
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MULTIVERSE MECHANICA: A TESTBED FOR LEARN-
ING GAME MECHANICS VIA COUNTERFACTUAL
WORLDS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study how generative world models trained on video games can go beyond
mere reproduction of gameplay visuals to learning game mechanics—the mod-
ular rules that causally govern gameplay. We introduce a formalization of the
concept of game mechanics that operationalizes mechanic-learning as a causal
counterfactual inference task and uses the causal consistency principle to address
the challenge of generating gameplay with world models that do not violate game
rules. We present Multiverse Mechanica, a playable video game testbed that im-
plements a set of ground truth game mechanics based on our causal formalism.
The game natively emits training data, where each training example is paired with
a set of causal DAGs that encode causality, consistency, and counterfactual depen-
dence specific to the mechanic that is in play—these provide additional artifacts
that could be leveraged in mechanic-learning experiments. We provide a proof-
of-concept that demonstrates fine-tuning a pre-trained model that targets mechanic
learning. Multiverse Mechanica is a testbed that provides a reproducible, low-cost
path for studying and comparing methods that aim to learn game mechanics—not
just pixels.

1 INTRODUCTION

Interactive world models have recently gained attention for their potential to simulate or extend video
game experiences (Bruce et al., 2024; Parker-Holder & Fruchter, 2025; Decart et al., 2024; He et al.,
2025; Che et al., 2025). SOTA models, typically leveraging deep autoregressive transformer archi-
tectures, are trained on large datasets containing sequences of visual frames, user inputs, or internal
virtual states produced by a graphics engine. These models of video games (game world models)
can generate gameplay sequences that are visually similar to original gameplay; an impressive feat
considering modern video games often have cinematic levels of visual complexity.

A key motivation for a focus on video games is procedural generation of novel gameplay experiences
(Gingerson et al., 2024). To this end, the ability to produce high-fidelity visuals is a necessity, as the
novel experiences must look the part. But in addition to looking good, the game world model must
generate gameplay that is consistent with the game’s mechanics (Gingerson et al., 2024). In simple
terms, if the generated gameplay violates game rules or logic, it breaks the gaming experience and,
therefore, is not useful, regardless of how good it looks.

Authors of game world models often claim to have learned a game’s mechanics—rules governing
gameplay—through post-hoc observations of generated gameplay from the trained model, which vi-
sually demonstrates the mechanics in play. For example, in reference to their World Models frame-
work, the authors Ha & Schmidhuber (2018) claim that “by learning only from raw image data
collected from random episodes, [their model] learns how to simulate the essential aspects of the
game, such as the game logic, enemy behavior, physics ...”. Kim et al. (2020) claim their GameGAN
model learned the collision and power pellet mechanics of PAC-MAN. Parker-Holder & Fruchter
(2025) claimed that consistency was an “emergent” property of Genie 3.

There is a problem with such claims. An a posteriori observation that a game world model has
learned a mechanic demonstrates that it is possible to learn some mechanics in some contexts with
SOTA architectures. However, this does not tell us a priori that it is possible to reliably reproduce

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Clips from consistent contrasts sampled at their respective impact frames: each row con-
tains two contrasting gameplay clips where differences are solely attributable to the shield mechanic.
Left, middle, and right correspond to parallel world statements S1, S2, S3.

a certain context. To use a game world model to generate novel gameplay experiences in practical
settings, we need this knowledge before expending on training and deploying a model.

Part of the difficulty is a lack of any formalized notion of what it means to learn a game mechanic.
With a formal definition, we could determine if a mechanic is statistically identifiable from training
data, and we could evaluate claims that a model has learned a mechanic. Moreover, we could define
exactly what it is that we want to identify. The model needs to learn a representation of a mechanic
sufficient to reliably reproduce it in generated gameplay, without going as far as reverse-engineering
the mechanic’s source code; a formal definition would tell us the level of detail required. Lacking
this, we cannot know when we have disentangled the mechanic’s representation from learning other
representations that drive the game’s visuals.

In this paper, we address this problem with the following contributions. Firstly, we provide a causal
formalization of the concept of game mechanics using causal graphical modeling theory. We use
this formalization to demonstrate data and inductive biases (in the form of causal graphs) that enable
learning a game mechanic. We introduce Multiverse Mechanica, a playable game for use as a
testbed for evaluating the learning of game mechanics. The game mechanics are implemented with
our causal graphical formalization, providing a ground truth for evaluating mechanic learning. It
provides causal graphical representations of the mechanic directly to the user for use in evaluation
or to supervise mechanic-learning. Multiverse Mechanica is visually simple enough to facilitate
inexpensive experimentation, while it enables generalization by using mechanics that are typical of
fantasy combat games. Finally, we provide a proof-of-concept for fine-tuning a generative model on
a specific game mechanism that leverages these causal representations in its objective function.

2 BACKGROUND AND RELATED WORK

Defining Game Mechanics. Building on prior definitions (Lo et al., 2021), we define a game
mechanic as a modular subset (Björk & Holopainen, 2004; Schaul, 2013; Thielscher, 2011; Zook &
Riedl, 2019) of the game rules triggered by specific player/agent interactions (Lundgren & Bjork,
2003; Fullerton et al., 2004), producing changes in game state (Järvinen, 2008; Fabricatore, 2007)
that shape gameplay visuals (Hunicke et al., 2004). These subsets entail causal relations with pre-
conditions and effects, representable as logic, finite-state machines, or transition functions (Zook &
Riedl, 2014; Thielscher, 2011; Schaul, 2013; Dormans, 2012; Zook & Riedl, 2019). We formalize
this definition in Section 3.2.

Causal Framing. We adopt the causal hierarchy (level-1: observation, level-2: intervention,
level-3: counterfactual) (Bareinboim et al., 2022) and use causal DAGs and structural causal mod-
els (SCMs) (Pearl, 2009) to model mechanics as mechanisms (rules) (Bongers et al., 2018). For

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

focusing on a mechanic’s variables, we reference marginalized DAGs (mDAGs) that preserve causal
and interventional semantics while marginalizing others (Evans, 2016). The causal consistency
principle states that variables not downstream of an intervention retain the same value across worlds
(Pearl, 2010; Shpitser & Pearl, 2012); counterfactual graphs capture this cross-world consistency
compactly (single nodes for shared variables; world-indexed nodes for affected ones) (Shpitser &
Pearl, 2012). Construction details appear in Appendix D.5; additional background is in Appendix D.

Learning game mechanics. Empirical results highlight the challenges of learning game mechan-
ics. A study performed by Gingerson et al. (2024) highlights the continuing challenge of gener-
ating consistent gameplay with SOTA architectures—even when generations look plausible, they
frequently break the rules of the mechanic. Chen et al. (2025) report similar failures in spatial and
numerical consistency, necessitating explicit corrective modules. More broadly, empirical studies
of video prediction models show that while they excel in-distribution, they often rely on case-based
mimicry and fail under distribution shift, violating simple physical principles (Kang et al., 2024;
Riochet et al., 2021).

If we view a mechanic as a latent generative factor, then unsupervised learning of mechanics is
provably impossible from video observations of gameplay alone (Locatello et al., 2019) without
strong inductive biases (Mitchell, 1980; Wolpert, 1996). Prior work in this area shows that causal
representations are at best only partially identifiable from observational data without intervention
data or strong causal inductive biases (Spirtes et al., 2000; Bareinboim & Pearl, 2022; Schölkopf
et al., 2021). Our work builds on prior work that employs these causal approaches to learning latent
generative factors. But to our knowledge, our work is the first to apply this type of causal analysis to
the problem of learning game mechanics during training, and generating consistent gameplay from
a trained model.

Datasets, testbeds and environments. Existing testbeds, datasets, and environments for world
models and video prediction largely emphasize intuitive reasoning about real-world Newtonian
physics rather than explicitly defined game mechanics. For instance, IntPhys (Riochet et al., 2018)
probes intuitive physics by testing whether models respect basic object permanence and motion,
while Physion (Bear et al., 2021) provides simulated videos of collisions and stability events to eval-
uate physical prediction. However, game mechanics can encompass non-realistic “physics,” such as
spell casting and passing through portals. Multiverse Mechanica focuses on a broader set of game
mechanics, and contributes a playable generator that emits data and artifacts that target learning of
a formally defined ground-truth set of mechanics.

3 FORMALIZING AND LEARNING A GAME MECHANIC

In this section, we demonstrate the formalization of a game mechanic as well as how we would learn
that mechanic from data. Then, in Section 3.2, we provide a general mathematical description of
this approach.

3.1 ILLUSTRATING EXAMPLE

The Shield Mechanic Consider a scene from a stylized 90’s fantasy turn-based combat game,
where an archer battles a warrior. Like many games in this genre, there is a shield mechanic, as
shown in the first row of Figure 1, where the warrior may raise a shield to block incoming attacks.

3.1.1 FORMALIZING THE SHIELD MECHANIC

How might we describe this shield mechanic in formal causal terms?

Step 1: Describe the Mechanic with Causal Logic. We start by completely describing the shield
mechanic using a series of causal hypothetical statements of the form “Given preconditions W , all
else equal, if X , then Y .” Specifically, we focus on level-3 multiverse logic statements that employ
conjunctions of conflicting conditions. Table 1 column 1 shows three statements, S1, S2, and S3,
that fully describe the shield mechanic.

The columns of Figure 1 correspond to S1, S2, and S3. We could instead use level-2 interventional
statements, which are normally preferred because they are generally testable with experimental data.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Descriptions in Causal Logic Formal Counterfactual
Notation

Consistent Contrast Sample
Data

S1 All else equal, if the opponent
has a light weapon, they may equip
a shield; if heavy, they cannot.

S1 : P (SW=1 = 1, SW=0 = 0)
≥ ϵ1

D1=
{
ω1, C,

(SW=1, BW=1, DW=1, VW=1),
(SW=0, BW=0, DW=0, VW=0)

}
S2 All else equal, if the opponent
has a shield, they may block; if no
shield, they cannot.

S2 : P (BS=1 = 1, BS=0 = 0)
≥ ϵ2

D2=
{
ω2, C, W,

(BS=1, DS=1, VS=1),
(BS=0, DS=0, VS=0)

}
S3 Given a shield, if a block
succeeds then no damage; if it fails,
damage occurs.

S3 : P (DB=1 = 0, DB=0 = 1 |
S = 1) ≥ ϵ3

D3=
{
ω3, C, W, S,

(DB=1, VB=1),
(DB=0, VB=0)

}
Table 1: The shield mechanic described as in natural language causal logic (column 1), which
are then formalized with counterfactual notation (column 2), where strictly positive probabilities
(ϵi > 0) indicate bounded uncertainty due to other causal factors in the system. Column 3 shows
consistent-contrast tuples (each row shares seed ωi).

But the level-3 parallel world statements provide an additional constraint in the phrase “all else
equal”; that outcomes unaffected by the conditions must remain consistent across the clauses. As
we will see below, we can use that constraint to operationalize consistency in game generation.
Secondly, we can leverage the gaming setting’s rare opportunity to generate level-3 data to validate
level-3 statements.

Step 2: Rewrite as Counterfactual Expressions. We can rewrite S1, S2, and S3 as mathemati-
cal expressions using counterfactual notation, capturing the contrasts more compactly. For simplic-
ity, let W denote the weapon type, S indicate whether a shield is equipped, B indicate whether the
shield is used to block, and D indicate whether damage occurs. We treat these as binary variables
for clarity, without loss of generality. Let W = 1 and W = 0 denote light and heavy weapon,
respectively. S, B, and D, let 1 mean True and 0 mean False.

We use counterfactual notation to denote variables under the influence of intervention, such that
Y under an intervention that sets X to x is written as YX=x. We can formalize the parallel world
statements S1, S2, and S3 as shown in column 2 of Table 1, where ϵi;∀i ∈ {1, 2, 3} denotes strictly
positive probabilities (ϵi > 0), indicating bounded uncertainty due to other causal factors in the
system.

With this, our shield mechanic is described in formal mathematical terms.

Step 3: Represent Mechanic with Causal Graphs Let V denote a full clip of gameplay. An
outcome, denoted v, is a sequence of frames. Let C denote the controller input from a player at the
start of the player’s turn. Let G denote the full causal DAG for a single turn in the battle (see the
full graph in Figure 6 in Appendix E). Let us assume we have access to this DAG, or that we could
create it using knowledge of the game structure, analyzing causal dependence in the game’s code
(Winskel, 1986; Aho et al., 2006), or by applying causal discovery methods (Glymour et al., 2019).
The variables implicated in our description of the shield mechanic are Z = {C,W, S,B,D, V }.
The causal DAG G is quite large, so we derive the mDAG GM that zooms in on Z (Figure 2)
by marginalizing out the variables not in Z (see Appendix D.3 for a description of the algorithm).
Next, we can combine the mDAG with each counterfactual expression in the mechanic’s description
to construct the counterfactual graphs in Figure 3.

The counterfactual graphs in Figure 3 encode a representation of causal consistency—variables that
are not downstream of interventions and thus are consistent across worlds are unique, while incon-
sistent variables have nodes indexed by each world. Thus, the counterfactual graphs are representa-
tions of the shield mechanic that explicitly describe what should remain consistent when generating
gameplay depicting the shield mechanic.

3.1.2 GENERATING SHIELD MECHANIC DATA

We can generate level-3 parallel world data consistent with S1, S2, and S3 by creating parallel
runs with identical initial conditions and random seeds. We can intervene separately in each run,
producing clips of parallel virtual worlds that differ only in their respective interventions. We call

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Causal DAG marginalized to focus on the nodes specific to the shield mechanic and their
latent confounders (gray nodes)

Figure 3: Counterfactual graphs for the shield mechanic. The video variables VX=x have shape
height(h)*width(w)*frames(f)*channels(3)*worlds(2).

the tuple of these clips, combined with the outcomes of other mechanic-related variables under
these interventions and their shared initial condition/seed, consistent contrasts. Figure 1 illustrates
gameplay clips from the contrasts.

Let ω1, ω2, and ω3 represent distinct sets of random seeds and initial conditions. Let C represent the
controller input from the player. Let VX=x represent a video clip of gameplay under an intervention
that sets X to x. Reading consistency from the graphs in Figure 3, we see WS=1 = WS=0 = W ,
WB=1 = WB=0 = W , and SB=1 = SB=0 = S. Let D1, D2, and D3 represent samples of
consistent contrasts for S1, S2, and S3 respectively, as shown in Table 1 column 3.

3.1.3 LEARNING THE SHIELD MECHANIC FROM DATA

Let P1 = P (SW=1, SW=0), P2 = P (BS=1, BS=0), and P3 = P (DB=1, DB=0, S) denote the
distributions constrained by S1, S2, and S3. We can estimate these distributions through repeated
sampling of consistent contrasts D1, D2, and D3, then averaging over the sampling distributions to
obtain the sampling distributions P̂1, P̂1, and P̂3 (see Appendix D.6). In each case P̂i converges
almost surely to Pi. This provides a precise operationalization of what it means for a generative
model to learn the shield mechanic: learning constraints {S1,S2,S3} on distributions {P1, P2, P3}
or modeling {P1, P2, P3} directly.

However, in the canonical case of training game world models, we assume that only the controller
inputs and the video outputs are observed during training. Here, the inference of P̂i becomes a task of
unsupervised learning of a latent vectorD\{C, VX=x, VX=x′} using {C, VX=x, VX=x′} as features,
where VX=x, VX=x′ is a vector of shape 2 * frame height * frame width * 3 RGB channels * number
of frames. Without further assumptions, disentangling the components of D \ {C, VX=x, VX=x′}
is generally infeasible. However, the counterfactual graphs in Figure 3 already disentangle these
variables for us. Using these, the problem reduces to training a latent variable model.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 FORMAL FRAMEWORK FOR GAME MECHANICS

We assume a causal DAG G = (V,E) for a single step of gameplay with V =
{Ct, Xt, Ct+1, Xt+1, Vt, Vt+1}, and typical edges Xt → Ct, Xt → Xt+1, Ct → Xt+1,
Xt → Vt, Xt+1 → Vt+1. For a given mechanic, we restrict to the variable subset M =
{Ct, X

M
t , XM

t+1, Vt+1}, XM
t ⊆ Xt, XM

t+1 ⊆ Xt+1, and form the marginalized DAG GM by
marginalizing variables outside M while preserving interventional semantics (Appendix D.3).

We work on a probability space with sample space Ω. Each variable Z ∈ M is a measurable
mapping Z : Ω→ XZ , and each counterfactual ZX=x : Ω→ XZ , where x ∈ XX is an intervention
value in the state space of X . The ground-truth SCM, consistent with GM , induces the family

F(M) =
{
P
(
Vt+1,X=x, ZX=x

∣∣E)
: X,Z ∈M, x ∈ XX , E ∈ σ(M)

}
,

where σ(M) denotes the σ-algebra generated by the variables in M (in practice, E can be any
measurable predicate on M , e.g., S=1 for “has shield”).

We formalize a mechanic as the tuple ⟨GM ,M⟩, where M = {S1, . . . , Sk} and each constraint
Si : P

(∧mi

j=1 YX=xj = yj

∣∣∣E)
≥ ϵi binds counterfactuals of variables in M under inter-

ventions on X ∈ M , with xj ∈ XX , E ∈ σ(M), and ϵi ∈ (0, 1] (allowing non-deterministic
relations due to factors outside M ). For each Si we denote the targeted distribution by Pi (e.g.,
P1 = P (SW=1, SW=0) in the shield example).

Data and Estimation. A consistent-contrast dataset for Si of size N is

D(N)
i =

{(
VX=x1

(ωn), . . . , VX=xmi
(ωn)

)
: ωn ∈ Ω, n = 1, . . . , N

}
,

optionally restricted to ωn satisfying E. Let P̂ (N)
i be the empirical distribution induced by D(N)

i .
Under i.i.d. sampling of seeds ωn, P̂ (N)

i
a.s.−−→ Pi. For each Si (and associated Pi), we construct a

counterfactual graph GM,cf
i . In partially observed settings (video + controller only), Gcf

i specifies
which latent variables are shared across worlds and which differ, reducing estimation to a well-posed
latent variable problem aligned with the counterfactual graph’s structure.

4 MULTIVERSE MECHANICA: A PLAYABLE TESTBED FOR LEARNING
MECHANICS

We introduce Multiverse Mechanica, a fantasy-style battle game designed as a testbed for learning
game mechanics. Unlike static datasets, Multiverse Mechanica is a playable game that emits the
artifacts required to study and evaluate whether models capture the game’s mechanics—not just
gameplay visuals. Its design integrates three innovations: (i) native support for level-3 parallel-
world contrasts with consistency under the same ω; (ii) per-mechanic mDAGs GM, parallel world
and counterfactual graphs, and specifications ofM; and (iii) explicit visual grounding, where stance
and scene variables are rendered into pixels. We will release the game upon publication.

4.1 GAME OVERVIEW

Each episode consists of a pre-battle setup (character and equipment selection, random assignment
of elemental buffs (e.g., fire, ice) followed by turn-based combat. The player occupies the left side
of the screen, and the enemy occupies the right. On the player’s turn to attack, a timing-based
interaction yields an attack score; the enemy’s turn samples an analogous attack score. Outcomes
depend on weapons, defenses, the attack score, and buffs. See Appendix F for additional details.

4.2 IMPLEMENTED MECHANICS (V1.0)

Version 1.0 of Multiverse Mechanica includes the following mechanics, each with associated
GM and parallel-world data sufficient to estimate M. The shield mechanic focuses on equip-
ping and blocking with a shield, as discussed in Section 3.1. In the elemental immunity me-
chanic, “elemental” attributes (e.g., fire and ice) govern immunity and vulnerability to attacks. The

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

weapon range mechanic governs melee vs. ranged combat. The spell-casting mechanic gov-
erns five submechanics that allow players to give themselves an advantage in battle (e.g., gain
increased attack power, dodge ability), or their opponent a disadvantage (e.g., disarm them or
lower their defense)—projectiles, self-levitation, enemy-levitation, self-transformation, and enemy-
transformation. See Appendix E for detailed descriptions, including causal formalizations, DAGs,
and illustrations.

4.3 DESIGN DECISIONS

Mechanic-Specific Game Systems. Each mechanic is implemented with a unique instance of
a game system (Nystrom, 2014; Gregory, 2018), independent of the others. This ensures parity
between the mechanic and the code logic. Full game system details are given in Appendix F.1.1.

Impact Frames and Visual Conventions. We designed the game such that each turn contains
an impact frame—the most visually and mechanically expressive phase of an interaction (e.g., the
precise moment when an attack lands) Impact frames are not based on fixed time-points but are set
according to specific conditions in the finite-state machines. See Appendix F.2 for details.

Simple yet Information Dense Visuals. To facilitate rapid, inexpensive experimentation, we
focus on the ability to run experiments with episodes that have a minimal number of frames. To this
end, we use a simple art style that aligns with the representational biases of pretrained vision models
(luciI, 2024; Zhang et al., 2023) and animation conventions that emphasize dynamic information,
such as speed lines (“zip ribbons”) to depict fast motion, trajectory lines for projectiles, curved
swipes for melee attacks, and burst lines and explosion visual effects for collisions or blocked strikes
(McCloud, 2020; Eisner, 2008; Cohn, 2013). In Section 5, we highlight this ability by limiting our
analysis to single time-point snapshots at the impact frame, chosen as the impact frame of the clip.
The images in Figure 1 are all sampled at their respective impact frames.

4.4 DATA GENERATION

Multiverse Mechanica is not a dataset but a generator. To generate data, an automated agent repeat-
edly plays the game to produce clips. Users can select a number N of generations. The generation
process can randomly generate N clip examples, constituting level-1 data. The user can also specify
interventions on specific game state variables and generate N clip examples where those interven-
tions are applied, constituting level-2 data. Finally, the user can specify interventions and assign
them to multiple game instances with a shared “ω” (same random seed and initial conditions) and
generate N consistent contrasts (tuples of clips), constituting level-3 data. Each mechanic has pre-
sets for level-2 and level-3 generation. Each clip is a 512x512 MP4 video averaging 4 seconds at 50
FPS. Each generated example is a tuple consisting of a clip, controller inputs, game-state variable
outcomes, and a random seed for reproducibility. See Appendix G for additional details related to
data generation.

Summary. Multiverse Mechanica provides a compact yet expressive testbed for studying whether
generative models can capture mechanics. Its design couples causal structure with visual grounding,
leverages art and animation conventions for low-cost training, and enables reproducible creation of
parallel-world contrasts.

5 PROOF-OF-CONCEPT: LEARNING A MECHANIC WITH DIFFUSION
FINE-TUNING

One advantage of Multiverse Mechanica’s design (Section 4.3) is that mechanics are rendered into
impact frames using simple yet information-dense visuals. This allows experiments with supervision
from clips as short as a single frame. We illustrate this with a case study: fine-tuning a pretrained
image diffusion model to target mechanic learning.

We fine-tuned the latent diffusion model OpenJourney-v4 (PromptHero, 2022) on N = 1000 impact
frame consistent contrasts generated from the game. Each consistent contrast consists of paired
images (VX=x0 , VX=x1) from parallel worlds that share a random seed ω but differ by interventions

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Proof-of-concept of shield mechanic learning with a diffusion model trained on game
data. Mechanic learning is shown by sampling counterfactuals: unchanged image elements remain
consistent with the original. (A) Held-out game image: wizard attacks warrior (blue due to an
ice elemental buff). (B) Generated counterfactual with warrior holding a shield but not blocking
(VS=1,B=0). (C) Generated counterfactual with shield and block active (VS=1,B=1) (aliased sword
is a generation error).

on a mechanic variable X . This setup directly instantiates the causal consistency principle: non-
descendant variables of X should remain invariant across the pair.

We introduce a multiverse alignment objective—a modification of the standard diffusion loss—
to enforce the causal consistency principle. In a consistent contrast, all elements share a common
sample ω ∈ Ω, mirroring the reverse process in deterministic diffusion variants that generate data
from latent noise. We therefore initialize each contrast trajectory with the same noise: sample
ω ∼ N (0, I) and set ZT,X=x0

= ZT,X=x1
= ω.

Let {X = x0, VX=x0
, X = x1, VX=x1

} ∼ P̂ , where X ∈ XX is a game-state variable under
intervention and VX=xj

is the corresponding impact frame snapshot under intervention X = xj .
With timesteps t ∈ [0, T ], let Zt,X=x0

, Zt,X=x1
denote the noisy latent representations of VX=x0

and VX=x1 , respectively. Conditioned on controller input c, the denoiser ϵθ(·) iteratively transforms
the shared seed ω into a clean latent Z0,X=xj that decodes into the impact frame VX=xj . Our task
is to train the denoiser’s weights θ with a loss that enforces causal consistency across contrasts.

The multiverse alignment loss has two components:

L = λ1 L1 + λ2 L2, λ1, λ2 ≥ 0, λ1 + λ2 = 1.

L1: seed-consistency loss. Let Abductθ denote an inversion procedure that estimates the Gaus-
sian seed from an observed impact-frame latent Z0,X=xj and controller input cj . Given Z0,X=xj

with controller input cj , Abductθ uses the denoiser ϵθ(·) to trace Zt,X=xj
backward through the

noise schedule, producing an estimate ω̂j of the exogenous seed ω. Under a deterministic sampler
(e.g., DDIM), this corresponds to following the reverse trajectory from the observed latent to the
initial noise (see Appendix I.10.5 for details). The seed-consistency loss then enforces agreement
between abducted seeds across a consistent contrast:

L1(Z0,X=x0
, c0, Z0,X=x1

, c1) =
∥∥Abductθ(Z0,X=x0

, c0)− Abductθ(Z0,X=x1
, c1)

∥∥2
2
.

Remark. With deterministic sampling, shared ω implies shared non-descendant content. Minimizing
L1 suppresses nuisance differences and attributes variation to mechanic-specific interventions.

L2: structure-alignment loss. Let S ⊂ {1, . . . , T} be a subset of high-noise timesteps. For each
t ∈ S, the denoiser predicts noise ϵθ(Zt,X=xj

, t, cj). We align predictions across the contrast:

L2 =
∑
t∈S

∥∥ϵθ(Zt,X=x0 , t, c0)− ϵθ(Zt,X=x1 , t, c1)
∥∥2
2
.

Remark. Early reverse steps encode coarse layout. Aligning them enforces global semantic identity
across contrasts, while leaving mechanic-specific differences to emerge in later, low-noise steps.

Evaluation Results.

Figure 4 shows qualitative counterfactual generations: the model preserves non-mechanic-related
content while toggling the targeted shield mechanic. From a factual image v with X = x we abduct

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the exogenous seed ω, then generate a counterfactual image v′ with X = x′ while keeping ω fixed.
This corresponds to sampling from P (VX=x′ | X = x, V = v), i.e. counterfactual reconstruction
with shared ω. This provides visual evidence that the fine-tuned model has learned aspects of the
mechanic, not merely pixels.

To systematize this evaluation, we report quantitative results in Table 2. The causal consistency
metrics provide a systematic approach to evaluating consistency (Hessel et al., 2021; Radford et al.,
2021), and we include metrics for image quality and reconstruction quality (Wang et al., 2004;
Wolf et al., 2009) to serve as table-stakes baselines. While the model demonstrates reasonable
image-to-text alignment (CLIP score: 24.45) and strong image similarity (0.89) between factual and
counterfactual pairs, the reconstruction metrics reveal challenges in perfectly inverting the diffusion
process, with reconstruction PSNR at 10.73 dB. The high exogenous distance (0.67) suggests that
our current implementation requires further optimization to achieve tighter alignment between par-
allel worlds. Despite these limitations, the model successfully generates semantically meaningful
counterfactuals, as evidenced by the transfer CLIP score of 20.77.

Table 2: Evaluation metrics for diffusion fine-tuning on 1000 consistent-contrast pairs. Causal
consistency is emphasized as the key criterion for mechanic learning; reconstruction and image
quality provide baseline checks.

Metric Category Metric Value

Causal Consistency CF Transfer CLIP Score 20.77
Exogenous Distance (MSE)↓ 0.671

Reconstruction
Reconstruction PSNR 10.73 dB
Reconstruction SSIM 0.183
Reconstruction CLIP Score 21.45

Image Quality

PSNR (Factual vs CF) 17.66 dB
SSIM (Factual vs CF) 0.433
CLIP Image-Text Score 24.45
CLIP Image-Image Similarity 0.892

6 SCALABILITY & LIMITATIONS

Our descriptions of mechanics assume parallel-world statements (Section 3.1) with discrete differ-
ences across worlds; the same logic extends to incremental changes, but we have not yet charac-
terized which mechanics require that expressivity. In our proof-of-concept, we operate on impact
frame snapshots (Section 5), which makes experiments tractable but sidesteps temporal dynamics; in
principle, the approach applies to any generative video model capable of conditioning across worlds.
As future work, we plan to benchmark video-capable world models and longer horizons.

Contrast generation scales linearly with the number of worlds per mechanic and seeds, whereas
composing multiple mechanics can grow contrasts combinatorially. Our simplified 2D domain re-
duces compute expense and aids clarity, but limits transfer to photorealistic 3D and other genres,
where new rendering conditions and longer horizons demand more complex models. Evaluation of
consistency currently relies on human or VLM-based checks; the robustness of automated evaluators
in this setting remains an open challenge.

7 CONCLUSION

We formalized game mechanics as causal counterfactual inference and introduced Multiverse Me-
chanica, a playable testbed that emits parallel-world contrasts and per-mechanic causal graphs.
Building on this foundation, we proposed a multiverse-alignment objective and demonstrated a
proof-of-concept fine-tuning that learns targeted mechanics. Together, these components provide
a reproducible path to assessing whether world models learn mechanics—not just pixels.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, Boston, MA, 2nd edition, 2006. ISBN 9780321486813.

E. Bareinboim and J. Pearl. Causal Inference and the Data-Fusion Problem. Cambridge University
Press, 2022. ISBN 9781108844984.

Elias Bareinboim, Juan D. Correa, Duligur Ibeling, and Thomas Icard. On pearl’s hierarchy and
the foundations of causal inference. In Hector Geffner, Rina Dechter, and Joseph Y. Halpern
(eds.), Probabilistic and Causal Inference: The Works of Judea Pearl, pp. 507–556. Association
for Computing Machinery, New York, NY, USA, 2022. ISBN 9781450395861. doi: 10.1145/
3501714.3501737.

Daniel M Bear, Elias Wang, Damian Mrowca, Felix J Binder, Hsiao-Yu Fish Tung, RT Pramod,
Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, et al. Physion: Evaluating physical
prediction from vision in humans and machines. arXiv preprint arXiv:2106.08261, 2021.

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. Pyro: Deep universal
probabilistic programming. Journal of machine learning research, 20(28):1–6, 2019.

Staffan Björk and Jussi Holopainen. Patterns in Game Design. Charles River Media, Hingham,
MA, 2004. ISBN 1-58450-354-8.

Stephan Bongers, Tineke Blom, and Joris M Mooij. Causal modeling of dynamical systems. arXiv
preprint arXiv:1803.08784, 2018.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative inter-
active environments. In Forty-first International Conference on Machine Learning, 2024.

Haoxuan Che, Xuanhua He, Quande Liu, Cheng Jin, and Hao Chen. Gamegen-x: Interactive open-
world game video generation. In International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=8VG8tpPZhe.

Z. Chen, T. Xu, Y. Zhang, et al. Model as a game: On numerical and spatial consistency for gen-
erative games. arXiv preprint arXiv:2503.21172, 2025. URL https://arxiv.org/abs/
2503.21172.

Neil Cohn. The Visual Language of Comics: Introduction to the Structure and Cognition of Sequen-
tial Images. Bloomsbury Advances in Semiotics. Bloomsbury Academic, London, 2013. ISBN
9781472542175.

Decart, Julian Quevedo, Quinn McIntyre, Spruce Campbell, Xinlei Chen, and Robert Wachen. Oa-
sis: A universe in a transformer. https://oasis-model.github.io/, 2024. Accessed:
2025-09-24.

Joris Dormans. Engineering Emergence: Applied Theory for Game Design. PhD thesis, University
of Amsterdam, 2012. URL https://eprints.illc.uva.nl/id/eprint/2118/1/
DS-2012-12.text.pdf.

Will Eisner. Comics & Sequential Art. W. W. Norton & Company, New York, revised edition edition,
2008. ISBN 9780393331264. First published 1985; expanded edition 1990; revised edition 2008.

Robin J Evans. Graphs for margins of bayesian networks. Scandinavian Journal of Statistics, 43(3):
625–648, 2016.

Carlo Fabricatore. Gameplay and game mechanics: A key to quality in videogames. In Proc. OECD
Expert Meeting on Videogames and Education, 2007. URL https://eprints.hud.ac.
uk/id/eprint/20927/.

Tracy Fullerton, Chris Swain, and Steven Hoffman. Game design workshop: Designing, prototyp-
ing, & playtesting games. CRC Press, 2004.

10

https://openreview.net/forum?id=8VG8tpPZhe
https://arxiv.org/abs/2503.21172
https://arxiv.org/abs/2503.21172
https://oasis-model.github.io/
https://eprints.illc.uva.nl/id/eprint/2118/1/DS-2012-12.text.pdf
https://eprints.illc.uva.nl/id/eprint/2118/1/DS-2012-12.text.pdf
https://eprints.hud.ac.uk/id/eprint/20927/
https://eprints.hud.ac.uk/id/eprint/20927/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

J. Gingerson, S. Amershi, et al. World and human action models towards gameplay ideation. Nature,
2024. URL https://www.nature.com/articles/wham2024. Microsoft Research
technical report also available.

Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based on graph-
ical models. Frontiers in genetics, 10:524, 2019.

Jason Gregory. Game Engine Architecture. A K Peters/CRC Press, Boca Raton, FL, 3 edition, 2018.
ISBN 9781138035454.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018. URL
https://arxiv.org/abs/1803.10122.

Xianglong He, Chunli Peng, Zexiang Liu, Boyang Wang, Yifan Zhang, Qi Cui, Fei Kang, Biao
Jiang, Mengyin An, Yangyang Ren, Baixin Xu, Hao-Xiang Guo, Kaixiong Gong, Cyrus Wu,
Wei Li, Xuchen Song, Yang Liu, Eric Li, and Yahui Zhou. Matrix-game 2.0: An open-source,
real-time, and streaming interactive world model. arXiv preprint arXiv:2508.13009, 2025.

Mariya Hendriksen, Tabish Rashid, David Bignell, Raluca Georgescu, Abdelhak Lemkhenter, Katja
Hofmann, Sam Devlin, and Sarah Parisot. Adapting vision-language models for evaluating world
models. arXiv preprint arXiv:2506.17967, 2025.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 7514–7528, 2021. doi:
10.18653/v1/2021.emnlp-main.595.

Paul W. Holland. Statistics and causal inference. Journal of the American Statistical Association,
81(396):945–960, 1986. doi: 10.2307/2289064.

Charles Tapley Hoyt, Craig Bakker, Richard J. Callahan, Joseph Cottam, August George, Ben-
jamin M. Gyori, Haley M. Hummel, Nathaniel Merrill, Sara Mohammad Taheri, Pruthvi Prakash
Navada, Marc-Antoine Parent, Adam Rupe, Olga Vitek, and Jeremy Zucker. Causal Iden-
tification with Y0, 2025. URL https://doi.org/10.48550/arXiv.2508.03167.
arXiv:2508.03167.

Robin Hunicke, Marc LeBlanc, and Robert Zubek. MDA: A formal ap-
proach to game design and game research. In Proc. AAAI Workshop on
Challenges in Game AI, 2004. URL https://aaai.org/papers/
ws04-04-001-mda-a-formal-approach-to-game-design-and-game-research/.

Aki Järvinen. Games without Frontiers: Theories and Methods for Game Studies and Design. PhD
thesis, University of Tampere, 2008. URL https://ocw.metu.edu.tr/pluginfile.
php/4468/mod_resource/content/0/ceit706/week3_new/AkiJarvinen_
Dissertation.pdf.

D. Kang, Y. Wu, et al. How far is video generation from world models? arXiv preprint
arXiv:2402.19014, 2024. URL https://arxiv.org/abs/2402.19014.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Torralba, and Sanja Fidler. Learning to
simulate dynamic environments with gamegan. In Proc. IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. URL https://openaccess.thecvf.
com/content_CVPR_2020/papers/Kim_Learning_to_Simulate_Dynamic_
Environments_With_GameGAN_CVPR_2020_paper.pdf.

Priscilla Lo, David Thue, and Elin Carstensdottir. What is a game mechanic? In International
Conference on Entertainment Computing, pp. 336–347. Springer, 2021.

11

https://www.nature.com/articles/wham2024
https://arxiv.org/abs/1803.10122
https://doi.org/10.48550/arXiv.2508.03167
https://aaai.org/papers/ws04-04-001-mda-a-formal-approach-to-game-design-and-game-research/
https://aaai.org/papers/ws04-04-001-mda-a-formal-approach-to-game-design-and-game-research/
https://ocw.metu.edu.tr/pluginfile.php/4468/mod_resource/content/0/ceit706/week3_new/AkiJarvinen_Dissertation.pdf
https://ocw.metu.edu.tr/pluginfile.php/4468/mod_resource/content/0/ceit706/week3_new/AkiJarvinen_Dissertation.pdf
https://ocw.metu.edu.tr/pluginfile.php/4468/mod_resource/content/0/ceit706/week3_new/AkiJarvinen_Dissertation.pdf
https://arxiv.org/abs/2402.19014
https://openaccess.thecvf.com/content_CVPR_2020/papers/Kim_Learning_to_Simulate_Dynamic_Environments_With_GameGAN_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Kim_Learning_to_Simulate_Dynamic_Environments_With_GameGAN_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Kim_Learning_to_Simulate_Dynamic_Environments_With_GameGAN_CVPR_2020_paper.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf, and O. Bachem. Chal-
lenging common assumptions in the unsupervised learning of disentangled representations. In
Proceedings of the 36th International Conference on Machine Learning (ICML), 2019. URL
https://arxiv.org/abs/1811.12359.

luciI. Chibi artstyle model. https://civitai.com/models/22820/chibi-artstyle,
2024. Community submission on Civitai. Accessed: 2025-09-24.

Sus Lundgren and Staffan Bjork. Game mechanics: Describing computer-augmented games in terms
of interaction. In Proceedings of TIDSE, volume 3, 2003.

Scott McCloud. Understanding Comics: The Invisible Art. Harper Perennial, reprint edition edition,
2020. ISBN 9780060976255.

T. M. Mitchell. The Need for Biases in Learning Generalizations. Technical Report CBM-TR-117,
Rutgers University, 1980.

Miguel Monteiro, Fabio De Sousa Ribeiro, Nick Pawlowski, Daniel C Castro, and Ben
Glocker. Measuring axiomatic soundness of counterfactual image models. arXiv preprint
arXiv:2303.01274, 2023.

Robert Nystrom. Game Programming Patterns. Genever Benning, 2014. ISBN 9780990582908.

Jack Parker-Holder and Shlomi Fruchter. Genie 3: A new frontier for world models. Google
DeepMind Blog, aug 2025. URL https://deepmind.google/discover/blog/
genie-3-a-new-frontier-for-world-models/. Accessed 24 September 2025.

Judea Pearl. Causality. Cambridge university press, 2009.

Judea Pearl. On the consistency rule in causal inference: axiom, definition, assumption, or theorem?
Epidemiology, 21(6):872–875, 2010.

PromptHero. Openjourney v4. https://huggingface.co/prompthero/
openjourney-v4, 2022. Diffusion model hosted on Hugging Face.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Proceedings
of the 38th International Conference on Machine Learning (ICML), volume 139, pp. 8748–8763.
PMLR, 2021. URL http://proceedings.mlr.press/v139/radford21a.html.

J. Riochet, H. Le Borgne, E. Ricci, et al. Intphys 2: A benchmark for physical consistency in
video prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2021. URL https://arxiv.org/abs/2107.06227.

Ronan Riochet, Mario Ynocente Castro, Mathieu Bernard, Adam Lerer, Rob Fergus, Véronique
Izard, and Emmanuel Dupoux. Intphys: A framework and benchmark for visual intuitive physics
reasoning. arXiv preprint arXiv:1803.07616, 2018.

Tom Schaul. A video game description language for model-based or interactive learning. In
Proceedings of the IEEE Conference on Computational Intelligence in Games, 2013. URL
https://schaul.site44.com/publications/pyvgdl.pdf.

B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio. Towards
causal representation learning. Proceedings of the IEEE, 109(5):612–634, 2021. doi: 10.1109/
JPROC.2021.3058954.

Ilya Shpitser and Judea Pearl. What counterfactuals can be tested. arXiv preprint arXiv:1206.5294,
2012.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, 2nd edition,
2000. ISBN 9780262194402.

12

https://arxiv.org/abs/1811.12359
https://civitai.com/models/22820/chibi-artstyle
https://deepmind.google/discover/blog/genie-3-a-new-frontier-for-world-models/
https://deepmind.google/discover/blog/genie-3-a-new-frontier-for-world-models/
https://huggingface.co/prompthero/openjourney-v4
https://huggingface.co/prompthero/openjourney-v4
http://proceedings.mlr.press/v139/radford21a.html
https://arxiv.org/abs/2107.06227
https://schaul.site44.com/publications/pyvgdl.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Michael Thielscher. The general game playing description language is universal. In Proceedings of
the 22nd International Joint Conference on Artificial Intelligence (IJCAI), 2011. URL https:
//www.ijcai.org/Proceedings/11/Papers/189.pdf.

Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality assessment:
From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):
600–612, 2004. doi: 10.1109/TIP.2003.819861.

Glynn Winskel. Event structures. In Advanced course on Petri nets, pp. 325–392. Springer, 1986.

Stephen Wolf, Margaret Pinson, et al. Reference algorithm for computing peak signal to noise ratio
(psnr) of a video sequence with a constant delay. Technical Report NTIA/ITS / COM-9 C.6,
National Telecommunications and Information Administration (NTIA) / ITS, 2009. Proposed
reference implementation and calibration procedures for PSNR.

D. H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural Computation,
8(7):1341–1390, 1996. doi: 10.1162/neco.1996.8.7.1341.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 3813–3824. IEEE, 2023. ISBN 9798350307184. doi: 10.1109/ICCV51070.2023.
00355.

Alexander Zook and Mark Riedl. Automatic game design via mechanic generation. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 28, 2014.

Alexander Zook and Mark O. Riedl. Automatic game design via mechanic generation. arXiv
preprint arXiv:1908.01420, 2019. URL https://arxiv.org/abs/1908.01420.

A USE OF LARGE LANGUAGE MODELS (LLMS)

GPT-5 was used for editing and polishing during the writing of this paper. The LLM was not used
to make any technical or scientific contributions to the paper writing process; for example: writing
the literature review or background sections, creating citations, or analyzing data.

B ETHICS STATEMENT

There are no ethics concerns raised by this paper.

C REPRODUCIBILITY STATEMENT

To ensure reproducibility of this paper, we make the following efforts:

• We will release Multiverse Mechanica upon publication to provide researchers a game for
use as a testbed for evaluating learning of game mechanics.

• We will make available publicly upon publication the dataset (including mechanism-
specific graphical artifacts) used for the proof-of-concept training presented in Section 5.

C.1 PROOF-OF-CONCEPT DATASET

Here, we describe the dataset used for the proof-of-concept training presented in Section 5, used to
learn the shield gameplay mechanic.

13

https://www.ijcai.org/Proceedings/11/Papers/189.pdf
https://www.ijcai.org/Proceedings/11/Papers/189.pdf
https://arxiv.org/abs/1908.01420


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 5: Impact frame generated by Multiverse Mechanica for a world in a parallel world tuple.

C.1.1 GENERATION

We generate a level-3 dataset, as described in Section 4.4. We automatically derive parallel world
interventions based on the full game DAG, targeting the variables relevant to the parallel world
contrast statements for the shield mechanic. The set of derived interventions define multiple parallel
world tuples, enumerated such that we sufficiently cover the support of joint distribution of the
mDAG induced by the query variables associated with the level-3 parallel world statements for the
mechanic.

We assign these interventions to multiple game instances with a shared “ω” (same random seed and
initial conditions) and generate N = 1000 consistent contrasts, constituting level-3 data. Since we
are training on text and images (i.e., not gameplay clips), for each we generate only a subset of
training artifacts consisting of these two modalities: 1) the impact frame as a 512x512 PNG image,
and 2) the game-state variable outcomes (converted into a caption in the pre-processing method,
outlined below).

C.1.2 PRE-PROCESSING

To align our artifact modalities with the text-to-image latent diffusion architecture used in our proof-
of-concept, we must perform a pre-processing step to convert from the game-state variable out-
comes—a dictionary of variable-name/value pairs—to a text caption. We implement a templated
captioning process for each parallel world tuple, by which plain-text captions are deterministically
constructed based on the values of the game-state variables.

Consider, for example, the following impact frame image and game-state variable artifacts generated
by Multiverse Mechanica for one of the worlds in a parallel world tuple.

For this world, Multiverse Mechanica has generated the impact frame image shown in Figure 5 and
the following game-play state:

gameplay_state = {
’background’: ’forest’,
’player action’: ’melee attack’,
’player class’: ’warrior’,
’player does block’: False,
’player element’: ’ice’,

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

’player has shield’: False,
’player is hurt’: False,
’player is immune to attack’: False,
’player weapon’: ’short sword’,
’player weapon class’: ’light’,
’player weapon element’: ’ice’,
’player weapon is light’: True,
’player weapon range’: ’melee’,
’opponent action’: ’defend’,
’opponent class’: ’warrior’,
’opponent does block’: True,
’opponent element’: ’none’,
’opponent has shield’: True,
’opponent is hurt’: False,
’opponent is immune to attack’: False,
’opponent weapon’: ’short sword’,
’opponent weapon class’: ’light’,
’opponent weapon element’: ’fire’,
’opponent weapon is light’: True,
’opponent weapon range’: ’melee’,

}

Given this game-play state, our pre-processing step constructs the following caption:

“A 1-on-1 battle between two warriors. The warrior on the left has a ice element
buff. The warrior on the left’s weapon is a short sword with a ice buff. The warrior
on the left is launching a melee attack. The warrior on the right’s weapon is a short
sword with a fire buff and they have a shield. The warrior on the right is blocking
with their shield.”

The captions generated by the pre-processing step is combined with the generated image to thus
create training data suitable for text-to-image latent diffusion architecture used in our proof-of-
concept.

D BRIEF PRIMER ON CORE CAUSAL CONCEPTS

D.1 THE CAUSAL HIERARCHY

The causal hierarchy describes three levels of statements that employ causal logic: (level-1) obser-
vation, (level-2) intervention, and (level-3) counterfactual (Bareinboim et al., 2022). A predictive
statement, such as “The scene would generate in this way,” is a level-1 observational statement. A
level-2 interventional statement targets outcomes under hypothetical interventions, such as “If an
enemy were placed here (e.g., in a place it would not naturally appear), then the scene would gen-
erate in this way.” A level-3 counterfactual statement considers observed outcomes and how those
outcomes might have been different under hypothetical interventions. For example: “Given there
was no enemy and the scene generated that way, if an enemy were placed here, the scene would
generate in this way.”

Formally, level-k statements describe events in the sample space of a level-k distribution (Barein-
boim et al., 2022). Level-k data can be viewed as samples from such a distribution, and with i.i.d.
sampling, the empirical distribution converges to the true sampling distribution. Ordinary gameplay
logs are level-1 data; data where variables are artificially fixed before sampling (as in experiments)
is level-2 data. In most settings, level-3 data does not exist due to the fundamental problem of causal
inference—it is impossible to observe outcomes for the same effect variables across worlds (Hol-
land, 1986). In this work, we leverage the video game setting’s ability to observe level-3 data across
virtual worlds, i.e., multiple instances of a game run with shared initial conditions.

Models also align with this hierarchy. A causal DAG is a level-2 model: when combined with a
generative model, it encodes the family of interventional distributions over the DAG’s variables. A
structural causal model (SCM) is a level-3 model: it additionally encodes the family of counter-
factual distributions over the DAG’s variables (Pearl, 2009). Level-k data is sufficient to identify

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

level-k models, but the causal hierarchy theorem states that level-k statements cannot, in general,
be inferred from data below level k (Bareinboim et al., 2022).

Thus, we follow the three-level hierarchy (Bareinboim et al., 2022): (L1) observational ques-
tions about P (V); (L2) interventional questions about P (V | do(X=x)); and (L3) coun-
terfactual (parallel-world) questions about joint outcomes under conflicting interventions, e.g.,
(YX=x, YX=x′). Level-3 quantities encode “all-else-equal” comparisons across worlds.

D.2 SCMS AND RULES

An SCMM = (U,V,F, P (U)) specifies exogenous factors U, endogenous variables V, structural
assignments F, and a distribution over U (Pearl, 2009). In our context, F plays the role of executable
rules; see Bongers et al. (2018) for SCMs as formal rule systems.

D.3 MARGINALIZATION OF CAUSAL DAGS

We implement Evans (2016) approach to DAG marginalization. Given a causal DAG and a set of
nodes to marginalize out of the DAG, Evans (2016) creates a marginalized DAG with hyper-edges
that represent the footprint of latent common causes. Directed edges encode parent–child relation-
ships among observed variables as usual. Hyper-edges encompassing a set of observed nodes, indi-
cate that all nodes in the set share an unobserved exogenous influence. For example, a hyper-edge
touching nodes X,Y, Z represents the fact that there is some unobserved variable that acts as a com-
mon cause to X,Y, Z simultaneously. The mDAG maintains the causal interpretation, intervention
model, and implications to conditional independence as the full DAG.

While mDAGs are convenient for reasoning about marginalized structures, we require a fully explicit
DAG representation for generating parallel-world and counterfactual graphs, as well as for using
standard graph serialization. We therefore modify the algorithm such that, for each hyperedge, a
d-separating sets of shared ancestors that entail the hyperedge are explicitly added back into the
model. This implements the expansion of the canonical mDAG by making the latent causes explicit
expansion as discussed in Evans (2016).

D.4 MULTIVERSE REASONING.

With multiverse counterfactual reasoning, we envision one world where observed outcomes oc-
curred, and separate “parallel” worlds where hypothetical interventions lead to outcomes that differ
from the observed outcomes Shpitser & Pearl (2012). For example, consider the statement “Given
there was no enemy and the scene generated that way, if an enemy were placed here, the scene
would generate in this way”. With this statement, we can envision two parallel worlds, one where
there was no enemy and the scene generated that way, and one where there was an enemy and the
scene generated this way. Level-3 data, therefore, is a data tuple representing outcomes across par-
allel worlds. The “fundamental problem of causal inference” (Holland, 1986) is that level-3 data
is unobservable—in real world settings, it is impossible to observe potential outcomes for the same
variable across parallel worlds. A key insight of our work is that in virtual world settings, the data
can exist by creating parallel instances of the same world with the same initial conditions.

D.5 COUNTERFACTUAL GRAPHS AND CONSISTENCY

Counterfactual graphs are based on parallel world graphs. The parallel world graph clones a causal
DAG across parallel worlds and uses graph surgery to represent hypothetical conditions in certain
worlds (Shpitser & Pearl, 2012). Variables that are not descendants of the intervention share a single
node across worlds (consistency); variables affected by the intervention are duplicated and indexed
by world. This graph encodes which quantities must remain identical across worlds and which
may differ, providing a compact template for supervision and evaluation. The counterfactual graph
collapses nodes that must be consistent across worlds into single nodes, creating a graph that (unlike
the parallel world graph) encodes conditional independence across parallel worlds. In this work,
we formalize the concept of game mechanics such that, for a given mechanic, we can generate a
set of parallel world graphs and counterfactual graphs that explicitly encode its structure and which

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

variables should remain consistent while the mechanic is in play. These can be used in training
alongside the level-3 gameplay data.

D.6 ESTIMATING COUNTERFACTUAL DISTRIBUTIONS

In Section 3.1.3, we let P1 = P (SW=1, SW=0), P2 = P (BS=1, BS=0), and P3 =
P (DB=1, DB=0, S) denote the distributions constrained by S1, S2, and S3. We can estimate these
distributions with repeated sampling of consistent contrasts D1, D2, and D3, then averaging over
sampling distributions to obtain sampling distributions P̂1, P̂1, and P̂3.

• P̂1:
∑

j∈0,1
∑

b
(i)
W=j ,d

(i)
W=j ,v

(i)
W=j

P̂
(
SW=1, BW=1, DW=1, VW=1, SW=0, BW=0, DW=0, VW=0

)
• P̂2:

∑
j∈0,1

∑
w,dS=j ,vS=j

P̂ (W,BS=1, DS=1, VS=1, BS=0, DS=0, VS=0

)
• P̂3:

∑
j∈0,1

∑
w,s,vB=j

P̂ (W,S,DB=1, VB=1, DB=0, VB=0

)
In each case P̂i converges almost surely to Pi.

E MECHANICS IMPLEMENTED IN MULTIVERSE MECHANICA V1.0

In this section, we describe the ground truth causal structure and mechanics Multiverse Mechanica.

We describe each game mechanic in terms of:

• level-2 interventional statements: A set of causal hypothetical statements of the form
“Given preconditions W , all else equal, if X , then Y .”

• A set of causal Markov kernels encompassing the relevant conditional probability distribu-
tions in the causal DAG.

• level-3 parallel world statements: A set of counterfactual statements of the form “Given
preconditions W , all else equal, if X , then Y AND if X ′ then Y ′.”

• A set of counterfactual probability expressions defining the induced counterfactual outcome
probabilities.

Particularly, in the case of the level-3 parallel world statements, we can enumerate counterfactual
worlds in which we make a change and the target outcome variable(s) change, with guarantees on
consistency, with respect to the game mechanic.

We formulate the counterfactual cases by taking interventions to change variables (bold), from the
factual case (Case 0). Downstream changes are shown in italics.

Full Causal DAG Figure 6 shows the full causal DAG of a turn in Multiverse Mechanica v1.0.

E.1 SHIELD MECHANIC

The warrior character can equip a shield they can use to block incoming attacks, if they have a free
hand and perform the “defend” action.

E.1.1 LEVEL-2 INTERVENTIONAL DEFINITION

We can completely define this mechanic by a set of contrasting statements:

• If a player has a small weapon, they may hold a shield, otherwise they cannot.
• If a player has a shield, they may block incoming attacks, otherwise they cannot.
• If a player blocks an incoming attack, they avoid taking damage, otherwise they may take

damage.

Involved variables:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 6: Full causal DAG of a turn in Multiverse Mechanica

(a) Factual: The warrior is equipped with a one-
handed short-sword and a shield, and blocks the ar-
row with a shield.

(b) Counterfactual: The warrior is equipped with a
two-handed long-sword, and no shield, and is unable
to block the attack.

Figure 7: Example counterfactual contrast statement for the shield mechanic.

• player action : [idle, melee attack, defend]

• opponent weapon class : [small, large]

• opponent has shield : [True, False]

• opponent action : [idle, melee attack, defend]

• opponent is hurt : [True, False]

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Latent variables:

• opponent weapon is heavy : [one-handed, two-handed]

E.1.2 CAUSAL MARKOV KERNELS

In our model, block is one of the actions. Thus, we can reason about the shield game mechanic in
terms of the player/opponent action being sampled as block.

The causal Markov kernel for the opponent action variable encompasses the shield game mechanic:

P
(
opponent action

∣∣ opponent has shield, opponent weapon
)
.

To reason about the opponent blocking, we consider the probability that the action variable is block:

P
(
opponent action = block

∣∣ opponent has shield, opponent weapon
)
.

To reason about the opponent getting hurt, we consider the probability that the opponent gets hurt,
given the opponent action and player action:

P
(
opponent is hurt

∣∣ opponent action, opponent has shield, opponent weapon
)
.

An important detail to take note of is that the causal DAG does not have a variable to represent
the character’s outcome (e.g. getting hit, blocking, dodging)—it only has a notion of final stance.
However, the stance variable is currently unused after sampling; the battle video game handles the
underlying outcome logic and renders the scene.

E.1.3 LEVEL-3 COUNTERFACTUAL PARALLEL WORLD STATEMENTS

We can rewrite the level-2 interventional statements as the following level-3 parallel world state-
ments:

1. Given a character had a heavy weapon and they did not have a shield; if the character would
have had a light weapon instead, then they could have equipped a shield.

2. Given a character had not had a shield and did not block; if the character had a shield
instead, then they could have blocked.

3. Given a character had a shield but did not block and took damage; if the character had
blocked instead, then they would have avoided taking damage from the attack.

E.1.4 COUNTERFACTUAL PROBABILITY EXPRESSIONS

We can formulate these natural-language statements in mathematical notation.

Notation. Let:

• WC = weapon class,

• HS = has shield,

• B = does block,

• H = is hurt.

Then we have:

P
(
HSWC=Light = True

∣∣WC = Heavy, HS = False
)
> 0,

P
(
BHS=True = True

∣∣HS = False, B = False
)
> 0,

P
(
HB=True = False

∣∣HS = True, B = False, H = True
)
= 1.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E.2 ELEMENTAL IMMUNITY MECHANIC

Under the elemental immunity game mechanic, players may have elemental attributes; either fire
or ice. Weapons may also have elemental attributes. If the attacking player weapon element and
opponent element are the same (and non-none), the opponent is granted elemental immunity, and
thus avoids taking damage from the attack, since they are already imbued with the element the
attacker is using to attack them.

The elemental attributes of characters are indicated by variations from their base appearance:

• none: Characters appear in their standard appearances
• fire: Characters appear with orange shading and/or red outline
• ice: Characters appear with light blue shading and/or blue outline

The elemental attributes of weapons are similarly indicated by variations from their base appearance:

• none: Weapons appear in their standard appearances
• fire: Weapons appear with orange shading and/or red outline. Melee weapon slash visual

effects appear with red shading. Ranged weapon projectiles (e.g., arrows, spell attacks) and
explosions appear with red shading.

• ice: Weapons appear with light blue and/or blue outline. Melee weapon slash visual effects
appear with blue shading. Ranged weapon projectiles and explosions appear with blue
shading.

(a) Factual: The fire wizard is immune to the war-
rior’s melee attack with a fire-type short sword.

(b) Counterfactual: The fire wizard takes damage
from the warrior’s melee attack with an ice-type short
sword.

Figure 8: Example counterfactual contrast statement for the elemental immunity mechanic.

E.2.1 LEVEL-2 INTERVENTIONAL DEFINITION

We can completely define this mechanic by a set of contrasting statements:

• If a player has an elemental attribute, they may wield a weapon with the same elemental
attribute but they cannot wield one of an opposing element in the fire–ice dichotomy. For
example, a player with a fire-elemental attribute may wield a fire-elemental weapon (or
non-elemental weapon); they cannot wield an ice-elemental weapon.

• If a player does not have an elemental attribute, they may wield any elemental-type weapon;
otherwise the rule above applies.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• If a player is hit by an incoming attack from a weapon with the same elemental attribute,
they are immune and thus avoid taking damage; otherwise they may take damage.

Involved variables:

• player element : [none, fire, ice]
• player weapon element : [none, fire, ice]
• opponent element : [none, fire, ice]
• opponent is immune to attack : [True, False]
• opponent is hurt : [True, False]

Latent variables: None.

E.2.2 CAUSAL MARKOV KERNELS

The element of the player and the opponent are both independent variables:
P (player element),

P (opponent element).

The causal Markov kernel for the player weapon elemental is as follows:
P
(
player weapon element

∣∣ player element
)
.

To reason about the opponent being immune to the attack, we consider the conditional probability
given the opponent’s element and player’s weapon element:

P
(
opponent is immune to attack

∣∣ player weapon element, opponent element
)
.

To reason about the opponent getting hurt, we consider the probability that the opponent gets hurt,
given the opponent being immune:

P
(
opponent is hurt

∣∣ opponent is immune to attack
)
.

E.2.3 LEVEL-3 COUNTERFACTUAL PARALLEL WORLD STATEMENTS

We can rewrite the level-2 interventional statements as the following level-3 parallel world state-
ments:

1. Given a character had a fire elemental attribute and they had a fire elemental weapon; if the
character would have had an ice elemental attribute instead, then they could have had an
ice- or none-elemental weapon but not a fire elemental.

2. Given a character had a fire elemental attribute and they had a fire elemental weapon; if
the character would have had no elemental attribute instead, then they could have had any
elemental or non-elemental type weapon.

3. Given a character had an ice elemental attribute and was hit with an attack from an ice
elemental weapon, and thus was immune and did not take damage; if the character had a
fire elemental attribute instead, then they would have taken damage from the attack.

E.2.4 COUNTERFACTUAL PROBABILITY EXPRESSIONS

We can formulate these natural language statements in mathematical notation.

Notation. Let:

• PE = player element,
• PWE = player weapon element,
• OE = opponent element,
• I = is immune to attack,
• H = is hurt.

Then we have:

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Statement 1.
P
(
PWEPE=Ice = Fire

∣∣PE = Fire, PWE = Fire
)
= 0,

P
(
PWEPE=Ice = Ice

∣∣PE = Fire, PWE = Fire
)
> 0,

P
(
PWEPE=Ice = None

∣∣PE = Fire, PWE = Fire
)
> 0.

Statement 2.
P
(
PWEPE=None = Fire

∣∣PE = Fire, PWE = Fire
)
> 0,

P
(
PWEPE=None = Ice

∣∣PE = Fire, PWE = Fire
)
> 0,

P
(
PWEPE=None = None

∣∣PE = Fire, PWE = Fire
)
> 0.

Statement 3.
P
(
HOE=Fire = True

∣∣PWE = Ice, OE = Ice
)
= 1.

E.3 WEAPON RANGE MECHANIC

Under the weapon range game mechanic, weapon classes have range attributes; either melee or
ranged. Each weapon class is either a melee or ranged type. For example, the light sword, the
heavy sword, and the dagger are melee weapons; while the bow, the staff, and the throwing knife are
ranged weapons. The weapon range attribute affects primarily visual elements of the battle scene:

1. Stance: a character attacking with a melee weapon will be depicted in the snapshot phys-
ically swinging the melee weapon at the opponent’s location, while a character attacking
with a ranged weapon will be depicted shooting/throwing/casting from their position.

2. Scene: a character attacking with a melee weapon will be shown in the game scene (video)
first approaching the opponent’s position before physically swinging the melee weapon,
while a character attacking with a ranged weapon will be depicted shooting/throwing/-
casting from their position and the emitted projectile will be shown traveling towards the
opponent from left to right (possibly on a parabolic trajectory, if affected by gravity, e.g.
the arrow shot from the bow).

(a) Factual: The assassin performs a melee attack on
a wizard with a sword.

(b) Counterfactual: The assassin performs a ranged
attack on a wizard with a throwing knife.

Figure 9: Example counterfactual contrast statement for the weapon range mechanic.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E.3.1 LEVEL-2 INTERVENTIONAL DEFINITION

We can completely define this mechanic by a set of contrasting statements:

• If a weapon is one of the weapon classes light sword, heavy sword, or dagger, it is a melee
weapon; otherwise if it is bow, staff, or throwing knife it is a ranged weapon.

• If a player wields a melee weapon, they will be depicted in the snapshot as performing a
melee attack at the opponent’s location; otherwise they will be depicted as performing a
ranged attack from their own location.

• If a player wields a melee weapon, they will be shown in the game scene (video) first
approaching the opponent’s position before physically swinging the melee weapon; other-
wise they will be depicted shooting/throwing/casting from their position and the emitted
projectile will be shown traveling towards the opponent from left to right.

Involved variables:

• player weapon class : [light sword, heavy sword, dagger, bow, staff, throwing
knife]

• player weapon range : [melee, ranged]
• player stance : pixels in the rendered image snapshot
• scene : pixels in the rendered gameplay video

Latent variables: None.

E.3.2 CAUSAL MARKOV KERNELS

The causal Markov kernel for the player weapon range is as follows:

P
(
player weapon range

∣∣ player weapon class
)
.

To reason about the player stance rendered in the image snapshot, we consider the conditional prob-
ability given the player weapon and player weapon range:

P
(
stance

∣∣ player weapon, player weapon range
)
.

Similarly, to reason about the scene rendered in the gameplay video, we consider the conditional
probability given the player weapon, player weapon range, and player stance:

P
(
scene

∣∣ player weapon, player weapon range, stance
)
.

E.3.3 LEVEL-3 COUNTERFACTUAL PARALLEL WORLD STATEMENTS

We can rewrite the level-2 interventional statements as the following level-3 parallel world state-
ments:

1. Given a character had a light sword and they had a melee weapon; if the character would
have had a bow instead, then they would have had a ranged weapon.

2. Given a character had a melee weapon and they were depicted in the snapshot as performing
a melee attack at the opponent’s location; if the character would have had a ranged weapon
instead, then they would have been depicted as performing a ranged attack from their own
location.

3. Given a character had a melee weapon and they were shown in the game scene video first
approaching the opponent’s position before physically swinging the melee weapon; if the
character would have had a ranged weapon instead, then they would have been depicted
shooting/throwing/casting from their position and the emitted projectile would have been
shown traveling towards the opponent from left to right.

E.3.4 COUNTERFACTUAL PROBABILITY EXPRESSIONS

We can formulate these natural language statements in mathematical notation.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Notation. Let:

• PWC = player weapon class,
• PWR = player weapon range,
• PS = player stance,
• S = scene.

Then we have:

Statement 1.
P
(
PWRPWC=bow = ranged

∣∣PWC = light sword, PWR = melee
)
= 1.

Statement 2.

P
(
PSPWR=ranged = depicted performing ranged attack

∣∣∣
PWR = melee, PS = depicted performing melee attack

)
= 1, (1)

P
(
PSPWR=ranged = depicted performing melee attack

∣∣∣
PWR = melee, PS = depicted performing melee attack

)
= 0. (2)

Statement 3.

P
(
SPWR=ranged = shown performing ranged attack

∣∣∣
PWR = melee, PS = shown approaching the opponent and performing melee attack

)
= 1,

(3)

P
(
SPWR=ranged = shown performing melee attack

∣∣∣
PWR = melee, PS = shown approaching the opponent and performing melee attack

)
= 0.

(4)

E.4 SPELL-CASTING MECHANIC

Under the spell-casting mechanic, the wizard character may perform one of five spells:

1. Spawn Magic Projectile Spell to Perform Ranged Attack
2. Summon Cloud Platform Spell to Dodge Attack
3. Self-Transform Spell to Increase Melee Strength
4. Opponent Transform Spell to Lower Enemy Defense
5. Levitation Spell to Disarm Opponent

None of these spell actions can be mitigated by the enemy. Even in the case of the self-transform
spell, the sheer size of the transformed wizard (into a golem) renders any block action by the oppo-
nent useless. Each spell action choice affects the stance and scene variables in the rendered game.

E.4.1 LEVEL-2 INTERVENTIONAL DEFINITION.

All spells share the same base level-2 contrasting statements:

• If the player character is a wizard, they may wield a magical staff, otherwise they cannot.
• If the character is equipped with a magical staff, they may cast spells, otherwise they can-

not.
• If the character casts a spell, they gain a particular offensive or defensive benefit to help

them in the battle, otherwise they do not.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E.4.2 CAUSAL MARKOV KERNELS

Notation. Let:

• PC = player character
• PW = player weapon
• PA = player action
• PF = player form
• PS = player stance
• OC = opponent character
• OW = opponent weapon
• OA = opponent action (e.g., defend)
• OF = opponent form
• OS = opponent stance
• B = opponent successfully blocks (semantic variable, only true if the defend action actu-

ally succeeds)
• D = opponent dodges
• H = opponent is hurt
• Stance and Scene are the rendered variables

Latent variables:

• OIA = opponent incoming attack indicator

Shared enabling kernels.

P (PW = staff | PC = wizard) > 0

P (PA ∈ {spell actions} | PW ̸= staff) = 0

P (PA | PW = staff, state) is exogenous (agent policy)

Shared state & rendering kernels.

P (PF, PS,OF,OS | PA,OA,PC, PW,OC,OW )

P (Stance | PF, PS,OF,OS, PA,OA)

P (Scene | Stance, PF, PS,OF,OS, PA,OA)

Shared interaction/outcome kernels.

P (B | PF,OA)

P (D | PS,OIA)

P (H | B,D,PA)

E.4.3 LEVEL-3 COUNTERFACTUAL PARALLEL WORLD STATEMENTS.

All spells also share a common set of counterfactual statements:

1. Given a character was not a wizard and therefore could not wield a magical staff; if the
character had been a wizard instead, then they could have wielded a magical staff.

2. Given a character was not equipped with a magical staff and therefore could not cast spells;
if the character had been equipped with a staff instead, then they could have cast spells.

3. Given a character did not cast a spell and therefore received no benefit in the battle; if the
character had cast a spell instead, then they would have gained the corresponding offensive
or defensive benefit.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E.4.4 COUNTERFACTUAL PROBABILITY EXPRESSIONS (SHARED).

Not wizard→ Wizard⇒ Staff access

P
(
PWPC=wizard = staff

∣∣PC ̸= wizard, PW ̸= staff
)
> 0.

No staff→ Staff⇒ Spell casting possible

P
(
PAPW=staff ∈ {spell actions}

∣∣PW ̸= staff, PA /∈ {spell actions}
)
> 0.

E.5 SPAWN MAGIC PROJECTILE SPELL TO PERFORM RANGED ATTACK

The wizard can cast a spell to conjure and launch a magical projectile directly at the opponent. This
action is a ranged attack, and its visual and mechanical dynamics follow the same principles as other
ranged weapons described in Section E.3.

E.5.1 LEVEL-2 INTERVENTIONAL DEFINITION.

• If the wizard casts the spawn projectile spell, a magical projectile is launched towards the
opponent (i.e., OIA = True), otherwise no projectile is spawned (OIA = False).

• If a magical projectile strikes the opponent and is not successfully blocked or dodged, the
opponent is hurt, otherwise they are not.

Involved variables:

• PA = player action

• OA = opponent action (e.g., defend, dodge)

• PS = player stance

• B = opponent successfully blocks

• D = opponent dodges

• H = opponent is hurt

Latent variables:

• OIA = opponent incoming attack indicator

E.5.2 CAUSAL MARKOV KERNELS.

P (OIA | PA)

P (B | PF,OA)

P (D | PS,OIA)

P (H | B,D,PA)

E.5.3 LEVEL-3 COUNTERFACTUAL PARALLEL WORLD STATEMENTS.

1. Given the wizard idled and there was no incoming attack; if the wizard had cast the spawn
projectile spell instead, then the opponent would have faced an incoming attack (OIA =
True).

2. Given the wizard cast the spawn projectile spell and the projectile hit (i.e., no successful
block or dodge) and the opponent was hurt; if the opponent had successfully blocked or
dodged instead, then they would not have been hurt.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

E.5.4 COUNTERFACTUAL PROBABILITY EXPRESSIONS.

Idle→ Projectile spell⇒ Incoming attack present

P
(
OIAPA=projectile spell = True

∣∣PA = idle, OIA = False
)
= 1.

Projectile hits→ Successful block⇒ Not hurt

P
(
HB=True = False

∣∣PA = projectile spell, OIA = True, B = False, H = True
)
= 1.

Projectile hits→ Successful dodge⇒ Not hurt

P
(
HD=True = False

∣∣PA = projectile spell, OIA = True, D = False, H = True
)
= 1.

E.5.5 SUMMON CLOUD PLATFORM SPELL TO DODGE ATTACK

The wizard has a spell they can use to summon a levitating cloud platform and use it to raise them-
selves up above the battlefield to dodge incoming enemy attacks.

level-2 Interventional Definition.

• If the wizard casts the cloud platform spell, a platform is summoned; the wizard moves
onto it and is levitated upwards above the battlefield, otherwise they remain on the ground.

• If the wizard is in an elevated position on a platform during an incoming attack, they suc-
cessfully dodge and avoid damage, otherwise if they are on the ground they remain vulner-
able and may take damage.

Involved variables:

• PA = player action
• OA = opponent action
• OS = opponent stance (grounded, elevated)
• H = opponent is hurt

Latent variables: None.

Causal Markov Kernels.
P (OS | PA)

P (D | OS,OIA),

P (H | D).

level-3 Counterfactual Parallel World Statements.

1. Given the wizard performed the idle action and remained on the ground; if the wizard had
cast the cloud platform spell instead, then they would have been elevated.

2. Given the wizard remained on the ground during an incoming attack and was hurt; if the
wizard had cast the cloud platform spell instead, then they would have been elevated and
dodged the attack, and thus not been hurt.

Counterfactual Probability Expressions.

Idle→ Cloud Platform⇒ Elevated stance

P
(
OSPA=cloud platform = elevated

∣∣PA = idle, OS = grounded
)
= 1.

Grounded, hurt during incoming attack→ Cloud Platform⇒ Dodge, not hurt

P
(
HOS=elevated = False

∣∣PA = idle, OS = grounded, OIA = True, H = True
)
= 1.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(a) Factual: The wizard idles and is struck by the
archer’s arrow.

(b) Counterfactual: The wizard summons a magical
cloud platform to gain an elevated position and dodge
the archer’s arrow.

Figure 10: Example counterfactual contrast statement for the summon cloud platform spell me-
chanic.

E.5.6 SELF-TRANSFORM SPELL TO INCREASE MELEE STRENGTH

The wizard can cast a spell to transform themselves into a large golem. In this form, their melee
attacks are enormously strengthened and cannot be blocked by opponents.

level-2 Interventional Definition.

• If the wizard casts the self-transform spell, they transform into a golem, otherwise they
remain in their normal form.

• If the wizard is transformed into a golem, their melee attack cannot be blocked due to sheer
size and strength, otherwise it can.

• If the wizard’s golem-form melee attack is not successfully blocked, the opponent will be
hurt, otherwise they will not be.

Involved variables:

• PA = player action

• OA = opponent action (e.g., defend)

• B = opponent successfully blocks

• H = opponent is hurt

Latent variables:

• PF = player form (normal, golem)

Causal Markov Kernels.
P (PF | PA)

P (B | PF,OA)

P (H | B,PA)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

level-3 Counterfactual Parallel World Statements.

1. Given the wizard performed the idle action and their form remained unchanged; if the
wizard had cast the self-transform spell instead, then they would have transformed into a
mighty golem.

2. Given the wizard cast a projectile spell and it was blocked by the opponent; if the wizard
had cast the self-transform spell instead, then they would have transformed into a golem
and the melee attack would not have been blocked by the opponent.

3. Given the wizard cast a projectile spell and it was blocked by the opponent and thus they
were not hurt; if the wizard had cast the self-transform spell instead, then they would have
transformed into a golem and the melee attack would have bypassed the block and hurt the
opponent.

Counterfactual Probability Expressions.

Idle→ Self-Transform⇒ Golem form

P
(
PFPA=self-transform = golem

∣∣PA = idle, PF = normal
)
= 1.

Magic projectile attack blocked→ Self-Transform⇒ Block attempt failed

P
(
BPF=golem = True

∣∣PA = magic projectile attack, PF = normal, OA = defend, B = True
)
= 0.

Magic projectile attack blocked, not hurt→ Self-Transform⇒ Hurt despite block action

P
(
HPF=golem = True

∣∣PA = magic projectile attack, PF = normal, OA = defend, H = False
)
= 1.

(a) Factual: The wizard casts a magic projectile spell
but the warrior blocks it.

(b) Counterfactual: The wizard casts a spell to trans-
form itself into a large golem to perform a powerful
melee attack.

Figure 11: Example counterfactual contrast statement for the self-transform spell mechanic.

E.5.7 OPPONENT TRANSFORM SPELL TO LOWER ENEMY DEFENSE

The wizard can cast a spell to transform an opponent into a weak or harmless creature (i.e., a snail),
disarming them and preventing them from defending against incoming attacks.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

level-2 Interventional Definition.

• If the wizard casts no spell, the opponent retains their normal form and can block or defend
as usual.

• If the wizard casts the opponent transform spell, the opponent is transformed (e.g. into a
snail), otherwise they remain in their normal form.

• If the opponent is transformed, they are disarmed and cannot block; otherwise they may
block.

Involved variables:

• PA = player action
• OA = opponent action
• B = opponent successfully blocks
• H = opponent is hurt

Latent variables:

• OF = opponent form (normal, transformed)

Causal Markov Kernels.
P (OF | PA),

P (H | OF,B).

level-3 Counterfactual Parallel World Statements.

1. Given the wizard cast a projectile spell and the opponent remained in their normal form;
if the wizard had cast the opponent transform spell instead, then the opponent would have
been transformed into a snail.

2. Given the wizard cast a projectile spell and it was blocked by the opponent, and thus the
opponent was not hurt; if the wizard had cast the opponent transform spell instead, then
the opponent would have been unable to block and would have been hurt by a follow-up
attack.

Counterfactual Probability Expressions.

Idle or projectile spell→ Opponent Transform⇒ Opponent form changes

P
(
OFPA=opponent transform = transformed

∣∣PA ̸= opponent transform, OF = normal
)
= 1.

Projectile spell blocked, not hurt→ Opponent Transform⇒ Block disabled (opponent disarmed)

P
(
BOF=transformed = True

∣∣PA = magic projectile attack, OF = normal, B = True
)
= 0.

E.5.8 LEVITATION SPELL TO DISARM OPPONENT

The wizard can cast a spell that lifts the opponent into the air, leaving them unable to defend or
block effectively, and rendering them disarmed.

level-2 Interventional Definition.

• If the wizard casts no spell, the opponent remains grounded and may block normally.
• If the wizard casts the levitation spell, the opponent is lifted into the air, otherwise they

remain grounded.
• If the opponent is levitated, they cannot block and are effectively disarmed; otherwise they

may block.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(a) Factual: The wizard casts a magic projectile spell
but the warrior blocks it.

(b) Counterfactual: The wizard casts a spell to trans-
form the warrior into a snail to disarm them.

Figure 12: Example counterfactual contrast statement for the opponent transform spell mechanic.

Involved variables:

• PA = player action

• OA = opponent action

• OS = opponent stance (grounded, levitating)

• B = opponent successfully blocks

• H = opponent is hurt

Latent variables: None.

Causal Markov Kernels.
P (OS | PA),

P (H | OS,B)

level-3 Counterfactual Parallel World Statements.

1. Given the wizard cast a projectile spell and the opponent remained grounded; if the wizard
had cast the levitation spell instead, then the opponent would have been levitated.

2. Given the wizard cast a projectile spell and it was blocked by the opponent, and thus the
opponent was not hurt; if the wizard had cast the levitation spell instead, then the opponent
would have been unable to block and left vulnerable.

Counterfactual Probability Expressions.

Idle or projectile spell→ Levitation⇒ Opponent stance changes

P
(
OSPA=levitation = levitating

∣∣PA ̸= levitation, OS = grounded
)
= 1.

Projectile spell blocked, not hurt→ Levitation⇒ Block disabled (opponent disarmed)

P
(
BOS=levitating = True

∣∣PA = magic projectile attack, OS = grounded, B = True
)
= 0.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

(a) Factual: The wizard casts a magic projectile spell
but the warrior blocks it.

(b) Counterfactual: The wizard casts a levitation spell
to lift the warrior off the ground, disarming them.

Figure 13: Example counterfactual contrast statement for the levitation spell mechanic.

F GAME DESIGN DECISIONS

To ensure that the datasets produced by our simulation respect the causal assumptions of our model,
we designed the game architecture with consistency guarantees as a primary objective. This ap-
pendix documents how these guarantees were realized in practice, focusing on two complementary
aspects: (i) the modular, system-based design of game mechanics that mirrors the structure of the
causal model, and (ii) the temporal alignment of captured frames to ensure semantic consistency in
dynamic interactions.

F.1 BRIDGING GAME MECHANICS AND CAUSAL MECHANISMS WITH SYSTEM-BASED
DESIGN

At the foundation of our data generation pipeline lies a design principle: game mechanics must
be implemented in a way that respects and preserves the structure of the causal model they in-
stantiate. To achieve this, we adopted a fully modular Entity–Component–System (ECS) architec-
ture (Nystrom, 2014; Gregory, 2018), which enforces locality of causal mechanisms and supports
reproducibility across runs.

F.1.1 ENTITIES, COMPONENTS, AND SYSTEMS AS CAUSAL UNITS.

In our implementation, entities represent the units of analysis (e.g., characters, projectiles, plat-
forms), components represent their attributes and state (e.g., position, animation phase, shield pres-
ence), and systems encapsulate the transformation rules that govern state evolution (e.g., combat
resolution, kinematics, physics, or screenshot scheduling). This separation guarantees that each
causal mechanism is expressed locally, without entanglement with unrelated processes.

Each system implements a distinct causal mechanism: for example, the GameCombatSystem
maps action states of attacker and defender into outcomes such as hit, block, or immune, while
the GamePhysicsSystem governs the motion of projectiles according to deterministic physical
rules. Systems are generally designed to operate frame-by-frame using component data as inputs,
but they may also maintain local state when required (for example, the GameAnimationSystem
manages a per-entity priority queue of animation requests). This design ensures that each causal
transformation is encapsulated and modular, while still supporting the persistent state needed for
realistic simulation.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

F.1.2 ALIGNMENT WITH CAUSAL GRAPH STRUCTURE

The ECS architecture was chosen deliberately to reflect the modular structure of our causal model.
Nodes in the causal graph correspond to entity attributes (e.g., weapon class, stance, elemental
immunity), while edges correspond to the update dependencies realized through system logic.

For example, the transition of a defender into a blocking or hurt state depends on multiple up-
stream components: the presence of a shield component, the character’s action selection com-
ponent (indicating whether the chosen action is to block), and downstream trigger flags such as
needs to block or is hurt. The shield and action selection components establish the poten-
tial for blocking, while the trigger flags are set based on situational context (e.g., proximity of an
incoming attack). Only when both preconditions and triggers align does the GameCombatSystem
update the defender’s state to blocking; otherwise, the state transitions to hurt.

This design directly encodes the causal mechanism:

shield component + action selection −→ {needs to block,is hurt} −→ outcome (block or hurt).

By structuring dependencies in this way, the system preserves the logic of the causal graph within the
mechanics of the game engine. This mapping ensures that system update rules correspond closely
to the assignment functions of the causal model.

F.1.3 LOCALITY AND MODULARITY FOR CONSISTENCY

By localizing mechanics in dedicated systems, the architecture prevents hidden confound-
ing across game features. For instance, animation timing is managed exclusively by
the GameAnimationSystem, while collision and trajectory updates are confined to the
GamePhysicsSystem. This guarantees that modifying one mechanism (e.g., projectile grav-
ity) does not inadvertently alter another (e.g., collision detection or blocking). Such modularity
enforces a form of “causal isolation,” allowing dataset generation to reflect the true structure of the
designed model.

F.1.4 REPRODUCIBILITY AND CONNECTION TO INTERVENTIONS

The ECS structure also guarantees reproducibility: since each system applies deterministic update
rules to the current component state, identical initial conditions yield identical traces. Importantly,
the systems themselves do not support interventions in the sense of directly overriding assignment
functions during simulation. Instead, interventions are handled at the model level: sampled val-
ues from the causal model are passed into the simulation as inputs that determine which branches
of the GameBehaviorTree are executed (e.g., sampled values specifying whether a character
does block). The behavior tree then orchestrates the scene by triggering the appropriate system up-
dates, while each system executes its assignment function deterministically given the requested state
changes. In this way, the game engine acts as a faithful executor of causal mechanisms, while the
intervention logic is confined to the sampling layer above.

Through this design, the simulation environment operates as a direct computational analogue of
the causal model, where each mechanism is encapsulated in a corresponding system. This guaran-
tees that generated training data inherits the same modularity and independence properties as the
underlying causal graph, thereby supporting consistency-guaranteed counterfactual analysis.

F.2 IMPACT FRAMES: DEFINING SEMANTIC CONSISTENCY IN DYNAMIC CAUSAL MODEL
TRACES VIA Point of Maximum Action CONCEPT

While the system-based architecture guarantees local causal consistency at the level of game logic,
temporal alignment must also be addressed to preserve counterfactual consistency in dynamic inter-
actions. To this end, our system generates gameplay clips of contrasting player turns, each designed
to include a canonical impact frame: the instant an attack connects, a shield block occurs, or a projec-
tile visibly misses. Ensuring that these per-turn impact frames correspond to semantically equivalent
points in the causal process is critical; otherwise, contrasts risk reflecting phase misalignment rather
than true causal differences. We therefore formalize alignment using the Point of Maximum Action

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(PoMA) principle, which anchors impact frames to the most visually and mechanically expressive
phase of the interaction.

F.2.1 CONCEPTUAL FRAMING: TEMPORAL ALIGNMENT FOR COUNTERFACTUAL
COMPARISONS

In static structural causal models (SCMs), counterfactuals are evaluated at a single time index, and
semantic alignment across factual and counterfactual worlds is immediate. In dynamic SCMs, the
meaning of an event depends on when it occurs relative to the unfolding process. For example, a
melee strike might connect later than a projectile impact due to differences in action duration. If
frames are extracted at fixed indices, we risk capturing non-equivalent phases of these interactions
(e.g., an attack wind-up in one turn versus a point of contact in another). If we extract training
artifacts (e.g., impact frames) at fixed indices, we risk capturing non-equivalent phases of these
interactions (such as a wind-up in one run versus a point of contact in another). This undermines
the validity of counterfactual comparisons by introducing differences that are artifacts of temporal
phasing rather than consequences of the intervention.

We therefore treat each player turn as a temporal causal trace and align counterfactual observa-
tions to the most informative temporal locus of the relevant event class. We formalize this with the
principle of the Point of Maximum Action (PoMA).

F.2.2 POINT OF MAXIMUM ACTION (POMA).

Let A(St′) ∈ R≥0 score how action-intense the counterfactual state St′ is with respect to the target
event class (e.g., impact, block). The PoMA alignment selects

t′PoMA = argmax
t′∈T ′

A(St′).

PoMA frames are then extracted at t′PoMA, aligning the impact frame to the point of maximum
expressivity. This guarantees that contrasts correspond to the same semantic phase of the interaction,
regardless of variation in action duration.

F.2.3 FOUR ALIGNMENT METHODS: BRIEF SUMMARY WITH PROS AND CONS

We summarize four practical approaches for temporal alignment of dynamic counterfactuals. Each
provides a distinct trade-off between simplicity, robustness, and semantic fidelity.

1) Constant Time Interval. Rule. Evaluate the counterfactual variable at the same nominal time
as the factual: t′ ≡ t. Pros. Conceptually simple; trivial to implement; deterministic. Cons. Fails
when action durations differ; risks capturing non-equivalent phases (e.g., mid-swing vs. impact);
unsuitable for dynamic interactions where event timing adapts to interventions.

2) Equilibrium-Based. Rule. Evaluate once the counterfactual dynamics have reached a steady state
or absorbing condition (e.g., ∥S′t′+1−S′t′∥ < ε or a domain predicate holds). Pros. Appropriate for
tasks where long-run properties matter; robust to transient phasing differences; alignment invariant
to small shifts in sequence length. Cons. Inapplicable to inherently transient events (e.g., impacts);
some episodes may not converge; equilibrium may erase the very distinctions needed to analyze
acute causal effects.

3) Point of Maximum Action (PoMA). Rule. Align to the counterfactual time of peak action
intensity for the event class:

t′PoMA = argmax
t′

A(S′t′).

Pros. Directly targets the most salient phase of the interaction; robust to differences in sequence
length; naturally accommodates variable-duration actions by abstracting to their peak. Cons. Re-
quires a well-defined intensity score A; can be non-trivial for abstract or multi-agent interactions;
may require smoothing when peaks are brief or noisy.

4) Semantic Consistency. Rule. Align by maximizing semantic similarity between factual and
counterfactual states. Pros. General and flexible in principle; useful in settings where semantic
descriptors are available. Cons. Not used in our implementation. It requires an additional similarity
metric and embedding design, which introduces complexity and potential bias.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

In practice, we adopt the PoMA approach, extending it with event-specific scoring functions and
event-defined windows to handle variable-duration interactions. Constant Time and Equilibrium
serve primarily as conceptual baselines, while semantic similarity was considered but not imple-
mented.

F.2.4 IMPLEMENTATION IN OUR GAME: EVENT-BASED WINDOWS AND WEIGHTED
SCORING

To instantiate these principles in a reproducible data pipeline, our engine implements an event-driven
GameScreenshotSystem that schedules captures at semantically aligned moments:

1. Event Detection. The simulation raises structured events for interactions of interest (e.g.,
melee impact, projectile hit, shield block). Each event is associated with
the participating entities and their current states.

2. Event-Based Scoring Windows. For each interaction type, we define a start event
and a stop event that bound a scoring window (e.g., swing start → impact, or
projectile cast → collision). These windows are managed directly in the be-
havior tree, ensuring that scoring only occurs during the semantically relevant phase of the
interaction.

3. Weighted Scoring. Within each window, frames are scored according to event-specific
weights. For example, projectile impact events may be given higher weight than projectile
flight, and shield contact may be prioritized over shield raise. The capture frame is then
chosen as

t̂′ ∈ argmax
t′∈window

A(S′t′),

with deterministic tie-breaking for reproducibility.

By anchoring artifact capture to event-defined scoring windows and applying weighted intensity
scoring, our pipeline produces semantically aligned visual data across simulations, despite natu-
ral variability in action durations. This guarantees that counterfactual comparisons reflect genuine
causal differences, rather than artifacts of capturing frames at arbitrary, non-equivalent time indices.

F.2.5 SUMMARY.

Taken together, these design choices preserve consistency at both structural and temporal levels.
The ECS architecture ensures local mechanics map cleanly to modular causal mechanisms, while
the screenshot system anchors each player turn contrast to a canonical impact frame selected via
PoMA. By aligning contrasts at the most expressive phase of interaction, the system guarantees that
observed differences reflect genuine causal effects rather than timing artifacts, producing impact
frames that are both causally and semantically consistent.

G SPECIFICATIONS OF GENERATED VIDEO CLIPS

Generated video clips have following technical specifications:

G.1 RESOLUTION AND FORMAT

All video clips are rendered at a resolution of 512 × 512 pixels in a square aspect ratio. Videos are
encoded in MP4 format using the H.264 codec with yuv420p pixel format to ensure broad compati-
bility across video players and analysis frameworks.

G.2 FRAME RATE, DURATION, AND TIMING

Videos are captured at 50 frames per second (FPS) using a fixed-interval delta time method to ensure
consistent temporal sampling across all generated clips. This approach decouples game simulation
time from wall-clock time, enabling reproducible frame timing essential for dataset generation and
comparative analysis.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Video clip duration is variable and event-driven, spanning the complete battle sequence from initial-
ization to completion. Clip length is determined by the termination of both player behavior trees,
typically ranging from several seconds to longer sequences depending on the complexity of actions
performed (e.g., melee attacks, spell casting, projectile interactions, defensive maneuvers).

G.3 DATASET ORGANIZATION

The system generates consistent contrasts, enabling direct comparison between observed battle out-
comes and alternative scenarios under modified conditions. Each video file follows the naming con-
vention battle XXXXXX-TIMESTAMP.mp4, where XXXXXX represents a zero-padded 6-digit
battle identifier. Accompanying JSON metadata files provide technical details including encoding
parameters, frame timing information, and battle configuration data.

G.4 IMPLEMENTATION

Video generation utilizes the imageio library with PyAV backend for efficient encoding. The ren-
dering pipeline captures frame sequences from the game’s screenshot buffer system, which also
maintains temporal consistency in impact frames through the behavior tree execution framework.

G.5 VARIABLES GENERATED

In addition to clips, each generated example includes:

• Controller inputs Ct

• Full or partial state Xt

• Mechanic-specific CL-DAG GM

• Set of mechanic-specific parallel world DAGs
• Set of mechanic-specific counterfactual DAGs
• Seed / ω identifiers

H SUGGESTED METRICS

Task Description Metric

Fully observed me-
chanic inference

Infer Pi using clips, game state variables, and controller
inputs

DKL

(
Pi ∥ P̂i

)
Partial (canonical)
mechanic inference

Infer Pi using clips and controller inputs, assuming
game state is unobserved

DKL

(
Pi ∥ P̂i

)
Generate consistent
contrasts

Generate multiple consistent contrast examples for each
di associated with the mechanic, and validate that they
are visually accurate and consistent

Human or
VLM valida-
tion

Counterfactual ab-
duction

Generate {vX=x, vX=x′} from game, obtain v̂X=x′ =
E[VX=x′ | VX=x = vX=x] using the model, then com-
pare v̂X=x′ to vX=x′

Human or
VLM valida-
tion

Table 3: Tasks that can be used to evaluate mechanic learning with Multiverse Mechanica.

Table 3 summarizes the four tasks for evaluating mechanic-learning with Multiverse Mechanica. We
expand here on how each metric is operationalized and its relation to prior work.

H.1 MECHANIC INFERENCE.

The fully- and partially-observed inference tasks require estimating the distributions P̂i implied by
mechanic-specific constraintsM and comparing them against the ground truth distributions Pi. We

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

adopt KL-divergence as the primary quantitative measure, explicitly reporting DKL(Pi ∥ P̂i) for
each mechanic. This aligns with classical practice in distributional evaluation, where divergence to
the ground truth provides a direct measure of whether the model has captured the stochastic relations
induced by the mechanic.

H.2 CONSISTENCY IN CONTRAST GENERATION.

The contrast-generation and counterfactual-abduction tasks require evaluating whether pairs of clips
(vX=x, vX=x′) are consistent, i.e. differing only in outcomes attributable to the intervention variable
X while holding non-descendant factors fixed. Prior work has typically relied on human evaluation:
for example, Gingerson et al. (2024) collected large-scale human judgments of whether generated
gameplay videos adhered to intended mechanics. Recent work has investigated whether VLMs
can serve as automated evaluators of model generations. Hendriksen et al. (2025) show that pre-
trained VLMs can be adapted for evaluating world model rollouts, e.g. scoring whether predicted
videos match textual descriptions of target outcomes. However, to our knowledge, no prior work
has specifically used VLMs to evaluate consistency across parallel-world contrasts, as defined by
causal counterfactual principles. This remains an open direction, and Multiverse Mechanica pro-
vides level-3 parallel-world data where such evaluations can be systematically explored.

Work by Monteiro et al. (2023) introduced composition metrics that effectively evaluate consistency
in image-based counterfactuals by checking whether attributes remain unchanged under controlled
edits. These metrics capture aspects of counterfactual faithfulness that parallel our notion of consis-
tency. However, they have not yet been extended to video data, nor applied to generative modeling of
game mechanics. We view Multiverse Mechanica as a platform to develop such extensions, allowing
both human and VLM-based evaluation methods to be compared side-by-side.

H.3 SUMMARY.

In short, our metrics combine classical distributional divergences for inference tasks with human-
or VLM-based consistency checks for contrastive generation tasks. This dual approach ensures that
models are evaluated not only on reproducing distributions of state variables but also on capturing
the causal consistency of gameplay dynamics under controlled interventions.

I THEORETICAL AND IMPLEMENTATION DETAILS FOR PROOF-OF-CONCEPT

I.1 BACKGROUND ON DIFFUSION MODELS AND REVERSE-SAMPLING

Denoising diffusion probabilistic models (DDPMs) define a forward Markov chain that gradually
adds Gaussian noise to an image and a learned reverse process that denoises it step by step. Given
a data sample x0 ∼ q(x0), the forward process produces xt by directly adding noise to the data:
q(xt|xt−1) = N

(
xt;
√
αtxt−1, (1− αt)I

)
for t = 1, . . . , T . Here 0 < αt < 1 are predefined vari-

ances. In the reverse generation, one starts from pure noise xT ∼ N (0, I) and iteratively denoises to
x0 using a model ϵθ trained to predict the injected noise. At each step, the model predicts ϵ̂ ≈ ϵ such
that xt−1 can be estimated by removing noise: e.g., xt−1 = 1√

αt

(
xt − (1 − αt)ϵ̂

)
(with additional

variance for stochastic sampling). In practice, one can also use the continuous-time formulation and
solve a reverse stochastic differential equation or its deterministic counterpart (as in DDIM), yield-
ing a mapping from an initial noise u directly to an image x = G(u, c). Importantly, this exogenous
noise u acts as the stochastic latent that accounts for random variation in generated images. Using
a deterministic sampler (e.g.,setting η = 0 in DDIM), one obtains a one-to-one mapping between u
and the output x, and can invert a given image to its corresponding u for a particular conditioning c.

We will leverage this invertibility to extract the latent noise ua from the original image x and the
latent noise ub from the counterfactual image xcf, where x denotes the factual image generated
under the original conditioning, xcf represents the counterfactual image generated under modified
conditioning, ua is the inverted latent noise corresponding to the factual image x, and ub is the
inverted latent noise corresponding to the counterfactual image xcf.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

I.2 BACKGROUND ON CAUSAL COUNTERFACTUALS IN IMAGE GENERATION

In causal terms, we can view the generative model as a structural causal model x := fθ(u, c), where
c is a cause (e.g.,textual description or a set of discrete random variables) and u is an unobserved
exogenous variable accounting for randomness. A counterfactual image aims to answer: “What
would the image look like if we change c from cA to cB , while keeping all other latent factors
the same?” The classical procedure for generating such counterfactuals is the three-step abduction-
action-prediction: (1) Abduction: infer the exogenous noise ua that produced the factual image x
under cA (this ua captures the instance-specific variations of x); (2) Action: intervene by setting the
prompt to cB (while keeping ua fixed); (3) Prediction: generate the new image as xcf = fθ(ua, cB).
This procedure, if the model perfectly captures the true causal mechanism, would change only the
aspects of the image directly affected by c and leave other details intact (satisfying causal consistency
that no non-descendant features of c change). In practice, directly using ua with a new prompt cB
can produce a reasonable edited image, but it may fail or produce artifacts if cB demands alterations
that conflict with the original latent factors.

By contrast, many non-SCM image editing approaches do not explicitly enforce the same latent
noise. For example, one might simply prompt the model with cB and generate a new sample (dif-
ferent u), or apply heuristics like latent interpolation, attention refocusing, or mask-based noising of
only certain regions. These approaches can produce plausible results, but often lack guarantees that
only the intended changes occur—the model might inadvertently change unrelated details because
the random draw u or other generation conditions differ. Our goal is to incorporate causal prin-
ciples into the diffusion editing process to maximize counterfactual faithfulness (only c-dependent
changes) while still allowing the model flexibility to implement the edit realistically.

I.3 CONTRASTIVE TRAINING VIA ALIGNMENT LOSSES

In this section, we provide the necessary background to help understand our method.

I.4 NOTATION

We first define the notation used in our counterfactual editing framework. Let x denote the original
(factual) image, and let xcf denote the counterfactual image we aim to generate (the edited image
after an intervention). We model image generation via a diffusion model as x = G(u, c), where
u is an initial exogenous noise (drawn from a Gaussian prior, typically u ∼ N (0, I)) and c is
the conditioning (in our case, a text prompt). We use cA for the original prompt and cB for the
counterfactual prompt. Using an inversion technique (e.g., reverse ODE or deterministic DDIM
inversion), we can obtain ua as the noise that generates x under cA, and similarly ub as the noise
corresponding to xcf under cB . We denote by xt the (noisy) latent image at diffusion timestep t when
evolving toward x (with x0 = x and xT = ua for the forward noising process), and likewise xcf,t for
the counterfactual trajectory. The diffusion model’s denoiser is denoted ϵθ(xt, c, t), which predicts
the added noise at step t for latent xt and conditioning c. For brevity, we write ϵ(xt, c, t) when θ is
clear from context. Finally, L1, L2, Ltext, and Lsub will denote different loss terms introduced below.

I.5 METHOD 1: L1 – CONSISTENCY ALIGNMENT

Our first new loss function enforces consistency alignment between the factual and counterfactual
generations. We obtain the noise ua and ub corresponding to x and xcf respectively (via the inversion
process described above). The consistency alignment loss is then defined as,

L1 = ∥ua − ub∥22, u∗ = HT←0
θ (x∗, c∗) (5)

where HT←0
θ represents the inversion function that maps from image space back to noise space at

timestep T .

Given the diffusion model x = fθ(u, c), we have:

x = fθ(ua, cA) (6)
xcf = fθ(ub, cB) (7)

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

The inversion takes the image back to the noise, which yields:

ua = HT←0
θ (x, cA) (8)

ub = HT←0
θ (xcf, cB) (9)

The L1 is added to the training loss as a regularization term to enforce exogenous invariance. In
the ideal case where ub = ua, the counterfactual generation becomes:

xcf = fθ(ua, cB) (10)

which ensures that all variations between x and xcf are attributed solely to the conditioning change
cA → cB , while preserving the exogenous factors encoded in ua.

This loss directly penalizes any differences between the underlying noise vectors of the original
and edited image. The motivation is to ensure that x and xcf share the same source of variation, so
that as much of the scene’s random details as possible remain unchanged. This approach extracts
editing-related information from the seed, enabling differences to be more expressed by the condi-
tioning c rather than random variations. The primary change affects the reverse mapping/generator’s
decomposition of conditions, belonging to “seed-level” invariance.

Intuitively, if ua and ub are identical, the only differences between xcf and x will come from the
changed conditioning cB vs cA. In the ideal case, L1 = 0 means we are generating the counterfac-
tual with the exact same “random seed” as the factual image (the pure SCM counterfactual). This
encourages maximal consistency: the background, lighting, style, and other incidental attributes
should stay the same unless the new prompt explicitly demands their change. Enforcing L1 provides
strong alignment that leads to stable edits. It prevents the edited image from drifting in appearance
or composition: the counterfactual will tend to have the same objects and layout as the original,
only differing in the aspects dictated by the prompt change. This is beneficial for preserving iden-
tity (e.g.,the same person’s face before and after an edit) and ensuring only the intended attributes
change.

However, this strict constraint can also have a few limitations. If the counterfactual prompt cB is
significantly different from cA, using exactly the same noise ua might overly constrain the genera-
tion, resulting in artifacts or an incomplete edit. The model might struggle to reconcile ua (which
was optimal for the original content) with the new prompt, leading to implausible images or failure
to fully achieve the desired change.

I.6 METHOD 2: L2 – STRUCTURE PRESERVATION AT HIGH-NOISE

As a more relaxed alternative, we propose to align the diffusion model’s behavior for the two im-
ages at the high-noise stages of generation, rather than forcing the initial noises to be identical.
Concretely, let S be a set of diffusion time steps focusing on the high-noise region (e.g.,the latter
half or last third of the diffusion schedule, when xt is still highly noisy). We define the structure
preservation loss L2 as:

L2 =
∑
t∈S
∥ϵθ(xt, cA, t)− ϵθ(xcf,t, cB , t)∥2. (11)

L2 measures the disparity between the model’s denoising predictions for the factual versus counter-
factual image trajectories, but only at very noisy states (where xt is mostly noise). By penalizing
this difference, we encourage the denoiser’s reaction to the two inputs to be the same in the early
stages of generation. This effectively steers xcf,t to evolve in a similar direction as xt while the
image is still coarse and noisy, ensuring the two generation processes start out aligned in terms of
global structure. Importantly, L2 does not enforce that the latent noises xt themselves are exactly
equal, only that the predicted noise residuals (or equivalently, the score vectors) are similar. This
distinction makes L2 a partial relaxation of the L1 constraint. It nudges the counterfactual to have a
similar high-level appearance without locking in all the exact stochastic details.

When using L2, the model is free to adjust ub as needed, but it will still preserve large-scale aspects
of ua. For example, if x depicts a particular scene layout, L2 will bias xcf to keep that layout,
since early denoising steps (which shape the overall composition) will be similar for both. As t
gets smaller (less noise), xcf can gradually diverge more to realize the new content cB specifies.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

This approach maintains structure and identity better than an unconstrained edit, while granting
more flexibility than L1 for the model to incorporate the new prompt. In essence, L2 focuses on
aligning the coarse-grained features (which are determined in high-noise stages) and lets the fine
details emerge freely.

One might consider applying a spatial mask so that structure preservation is enforced only on cer-
tain regions (for instance, only aligning the background areas that should remain unchanged). In our
approach, we generally did not require an explicit mask for L2. Since L2 operates on high-noise
(low-detail) states, it inherently affects global structure more than specific fine features. We found
that a well-balanced L2 encourages overall consistency without needing per-pixel restrictions—the
model naturally preserves unedited parts of the image. However, if a particular application demands
strict locality (e.g.,editing only a small region while leaving everything else exactly as is), a mask
could be introduced to further ensure no influence of L2 on the region to be changed (or conversely,
to focus L2 only on the region to preserve). In summary, L2 already provides a soft, global consis-
tency constraint, and masking is an optional refinement rather than a necessity in most cases.

I.7 ABDUCTION–ACTION–PREDICTION AND ITS DIFFUSION EMULATION

I.7.1 SCM SETUP.

LetM = (U,V,F, P (U)) be a structural causal model with exogenous variables U, endogenous
variables V, structural assignments F, and exogenous distribution P (U) (Pearl, 2009). We single
out: (i) the mechanic variables X ⊆V that we will intervene on; (ii) the controller input C; and
(iii) the visual variable V whose realization is a impact frame snapshot v. Throughout, we explicitly
treat our generation seed ω as a realization of the SCM exogenous variables, i.e., ω ∼ P (U), and
we treat all other shared rendering conditions as part of ω (while C is held fixed explicitly).

I.7.2 ABDUCTION–ACTION–PREDICTION (AAP).

Given a factual observation v0 obtained under (X=x0, C=c), the AAP recipe for the two-world
case proceeds as:

(Abduction) Infer P (U | V=v0, X=x0, C=c), choose a representative ω̂.

(Action) Form the intervened modelMX=x1
while keeping C=c and U=ω̂ fixed.

(Prediction) Evaluate the counterfactual VX=x1(ω̂).

Equivalently, in distributional form,

v̂1 ∼ P
(
V1

∣∣V0=v0, X0=x0, C=c
)
,

which is shorthand for propagating ω̂ ∼ P (U | V0=v0, X0=x0, C=c) throughMX=x1 .

Algorithm 1 Abduction–Action–Prediction (two-world case)

Require: SCMM = (U,V,F, P (U)), factual (v0, x0, c), target x1

1: Abduction: Infer ω̂ ← MAP/mean/sample from P (U | V=v0, X=x0, C=c)
2: Action: ConstructMX=x1

; hold C=c and U:=ω̂
3: Prediction: Compute v̂1 ← VX=x1(ω̂)
4: return v̂1

I.8 DIFFUSION-BASED EMULATION OF AAP

In our latent diffusion setting, we emulate abduction–action–prediction (AAP) by identifying the
SCM exogenous variables with the model’s initial latent noise:

U ←→ ω ∼ N (0, I).

Abduction (DDIM inversion). We estimate ω̂ from a factual impact frame VX=x0 under (x0, c)
via deterministic sampler inversion (DDIM, η=0). Let Zt,X=x0 denote its noisy latents across

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

t ∈ [0, T ]. At each step, the denoiser ϵθ(Zt,X=x0
, t, c0) predicts the noise, and inversion equa-

tions (Appendix I.10.5) are used to propagate forward in the schedule, yielding an estimate ω̂ =
Abductθ(Z0,X=x0

, c0).

Action. Hold c fixed and change the mechanic state from x0 to x1.

Prediction (deterministic reverse). Initialize the trajectory with ZT,X=x1
:= ω̂ and run the de-

terministic reverse process conditioned on (x1, c) to obtain a counterfactual latent Z0,X=x1
, then

decode it to the counterfactual impact frame V̂X=x1 .

Algorithm 2 Diffusion-based AAP via DDIM (η=0)

Require: Diffusion model (ϵθ, scheduler, decoder), factual (VX=x0
, x0, c), target x1

1: Abduction: ω̂ ← Abductθ(Z0,X=x0
, c0) // DDIM inversion in latent space

2: Action: Keep c fixed, set X :=x1

3: Prediction: ZT,X=x1
:= ω̂; for t=T, . . . , 1: Zt−1,X=x1

← DDIMStep
(
Zt,X=x1

, t, x1, c; ϵθ
)
;

V̂X=x1
← decoder(Z0,X=x1

)

4: return V̂X=x1

I.8.1 CONNECTION TO OUR TRAINING LOSSES.

The AAP framing clarifies the roles of our loss components. (i) Exogenous alignment L1 encourages
shared-seed invariance by driving

Abductθ(Z0,X=x0 , c0) ≈ Abductθ(Z0,X=x1 , c1),

for elements of the same contrast that share the true ω. This ensures the abduction step produces con-
sistent seeds across worlds. (ii) Structure preservation L2 aligns denoiser outputs ϵθ(Zt,X=xj

, t, cj)
at high-noise steps t ∈ S, enforcing agreement on coarse global structure during the early reverse
process. This mirrors AAP’s assumption that exogenous factors (ω) are held fixed while only X
changes.

I.8.2 SCM↔ DIFFUSION MAPPING (TWO-WORLD CASE).

SCM concept Diffusion instantiation
Exogenous U ↔ Initial latent noise seed ω ∼ N (0, I)
Abduction P (U | VX=x0

, x0, c) ↔ DDIM (η=0) latent inversion ω̂ = Abductθ(Z0,X=x0
, c0)

Action X = x1 ↔ Condition reverse process on (x1, c)

Prediction VX=x1(ω̂) ↔ Deterministic reverse to Z0,X=x1 then decode V̂X=x1

Causal consistency ↔ Shared seed ω̂; early-step structure preservation (L2)

Abduction via DDIM inversion yields an estimate ω̂ whose fidelity depends on the schedule and
conditioning; see Appendix I.10.6 for caveats and tuning guidance.

I.9 ADDITIONAL REGULARIZERS

Beyond the core losses L1 and L2, our framework can incorporate additional terms to improve
consistency and fidelity:

I.9.1 SUBSPACE CONSISTENCY LOSS.

We can encourage the factual and counterfactual images to remain close in certain intermediate rep-
resentations of the diffusion model. For example, one may align hidden latents or cross-attention
maps at corresponding diffusion steps. By penalizing differences in these subspaces (e.g.,the
model’s multi-head attention maps for background tokens, or feature maps in a particular UNet
layer), we enforce that the internal generation pathways for x and xcf stay similar. This helps pre-
serve layout and identity at a semantic level, complementing the pixel-space alignment enforced by

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

L1/L2. Formally, if Ft(x) denotes some feature (such as a latent embedding or attention tensor)
computed during the denoising of x at step t, we can define a loss Lsub =

∑
t∈T ∥Ft(x)−Ft(xcf)∥2

for some chosen set of layers or timesteps T . This subspace consistency loss encourages the edited
image to differ only minimally in features unrelated to the intervention.

Text Consistency Loss. To ensure the edited image indeed reflects the counterfactual prompt cB ,
we include a text-image consistency term. We rely on a pretrained image-text similarity model
(such as CLIP) to measure alignment between xcf and the description cB . Let sim(xcf, cB) be a
similarity score (higher means the image matches the prompt better). We define a loss Ltext =
−sim(xcf, cB) (or equivalently 1 − sim, depending on the normalization) so that minimizing Ltext
maximizes the agreement between the generated image and the desired attributes. This ensures that
while preserving content, we do not under-shoot the edit: the new image should clearly exhibit the
prompted change. The text consistency loss guides the generation to remain faithful to the user’s
request, especially when L1 or L2 are pulling towards the original image. It helps avoid the outcome
where the edit is so conservative that the difference between xcf and x is hard to discern.

I.10 LOSS COMBINATION

Our full counterfactual editing objective combines these components in a weighted sum:

Ltotal = λ1L1 + λ2L2 + λ3Ltext + λ4Lsub, (12)

where λi are tunable weights that control the influence of each loss term. In practice, we choose
these weights to balance identity preservation against effective editing. Typical values and trade-offs
are as follows:

λ1 (Consistency Alignment): This is often kept relatively small (e.g., λ1 in the range 0 to 0.5)
unless the edit is very minor. A small λ1 nudges the initial noise vectors closer without forcing
identity completely. Increasing λ1 leads to more literal counterfactuals (very high consistency with
the original image’s details), but if set too high it may prevent the new attributes from appearing
strongly. There is a trade-off between maintaining background/identity (higher λ1 favors this) and
allowing change (lower λ1 gives more freedom).

λ2 (Structure Preservation): We usually give L2 a moderate to high weight (on the order of 1.0)
as it is the principal mechanism to preserve structure. λ2 in a range roughly 0.5 to 2.0 works
well. A larger λ2 tightly constrains the high-level layout and style to match the original, which
is good for identity preservation; however, if λ2 is excessively large, it can act almost as strictly
as L1, potentially impeding necessary changes. Reducing λ2 allows the counterfactual generation
to deviate more in composition if needed, but too low λ2 might result in unwanted alterations in
background or other objects.

λ3 (Text Consistency): This weight should be high enough to ensure the edit actually happens
(especially for subtle changes), but not so high that it overrides the preservation losses. In practice λ3

is often set around 0.5 to 1.0 (assuming similarity is scaled to a comparable range) so that the image
aligns with the prompt without artifacts. If λ3 is set too low, the edit might be too conservative (the
model might simply regenerate the original image to satisfy L1/L2). If λ3 is too high, the model may
introduce exaggerated or incorrect features to satisfy the prompt, possibly compromising identity or
visual quality.

λ4 (Subspace Consistency): If used, this is typically a small auxiliary weight (e.g.,0.1). Since Lsub
operates on internal features, it can strongly bind the generation if overweighted. A modest λ4 helps
reinforce structural consistency without conflicting with the primary losses. Tuning λ4 involves
checking that it indeed improves preservation of details like face identity or scene layout, without,
for example, freezing the image in an early-state that ignores the new prompt. In some cases, we
might set λ4 = 0 (i.e., not use this term) if we find L1 and L2 are sufficient; when used, it serves as
an extra regularizer.

In summary, L1 and L2 provide a spectrum between strict and loose alignment, λ3 drives the fidelity
to the requested counterfactual change, and λ4 can bolster consistency on a feature level. We recom-
mend starting with a balanced combination (for instance, λ1 = 0.2, λ2 = 1.0, λ3 = 0.5, λ4 = 0.1).

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

(a) Factual: A 1-on-1 battle. Foe 1 type is archer, ele-
ment is fire, weapon is bow, weapon element is none,
has shield is false, action is shoot. Foe 2 type is war-
rior, element is fire, weapon is long sword, weapon
element is none, has shield is false, action is idle. Foe
turn is foe 1.

(b) Counterfactual: A 1-on-1 battle. Foe 1 type
is warrior, element is fire, weapon is long sword,
weapon element is none, has shield is false, action
is idle. Foe 2 type is warrior, element is fire, weapon
is long sword, weapon element is none, has shield is
false, action is idle. Foe turn is foe 1.

Figure 14: Example counterfactual image pairs generated from finetuned text-to-image diffusion
model.

I.10.1 DIFFUSION BACKBONE.

We use a pretrained Stable Diffusion variant with a deterministic sampler 1, which makes the map-
ping between exogenous noise u and image v approximately invertible. This enables abduction of u
from an image and consistent reuse across parallel worlds. Classifier-free guidance is applied with
scale 7.5, and the scheduler uses T = 50 steps.

I.10.2 CONDITIONING.

In the main text we describe conditioning directly on game state variables (e.g., shield, weapon
type, block outcome). For implementation, these variables and outcomes are converted into natural-
language captions for compatibility with CLIP text encoders. This is a nuisance parameterization:
the underlying conditioning remains the game state variables.

I.10.3 TRAINING SETUP.

We fine-tune the network backbone (UNet) only, keeping the VAE and text encoder frozen. Batch
size is 4, training runs for 50 epochs, with a cosine learning-rate schedule, weight decay 0.01, and
gradient clipping. Images are peak-action snapshots extracted at canonical times in each episode to
minimize temporal ambiguity.

I.10.4 ALIGNMENT LOSSES.

We mainly use two loss functions for finetuning:

• L1: consistency alignment. After inverting both factual and counterfactual images to latent
noise (ua, ub), we penalize ∥ua − ub∥2, enforcing invariance of exogenous factors. Note
that this loss function is very expensive due to it needs to inverse two sampling pathes for
each counterfactual data pair. In practice, we only apply L1 to one data point per batch of
training data.

1specifically we use DDIM η = 0, also the deterministic samplers in Karras et al. (2022)

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

• L2: structure preservation at high noisy region (large SNRs). At early diffusion timesteps,
we penalize discrepancies between denoiser predictions for factual vs. counterfactual tra-
jectories, encouraging global structural consistency.

Both terms can be weighted with coefficients λ1, λ2.

I.10.5 SEED ABDUCTION WITH DETERMINISTIC DIFFUSION.

Our multiverse alignment objective requires that consistent contrasts share the same exogenous
noise ω. In deterministic samplers (e.g., DDIM), this means that two parallel reverse processes
(Zt,X=x0

)Tt=0 and (Zt,X=x1
)Tt=0 can be initialized with the same ω, ensuring non-descendant con-

tent is consistent.

Given an observed impact frame VX=x with controller input c, let Z0,X=x denote its clean latent
before decoding and Zt,X=x the noisy latent at step t. At each step, the denoiser ϵθ(·) predicts noise
ϵθ(Zt,X=x, t, c), which is then used to trace the trajectory backward through the noise schedule.
Iterating these updates recovers an estimate ω̂ = Abductθ(VX=x, c).

Applying this inversion procedure to both members of a contrast yields ω̂x0
and ω̂x1

, which ideally
coincide. The seed-consistency loss L1 penalizes their distance, providing a concrete operational-
ization of the causal consistency principle within deterministic diffusion.

I.10.6 CAVEATS.

Deterministic inversion. We use DDIM with η = 0 for Abductθ, yielding an approximately bijec-
tive mapping between seed and latent trajectory under fixed conditioning and schedule. In practice,
invertibility is approximate and sensitive to: (i) the precise noise schedule; (ii) classifier-free guid-
ance settings; and (iii) conditioning (x, c). Hence ω̂ should be treated as a consistent estimate rather
than a ground-truth latent.

I.10.7 CHOOSING THE HIGH-NOISE SET S FOR L2.

We select S as either (i) the last k steps of the schedule (empirically k ∈ [T3 ,
T
2 ]), or (ii) all t with

SNR(t) ≤ τ for a threshold τ . A weighted variant uses wt ∝ SNR(t)−γ and

Lw
2 =

∑
t

wt

∥∥ϵθ(z0,t, t, x0, c)− ϵθ(z1,t, t, x1, c)
∥∥2
2
.

Under mild conditions, aligning score predictions at high-noise is connected to alignment in data
space via Stein’s identity.

I.10.8 SCOPE.

This is a feasibility study. We claim no pixel-level counterfactual identification and provide only
qualitative illustrations. Future work may extend this approach to video sequences and more com-
plex mechanics.

J SOFTWARE DEPENDENCIES

J.1 GAME ENGINE.

The game itself is implemented in Pygame, a lightweight Python library for 2D graphics and in-
teraction. We chose Pygame because it enables rapid prototyping of turn-based combat mechanics,
frame-accurate rendering of impact frames, and reproducible control of random seeds, all within a
Python environment that integrates smoothly with machine learning workflows.

J.2 CAUSAL MODELING.

To formalize and simulate the causal generative process underlying gameplay, we use the Pyro
probabilistic programming library (Bingham et al., 2019). Pyro provides the primitives required to

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

implement SCMs consistent with the game’s causal DAG, including stochastic functions for exoge-
nous variables, deterministic assignments for endogenous variables, and intervention operators. This
allows us to align the game engine’s execution trace with an explicit causal model, and to sample
parallel-world contrasts in a principled manner.

J.3 REPRODUCIBILITY.

Both components are integrated in a unified Python codebase, ensuring that gameplay, causal mod-
eling, and data generation can be run deterministically from a single seed.

J.4 GRAPH LIBRARIES.

We generate mDAGs, parallel-world graphs and counterfactual graphs using the Y0 library (Hoyt
et al., 2025).

J.5 GRAPH SERIALIZATION.

All graphs are serialized as directed graphs in JSON using a node-link format. Nodes are repre-
sented as JSON objects with keys for the node identifier and attributes, while edges are represented
as objects with source and target identifiers and an edge type field. In the case of mDAGs and
parallel world graphs, exogenous nodes are marked with the attribute "exogenous": true.
For example, the above example of an mDAG with observed nodes {A,B,C}, one directed edge
A→ B, and one hyper-edge {B,C}, is converted to a CL-DAG and serialized as follows:

{
"nodes": [

{"id": "A"},
{"id": "B"},
{"id": "C"},
{"id": "N_{B,C}", "exogenous": true}

],
"links": [

{"source": "A", "target": "B", "type": "directed"},
{"source": "N_{B,C}", "target": "B", "type": "directed"},
{"source": "N_{B,C}", "target": "C", "type": "directed"}

]
}

45


	Introduction
	Background and Related Work
	Formalizing and Learning a Game Mechanic
	Illustrating Example
	Formalizing the Shield Mechanic
	Generating Shield Mechanic Data
	Learning the Shield Mechanic from Data

	Formal Framework for Game Mechanics

	Multiverse Mechanica: A Playable Testbed for Learning Mechanics
	Game Overview
	Implemented Mechanics (v1.0)
	Design Decisions
	Data Generation

	Proof-of-Concept: Learning a Mechanic with Diffusion Fine-Tuning
	Scalability & Limitations
	Conclusion
	Use of Large Language Models (LLMs)
	Ethics Statement
	Reproducibility Statement
	Proof-of-Concept Dataset
	Generation
	Pre-Processing


	Brief Primer on Core Causal Concepts
	The Causal Hierarchy
	SCMs and Rules
	Marginalization of Causal DAGs
	Multiverse Reasoning.
	Counterfactual Graphs and Consistency
	Estimating Counterfactual Distributions

	Mechanics Implemented in Multiverse Mechanica v1.0
	Shield Mechanic
	level-2 Interventional Definition
	Causal Markov Kernels
	level-3 Counterfactual Parallel World Statements
	Counterfactual Probability Expressions

	Elemental Immunity Mechanic
	level-2 Interventional Definition
	Causal Markov Kernels
	level-3 Counterfactual Parallel World Statements
	Counterfactual Probability Expressions

	Weapon Range Mechanic
	level-2 Interventional Definition
	Causal Markov Kernels
	level-3 Counterfactual Parallel World Statements
	Counterfactual Probability Expressions

	Spell-Casting Mechanic
	level-2 Interventional Definition.
	Causal Markov Kernels
	level-3 Counterfactual Parallel World Statements.
	Counterfactual Probability Expressions (Shared).

	Spawn Magic Projectile Spell to Perform Ranged Attack
	level-2 Interventional Definition.
	Causal Markov Kernels.
	level-3 Counterfactual Parallel World Statements.
	Counterfactual Probability Expressions.
	Summon Cloud Platform Spell to Dodge Attack
	Self-Transform Spell to Increase Melee Strength
	Opponent Transform Spell to Lower Enemy Defense
	Levitation Spell to Disarm Opponent


	Game Design Decisions
	Bridging Game Mechanics and Causal Mechanisms with System-Based Design
	Entities, Components, and Systems as Causal Units.
	Alignment with Causal Graph Structure
	Locality and Modularity for Consistency
	Reproducibility and Connection to Interventions

	Impact Frames: Defining Semantic Consistency in Dynamic Causal Model Traces via Point of Maximum Action Concept
	Conceptual Framing: Temporal Alignment for Counterfactual Comparisons
	Point of Maximum Action (PoMA).
	Four Alignment Methods: Brief Summary with Pros and Cons
	Implementation in Our Game: Event-Based Windows and Weighted Scoring
	Summary.


	Specifications of Generated Video Clips
	Resolution and Format
	Frame Rate, Duration, and Timing
	Dataset Organization
	Implementation
	Variables generated

	Suggested Metrics
	Mechanic Inference.
	Consistency in Contrast Generation.
	Summary.

	Theoretical and Implementation Details for Proof-of-concept
	Background on Diffusion Models and Reverse-Sampling
	Background on Causal Counterfactuals in Image Generation
	Contrastive Training via Alignment Losses
	Notation
	Method 1: L1 – Consistency Alignment
	Method 2: L2 – Structure Preservation at High-Noise
	Abduction–Action–Prediction and Its Diffusion Emulation
	SCM Setup.
	Abduction–Action–Prediction (AAP).

	Diffusion-Based Emulation of AAP
	Connection to Our Training Losses.
	SCM ↔ Diffusion mapping (two-world case)

	Additional Regularizers
	Subspace Consistency Loss.

	Loss Combination
	Diffusion Backbone.
	Conditioning.
	Training Setup.
	Alignment Losses.
	Seed Abduction with Deterministic Diffusion.
	Caveats.
	Choosing the High-Noise Set S for L2
	Scope.


	Software Dependencies
	Game Engine.
	Causal Modeling.
	Reproducibility.
	Graph Libraries.
	Graph Serialization.


