to include a classifier in the evaluation step. The code for
FVS and BVS is from [35], which use decision tree and
SVM as the classifier to evaluate the performance while we
utilize CNNmts and RF as the evaluation classifiers because
CNNmts has shown the best classification performance (Ta-
ble 7) and RF is the most efficient classifier for our problem
(testing time in Table 17). We denote these methods as FVS-
RF, FVS-CNN, BVS-RF, BVS-CNN. For SFS-FW, we only
apply CNNmts as the evaluation classifier because of its
better classification performance than RF. It is denoted as
SFS-FW-CNN.

The effect of the proposed PVs are also compared with
the effect of all the variables (denoted as All-variables) and
top global variables (denoted as CNNmts-LR-GV). The All-
variables method directly feeds all the values vij in an MTS to
E CNNmts classifiers for the E event types. CNNmts-LR-GV
is designed based on CNNmts-LR method because CNNmts-
LR shows the best performance among all the methods (see
results in Section 4.4.1). It utilizes the intermediate results
Γ (Step 3 in the PVI algorithm in Fig. 2) from CNNmts-

LR. From Γ =

(
Γ[1, 1] · · · Γ[1, A]
Γ[2, 1] · · · Γ[2, A]
· · · · · · · · ·

Γ[E, 1] · · · Γ[E,A]

)
, each column’s values

(the importance rank of each variable for different event
types) are added to get the overall importance rank of the
variables. The bσ·Ac variables with the top overall ranks are
chosen as significant global variables.

4.2 Experimental settings
(1) Datasets: We use five real datasets to test the perfor-

Dataset n E A m
DSA 9120 19 45 125
RAR 35350 33 117 20
ARC 78051 18 107 30

ARCfixed 78051 18 107 30
ASL 2565 95 22 90

TABLE 4: Dataset statistics

mance of our approaches. The first dataset is the Daily
and Sports Activities data (denoted as DSA) [36]. The sec-
ond dataset is extracted from the ideal-placement scenario
in the REALDISP Activity Recognition data (denoted as
RAR) [37]. The third and the fourth datasets are the Activ-
ity Recognition Challenge data from opportunistic activity
recognition systems for subject 1 (denoted as ARC) [38]. The
fourth dataset also comes from the ARC dataset, but it has
fixed training and testing portion used in [16]. This dataset is
denoted as ARCfixed and utilized for comparison with [16].
The last dataset is for Australian Sign Language (ASL) [39].
The detailed statistics of the datasets are shown in Table 4.

For DSA, RAR, and ARC datasets, we run ten-fold cross-
validation to get stable results. For ASL, we run three-fold
cross validation because the number of instances in each
class is not as many as in the other datasets.
(2) Evaluation methods: We utilize two ways to evaluate the
effectiveness of the selected PVs: (a) conducting classifica-
tion using the selected PVs, significant global variables, and
all the variables (Sections 4.4.1-4.4.3) and (b) manually ex-
amining the meaning of the extracted PVs through surveys
(Section 4.4.4). Please note that the purpose of classification
is mainly to evaluate the selected PVs.

The PVs are one type of features. They are identified
to differentiate different phenomena. PVs are identified for
each phenomenon and can be used in binary classification
(when a user is only interested in one phenomenon) or
Multi-Phenomena Classification (MPC) when a user is in-
terested in e (1 < e ≤ E) phenomena.

Binary classification: When PVs are used for binary
classification for an event type et that a user is interested
in, the binary classification strategy truncates the training
and testing data to contain only time series related to this
event type’s PVs. Also, it updates the training and testing
labels to contain only et and ¬et. Then, it trains a binary
classification model to get the classification F1 value and
the prediction probability over classes et and ¬et. The final
prediction is the class label with the highest probability. The
pseudo-code of the binary classification strategy is in [28].

MPC: When a user is interested in e (1 < e ≤ E) event
types, we design two PV-based MPC methods.
• MPC-ALL-PV for classifying e (e ≤ E) phenomena:

This approach trains E classifiers for all the E phenom-
ena. Given a testing instance, the prediction from one
classifier (for event type et) is the probability that the
testing instance is predicted as et. The final event-type
prediction of this instance is the type with the highest
probability. Even when e < E, this method still needs
to run E classifiers.

• MPC-PV: This method is different from MPC-ALL-PV
in that it only trains e CNNmts to capture the corre-
sponding PVs for the e (e < E) phenomena. Given a
testing sample, it first calculates the probabilities that
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this sample belongs to the e phenomena. Then, it either
assigns the sample to the phenomenon with the highest
probability (bigger than 0.5) or assigns it to none of
those e phenomena if all the probabilities are smaller
than 0.5.

For comparison purpose, we further implement two other
baselines for MPC.
• MPC-basic: a very basic Multi-Phenomena CNNmts

model without using PVs. It just trains one CNNmts

model to directly classify one instance to one of the E
phenomena.

• MPC-AV: MPC-AV trains e classifiers, which is similar
to MPC-PV. Different from MPC-PV, it does not use PVs
to train the classifiers. Instead, it uses all the variables
to train the e classifiers.

To eliminate the bias of classification techniques, we
utilize four widely adopted classification methods, convo-
lutional neural network (CNN) [40], k-nearest neighbors
(KNN) [41], support vector machine (SVM) [42] and random
forest (RF) [14].
(3) Evaluation measurements: We report the F1 and Ac-
curacy values to show the classification performance. Note
that the traditional F1 is used to measure the performance
of binary classifiers. In our experiments, each dataset has
more than two event types. We calculate F1 for each event
type by treating all the instances belonging to this type as
positive and all the other instances as negative.
In the later sections, we report the averaged F1 (and/or
accuracy) over all the datasets that we have tested on.
Corresponding to the averaged results, the detailed results
are reported in our technical report [28].
(4) Parameter setting: The parameters used to train the
CNNmts models for both the PV selection and for the clas-
sification task are the same. The numbers of convolutional
layers and pooling layers are set to be 3 and 2 respectively.
For the convolutional layers, the kernel sizes k are 50, 30,
and 20. For the pooling layers, the filter size r is 2. The
maximum number of epochs is 5, and the batch size B is
100. For the classifiers, KNN sets the parameter K to be 1.
LibSVM uses balanced class weights and sets Radial Basis
Function (RBF) as the kernel. We are aware that setting
different parameter values to achieve good classification
performance is still an open problem and that is not the
focus of this paper. We also run experiments with different
parameter values to justify our parameter setting and the
results are reported in [28].
(5) Source code:The source codes can be found from
https://github.com/huipingcao/nmsu cshao tkde.

4.3 Compare the proposed CNN model with others
This set of experiments compares the proposed CNNmts

model with another CNN baseline, Fully Convolutional
Networks (FCN) [15]. FCN is proposed as a strong baseline
for image classification. FCN has only one global pooling
layer before the final output layer (instead of a pooling
layer after every convolutional layer). FCN may not be a
good choice in MTS feature selection because the pooling
layer after each convolutional layer helps identify the sim-
ilar features in a time range. For example, two people are
conducting the same activity, hand up-down movement,

time stamp 1 2 3 4 5
Person 1 30 cm 50 cm 70 cm 50 cm 30 cm
Person 2 0 40 cm 80 cm 40 cm 0

(a) Before pooling layer

time stamp 1 2 3 4
Person 1 50 cm 70 cm 70 cm 50 cm
Person 2 40 cm 80 cm 80 cm 40 cm

(b) After pooling layer (size = 2)

TABLE 5: Example: Locations of sensor y on a hand

with different speed: the first person moves his/her hand
slowly, with 20 cm up/down per second, and the second
person move his/her hand faster, with 40 cm up/down
per second. Table 5(a) shows the location of the y sensor
on one hand for five time stamps. Table 5(b) shows the
results after a max pooling with size 1 × 2. It is clear that
this pooling layer amplifies the similarity between these two
time sequences. The next convolutional layer can utilize the
amplified similarity. However, in FCN (without a pooling
layer after each convolutional layer), the next convolutional
layer cannot utilize any amplified similarity.

Method CNN KNN LibSVM RF
CNNmts-LR 0.850 0.779 0.604 0.634

FCN-LR 0.833 0.742 0.572 0.618

TABLE 6: Comparison of CNNmts-LR and FCN-LR (aver-
aged F1 using the top 30% PVs)

We use the FCN model to replace the CNNmts model
in our proposed CNNmts-LR method and get a FCN-LR
method. Table 6 shows the averaged F1 results over all
five datasets of comparing FCN-LR and CNNmts-LR. It can
be observed that features learned from CNNmts-LR out-
performs the features from FCN-LR. The overall Accuracy
results in [28] are similar to the F1 results. Therefore, we use
CNNmts instead of FCN as the CNN classifier.

4.4 Effectiveness analysis
This section shows how the identified PVs can be used to
differentiate phenomena for binary classification (Section
4.4.1), MPC (Section 4.4.3), and survey (Section 4.4.4).

4.4.1 Compare the effect of PVs using different PV selec-
tion approaches for binary classification
This section compares the effect of PVs selected by the PV
selection approaches listed in Table 3.

Method CNN KNN LibSVM RF
CNNmts-LR 0.850 0.779 0.604 0.634

CNNmts-LDA 0.759 0.691 0.427 0.559
CNNmts-PCA 0.740 0.685 0.336 0.454

CNNmts-CPCA 0.700 0.635 0.478 0.502
CNNmts-RF 0.803 0.731 0.505 0.609

LR 0.810 0.726 0.561 0.612
LDA 0.718 0.652 0.448 0.501
PCA 0.701 0.641 0.361 0.493

CPCA 0.721 0.617 0.464 0.475
RF 0.814 0.740 0.478 0.618

TABLE 7: Comparison of 10 PV identification methods
(averaged F1 over all five datasets)

For the first ten approaches, we report the averaged F1

over all the five datasets in Table 7. The results show that
the proposed approach achieves the best averaged F1. The
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proposed approach also gets better accuracy results, which
are omitted here and can be found from [28].

Method DSA ASL
CNNmts-LR 0.928 0.788

BVS-RF 0.891 0.647
FVS-RF 0.908 0.630

BVS-CNN - 0.651
FVS-CNN - 0.673

SFS-FW-CNN 0.910 0.662

Time (hours) DSA ASL
CNNmts-LR 2.2 8.9

BVS-RF 97 3.7
FVS-RF 17.0 0.8

BVS-CNN - 50
FVS-CNN - 33

SFS-FW-CNN 33 22
(a) F1 (b) PV identification time (in hours)

TABLE 8: Comparison of 6 PV identification methods

The other five methods are only run over the DSA
and ASL datasets, representing human activities and the
sign language, because they are extremely time consuming
(Table 8 (b)). These wrapper methods need to evaluate all
the variables in each iteration for each phenomenon. They
may not be suitable for high-dimensional dataset due to
the high time cost [43]. The results for FVS-CNN and BVS-
CNN on the DSA dataset have not been filled because the
running time is unreasonably long (did not finish within
7 days). The results in Table 8 (a) show that the proposed
CNNmts-LR approach gets better F1 values than the five
baselines. There are two major reasons for this result. First,
it is because these methods choose one variable in each
iteration. When a variable is not chosen correctly because
of the bias of the evaluation classifier, which is unavoidable,
the method has no way to correct its wrong choice. Second,
these methods do not consider the combined effect of the
chosen variables because they add/remove one variable
each time. However, our method combines the chosen PVs
in the last fully connected layer of CNNmts to implicitly
leverage the combined effect of the PVs.

4.4.2 Compare the effect of PVs, selected global variables,
and all the variables for binary classification

This section evaluates the performance of (i) the PVs found
using the proposed CNNmts-LR method, (ii) the global
variables (GVs) discovered using CNNmts-LR-GV, as well as
(iii) all the variables (denoted as All-variables). For this set of
experiments, the All-variables approach uses all the variables
to run classification, while CNNmts-LR and CNNmts-LR-
GV select approximately 30% of all the variables. Different
classification algorithms are applied in oder to get unbiased
results.

Method CNN KNN LibSVM RF
All-variables 0.856 0.738 0.563 0.604
CNNmts-LR 0.850 0.779 0.604 0.634

CNNmts-LR-GV 0.691 0.545 0.344 0.421

TABLE 9: Averaged F1 (over all five datasets) using all the
variables, top 30% PVs, and top 30% of GVs

The F1 results for different classifiers are collected (de-
tails see [28]) and the averaged F1 values over the five
datasets are shown in Table 9. The results show that classifi-
cation using the top 30% of PVs from CNNmts-LR achieves
similar or even better F1 values compared with the classifi-
cation results using all the variables. Note that our method
does not perform better than the All-variables method all
the time. It is mainly because of the characteristics of
the data. When the dataset has noisy variables, our PV

selection approach is able to identify the important non-
noisy variables and utilize them for classification and such
classification generally has better performance than the All-
variables method. On the other hand, when all the variables
in a dataset are very useful (i.e., no noisy variables), the PV
selection approach then misses some variable information
and gets slightly worse performance than the All-variables
method.

These results indicate that the 30% PVs identified from
CNNmts-LR are able to capture the significant variables and
discard other noisy variables. The results also demonstrate
that classifications using PVs generate much better F1 val-
ues than classifications using GVs from CNNmts-LR-GV.
This is consistent with our expectation and intuition since
GVs are important variables for all the class labels and PVs
are important variables for different class labels. The overall
Accuracy results in [28] show similar results as F1.

All the above results are obtained by conducting binary
classifications using CNNmts-LR, CNNmts-LR-GV, and All-
variables.

4.4.3 Effect of PVs using multi-phenomena classification
This section discusses the effect of using the identified PVs
for MPC.

Method MPC-PV MPC-ALL-PV
Averaged accuracy 0.929 0.928

Time (sec.) PV identification 1548 19961
MPC training 854 8182

TABLE 10: Averaged results for e phenomena classifica-
tion (e < E)

It is common that a scientist may only be interested in e
(e < E) phenomena instead of all the E phenomena. This
set of experiments test the strategies of MPC using PVs over e
phenomena by comparing MPC-PV and MPC-ALL-PV, which
builds e and E classifiers respectively. We randomly pick
e (e = 5) phenomena from DSA and ASL datasets and
repeat this selection ten times to get generalized results.
The averaged accuracy and running time are presented in
Table 10. It shows that MPC-PV achieves similar (slightly
better) results with much less PV identification time and
MPC training time.

Method MPC-basic MPC-PV MPC-AV
CNNmts 0.600 0.883 0.923

(a) Averaged accuracy over three datasets

Method MPC-basic MPC-PV MPC-AV
Time (sec.) Train Test Train Test Train Test
CNNmts 976.7 3.6 7241.3 27.3 26769.7 119.0

(b) Averaged running time over three datasets

TABLE 11: Averaged results for E phenomena classifica-
tion

Then, we examine whether using PVs can help achieve
better classification results compared with classifiers with-
out using PVs (MPC-basic and MPC-AV). The averaged
results over three datasets (DSA, RAR, and ASL) are shown
in Table 11. It is very clear that the classification performance
of MPC-PV is better than MPC-basic. Note that MPC-basic
builds only one classifier, thus its time is least. The accuracy
of MPC-PV is slightly worse than MPC-AV because of
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the same reason for that the All-variables method slightly
outperforms CNNmts-LR. We also note that MPC-PV uses
much less time than MPC-AV, which is an advantage of
MPC-PV.

Note that CNNmts-LR-GV can be easily adapted to con-
duct MPC. The different MPC strategies (e.g., MPC-PV,
MPC-ALL-PV) using PVs can be applied to CNNmts-LR-
GV by changing PVs to GVs. We did not conduct further
experiments using GVs because GVs are not as effective as
PVs and are not the focus of this work.

4.4.4 User studies of the effectiveness of PVs
In this section, we conduct user studies to examine the
capability of PVs to differentiate different phenomena.

Survey setting: We randomly pick 10 phenomena from
the DSA dataset (representing human activities) and 10 phe-
nomena from the ASL dataset (representing sign language).
For each phenomenon, we collect the top-5 PVs returned
by our method CNNmts-LR and the second best method.
CNNmts-LDA and LR are the second best method for the
DSA and ASL datasets respectively based on the results of
Table 25 in [28]. For 6 phenomena, on which the returned
two PV sets differ by at most one variable, we do not
ask users to input their preference because of their trivial
differences. For the remaining 14 phenomena, we present
the two PV sets to users. To avoid bias, we change the
display order of the two PV sets for different phenomena.
For the phenomena related to ASL, we put a short video for
each sign (i.e., phenomenon) to educate users because they
may not be familiar with sign language. A user is asked to
choose from one of the three options (a) PV set 1 is better, (b)
PV set 2 is better, and (c) the two PV sets are similar (tie).

We recruited 14 (undergraduate and graduate) student
volunteers from different disciplines to work on the survey
to avoid biased judgement with the same background.

# of phenomena # of votes for preferred PV sets returned by method
Total (14) CNNmts-LR 2nd best method Tie

1 14 0 0
1 13 0 1
3 13 1 0
2 12 1 1
3 11 3 0
1 10 4 0
1 9 5 0
1 7 5 2
1 6 7 1

TABLE 12: Summary of survey results

Table 12 presents the survey results. The first column
counts the number of phenomena with the corresponding
voting results listed in the following columns at the same
row. The last three columns show the # of volunteers voting
for the preferred methods. On most phenomena, volunteers
agree that PVs from the CNNmts-LR can better differentiate
the corresponding phenomenon.

We also ask the volunteers to select the ground truth PVs
for each phenomena. The survey results show that different
volunteers seldom agree on the same (or even similar)
variables to be the ground truth for one phenomenon. This
indicates that creating ground truth for such datasets is not
easy. Methods like ours can at least provide users reasonable
candidates.

4.4.5 Compare the effect of PVs and existing work
This set of experiments compares the classification per-
formance using the PVs selected by CNNmts-LR and two
other state-of-the-art approaches: the CNN model in [16] and
multivariate shapelet in [6], [44]. The PVs from CNNmts-LR
cannot be directly applied to the CNN [16] model since the
PVs found in our work are phenomenon specific. However,
we still report the F1 and overall accuracy for reference.
We directly get the F1 and accuracy from [16] (without
smoothing) using ARCfixed (RF is not used in [16]).

Method CNNmts KNN LibSVM
CNNmts-LR 0.628 0.530 0.516
CNN in [16] 0.555 0.427 0.456

TABLE 13: Comparison of CNNmts-LR and CNN in [16]
(F1 on ARCfixed)

Table 13 reports the F1 and the overall accuracy results
can be found in [28]. The results show that classification
using the PVs gets better F1 and overall accuracy. This is
due to the new variant of the CNN model, CNNmts, and the
PV based binary classification algorithm.

Next, we compare the classification performance using
shapelets. Note that the focus of shapelet extraction is dif-
ferent from PV identification: shapelets are the important
subsequences in the sequences of multiple variables, while
PVs are the important variables. I.e., they are orthogonal and
complement with each other. Given these differences, we
compare the classification performance using shapelets that
are generated from the overall MTS and from the sequences
for PVs. We have implemented two versions of the shapelet
generation. The first version directly extracts shapelets from
the overall MTS (denoted as Shapeletall). The second version
extracts shapelets from the sequences whose corresponding
variables are identified as PVs (denoted as ShapeletPV ).

KNN F1 Accuracy Time (sec.)

Shapeletall 0.881 0.917 85

ShapeletPV 0.888 0.914 1.75

TABLE 14: Comparison of shapelets extracted from the all
MTS and from PV sequences (using DSA)
Table 14 presents the classification results using the shaplet
features of the two versions for the DSA dataset. Shapelet
generation is known to be time-consuming [45]. Therefore,
the DSA dataset is used because it has fewer instances than
RAR and ARC datasets and has a much smaller number of
classes than ASL. The results show that the shaplets gener-
ated using PVs can achieve similar accuracy as the shapelets
identified from all the variables, while the ShapeletPV uses
only ∼20% of the time used for Shapeletall.

Method CNNmts KNN LibSVM RF
CNNmts-LR 0.788 0.634 0.407 0.553
MASK in [44] 0.473 0.382 0.214 0.347

(a) F1

MASK shapNum shapMin shapMax Time (Sec)

ASL 10 3 5 > 1.4× 104 (4 hours)
(b) Running time

TABLE 15: Comparing CNNmts-LR and MASK (using
ASL)

Table 15 compares our proposed approach with another
recent shapelet approach, MASK [44]. MASK identifies the



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERIN 11

shapelet from time-series sequences and returns a mask to
evaluate the importance of different variables. We note that
MASK is very time consuming and performs poorly on
imbalanced data. For the smallest data set (ASL), MASK
runs around 4 hours for one class even when the parameter
values are set to be small (for larger parameter values,
the algorithms runs much longer time). The setting details
and running time are shown in Table 15(b). Furthermore,
Table 15 shows that CNNmts achieves∼20% better F1 scores
than MASK.

4.5 Efficiency Analysis
This section shows (a) the running time of different PV iden-
tification methods, (b) the time to train different classifiers
using sequences for PVs, and (c) the time to predict the event
type of one testing instance for different datasets.

Time (sec.) CNNmts PVI
CNNmts-LR 21239 213

FCN-LR 21024 199
CNNmts-LDA 21239 84
CNNmts-PCA 21239 22

CNNmts-CPCA 21239 28
CNNmts-RF 21239 79

Time (sec.) CNNmts PVI
LR 0 805

LDA 0 480
PCA 0 62

CPCA 0 69
RF 0 251

TABLE 16: Averaged time to build CNNmts-X framework
using nine folds (2 folds for ASL) of the data

Table 16 presents the averaged running time (over all
the distinct datasets) for building the CNNmts-X frame-
work using nine folds (with ten-fold cross validation) of
the dataset (two folds for ASL). This time consists of the
running time for (i) constructing the CNNmts model using
all the attributes (Section 3.1) and (ii) executing the PVI
algorithm (Section 3.2). The results show that the CNNmts

model construction utilizes the majority of the time due to
their known long training time. The LR method’s running
time is approximately the summation of the running time of
LDA and RF. LDA and RF use more time than PCA because
LDA and RF need to be conducted on all the instances for E
times while the PCA methods are only applied to a subset
of instances E times.

Time (sec.) CNNmts KNN LibSVM RF
Training 6607 0 7831 70
Testing 0.014 0.852 0.072 1.056 × 10−4

TABLE 17: Running time for binary classification for all
the phenomena

Table 17 reports the averaged training and testing time
of all E binary classifications over all the datasets. Note that
the training time is the running time using nine folds of
the dataset (two folds for ASL) and the testing time is for
one instance. The prediction/testing time per instance is
almost ignorable compared to the PV identification time.
As expected, the KNN methods use more testing time than
other methods. Please note that the training time is the
running time for all the phenomena (evens) and this training
typically happens offline.

4.6 Compare batch processing strategies of CNNmts
for imbalanced data
This set of experiments tests the effect of batch processing
strategies. The RAR dataset is used because it contains

imbalanced data. CNNmts-LR is used to select the top signif-
icant 30% PVs and CNNmts classifiers are used to conduct
ten-fold cross validation.

Batch processing strategy
CNNmts-LR Classifier CNNmts F1 Accuracy

without oversampling without oversampling 0.813 0.866
without oversampling with oversampling 0.902 0.910

with oversampling with oversampling 0.946 0.971

TABLE 18: Effect of different batch processing strategies
(CNNmts-LR, RAR dataset, ten-fold)

Table 18 shows the results. The first two rows of the
results show that when the PVs are fixed, the classifier with
oversampling can improve both the F1 and Accuracy about
9% and 4% respectively. Comparing the last two rows, we
can see that, when the classifier is fixed, PV selection with
oversampling can improve both the F1 and Accuracy about
4% and 6%.

All these show that CNNmts with the oversampling
batch processing strategy works better than the default CNN
models.

5 RELATED WORKS

Identifying significant variables is highly related to feature
extraction. The problem of feature extraction has been exten-
sively investigated in the past several decades. For example,
Principal Component Analysis (PCA) [26] [46] and Linear
Discriminant Analysis [13] are among the commonly used
feature extraction techniques proposed in earlier days. How-
ever, both methods cannot be directly utilized to identify
significant PVs because they cannot treat one time series as
a variable directly.

More recent techniques of identifying features from se-
quence data (e.g., [6], [7], [8], [9]) generally convert the
sequence to a set of features and analyze the data in the
feature space. Most of the identified features cannot pre-
serve the temporal continuity information that is explicit in
the original sequence data. Among the works of extracting
features from sequence data, the Shapelets feature, intro-
duced in [9], can preserve the temporal order of points
in a time series. Shapelets discovery has gained exploding
interest from independent research groups (e.g., [6], [9], [44],
[45], [47], [48], [49], [50]) to analyze time series data. The
methods that extract Shapelet features cannot be directly
used to solve our problem either because the purpose of
Shapelet extraction is to get global Shapelet features that can
help achieve high accuracy of classification tasks, while our
problem is to find variable subsets that can contribute the
most to specific event types. Furthermore, the extraction of
shapelets from multiple sequences dramatically complicates
the Shapelet extraction algorithms which are already very
complex even on single-sequence instances.

Techniques that classify multi-class datasets (e.g., [51])
typically focus on improving classification accuracy and do
not study the importance of different variables for different
classes.

Subspace clustering such as projected clustering [3] has
been studied based on the similar rationale of PV identifica-
tion. It identifies clusters from a dataset such that the points
in one cluster are close regarding a subset of dimensions.
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The dimension subsets are generally different for different
clusters. Although having similar intention, the results of
projected clustering do not keep the temporal order of the
selected dimensions, which cannot be used to identify PVs.

Recent works (e.g., [16], [17], [18], [19], [52]) have uti-
lized convolutional neural networks (CNN) in the analysis
of MTS data. Most of these methods focus on improving
classification accuracy or learning the CNN structure. Thus,
they cannot be directly utilized to solve our problem.

6 CONCLUSIONS

In this paper, we introduced a new problem of identifying
significant Phenomena-specific variables (PVs) from MTS
data. This problem selects significant variables that are
important to different event types of the data. To solve
this problem, we proposed a novel CNNmts-X framework.
In this framework, a new variant of convolutional neural
networks, CNNmts, is designed to convert each variable’s
corresponding sequence to independent features. The X in
this framework can be other feature detection technology.
We also designed a new LR approach to be used in this
CNNmts-X framework for the identification of important
PVs. The results from extensive experiments on four real
datasets by comparing CNNmts-LR with seven baseline
methods show that (i) our CNNmts-LR method can identify
more useful PVs than other methods, (ii) 30% of the PVs
found from CNNmts-LR are able to carry almost all import
information as all the variables, and (iii) the CNNmts with
a new batch processing strategy outperforms typical CNN
models when classifying imbalanced multi-class MTS data.
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