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ABSTRACT

We study how generative world models trained on video games can go beyond
mere reproduction of gameplay visuals to learning game mechanics—the mod-
ular rules that causally govern gameplay. We introduce a formalization of the
concept of game mechanics that operationalizes mechanic-learning as a causal
counterfactual inference task and uses the causal consistency principle to address
the challenge of generating gameplay with world models that do not violate game
rules. We present Multiverse Mechanica, a playable video game testbed that im-
plements a set of ground truth game mechanics based on our causal formalism.
The game natively emits training data, where each training example is paired with
a set of causal DAGs that encode causality, consistency, and counterfactual depen-
dence specific to the mechanic that is in play—these provide additional artifacts
that could be leveraged in mechanic-learning experiments. We provide a proof-
of-concept that demonstrates fine-tuning a pre-trained model that targets mechanic
learning. Multiverse Mechanica is a testbed that provides a reproducible, low-cost
path for studying and comparing methods that aim to learn game mechanics—not
just pixels.

1 INTRODUCTION

Interactive world models have recently gained attention for their potential to simulate or extend video
game experiences (Bruce et al., 2024; Parker-Holder & Fruchter, 2025; Decart et al., 2024; He et al.,
2025; Che et al., 2025). SOTA models, typically leveraging deep autoregressive transformer archi-
tectures, are trained on large datasets containing sequences of visual frames, user inputs, or internal
virtual states produced by a graphics engine. These models of video games (game world models)
can generate gameplay sequences that are visually similar to original gameplay; an impressive feat
considering modern video games often have cinematic levels of visual complexity.

A key motivation for a focus on video games is procedural generation of novel gameplay experiences
(Gingerson et al., 2024). To this end, the ability to produce high-fidelity visuals is a necessity, as the
novel experiences must look the part. But in addition to looking good, the game world model must
generate gameplay that is consistent with the game’s mechanics (Gingerson et al., 2024). In simple
terms, if the generated gameplay violates game rules or logic, it breaks the gaming experience and,
therefore, is not useful, regardless of how good it looks.

Authors of game world models often claim to have learned a game’s mechanics—rules governing
gameplay—through post-hoc observations of generated gameplay from the trained model, which vi-
sually demonstrates the mechanics in play. For example, in reference to their World Models frame-
work, the authors Ha & Schmidhuber (2018) claim that “by learning only from raw image data
collected from random episodes, [their model] learns how to simulate the essential aspects of the
game, such as the game logic, enemy behavior, physics ...”. Kim et al. (2020) claim their GameGAN
model learned the collision and power pellet mechanics of PAC-MAN. Parker-Holder & Fruchter
(2025) claimed that consistency was an “emergent” property of Genie 3.

There is a problem with such claims. An a posteriori observation that a game world model has
learned a mechanic demonstrates that it is possible to learn some mechanics in some contexts with
SOTA architectures. However, this does not tell us a priori that it is possible to reliably reproduce
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Figure 1: Clips from consistent contrasts sampled at their respective impact frames: each column
contains two contrasting gameplay clips where differences are solely attributable to the shield me-
chanic. Left, middle, and right correspond to parallel world statements S1, S2, S3.

a certain context. To use a game world model to generate novel gameplay experiences in practical
settings, we need this knowledge before expending on training and deploying a model.

Part of the difficulty is a lack of any formalized notion of what it means to learn a game mechanic.
With a formal definition, we could determine if a mechanic is statistically identifiable from training
data, and we could evaluate claims that a model has learned a mechanic. Moreover, we could define
exactly what it is that we want to identify. The model needs to learn a representation of a mechanic
sufficient to reliably reproduce it in generated gameplay, without going as far as reverse-engineering
the mechanic’s source code; a formal definition would tell us the level of detail required. Lacking
this, we cannot know when we have disentangled the mechanic’s representation from learning other
representations that drive the game’s visuals.

In this paper, we address this problem with the following contributions. Firstly, we provide a causal
formalization of the concept of game mechanics using causal graphical modeling theory. We use
this formalization to demonstrate data and inductive biases (in the form of causal graphs) that enable
learning a game mechanic. We introduce Multiverse Mechanica, a playable game for use as a
testbed for evaluating the learning of game mechanics. The game mechanics are implemented with
our causal graphical formalization, providing a ground truth for evaluating mechanic learning. It
provides causal graphical representations of the mechanic directly to the user for use in evaluation
or to supervise mechanic-learning. Multiverse Mechanica is visually simple enough to facilitate
inexpensive experimentation, while it enables generalization by using mechanics that are typical of
fantasy combat games. Finally, we provide a proof-of-concept for fine-tuning a generative model on
a specific game mechanism that leverages these causal representations in its objective function.

2 BACKGROUND AND RELATED WORK

Defining Game Mechanics. Building on prior definitions (Lo et al., 2021), we define a game
mechanic as a modular subset (Björk & Holopainen, 2004; Schaul, 2013; Thielscher, 2011; Zook &
Riedl, 2019) of the game rules triggered by specific player/agent interactions (Lundgren & Bjork,
2003; Fullerton et al., 2004), producing changes in game state (Järvinen, 2008; Fabricatore, 2007)
that shape gameplay visuals (Hunicke et al., 2004). These subsets entail causal relations with pre-
conditions and effects, representable as logic, finite-state machines, behavior trees, or transition
functions (Zook & Riedl, 2014; Thielscher, 2011; Schaul, 2013; Dormans, 2012; Zook & Riedl,
2019). We formalize this definition in Section 3.2.
Causal Framing. We adopt the causal hierarchy, which describes three levels of statements
that employ causal logic: (level-1) observation, (level-2) intervention, and (level-3) counterfactual
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Level Statement

1) Observation “The scene might generate to show an enemy taking damage from an attack.”

2) Intervention “If an enemy were given a shield and they blocked an incoming attack, then the scene
would generate to show the enemy not taking damage.”

3) Counterfactual “Given an enemy did not have a shield and the scene generated showing them taking
damage from an incoming attack, if they instead had a shield and they blocked, the
scene would have generated to show the enemy not taking damage.”

Table 1: Examples of the three causal hierarchy levels, in the context of game scene generation.

(Bareinboim et al., 2022). A predictive statement, such as “The scene would generate in this way,”
is a level-1 observational statement that asks questions about the distribution of possible game scene
generations P (V). A level-2 interventional statement targets outcomes under hypothetical interven-
tions, such as “If an enemy were placed here (e.g., in a place it would not naturally appear), then the
scene would generate in this way.”, asks questions about P (V | do(X=x)). A level-3 counterfactual
statement considers observed outcomes and how those outcomes might have been different under
hypothetical interventions, and asks questions about joint outcomes under conflicting interventions,
e.g., (YX=x, YX=x′) Consequently, Level-3 quantities encode “all-else-equal” comparisons across
worlds. For example: “Given there was no enemy and the scene generated that way, if an enemy
were placed here, the scene would generate in this way.” Table 1 provides examples of the three
levels of statements, grounded in the context of video game scene generation. Further background
on the causal hierarchy is provided in Appendix D.1.

We use causal DAGs and structural causal models (SCMs) (Pearl, 2009) to model mechanics as
mechanisms (rules) (Bongers et al., 2018). For focusing on a mechanic’s variables, we reference
marginalized DAGs (mDAGs) that preserve causal and interventional semantics while marginaliz-
ing others (Evans, 2016). The causal consistency principle states that variables not downstream of
an intervention retain the same value across worlds (Pearl, 2010; Shpitser & Pearl, 2012); counter-
factual graphs capture this cross-world consistency compactly (single nodes for shared variables;
world-indexed nodes for affected ones) (Shpitser & Pearl, 2012). Construction details appear in
Appendix D.5; additional background is in Appendix D.

Learning game mechanics. Empirical results highlight the challenges of learning game mechan-
ics. A study performed by Gingerson et al. (2024) highlights the continuing challenge of gener-
ating consistent gameplay with SOTA architectures—even when generations look plausible, they
frequently break the rules of the mechanic. Chen et al. (2025) report similar failures in spatial and
numerical consistency, necessitating explicit corrective modules. More broadly, empirical studies
of video prediction models show that while they excel in-distribution, they often rely on case-based
mimicry and fail under distribution shift, violating simple physical principles (Kang et al., 2024;
Riochet et al., 2021).

If we view a mechanic as a latent generative factor, then unsupervised learning of mechanics is
provably impossible from video observations of gameplay alone (Locatello et al., 2019) without
strong inductive biases (Mitchell, 1980; Wolpert, 1996). Prior work in this area shows that causal
representations are at best only partially identifiable from observational data without intervention
data or strong causal inductive biases (Spirtes et al., 2000; Bareinboim & Pearl, 2022; Schölkopf
et al., 2021). Our work builds on prior work that employs these causal approaches to learning latent
generative factors. But to our knowledge, our work is the first to apply this type of causal analysis to
the problem of learning game mechanics during training, and generating consistent gameplay from
a trained model.

Datasets, testbeds and environments. Existing testbeds, datasets, and environments for world
models and video prediction largely emphasize intuitive reasoning about real-world Newtonian
physics rather than explicitly defined game mechanics. For instance, IntPhys (Riochet et al., 2018)
probes intuitive physics by testing whether models respect basic object permanence and motion,
while Physion (Bear et al., 2021) provides simulated videos of collisions and stability events to eval-
uate physical prediction. However, game mechanics can encompass non-realistic “physics,” such as
spell casting and passing through portals. Multiverse Mechanica focuses on a broader set of game
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Descriptions in Causal Logic Formal Counterfactual
Notation

Consistent Contrast Sample
Data

S1 All else equal, if the opponent
has a light weapon, they may equip
a shield; if heavy, they cannot.

S1 : P (SW=1 = 1, SW=0 = 0)
≥ ϵ1

D1=
{
ω1, C,

(SW=1, BW=1, DW=1, VW=1),
(SW=0, BW=0, DW=0, VW=0)

}
S2 All else equal, if the opponent
has a shield, they may block; if no
shield, they cannot.

S2 : P (BS=1 = 1, BS=0 = 0)
≥ ϵ2

D2=
{
ω2, C, W,

(BS=1, DS=1, VS=1),
(BS=0, DS=0, VS=0)

}
S3 Given a shield, if a block
succeeds then no damage; if it fails,
damage occurs.

S3 : P (DB=1 = 0, DB=0 = 1 |
S = 1) ≥ ϵ3

D3=
{
ω3, C, W, S,

(DB=1, VB=1),
(DB=0, VB=0)

}
Table 2: The shield mechanic described as in natural language causal logic (column 1), which
are then formalized with counterfactual notation (column 2), where strictly positive probabilities
(ϵi > 0) indicate bounded uncertainty due to other causal factors in the system. Column 3 shows
consistent-contrast tuples (each row shares seed ωi).
Variable / Operator Description

P (X) The probability distribution for random variable X

P (X | Z=z) As above, but conditioned on observation Z=z

do(X=x) An intervention taken to fix variable X to value x. Interrupts sampling from its
conditional probability distribution given parents in the causal DAG: P (X|Pa(X)).

P (YX=x | Z=z) Probability distribution for Y where an intervention is taken to fix variable X to value
x
(
i.e., do(X=x)

)
(optionally conditioned on observation Z=z)

Si, Si The ith contrast statement, in causal terms and counterfactual notation, respectively

Di The ith consistent-contrast tuple, defining two worlds sharing a common seed ωi

Xt, Ct, Vt Game data at frame t: game state Xt, player controller input Ct, and video frame
(image) vector.

Table 3: Key variables and operators used in the adopted formalism.

mechanics, and contributes a playable generator that emits data and artifacts that target learning of
a formally defined ground-truth set of mechanics.

3 FORMALIZING AND LEARNING A GAME MECHANIC

In this section, we demonstrate the formalization of a game mechanic as well as how we would learn
that mechanic from data. Then, in Section 3.2, we provide a general mathematical description of
this approach.

3.1 ILLUSTRATING EXAMPLE

The Shield Mechanic Consider a scene from a stylized 90’s fantasy turn-based combat game,
where an archer battles a warrior. Like many games in this genre, there is a shield mechanic, as
shown in Figure 1, where the warrior may raise a shield to block incoming attacks.

3.1.1 FORMALIZING THE SHIELD MECHANIC

How might we describe this shield mechanic in formal causal terms?
Step 0: Define Notation. As a preliminary step, we define the necessary variables and operators
used in our formalism in a notation table (see Table 3).

Step 1: Describe the Mechanic with Causal Logic. We start by completely describing the shield
mechanic using a series of causal hypothetical statements of the form “Given preconditions W , all
else equal, if X , then Y .” Specifically, we focus on level-3 multiverse logic statements that employ
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Figure 2: Causal DAG marginalized to focus on the nodes specific to the shield mechanic and their
latent confounders (gray nodes)

conjunctions of conflicting conditions. Table 2 column 1 shows three statements, S1, S2, and S3,
that fully describe the shield mechanic.

The columns of Figure 1 correspond to S1, S2, and S3. We could instead use level-2 interventional
statements, which are normally preferred because they are generally testable with experimental data.
But the level-3 parallel world statements provide an additional constraint in the phrase “all else
equal”; that outcomes unaffected by the conditions must remain consistent across the clauses. As
we will see below, we can use that constraint to operationalize consistency in game generation.
Secondly, we can leverage the gaming setting’s rare opportunity to generate level-3 data to validate
level-3 statements.

Step 2: Rewrite as Counterfactual Expressions. We can rewrite S1, S2, and S3 as mathemati-
cal expressions using counterfactual notation, capturing the contrasts more compactly. For simplic-
ity, let W denote the weapon type, S indicate whether a shield is equipped, B indicate whether the
shield is used to block, and D indicate whether damage occurs. We treat these as binary variables
for clarity, without loss of generality. Let W = 1 and W = 0 denote light and heavy weapon,
respectively. S, B, and D, let 1 mean True and 0 mean False.

We use counterfactual notation to denote variables under the influence of intervention, such that
Y under an intervention that sets X to x is written as YX=x. We can formalize the parallel world
statements S1, S2, and S3 as shown in column 2 of Table 2, where ϵi;∀i ∈ {1, 2, 3} denotes strictly
positive probabilities (ϵi > 0), indicating bounded uncertainty due to other causal factors in the
system.

With this, our shield mechanic is described in formal mathematical terms.

Step 3: Represent Mechanic with Causal Graphs Let V denote a full clip of gameplay. An
outcome, denoted v, is a sequence of frames. Let C denote the controller input from a player at the
start of the player’s turn. Let G denote the full causal DAG for a single turn in the battle (see the
full graph in Figure 6 in Appendix E). Let us assume we have access to this DAG, or that we could
create it using knowledge of the game structure, analyzing causal dependence in the game’s code
(Winskel, 1986; Aho et al., 2006), or by applying causal discovery methods (Glymour et al., 2019).
The variables implicated in our description of the shield mechanic are Z = {C,W, S,B,D, V }.
The causal DAG G is quite large, so we derive the mDAG GM that zooms in on Z (Figure 2)
by marginalizing out the variables not in Z (see Appendix D.3 for a description of the algorithm).
Next, we can combine the mDAG with each counterfactual expression in the mechanic’s description
to construct the counterfactual graphs in Figure 3.

The counterfactual graphs in Figure 3 encode a representation of causal consistency—variables that
are not downstream of interventions and thus are consistent across worlds are unique, while incon-
sistent variables have nodes indexed by each world. Thus, the counterfactual graphs are representa-
tions of the shield mechanic that explicitly describe what should remain consistent when generating
gameplay depicting the shield mechanic.
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Figure 3: Counterfactual graphs for the shield mechanic. The video variables VX=x have shape
height(h)*width(w)*frames(f)*channels(3)*worlds(2).

3.1.2 GENERATING SHIELD MECHANIC DATA

We can generate level-3 parallel world data consistent with S1, S2, and S3 by creating parallel
runs with identical initial conditions and random seeds. We can intervene separately in each run,
producing clips of parallel virtual worlds that differ only in their respective interventions. We call
the tuple of these clips, combined with the outcomes of other mechanic-related variables under
these interventions and their shared initial condition/seed, consistent contrasts. Figure 1 illustrates
gameplay clips from the contrasts.

Let ω1, ω2, and ω3 represent distinct sets of random seeds and initial conditions. Let C represent the
controller input from the player. Let VX=x represent a video clip of gameplay under an intervention
that sets X to x. Reading consistency from the graphs in Figure 3, we see WS=1 = WS=0 = W ,
WB=1 = WB=0 = W , and SB=1 = SB=0 = S. Let D1, D2, and D3 represent samples of
consistent contrasts for S1, S2, and S3 respectively, as shown in Table 2 column 3.

3.1.3 LEARNING THE SHIELD MECHANIC FROM DATA

Let P1 = P (SW=1, SW=0), P2 = P (BS=1, BS=0), and P3 = P (DB=1, DB=0, S) denote the
distributions constrained by S1, S2, and S3. We can estimate these distributions through repeated
sampling of consistent contrasts D1, D2, and D3, then averaging over the sampling distributions to
obtain the sampling distributions P̂1, P̂1, and P̂3 (see Appendix D.6). In each case P̂i converges
almost surely to Pi. This provides a precise operationalization of what it means for a generative
model to learn the shield mechanic: learning constraints {S1,S2,S3} on distributions {P1, P2, P3}
or modeling {P1, P2, P3} directly.

However, in the canonical case of training game world models, we assume that only the controller
inputs and the video outputs are observed during training. Here, the inference of P̂i becomes a task of
unsupervised learning of a latent vectorD\{C, VX=x, VX=x′} using {C, VX=x, VX=x′} as features,
where VX=x, VX=x′ is a vector of shape 2 * frame height * frame width * 3 RGB channels * number
of frames. Without further assumptions, disentangling the components of D \ {C, VX=x, VX=x′}
is generally infeasible. However, the counterfactual graphs in Figure 3 already disentangle these
variables for us. Using these, the problem reduces to training a latent variable model.

3.2 FORMAL FRAMEWORK FOR GAME MECHANICS

We assume a causal DAG G = (V,E) for a single step of gameplay with V =
{Ct, Xt, Ct+1, Xt+1, Vt, Vt+1}, and typical edges Xt → Ct, Xt → Xt+1, Ct → Xt+1,
Xt → Vt, Xt+1 → Vt+1. For a given mechanic, we restrict to the variable subset M =
{Ct, X

M
t , XM

t+1, Vt+1}, XM
t ⊆ Xt, XM

t+1 ⊆ Xt+1, and form the marginalized DAG GM by
marginalizing variables outside M while preserving interventional semantics (Appendix D.3).

We work on a probability space with sample space Ω. Each variable Z ∈ M is a measurable
mapping Z : Ω→ XZ , and each counterfactual ZX=x : Ω→ XZ , where x ∈ XX is an intervention
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value in the state space of X . The ground-truth SCM, consistent with GM , induces the family

F(M) =
{
P
(
Vt+1,X=x, ZX=x

∣∣E)
: X,Z ∈M, x ∈ XX , E ∈ σ(M)

}
,

where σ(M) denotes the σ-algebra generated by the variables in M (in practice, E can be any
measurable predicate on M , e.g., S=1 for “has shield”).

We formalize a mechanic as the tuple ⟨GM ,M⟩, where M = {S1, . . . , Sk} and each constraint
Si : P

(∧mi

j=1 YX=xj
= yj

∣∣∣E)
≥ ϵi binds counterfactuals of variables in M under inter-

ventions on X ∈ M , with xj ∈ XX , E ∈ σ(M), and ϵi ∈ (0, 1] (allowing non-deterministic
relations due to factors outside M ). For each Si we denote the targeted distribution by Pi (e.g.,
P1 = P (SW=1, SW=0) in the shield example).

Data and Estimation. A consistent-contrast dataset for Si of size N is

D(N)
i =

{(
VX=x1

(ωn), . . . , VX=xmi
(ωn)

)
: ωn ∈ Ω, n = 1, . . . , N

}
,

optionally restricted to ωn satisfying E. Let P̂ (N)
i be the empirical distribution induced by D(N)

i .
Under i.i.d. sampling of seeds ωn, P̂ (N)

i
a.s.−−→ Pi. For each Si (and associated Pi), we construct a

counterfactual graph GM,cf
i . In partially observed settings (video + controller only), Gcf

i specifies
which latent variables are shared across worlds and which differ, reducing estimation to a well-posed
latent variable problem aligned with the counterfactual graph’s structure.

4 MULTIVERSE MECHANICA: A PLAYABLE TESTBED FOR LEARNING
MECHANICS

We introduce Multiverse Mechanica, a fantasy-style battle game designed as a testbed for learning
game mechanics. Unlike static datasets, Multiverse Mechanica is a playable game that emits the
artifacts required to study and evaluate whether models capture the game’s mechanics—not just
gameplay visuals. Its design integrates three innovations: (i) native support for level-3 parallel-
world contrasts with consistency under the same ω; (ii) per-mechanic mDAGs GM, parallel world
and counterfactual graphs, and specifications ofM; and (iii) explicit visual grounding, where stance
and scene variables are rendered into pixels. We will release the game upon publication.

4.1 GAME OVERVIEW

Each episode consists of a pre-battle setup (character and equipment selection, random assignment
of elemental buffs (e.g., fire, ice) followed by turn-based combat. The player occupies the left side
of the screen, and the enemy occupies the right. On the player’s turn to attack, a timing-based
interaction yields an attack score; the enemy’s turn samples an analogous attack score. Outcomes
depend on weapons, defenses, the attack score, and buffs. See Appendix F for additional details.

4.2 IMPLEMENTED MECHANICS (V1.0)

Version 1.0 of Multiverse Mechanica includes the following mechanics, each with associated
GM and parallel-world data sufficient to estimate M. The shield mechanic focuses on equip-
ping and blocking with a shield, as discussed in Section 3.1. In the elemental immunity me-
chanic, “elemental” attributes (e.g., fire and ice) govern immunity and vulnerability to attacks. The
weapon range mechanic governs melee vs. ranged combat. The spell-casting mechanic gov-
erns five submechanics that allow players to give themselves an advantage in battle (e.g., gain
increased attack power, dodge ability), or their opponent a disadvantage (e.g., disarm them or
lower their defense)—projectiles, self-levitation, enemy-levitation, self-transformation, and enemy-
transformation. See Appendix E for detailed descriptions, including causal formalizations, DAGs,
and illustrations.
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4.3 DESIGN DECISIONS

Mechanic-Specific Game Systems. Each mechanic is implemented with a unique instance of
a game system (Nystrom, 2014; Gregory, 2018), independent of the others. This ensures parity
between the mechanic and the code logic. Full game system details are given in Appendix F.1.1.

Impact Frames and Visual Conventions. We designed the game such that each turn contains
an impact frame—the most visually and mechanically expressive phase of an interaction (e.g., the
precise moment when an attack lands) Impact frames are not based on fixed time-points but are set
according to specific conditions in the finite-state machines. See Appendix F.2 for details.

Simple yet Information Dense Visuals. To facilitate rapid, inexpensive experimentation, we
focus on the ability to run experiments with episodes that have a minimal number of frames. To this
end, we use a simple art style that aligns with the representational biases of pretrained vision models
(luciI, 2024; Zhang et al., 2023) and animation conventions that emphasize dynamic information,
such as speed lines (“zip ribbons”) to depict fast motion, trajectory lines for projectiles, curved
swipes for melee attacks, and burst lines and explosion visual effects for collisions or blocked strikes
(McCloud, 2020; Eisner, 2008; Cohn, 2013). In Section 5, we highlight this ability by limiting our
analysis to single time-point snapshots at the impact frame, chosen as the impact frame of the clip.
The images in Figure 1 are all sampled at their respective impact frames.

4.4 DATA GENERATION

Multiverse Mechanica is not a dataset but a generator. To generate data, an automated agent repeat-
edly plays the game to produce clips. Users can select a number N of generations. The generation
process can randomly generate N clip examples, constituting level-1 data. The user can also specify
interventions on specific game state variables and generate N clip examples where those interven-
tions are applied, constituting level-2 data. Finally, the user can specify interventions and assign
them to multiple game instances with a shared “ω” (same random seed and initial conditions) and
generate N consistent contrasts (tuples of clips), constituting level-3 data. Each mechanic has pre-
sets for level-2 and level-3 generation. Each clip is a 512x512 MP4 video averaging 4 seconds at 50
FPS. Each generated example is a tuple consisting of a clip, controller inputs, game-state variable
outcomes, and a random seed for reproducibility. See Appendix G for additional details related to
data generation.

Summary. Multiverse Mechanica provides a compact yet expressive testbed for studying whether
generative models can capture mechanics. Its design couples causal structure with visual grounding,
leverages art and animation conventions for low-cost training, and enables reproducible creation of
parallel-world contrasts.

5 PROOF-OF-CONCEPT: LEARNING A MECHANIC WITH DIFFUSION
FINE-TUNING

One advantage of Multiverse Mechanica’s design (Section 4.3) is that mechanics are rendered into
impact frames using simple yet information-dense visuals. This allows experiments with supervision
from clips as short as a single frame. We illustrate this with a case study: fine-tuning a pretrained
image diffusion model to target mechanic learning. Specifically, we fine-tune the model to learn the
full mechanic set (i.e., shield, elemental immunity, weapon range, and spell-related submechanics),
as discussed in Section 4.2.

We fine-tuned the latent diffusion model OpenJourney-v4 (PromptHero, 2022) on N = 1000 impact
frame consistent contrasts generated from the game. Each consistent contrast consists of paired
images (VX=x0 , VX=x1) from parallel worlds that share a random seed ω but differ by interventions
on a mechanic variable X . This setup directly instantiates the causal consistency principle: non-
descendant variables of X should remain invariant across the pair.

We introduce a multiverse alignment objective—a modification of the standard diffusion loss—
to enforce the causal consistency principle. In a consistent contrast, all elements share a common
sample ω ∈ Ω, mirroring the reverse process in deterministic diffusion variants that generate data
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Figure 4: Proof-of-concept of shield mechanic learning with a diffusion model trained on game
data. Mechanic learning is shown by sampling counterfactuals: unchanged image elements remain
consistent with the original. (A) Held-out game image: wizard attacks warrior (blue due to an
ice elemental buff). (B) Generated counterfactual with warrior holding a shield but not blocking
(VS=1,B=0). (C) Generated counterfactual with shield and block active (VS=1,B=1) (aliased sword
is a generation error).
from latent noise. We therefore initialize each contrast trajectory with the same noise: sample
ω ∼ N (0, I) and set ZT,X=x0

= ZT,X=x1
= ω.

Let {X = x0, VX=x0
, X = x1, VX=x1

} ∼ P̂ , where X ∈ XX is a game-state variable under
intervention and VX=xj

is the corresponding impact frame snapshot under intervention X = xj .
With timesteps t ∈ [0, T ], let Zt,X=x0

, Zt,X=x1
denote the noisy latent representations of VX=x0

and VX=x1 , respectively. Conditioned on controller input c, the denoiser ϵθ(·) iteratively transforms
the shared seed ω into a clean latent Z0,X=xj that decodes into the impact frame VX=xj . Our task
is to train the denoiser’s weights θ with a loss that enforces causal consistency across contrasts.

The multiverse alignment loss has two components:

L = λ1 L1 + λ2 L2, λ1, λ2 ≥ 0, λ1 + λ2 = 1.

L1: seed-consistency loss. Let Abductθ denote an inversion procedure that estimates the Gaus-
sian seed from an observed impact-frame latent Z0,X=xj

and controller input cj . Given Z0,X=xj

with controller input cj , Abductθ uses the denoiser ϵθ(·) to trace Zt,X=xj
backward through the

noise schedule, producing an estimate ω̂j of the exogenous seed ω. Under a deterministic sampler
(e.g., DDIM), this corresponds to following the reverse trajectory from the observed latent to the
initial noise (see Appendix I.10.5 for details). The seed-consistency loss then enforces agreement
between abducted seeds across a consistent contrast:

L1(Z0,X=x0 , c0, Z0,X=x1 , c1) =
∥∥Abductθ(Z0,X=x0 , c0)− Abductθ(Z0,X=x1 , c1)

∥∥2
2
.

Remark. With deterministic sampling, shared ω implies shared non-descendant content. Minimizing
L1 suppresses nuisance differences and attributes variation to mechanic-specific interventions.

L2: structure-alignment loss. Let S ⊂ {1, . . . , T} be a subset of high-noise timesteps. For each
t ∈ S, the denoiser predicts noise ϵθ(Zt,X=xj

, t, cj). We align predictions across the contrast:

L2 =
∑
t∈S

∥∥ϵθ(Zt,X=x0
, t, c0)− ϵθ(Zt,X=x1

, t, c1)
∥∥2
2
.

Remark. Early reverse steps encode coarse layout. Aligning them enforces global semantic identity
across contrasts, while leaving mechanic-specific differences to emerge in later, low-noise steps.

Evaluation Results.

Figure 4 shows qualitative counterfactual generations: the model preserves non-mechanic-related
content while toggling the targeted shield mechanic. From a factual image v with X = x we abduct
the exogenous seed ω, then generate a counterfactual image v′ with X = x′ while keeping ω fixed.
This corresponds to sampling from P (VX=x′ | X = x, V = v), i.e. counterfactual reconstruction
with shared ω. This provides visual evidence that the fine-tuned model has learned aspects of the
mechanic, not merely pixels.

To systematize this evaluation, we report quantitative results in Table 4. The causal consistency
metrics provide a systematic approach to evaluating consistency (Hessel et al., 2021; Radford et al.,

9
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2021), and we include metrics for image quality and reconstruction quality (Wang et al., 2004;
Wolf et al., 2009) to serve as table-stakes baselines. While the model demonstrates reasonable
image-to-text alignment (CLIP score: 24.45) and strong image similarity (0.89) between factual and
counterfactual pairs, the reconstruction metrics reveal challenges in perfectly inverting the diffusion
process, with reconstruction PSNR at 10.73 dB. The high exogenous distance (0.67) suggests that
our current implementation requires further optimization to achieve tighter alignment between par-
allel worlds. Despite these limitations, the model successfully generates semantically meaningful
counterfactuals, as evidenced by the transfer CLIP score of 20.77.

Table 4: Evaluation metrics for diffusion fine-tuning on 1000 consistent-contrast pairs. Causal
consistency is emphasized as the key criterion for mechanic learning; reconstruction and image
quality provide baseline checks.

Metric Category Metric Value

Causal Consistency CF Transfer CLIP Score 20.77
Exogenous Distance (MSE)↓ 0.671

Reconstruction
Reconstruction PSNR 10.73 dB
Reconstruction SSIM 0.183
Reconstruction CLIP Score 21.45

Image Quality

PSNR (Factual vs CF) 17.66 dB
SSIM (Factual vs CF) 0.433
CLIP Image-Text Score 24.45
CLIP Image-Image Similarity 0.892

6 SCALABILITY & LIMITATIONS

Our descriptions of mechanics assume parallel-world statements (Section 3.1) with discrete differ-
ences across worlds; the same logic extends to incremental changes, but we have not yet charac-
terized which mechanics require that expressivity. In our proof-of-concept, we operate on impact
frame snapshots (Section 5), which makes experiments tractable but sidesteps temporal dynamics.
Although our current evaluation is limited to settings with similar temporal structure, in principle,
the approach applies to any generative video model capable of conditioning across worlds. As future
work, we plan to benchmark video-capable world models and longer horizons.

Contrast generation scales linearly with the number of worlds per mechanic and seeds, whereas
composing multiple mechanics can grow contrasts combinatorially. Our simplified 2D domain re-
duces compute expense and aids clarity, but limits transfer to photorealistic 3D and other genres,
where new rendering conditions and longer horizons demand more complex models. Evaluation of
consistency currently relies on human or VLM-based checks; the robustness of automated evaluators
in this setting remains an open challenge.

Beyond video games, our causal-consistency formulation—which expresses mechanics as coun-
terfactual constraints over an SCM and enforces cross-world consistency—extends to other con-
trollable simulators and content-generation pipelines. Many physics engines, animation systems,
and VFX toolchains expose structured state, deterministic updates, and seed-controlled stochas-
ticity, providing the ingredients needed to construct parallel-world contrasts. In these settings,
“mechanics” may correspond to physical laws, interaction rules, or rendering effects. However,
realistic simulators involve high-dimensional latent state, longer temporal dependencies, and ren-
dering stacks whose stochasticity may not align cleanly across worlds; likewise, real-world video
lacks explicit multiverse structure, often requiring synthetic contrasts or approximate consistency
objectives. Thus, while Multiverse Mechanica provides a “best-case” environment where contrasts
are explicit, extending these ideas to more complex simulators or cinematic pipelines will require
domain-specific approximations and strategies for generating or inferring multiverse-like structure.
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7 CONCLUSION

We formalized game mechanics as causal counterfactual inference and introduced Multiverse Me-
chanica, a playable testbed that emits parallel-world contrasts and per-mechanic causal graphs.
Building on this foundation, we proposed a multiverse-alignment objective and demonstrated a
proof-of-concept fine-tuning that learns targeted mechanics. Together, these components provide
a reproducible path to assessing whether world models learn mechanics—not just pixels.
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To ensure reproducibility of this paper, we make the following efforts:

• We will release Multiverse Mechanica upon publication to provide researchers a game for
use as a testbed for evaluating learning of game mechanics.

• We will make available publicly upon publication the dataset (including mechanism-
specific graphical artifacts) used for the proof-of-concept training presented in Section 5.

C.1 PROOF-OF-CONCEPT DATASET

Here, we describe the dataset used for the proof-of-concept training presented in Section 5, used to
learn the shield gameplay mechanic.
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Figure 5: Impact frame generated by Multiverse Mechanica for a world in a parallel world tuple.

C.1.1 GENERATION

We generate a level-3 dataset, as described in Section 4.4. We automatically derive parallel world
interventions based on the full game DAG, targeting the variables relevant to the parallel world
contrast statements for the shield mechanic. The set of derived interventions define multiple parallel
world tuples, enumerated such that we sufficiently cover the support of joint distribution of the
mDAG induced by the query variables associated with the level-3 parallel world statements for the
mechanic.

We assign these interventions to multiple game instances with a shared “ω” (same random seed and
initial conditions) and generate N = 1000 consistent contrasts, constituting level-3 data. Since we
are training on text and images (i.e., not gameplay clips), for each we generate only a subset of
training artifacts consisting of these two modalities: 1) the impact frame as a 512x512 PNG image,
and 2) the game-state variable outcomes (converted into a caption in the pre-processing method,
outlined below).

C.1.2 PRE-PROCESSING

To align our artifact modalities with the text-to-image latent diffusion architecture used in our proof-
of-concept, we must perform a pre-processing step to convert from the game-state variable out-
comes—a dictionary of variable-name/value pairs—to a text caption. We implement a templated
captioning process for each parallel world tuple, by which plain-text captions are deterministically
constructed based on the values of the game-state variables.

Consider, for example, the following impact frame image and game-state variable artifacts generated
by Multiverse Mechanica for one of the worlds in a parallel world tuple.

For this world, Multiverse Mechanica has generated the impact frame image shown in Figure 5 and
the following game-play state:

gameplay_state = {
’background’: ’forest’,
’player action’: ’melee attack’,
’player class’: ’warrior’,
’player does block’: False,
’player element’: ’ice’,
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’player has shield’: False,
’player is hurt’: False,
’player is immune to attack’: False,
’player weapon’: ’short sword’,
’player weapon class’: ’light’,
’player weapon element’: ’ice’,
’player weapon is light’: True,
’player weapon range’: ’melee’,
’opponent action’: ’defend’,
’opponent class’: ’warrior’,
’opponent does block’: True,
’opponent element’: ’none’,
’opponent has shield’: True,
’opponent is hurt’: False,
’opponent is immune to attack’: False,
’opponent weapon’: ’short sword’,
’opponent weapon class’: ’light’,
’opponent weapon element’: ’fire’,
’opponent weapon is light’: True,
’opponent weapon range’: ’melee’,

}

Given this game-play state, our pre-processing step constructs the following caption:

“A 1-on-1 battle between two warriors. The warrior on the left has a ice element
buff. The warrior on the left’s weapon is a short sword with a ice buff. The warrior
on the left is launching a melee attack. The warrior on the right’s weapon is a short
sword with a fire buff and they have a shield. The warrior on the right is blocking
with their shield.”

The captions generated by the pre-processing step is combined with the generated image to thus
create training data suitable for text-to-image latent diffusion architecture used in our proof-of-
concept.

D BRIEF PRIMER ON CORE CAUSAL CONCEPTS

D.1 THE CAUSAL HIERARCHY

The causal hierarchy describes three levels of statements that employ causal logic: (level-1) obser-
vation, (level-2) intervention, and (level-3) counterfactual (Bareinboim et al., 2022). A predictive
statement, such as “The scene would generate in this way,” is a level-1 observational statement. A
level-2 interventional statement targets outcomes under hypothetical interventions, such as “If an
enemy were placed here (e.g., in a place it would not naturally appear), then the scene would gen-
erate in this way.” A level-3 counterfactual statement considers observed outcomes and how those
outcomes might have been different under hypothetical interventions. For example: “Given there
was no enemy and the scene generated that way, if an enemy were placed here, the scene would
generate in this way.”

Formally, level-k statements describe events in the sample space of a level-k distribution (Barein-
boim et al., 2022). Level-k data can be viewed as samples from such a distribution, and with i.i.d.
sampling, the empirical distribution converges to the true sampling distribution. Ordinary gameplay
logs are level-1 data; data where variables are artificially fixed before sampling (as in experiments)
is level-2 data. In most settings, level-3 data does not exist due to the fundamental problem of causal
inference—it is impossible to observe outcomes for the same effect variables across worlds (Hol-
land, 1986). In this work, we leverage the video game setting’s ability to observe level-3 data across
virtual worlds, i.e., multiple instances of a game run with shared initial conditions.

Models also align with this hierarchy. A causal DAG is a level-2 model: when combined with a
generative model, it encodes the family of interventional distributions over the DAG’s variables. A
structural causal model (SCM) is a level-3 model: it additionally encodes the family of counter-
factual distributions over the DAG’s variables (Pearl, 2009). Level-k data is sufficient to identify
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level-k models, but the causal hierarchy theorem states that level-k statements cannot, in general,
be inferred from data below level k (Bareinboim et al., 2022).

Thus, we follow the three-level hierarchy (Bareinboim et al., 2022): (L1) observational ques-
tions about P (V); (L2) interventional questions about P (V | do(X=x)); and (L3) coun-
terfactual (parallel-world) questions about joint outcomes under conflicting interventions, e.g.,
(YX=x, YX=x′). Level-3 quantities encode “all-else-equal” comparisons across worlds.

D.2 SCMS AND RULES

An SCMM = (U,V,F, P (U)) specifies exogenous factors U, endogenous variables V, structural
assignments F, and a distribution over U (Pearl, 2009). In our context, F plays the role of executable
rules; see Bongers et al. (2018) for SCMs as formal rule systems.

D.3 MARGINALIZATION OF CAUSAL DAGS

We implement Evans (2016) approach to DAG marginalization. Given a causal DAG and a set of
nodes to marginalize out of the DAG, Evans (2016) creates a marginalized DAG with hyper-edges
that represent the footprint of latent common causes. Directed edges encode parent–child relation-
ships among observed variables as usual. Hyper-edges encompassing a set of observed nodes, indi-
cate that all nodes in the set share an unobserved exogenous influence. For example, a hyper-edge
touching nodes X,Y, Z represents the fact that there is some unobserved variable that acts as a com-
mon cause to X,Y, Z simultaneously. The mDAG maintains the causal interpretation, intervention
model, and implications to conditional independence as the full DAG.

While mDAGs are convenient for reasoning about marginalized structures, we require a fully explicit
DAG representation for generating parallel-world and counterfactual graphs, as well as for using
standard graph serialization. We therefore modify the algorithm such that, for each hyperedge, a
d-separating sets of shared ancestors that entail the hyperedge are explicitly added back into the
model. This implements the expansion of the canonical mDAG by making the latent causes explicit
expansion as discussed in Evans (2016).

D.4 MULTIVERSE REASONING.

With multiverse counterfactual reasoning, we envision one world where observed outcomes oc-
curred, and separate “parallel” worlds where hypothetical interventions lead to outcomes that differ
from the observed outcomes Shpitser & Pearl (2012). For example, consider the statement “Given
there was no enemy and the scene generated that way, if an enemy were placed here, the scene
would generate in this way”. With this statement, we can envision two parallel worlds, one where
there was no enemy and the scene generated that way, and one where there was an enemy and the
scene generated this way. Level-3 data, therefore, is a data tuple representing outcomes across par-
allel worlds. The “fundamental problem of causal inference” (Holland, 1986) is that level-3 data
is unobservable—in real world settings, it is impossible to observe potential outcomes for the same
variable across parallel worlds. A key insight of our work is that in virtual world settings, the data
can exist by creating parallel instances of the same world with the same initial conditions.

D.5 COUNTERFACTUAL GRAPHS AND CONSISTENCY

Counterfactual graphs are based on parallel world graphs. The parallel world graph clones a causal
DAG across parallel worlds and uses graph surgery to represent hypothetical conditions in certain
worlds (Shpitser & Pearl, 2012). Variables that are not descendants of the intervention share a single
node across worlds (consistency); variables affected by the intervention are duplicated and indexed
by world. This graph encodes which quantities must remain identical across worlds and which
may differ, providing a compact template for supervision and evaluation. The counterfactual graph
collapses nodes that must be consistent across worlds into single nodes, creating a graph that (unlike
the parallel world graph) encodes conditional independence across parallel worlds. In this work,
we formalize the concept of game mechanics such that, for a given mechanic, we can generate a
set of parallel world graphs and counterfactual graphs that explicitly encode its structure and which
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variables should remain consistent while the mechanic is in play. These can be used in training
alongside the level-3 gameplay data.

D.6 ESTIMATING COUNTERFACTUAL DISTRIBUTIONS

In Section 3.1.3, we let P1 = P (SW=1, SW=0), P2 = P (BS=1, BS=0), and P3 =
P (DB=1, DB=0, S) denote the distributions constrained by S1, S2, and S3. We can estimate these
distributions with repeated sampling of consistent contrasts D1, D2, and D3, then averaging over
sampling distributions to obtain sampling distributions P̂1, P̂1, and P̂3.

• P̂1:
∑

j∈0,1
∑

b
(i)
W=j ,d

(i)
W=j ,v

(i)
W=j

P̂
(
SW=1, BW=1, DW=1, VW=1, SW=0, BW=0, DW=0, VW=0

)
• P̂2:

∑
j∈0,1

∑
w,dS=j ,vS=j

P̂ (W,BS=1, DS=1, VS=1, BS=0, DS=0, VS=0

)
• P̂3:

∑
j∈0,1

∑
w,s,vB=j

P̂ (W,S,DB=1, VB=1, DB=0, VB=0

)
In each case P̂i converges almost surely to Pi.

E MECHANICS IMPLEMENTED IN MULTIVERSE MECHANICA V1.0

In this section, we describe the ground truth causal structure and mechanics Multiverse Mechanica.

We describe each game mechanic in terms of:

• level-2 interventional statements: A set of causal hypothetical statements of the form
“Given preconditions W , all else equal, if X , then Y .”

• A set of causal Markov kernels encompassing the relevant conditional probability distribu-
tions in the causal DAG.

• level-3 parallel world statements: A set of counterfactual statements of the form “Given
preconditions W , all else equal, if X , then Y AND if X ′ then Y ′.”

• A set of counterfactual probability expressions defining the induced counterfactual outcome
probabilities.

Particularly, in the case of the level-3 parallel world statements, we can enumerate counterfactual
worlds in which we make a change and the target outcome variable(s) change, with guarantees on
consistency, with respect to the game mechanic.

We formulate the counterfactual cases by taking interventions to change variables (bold), from the
factual case (Case 0). Downstream changes are shown in italics.

Full Causal DAG Figure 6 shows the full causal DAG of a turn in Multiverse Mechanica v1.0.

E.1 SHIELD MECHANIC

The warrior character can equip a shield they can use to block incoming attacks, if they have a free
hand and perform the “defend” action.

E.1.1 LEVEL-2 INTERVENTIONAL DEFINITION

We can completely define this mechanic by a set of contrasting statements:

• If a player has a small weapon, they may hold a shield, otherwise they cannot.
• If a player has a shield, they may block incoming attacks, otherwise they cannot.
• If a player blocks an incoming attack, they avoid taking damage, otherwise they may take

damage.

Involved variables:
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Figure 6: Full causal DAG of a turn in Multiverse Mechanica

(a) Factual: The warrior is equipped with a one-
handed short-sword and a shield, and blocks the ar-
row with a shield.

(b) Counterfactual: The warrior is equipped with a
two-handed long-sword, and no shield, and is unable
to block the attack.

Figure 7: Example counterfactual contrast statement for the shield mechanic.

• player action : [idle, melee attack, defend]

• opponent weapon class : [small, large]

• opponent has shield : [True, False]

• opponent action : [idle, melee attack, defend]

• opponent is hurt : [True, False]
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Latent variables:

• opponent weapon is heavy : [one-handed, two-handed]

E.1.2 CAUSAL MARKOV KERNELS

In our model, block is one of the actions. Thus, we can reason about the shield game mechanic in
terms of the player/opponent action being sampled as block.

The causal Markov kernel for the opponent action variable encompasses the shield game mechanic:

P
(
opponent action

∣∣ opponent has shield, opponent weapon
)
.

To reason about the opponent blocking, we consider the probability that the action variable is block:

P
(
opponent action = block

∣∣ opponent has shield, opponent weapon
)
.

To reason about the opponent getting hurt, we consider the probability that the opponent gets hurt,
given the opponent action and player action:

P
(
opponent is hurt

∣∣ opponent action, opponent has shield, opponent weapon
)
.

An important detail to take note of is that the causal DAG does not have a variable to represent
the character’s outcome (e.g. getting hit, blocking, dodging)—it only has a notion of final stance.
However, the stance variable is currently unused after sampling; the battle video game handles the
underlying outcome logic and renders the scene.

E.1.3 LEVEL-3 COUNTERFACTUAL PARALLEL WORLD STATEMENTS

We can rewrite the level-2 interventional statements as the following level-3 parallel world state-
ments:

1. Given a character had a heavy weapon and they did not have a shield; if the character would
have had a light weapon instead, then they could have equipped a shield.

2. Given a character had not had a shield and did not block; if the character had a shield
instead, then they could have blocked.

3. Given a character had a shield but did not block and took damage; if the character had
blocked instead, then they would have avoided taking damage from the attack.

E.1.4 COUNTERFACTUAL PROBABILITY EXPRESSIONS

We can formulate these natural-language statements in mathematical notation.

Notation. Let:

• WC = weapon class,

• HS = has shield,

• B = does block,

• H = is hurt.

Then we have:

P
(
HSWC=Light = True

∣∣WC = Heavy, HS = False
)
> 0,

P
(
BHS=True = True

∣∣HS = False, B = False
)
> 0,

P
(
HB=True = False

∣∣HS = True, B = False, H = True
)
= 1.
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E.2 ELEMENTAL IMMUNITY MECHANIC

Under the elemental immunity game mechanic, players may have elemental attributes; either fire
or ice. Weapons may also have elemental attributes. If the attacking player weapon element and
opponent element are the same (and non-none), the opponent is granted elemental immunity, and
thus avoids taking damage from the attack, since they are already imbued with the element the
attacker is using to attack them.

The elemental attributes of characters are indicated by variations from their base appearance:

• none: Characters appear in their standard appearances
• fire: Characters appear with orange shading and/or red outline
• ice: Characters appear with light blue shading and/or blue outline

The elemental attributes of weapons are similarly indicated by variations from their base appearance:

• none: Weapons appear in their standard appearances
• fire: Weapons appear with orange shading and/or red outline. Melee weapon slash visual

effects appear with red shading. Ranged weapon projectiles (e.g., arrows, spell attacks) and
explosions appear with red shading.

• ice: Weapons appear with light blue and/or blue outline. Melee weapon slash visual effects
appear with blue shading. Ranged weapon projectiles and explosions appear with blue
shading.

(a) Factual: The fire wizard is immune to the war-
rior’s melee attack with a fire-type short sword.

(b) Counterfactual: The fire wizard takes damage
from the warrior’s melee attack with an ice-type short
sword.

Figure 8: Example counterfactual contrast statement for the elemental immunity mechanic.

E.2.1 LEVEL-2 INTERVENTIONAL DEFINITION

We can completely define this mechanic by a set of contrasting statements:

• If a player has an elemental attribute, they may wield a weapon with the same elemental
attribute but they cannot wield one of an opposing element in the fire–ice dichotomy. For
example, a player with a fire-elemental attribute may wield a fire-elemental weapon (or
non-elemental weapon); they cannot wield an ice-elemental weapon.

• If a player does not have an elemental attribute, they may wield any elemental-type weapon;
otherwise the rule above applies.
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• If a player is hit by an incoming attack from a weapon with the same elemental attribute,
they are immune and thus avoid taking damage; otherwise they may take damage.

Involved variables:

• player element : [none, fire, ice]
• player weapon element : [none, fire, ice]
• opponent element : [none, fire, ice]
• opponent is immune to attack : [True, False]
• opponent is hurt : [True, False]

Latent variables: None.

E.2.2 CAUSAL MARKOV KERNELS

The element of the player and the opponent are both independent variables:
P (player element),

P (opponent element).

The causal Markov kernel for the player weapon elemental is as follows:
P
(
player weapon element

∣∣ player element
)
.

To reason about the opponent being immune to the attack, we consider the conditional probability
given the opponent’s element and player’s weapon element:

P
(
opponent is immune to attack

∣∣ player weapon element, opponent element
)
.

To reason about the opponent getting hurt, we consider the probability that the opponent gets hurt,
given the opponent being immune:

P
(
opponent is hurt

∣∣ opponent is immune to attack
)
.

E.2.3 LEVEL-3 COUNTERFACTUAL PARALLEL WORLD STATEMENTS

We can rewrite the level-2 interventional statements as the following level-3 parallel world state-
ments:

1. Given a character had a fire elemental attribute and they had a fire elemental weapon; if the
character would have had an ice elemental attribute instead, then they could have had an
ice- or none-elemental weapon but not a fire elemental.

2. Given a character had a fire elemental attribute and they had a fire elemental weapon; if
the character would have had no elemental attribute instead, then they could have had any
elemental or non-elemental type weapon.

3. Given a character had an ice elemental attribute and was hit with an attack from an ice
elemental weapon, and thus was immune and did not take damage; if the character had a
fire elemental attribute instead, then they would have taken damage from the attack.

E.2.4 COUNTERFACTUAL PROBABILITY EXPRESSIONS

We can formulate these natural language statements in mathematical notation.

Notation. Let:

• PE = player element,
• PWE = player weapon element,
• OE = opponent element,
• I = is immune to attack,
• H = is hurt.

Then we have:
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Statement 1.
P
(
PWEPE=Ice = Fire

∣∣PE = Fire, PWE = Fire
)
= 0,

P
(
PWEPE=Ice = Ice

∣∣PE = Fire, PWE = Fire
)
> 0,

P
(
PWEPE=Ice = None

∣∣PE = Fire, PWE = Fire
)
> 0.

Statement 2.
P
(
PWEPE=None = Fire

∣∣PE = Fire, PWE = Fire
)
> 0,

P
(
PWEPE=None = Ice

∣∣PE = Fire, PWE = Fire
)
> 0,

P
(
PWEPE=None = None

∣∣PE = Fire, PWE = Fire
)
> 0.

Statement 3.
P
(
HOE=Fire = True

∣∣PWE = Ice, OE = Ice
)
= 1.

E.3 WEAPON RANGE MECHANIC

Under the weapon range game mechanic, weapon classes have range attributes; either melee or
ranged. Each weapon class is either a melee or ranged type. For example, the light sword, the
heavy sword, and the dagger are melee weapons; while the bow, the staff, and the throwing knife are
ranged weapons. The weapon range attribute affects primarily visual elements of the battle scene:

1. Stance: a character attacking with a melee weapon will be depicted in the snapshot phys-
ically swinging the melee weapon at the opponent’s location, while a character attacking
with a ranged weapon will be depicted shooting/throwing/casting from their position.

2. Scene: a character attacking with a melee weapon will be shown in the game scene (video)
first approaching the opponent’s position before physically swinging the melee weapon,
while a character attacking with a ranged weapon will be depicted shooting/throwing/-
casting from their position and the emitted projectile will be shown traveling towards the
opponent from left to right (possibly on a parabolic trajectory, if affected by gravity, e.g.
the arrow shot from the bow).

(a) Factual: The assassin performs a melee attack on
a wizard with a sword.

(b) Counterfactual: The assassin performs a ranged
attack on a wizard with a throwing knife.

Figure 9: Example counterfactual contrast statement for the weapon range mechanic.
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E.3.1 LEVEL-2 INTERVENTIONAL DEFINITION

We can completely define this mechanic by a set of contrasting statements:

• If a weapon is one of the weapon classes light sword, heavy sword, or dagger, it is a melee
weapon; otherwise if it is bow, staff, or throwing knife it is a ranged weapon.

• If a player wields a melee weapon, they will be depicted in the snapshot as performing a
melee attack at the opponent’s location; otherwise they will be depicted as performing a
ranged attack from their own location.

• If a player wields a melee weapon, they will be shown in the game scene (video) first
approaching the opponent’s position before physically swinging the melee weapon; other-
wise they will be depicted shooting/throwing/casting from their position and the emitted
projectile will be shown traveling towards the opponent from left to right.

Involved variables:

• player weapon class : [light sword, heavy sword, dagger, bow, staff, throwing
knife]

• player weapon range : [melee, ranged]
• player stance : pixels in the rendered image snapshot
• scene : pixels in the rendered gameplay video

Latent variables: None.

E.3.2 CAUSAL MARKOV KERNELS

The causal Markov kernel for the player weapon range is as follows:

P
(
player weapon range

∣∣ player weapon class
)
.

To reason about the player stance rendered in the image snapshot, we consider the conditional prob-
ability given the player weapon and player weapon range:

P
(
stance

∣∣ player weapon, player weapon range
)
.

Similarly, to reason about the scene rendered in the gameplay video, we consider the conditional
probability given the player weapon, player weapon range, and player stance:

P
(
scene

∣∣ player weapon, player weapon range, stance
)
.

E.3.3 LEVEL-3 COUNTERFACTUAL PARALLEL WORLD STATEMENTS

We can rewrite the level-2 interventional statements as the following level-3 parallel world state-
ments:

1. Given a character had a light sword and they had a melee weapon; if the character would
have had a bow instead, then they would have had a ranged weapon.

2. Given a character had a melee weapon and they were depicted in the snapshot as performing
a melee attack at the opponent’s location; if the character would have had a ranged weapon
instead, then they would have been depicted as performing a ranged attack from their own
location.

3. Given a character had a melee weapon and they were shown in the game scene video first
approaching the opponent’s position before physically swinging the melee weapon; if the
character would have had a ranged weapon instead, then they would have been depicted
shooting/throwing/casting from their position and the emitted projectile would have been
shown traveling towards the opponent from left to right.

E.3.4 COUNTERFACTUAL PROBABILITY EXPRESSIONS

We can formulate these natural language statements in mathematical notation.
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Notation. Let:

• PWC = player weapon class,
• PWR = player weapon range,
• PS = player stance,
• S = scene.

Then we have:

Statement 1.
P
(
PWRPWC=bow = ranged

∣∣PWC = light sword, PWR = melee
)
= 1.

Statement 2.

P
(
PSPWR=ranged = depicted performing ranged attack

∣∣∣
PWR = melee, PS = depicted performing melee attack

)
= 1, (1)

P
(
PSPWR=ranged = depicted performing melee attack

∣∣∣
PWR = melee, PS = depicted performing melee attack

)
= 0. (2)

Statement 3.

P
(
SPWR=ranged = shown performing ranged attack

∣∣∣
PWR = melee, PS = shown approaching the opponent and performing melee attack

)
= 1,

(3)

P
(
SPWR=ranged = shown performing melee attack

∣∣∣
PWR = melee, PS = shown approaching the opponent and performing melee attack

)
= 0.

(4)

E.4 SPELL-CASTING MECHANIC

Under the spell-casting mechanic, the wizard character may perform one of five spells:

1. Spawn Magic Projectile Spell to Perform Ranged Attack
2. Summon Cloud Platform Spell to Dodge Attack
3. Self-Transform Spell to Increase Melee Strength
4. Opponent Transform Spell to Lower Enemy Defense
5. Levitation Spell to Disarm Opponent

None of these spell actions can be mitigated by the enemy. Even in the case of the self-transform
spell, the sheer size of the transformed wizard (into a golem) renders any block action by the oppo-
nent useless. Each spell action choice affects the stance and scene variables in the rendered game.

E.4.1 LEVEL-2 INTERVENTIONAL DEFINITION.

All spells share the same base level-2 contrasting statements:

• If the player character is a wizard, they may wield a magical staff, otherwise they cannot.
• If the character is equipped with a magical staff, they may cast spells, otherwise they can-

not.
• If the character casts a spell, they gain a particular offensive or defensive benefit to help

them in the battle, otherwise they do not.
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E.4.2 CAUSAL MARKOV KERNELS

Notation. Let:

• PC = player character
• PW = player weapon
• PA = player action
• PF = player form
• PS = player stance
• OC = opponent character
• OW = opponent weapon
• OA = opponent action (e.g., defend)
• OF = opponent form
• OS = opponent stance
• B = opponent successfully blocks (semantic variable, only true if the defend action actu-

ally succeeds)
• D = opponent dodges
• H = opponent is hurt
• Stance and Scene are the rendered variables

Latent variables:

• OIA = opponent incoming attack indicator

Shared enabling kernels.

P (PW = staff | PC = wizard) > 0

P (PA ∈ {spell actions} | PW ̸= staff) = 0

P (PA | PW = staff, state) is exogenous (agent policy)

Shared state & rendering kernels.

P (PF, PS,OF,OS | PA,OA,PC, PW,OC,OW )

P (Stance | PF, PS,OF,OS, PA,OA)

P (Scene | Stance, PF, PS,OF,OS, PA,OA)

Shared interaction/outcome kernels.

P (B | PF,OA)

P (D | PS,OIA)

P (H | B,D,PA)

E.4.3 LEVEL-3 COUNTERFACTUAL PARALLEL WORLD STATEMENTS.

All spells also share a common set of counterfactual statements:

1. Given a character was not a wizard and therefore could not wield a magical staff; if the
character had been a wizard instead, then they could have wielded a magical staff.

2. Given a character was not equipped with a magical staff and therefore could not cast spells;
if the character had been equipped with a staff instead, then they could have cast spells.

3. Given a character did not cast a spell and therefore received no benefit in the battle; if the
character had cast a spell instead, then they would have gained the corresponding offensive
or defensive benefit.
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E.4.4 COUNTERFACTUAL PROBABILITY EXPRESSIONS (SHARED).

Not wizard→ Wizard⇒ Staff access

P
(
PWPC=wizard = staff

∣∣PC ̸= wizard, PW ̸= staff
)
> 0.

No staff→ Staff⇒ Spell casting possible

P
(
PAPW=staff ∈ {spell actions}

∣∣PW ̸= staff, PA /∈ {spell actions}
)
> 0.

E.5 SPAWN MAGIC PROJECTILE SPELL TO PERFORM RANGED ATTACK

The wizard can cast a spell to conjure and launch a magical projectile directly at the opponent. This
action is a ranged attack, and its visual and mechanical dynamics follow the same principles as other
ranged weapons described in Section E.3.

E.5.1 LEVEL-2 INTERVENTIONAL DEFINITION.

• If the wizard casts the spawn projectile spell, a magical projectile is launched towards the
opponent (i.e., OIA = True), otherwise no projectile is spawned (OIA = False).

• If a magical projectile strikes the opponent and is not successfully blocked or dodged, the
opponent is hurt, otherwise they are not.

Involved variables:

• PA = player action

• OA = opponent action (e.g., defend, dodge)

• PS = player stance

• B = opponent successfully blocks

• D = opponent dodges

• H = opponent is hurt

Latent variables:

• OIA = opponent incoming attack indicator

E.5.2 CAUSAL MARKOV KERNELS.

P (OIA | PA)

P (B | PF,OA)

P (D | PS,OIA)

P (H | B,D,PA)

E.5.3 LEVEL-3 COUNTERFACTUAL PARALLEL WORLD STATEMENTS.

1. Given the wizard idled and there was no incoming attack; if the wizard had cast the spawn
projectile spell instead, then the opponent would have faced an incoming attack (OIA =
True).

2. Given the wizard cast the spawn projectile spell and the projectile hit (i.e., no successful
block or dodge) and the opponent was hurt; if the opponent had successfully blocked or
dodged instead, then they would not have been hurt.
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E.5.4 COUNTERFACTUAL PROBABILITY EXPRESSIONS.

Idle→ Projectile spell⇒ Incoming attack present

P
(
OIAPA=projectile spell = True

∣∣PA = idle, OIA = False
)
= 1.

Projectile hits→ Successful block⇒ Not hurt

P
(
HB=True = False

∣∣PA = projectile spell, OIA = True, B = False, H = True
)
= 1.

Projectile hits→ Successful dodge⇒ Not hurt

P
(
HD=True = False

∣∣PA = projectile spell, OIA = True, D = False, H = True
)
= 1.

E.5.5 SUMMON CLOUD PLATFORM SPELL TO DODGE ATTACK

The wizard has a spell they can use to summon a levitating cloud platform and use it to raise them-
selves up above the battlefield to dodge incoming enemy attacks.

level-2 Interventional Definition.

• If the wizard casts the cloud platform spell, a platform is summoned; the wizard moves
onto it and is levitated upwards above the battlefield, otherwise they remain on the ground.

• If the wizard is in an elevated position on a platform during an incoming attack, they suc-
cessfully dodge and avoid damage, otherwise if they are on the ground they remain vulner-
able and may take damage.

Involved variables:

• PA = player action
• OA = opponent action
• OS = opponent stance (grounded, elevated)
• H = opponent is hurt

Latent variables: None.

Causal Markov Kernels.
P (OS | PA)

P (D | OS,OIA),

P (H | D).

level-3 Counterfactual Parallel World Statements.

1. Given the wizard performed the idle action and remained on the ground; if the wizard had
cast the cloud platform spell instead, then they would have been elevated.

2. Given the wizard remained on the ground during an incoming attack and was hurt; if the
wizard had cast the cloud platform spell instead, then they would have been elevated and
dodged the attack, and thus not been hurt.

Counterfactual Probability Expressions.

Idle→ Cloud Platform⇒ Elevated stance

P
(
OSPA=cloud platform = elevated

∣∣PA = idle, OS = grounded
)
= 1.

Grounded, hurt during incoming attack→ Cloud Platform⇒ Dodge, not hurt

P
(
HOS=elevated = False

∣∣PA = idle, OS = grounded, OIA = True, H = True
)
= 1.
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(a) Factual: The wizard idles and is struck by the
archer’s arrow.

(b) Counterfactual: The wizard summons a magical
cloud platform to gain an elevated position and dodge
the archer’s arrow.

Figure 10: Example counterfactual contrast statement for the summon cloud platform spell me-
chanic.

E.5.6 SELF-TRANSFORM SPELL TO INCREASE MELEE STRENGTH

The wizard can cast a spell to transform themselves into a large golem. In this form, their melee
attacks are enormously strengthened and cannot be blocked by opponents.

level-2 Interventional Definition.

• If the wizard casts the self-transform spell, they transform into a golem, otherwise they
remain in their normal form.

• If the wizard is transformed into a golem, their melee attack cannot be blocked due to sheer
size and strength, otherwise it can.

• If the wizard’s golem-form melee attack is not successfully blocked, the opponent will be
hurt, otherwise they will not be.

Involved variables:

• PA = player action

• OA = opponent action (e.g., defend)

• B = opponent successfully blocks

• H = opponent is hurt

Latent variables:

• PF = player form (normal, golem)

Causal Markov Kernels.
P (PF | PA)

P (B | PF,OA)

P (H | B,PA)
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level-3 Counterfactual Parallel World Statements.

1. Given the wizard performed the idle action and their form remained unchanged; if the
wizard had cast the self-transform spell instead, then they would have transformed into a
mighty golem.

2. Given the wizard cast a projectile spell and it was blocked by the opponent; if the wizard
had cast the self-transform spell instead, then they would have transformed into a golem
and the melee attack would not have been blocked by the opponent.

3. Given the wizard cast a projectile spell and it was blocked by the opponent and thus they
were not hurt; if the wizard had cast the self-transform spell instead, then they would have
transformed into a golem and the melee attack would have bypassed the block and hurt the
opponent.

Counterfactual Probability Expressions.

Idle→ Self-Transform⇒ Golem form

P
(
PFPA=self-transform = golem

∣∣PA = idle, PF = normal
)
= 1.

Magic projectile attack blocked→ Self-Transform⇒ Block attempt failed

P
(
BPF=golem = True

∣∣PA = magic projectile attack, PF = normal, OA = defend, B = True
)
= 0.

Magic projectile attack blocked, not hurt→ Self-Transform⇒ Hurt despite block action

P
(
HPF=golem = True

∣∣PA = magic projectile attack, PF = normal, OA = defend, H = False
)
= 1.

(a) Factual: The wizard casts a magic projectile spell
but the warrior blocks it.

(b) Counterfactual: The wizard casts a spell to trans-
form itself into a large golem to perform a powerful
melee attack.

Figure 11: Example counterfactual contrast statement for the self-transform spell mechanic.

E.5.7 OPPONENT TRANSFORM SPELL TO LOWER ENEMY DEFENSE

The wizard can cast a spell to transform an opponent into a weak or harmless creature (i.e., a snail),
disarming them and preventing them from defending against incoming attacks.
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level-2 Interventional Definition.

• If the wizard casts no spell, the opponent retains their normal form and can block or defend
as usual.

• If the wizard casts the opponent transform spell, the opponent is transformed (e.g. into a
snail), otherwise they remain in their normal form.

• If the opponent is transformed, they are disarmed and cannot block; otherwise they may
block.

Involved variables:

• PA = player action
• OA = opponent action
• B = opponent successfully blocks
• H = opponent is hurt

Latent variables:

• OF = opponent form (normal, transformed)

Causal Markov Kernels.
P (OF | PA),

P (H | OF,B).

level-3 Counterfactual Parallel World Statements.

1. Given the wizard cast a projectile spell and the opponent remained in their normal form;
if the wizard had cast the opponent transform spell instead, then the opponent would have
been transformed into a snail.

2. Given the wizard cast a projectile spell and it was blocked by the opponent, and thus the
opponent was not hurt; if the wizard had cast the opponent transform spell instead, then
the opponent would have been unable to block and would have been hurt by a follow-up
attack.

Counterfactual Probability Expressions.

Idle or projectile spell→ Opponent Transform⇒ Opponent form changes

P
(
OFPA=opponent transform = transformed

∣∣PA ̸= opponent transform, OF = normal
)
= 1.

Projectile spell blocked, not hurt→ Opponent Transform⇒ Block disabled (opponent disarmed)

P
(
BOF=transformed = True

∣∣PA = magic projectile attack, OF = normal, B = True
)
= 0.

E.5.8 LEVITATION SPELL TO DISARM OPPONENT

The wizard can cast a spell that lifts the opponent into the air, leaving them unable to defend or
block effectively, and rendering them disarmed.

level-2 Interventional Definition.

• If the wizard casts no spell, the opponent remains grounded and may block normally.
• If the wizard casts the levitation spell, the opponent is lifted into the air, otherwise they

remain grounded.
• If the opponent is levitated, they cannot block and are effectively disarmed; otherwise they

may block.
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(a) Factual: The wizard casts a magic projectile spell
but the warrior blocks it.

(b) Counterfactual: The wizard casts a spell to trans-
form the warrior into a snail to disarm them.

Figure 12: Example counterfactual contrast statement for the opponent transform spell mechanic.

Involved variables:

• PA = player action

• OA = opponent action

• OS = opponent stance (grounded, levitating)

• B = opponent successfully blocks

• H = opponent is hurt

Latent variables: None.

Causal Markov Kernels.
P (OS | PA),

P (H | OS,B)

level-3 Counterfactual Parallel World Statements.

1. Given the wizard cast a projectile spell and the opponent remained grounded; if the wizard
had cast the levitation spell instead, then the opponent would have been levitated.

2. Given the wizard cast a projectile spell and it was blocked by the opponent, and thus the
opponent was not hurt; if the wizard had cast the levitation spell instead, then the opponent
would have been unable to block and left vulnerable.

Counterfactual Probability Expressions.

Idle or projectile spell→ Levitation⇒ Opponent stance changes

P
(
OSPA=levitation = levitating

∣∣PA ̸= levitation, OS = grounded
)
= 1.

Projectile spell blocked, not hurt→ Levitation⇒ Block disabled (opponent disarmed)

P
(
BOS=levitating = True

∣∣PA = magic projectile attack, OS = grounded, B = True
)
= 0.
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(a) Factual: The wizard casts a magic projectile spell
but the warrior blocks it.

(b) Counterfactual: The wizard casts a levitation spell
to lift the warrior off the ground, disarming them.

Figure 13: Example counterfactual contrast statement for the levitation spell mechanic.

F GAME DESIGN DECISIONS

To ensure that the datasets produced by our simulation respect the causal assumptions of our model,
we designed the game architecture with consistency guarantees as a primary objective. This ap-
pendix documents how these guarantees were realized in practice, focusing on two complementary
aspects: (i) the modular, system-based design of game mechanics that mirrors the structure of the
causal model, and (ii) the temporal alignment of captured frames to ensure semantic consistency in
dynamic interactions.

F.1 BRIDGING GAME MECHANICS AND CAUSAL MECHANISMS WITH SYSTEM-BASED
DESIGN

At the foundation of our data generation pipeline lies a design principle: game mechanics must
be implemented in a way that respects and preserves the structure of the causal model they in-
stantiate. To achieve this, we adopted a fully modular Entity–Component–System (ECS) architec-
ture (Nystrom, 2014; Gregory, 2018), which enforces locality of causal mechanisms and supports
reproducibility across runs.

F.1.1 ENTITIES, COMPONENTS, AND SYSTEMS AS CAUSAL UNITS.

In our implementation, entities represent the units of analysis (e.g., characters, projectiles, plat-
forms), components represent their attributes and state (e.g., position, animation phase, shield pres-
ence), and systems encapsulate the transformation rules that govern state evolution (e.g., combat
resolution, kinematics, physics, or screenshot scheduling). This separation guarantees that each
causal mechanism is expressed locally, without entanglement with unrelated processes.

Each system implements a distinct causal mechanism: for example, the GameCombatSystem
maps action states of attacker and defender into outcomes such as hit, block, or immune, while
the GamePhysicsSystem governs the motion of projectiles according to deterministic physical
rules. Systems are generally designed to operate frame-by-frame using component data as inputs,
but they may also maintain local state when required (for example, the GameAnimationSystem
manages a per-entity priority queue of animation requests). This design ensures that each causal
transformation is encapsulated and modular, while still supporting the persistent state needed for
realistic simulation.
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F.1.2 ALIGNMENT WITH CAUSAL GRAPH STRUCTURE

The ECS architecture was chosen deliberately to reflect the modular structure of our causal model.
Nodes in the causal graph correspond to entity attributes (e.g., weapon class, stance, elemental
immunity), while edges correspond to the update dependencies realized through system logic.

For example, the transition of a defender into a blocking or hurt state depends on multiple up-
stream components: the presence of a shield component, the character’s action selection com-
ponent (indicating whether the chosen action is to block), and downstream trigger flags such as
needs to block or is hurt. The shield and action selection components establish the poten-
tial for blocking, while the trigger flags are set based on situational context (e.g., proximity of an
incoming attack). Only when both preconditions and triggers align does the GameCombatSystem
update the defender’s state to blocking; otherwise, the state transitions to hurt.

This design directly encodes the causal mechanism:

shield component + action selection −→ {needs to block,is hurt} −→ outcome (block or hurt).

By structuring dependencies in this way, the system preserves the logic of the causal graph within the
mechanics of the game engine. This mapping ensures that system update rules correspond closely
to the assignment functions of the causal model.

F.1.3 LOCALITY AND MODULARITY FOR CONSISTENCY

By localizing mechanics in dedicated systems, the architecture prevents hidden confound-
ing across game features. For instance, animation timing is managed exclusively by
the GameAnimationSystem, while collision and trajectory updates are confined to the
GamePhysicsSystem. This guarantees that modifying one mechanism (e.g., projectile grav-
ity) does not inadvertently alter another (e.g., collision detection or blocking). Such modularity
enforces a form of “causal isolation,” allowing dataset generation to reflect the true structure of the
designed model.

F.1.4 REPRODUCIBILITY AND CONNECTION TO INTERVENTIONS

The ECS structure also guarantees reproducibility: since each system applies deterministic update
rules to the current component state, identical initial conditions yield identical traces. Importantly,
the systems themselves do not support interventions in the sense of directly overriding assignment
functions during simulation. Instead, interventions are handled at the model level: sampled val-
ues from the causal model are passed into the simulation as inputs that determine which branches
of the GameBehaviorTree are executed (e.g., sampled values specifying whether a character
does block). The behavior tree then orchestrates the scene by triggering the appropriate system up-
dates, while each system executes its assignment function deterministically given the requested state
changes. In this way, the game engine acts as a faithful executor of causal mechanisms, while the
intervention logic is confined to the sampling layer above.

Through this design, the simulation environment operates as a direct computational analogue of
the causal model, where each mechanism is encapsulated in a corresponding system. This guaran-
tees that generated training data inherits the same modularity and independence properties as the
underlying causal graph, thereby supporting consistency-guaranteed counterfactual analysis.

F.2 IMPACT FRAMES: DEFINING SEMANTIC CONSISTENCY IN DYNAMIC CAUSAL MODEL
TRACES VIA Point of Maximum Action CONCEPT

While the system-based architecture guarantees local causal consistency at the level of game logic,
temporal alignment must also be addressed to preserve counterfactual consistency in dynamic inter-
actions. To this end, our system generates gameplay clips of contrasting player turns, each designed
to include a canonical impact frame: the instant an attack connects, a shield block occurs, or a projec-
tile visibly misses. Ensuring that these per-turn impact frames correspond to semantically equivalent
points in the causal process is critical; otherwise, contrasts risk reflecting phase misalignment rather
than true causal differences. We therefore formalize alignment using the Point of Maximum Action
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(PoMA) principle, which anchors impact frames to the most visually and mechanically expressive
phase of the interaction.

F.2.1 CONCEPTUAL FRAMING: TEMPORAL ALIGNMENT FOR COUNTERFACTUAL
COMPARISONS

In static structural causal models (SCMs), counterfactuals are evaluated at a single time index, and
semantic alignment across factual and counterfactual worlds is immediate. In dynamic SCMs, the
meaning of an event depends on when it occurs relative to the unfolding process. For example, a
melee strike might connect later than a projectile impact due to differences in action duration. If
frames are extracted at fixed indices, we risk capturing non-equivalent phases of these interactions
(e.g., an attack wind-up in one turn versus a point of contact in another). If we extract training
artifacts (e.g., impact frames) at fixed indices, we risk capturing non-equivalent phases of these
interactions (such as a wind-up in one run versus a point of contact in another). This undermines
the validity of counterfactual comparisons by introducing differences that are artifacts of temporal
phasing rather than consequences of the intervention.

We therefore treat each player turn as a temporal causal trace and align counterfactual observa-
tions to the most informative temporal locus of the relevant event class. We formalize this with the
principle of the Point of Maximum Action (PoMA).

F.2.2 POINT OF MAXIMUM ACTION (POMA).

Let A(St′) ∈ R≥0 score how action-intense the counterfactual state St′ is with respect to the target
event class (e.g., impact, block). The PoMA alignment selects

t′PoMA = argmax
t′∈T ′

A(St′).

PoMA frames are then extracted at t′PoMA, aligning the impact frame to the point of maximum
expressivity. This guarantees that contrasts correspond to the same semantic phase of the interaction,
regardless of variation in action duration.

F.2.3 FOUR ALIGNMENT METHODS: BRIEF SUMMARY WITH PROS AND CONS

We summarize four practical approaches for temporal alignment of dynamic counterfactuals. Each
provides a distinct trade-off between simplicity, robustness, and semantic fidelity.

1) Constant Time Interval. Rule. Evaluate the counterfactual variable at the same nominal time
as the factual: t′ ≡ t. Pros. Conceptually simple; trivial to implement; deterministic. Cons. Fails
when action durations differ; risks capturing non-equivalent phases (e.g., mid-swing vs. impact);
unsuitable for dynamic interactions where event timing adapts to interventions.

2) Equilibrium-Based. Rule. Evaluate once the counterfactual dynamics have reached a steady state
or absorbing condition (e.g., ∥S′t′+1−S′t′∥ < ε or a domain predicate holds). Pros. Appropriate for
tasks where long-run properties matter; robust to transient phasing differences; alignment invariant
to small shifts in sequence length. Cons. Inapplicable to inherently transient events (e.g., impacts);
some episodes may not converge; equilibrium may erase the very distinctions needed to analyze
acute causal effects.

3) Point of Maximum Action (PoMA). Rule. Align to the counterfactual time of peak action
intensity for the event class:

t′PoMA = argmax
t′

A(S′t′).

Pros. Directly targets the most salient phase of the interaction; robust to differences in sequence
length; naturally accommodates variable-duration actions by abstracting to their peak. Cons. Re-
quires a well-defined intensity score A; can be non-trivial for abstract or multi-agent interactions;
may require smoothing when peaks are brief or noisy.

4) Semantic Consistency. Rule. Align by maximizing semantic similarity between factual and
counterfactual states. Pros. General and flexible in principle; useful in settings where semantic
descriptors are available. Cons. Not used in our implementation. It requires an additional similarity
metric and embedding design, which introduces complexity and potential bias.
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In practice, we adopt the PoMA approach, extending it with event-specific scoring functions and
event-defined windows to handle variable-duration interactions. Constant Time and Equilibrium
serve primarily as conceptual baselines, while semantic similarity was considered but not imple-
mented.

F.2.4 IMPLEMENTATION IN OUR GAME: EVENT-BASED WINDOWS AND WEIGHTED
SCORING

To instantiate these principles in a reproducible data pipeline, our engine implements an event-driven
GameScreenshotSystem that schedules captures at semantically aligned moments:

1. Event Detection. The simulation raises structured events for interactions of interest (e.g.,
melee impact, projectile hit, shield block). Each event is associated with
the participating entities and their current states.

2. Event-Based Scoring Windows. For each interaction type, we define a start event
and a stop event that bound a scoring window (e.g., swing start → impact, or
projectile cast → collision). These windows are managed directly in the be-
havior tree, ensuring that scoring only occurs during the semantically relevant phase of the
interaction.

3. Weighted Scoring. Within each window, frames are scored according to event-specific
weights. For example, projectile impact events may be given higher weight than projectile
flight, and shield contact may be prioritized over shield raise. The capture frame is then
chosen as

t̂′ ∈ argmax
t′∈window

A(S′t′),

with deterministic tie-breaking for reproducibility.

By anchoring artifact capture to event-defined scoring windows and applying weighted intensity
scoring, our pipeline produces semantically aligned visual data across simulations, despite natu-
ral variability in action durations. This guarantees that counterfactual comparisons reflect genuine
causal differences, rather than artifacts of capturing frames at arbitrary, non-equivalent time indices.

F.2.5 SUMMARY.

Taken together, these design choices preserve consistency at both structural and temporal levels.
The ECS architecture ensures local mechanics map cleanly to modular causal mechanisms, while
the screenshot system anchors each player turn contrast to a canonical impact frame selected via
PoMA. By aligning contrasts at the most expressive phase of interaction, the system guarantees that
observed differences reflect genuine causal effects rather than timing artifacts, producing impact
frames that are both causally and semantically consistent.

G SPECIFICATIONS OF GENERATED VIDEO CLIPS

Generated video clips have following technical specifications:

G.1 RESOLUTION AND FORMAT

All video clips are rendered at a resolution of 512 × 512 pixels in a square aspect ratio. Videos are
encoded in MP4 format using the H.264 codec with yuv420p pixel format to ensure broad compati-
bility across video players and analysis frameworks.

G.2 FRAME RATE, DURATION, AND TIMING

Videos are captured at 50 frames per second (FPS) using a fixed-interval delta time method to ensure
consistent temporal sampling across all generated clips. This approach decouples game simulation
time from wall-clock time, enabling reproducible frame timing essential for dataset generation and
comparative analysis.
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Video clip duration is variable and event-driven, spanning the complete battle sequence from initial-
ization to completion. Clip length is determined by the termination of both player behavior trees,
typically ranging from several seconds to longer sequences depending on the complexity of actions
performed (e.g., melee attacks, spell casting, projectile interactions, defensive maneuvers).

G.3 DATASET ORGANIZATION

The system generates consistent contrasts, enabling direct comparison between observed battle out-
comes and alternative scenarios under modified conditions. Each video file follows the naming con-
vention battle XXXXXX-TIMESTAMP.mp4, where XXXXXX represents a zero-padded 6-digit
battle identifier. Accompanying JSON metadata files provide technical details including encoding
parameters, frame timing information, and battle configuration data.

G.4 IMPLEMENTATION

Video generation utilizes the imageio library with PyAV backend for efficient encoding. The ren-
dering pipeline captures frame sequences from the game’s screenshot buffer system, which also
maintains temporal consistency in impact frames through the behavior tree execution framework.

G.5 VARIABLES GENERATED

In addition to clips, each generated example includes:

• Controller inputs Ct

• Full or partial state Xt

• Mechanic-specific CL-DAG GM

• Set of mechanic-specific parallel world DAGs
• Set of mechanic-specific counterfactual DAGs
• Seed / ω identifiers

H SUGGESTED METRICS

Task Description Metric

Fully observed me-
chanic inference

Infer Pi using clips, game state variables, and controller
inputs

DKL

(
Pi ∥ P̂i

)
Partial (canonical)
mechanic inference

Infer Pi using clips and controller inputs, assuming
game state is unobserved

DKL

(
Pi ∥ P̂i

)
Generate consistent
contrasts

Generate multiple consistent contrast examples for each
di associated with the mechanic, and validate that they
are visually accurate and consistent

Human or
VLM valida-
tion

Counterfactual ab-
duction

Generate {vX=x, vX=x′} from game, obtain v̂X=x′ =
E[VX=x′ | VX=x = vX=x] using the model, then com-
pare v̂X=x′ to vX=x′

Human or
VLM valida-
tion

Table 5: Tasks that can be used to evaluate mechanic learning with Multiverse Mechanica.

Table 5 summarizes the four tasks for evaluating mechanic-learning with Multiverse Mechanica. We
expand here on how each metric is operationalized and its relation to prior work.

H.1 MECHANIC INFERENCE.

The fully- and partially-observed inference tasks require estimating the distributions P̂i implied by
mechanic-specific constraintsM and comparing them against the ground truth distributions Pi. We
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adopt KL-divergence as the primary quantitative measure, explicitly reporting DKL(Pi ∥ P̂i) for
each mechanic. This aligns with classical practice in distributional evaluation, where divergence to
the ground truth provides a direct measure of whether the model has captured the stochastic relations
induced by the mechanic.

H.2 CONSISTENCY IN CONTRAST GENERATION.

The contrast-generation and counterfactual-abduction tasks require evaluating whether pairs of clips
(vX=x, vX=x′) are consistent, i.e. differing only in outcomes attributable to the intervention variable
X while holding non-descendant factors fixed. Prior work has typically relied on human evaluation:
for example, Gingerson et al. (2024) collected large-scale human judgments of whether generated
gameplay videos adhered to intended mechanics. Recent work has investigated whether VLMs
can serve as automated evaluators of model generations. Hendriksen et al. (2025) show that pre-
trained VLMs can be adapted for evaluating world model rollouts, e.g. scoring whether predicted
videos match textual descriptions of target outcomes. However, to our knowledge, no prior work
has specifically used VLMs to evaluate consistency across parallel-world contrasts, as defined by
causal counterfactual principles. This remains an open direction, and Multiverse Mechanica pro-
vides level-3 parallel-world data where such evaluations can be systematically explored.

Work by Monteiro et al. (2023) introduced composition metrics that effectively evaluate consistency
in image-based counterfactuals by checking whether attributes remain unchanged under controlled
edits. These metrics capture aspects of counterfactual faithfulness that parallel our notion of consis-
tency. However, they have not yet been extended to video data, nor applied to generative modeling of
game mechanics. We view Multiverse Mechanica as a platform to develop such extensions, allowing
both human and VLM-based evaluation methods to be compared side-by-side.

H.3 SUMMARY.

In short, our metrics combine classical distributional divergences for inference tasks with human-
or VLM-based consistency checks for contrastive generation tasks. This dual approach ensures that
models are evaluated not only on reproducing distributions of state variables but also on capturing
the causal consistency of gameplay dynamics under controlled interventions.

I THEORETICAL AND IMPLEMENTATION DETAILS FOR PROOF-OF-CONCEPT

I.1 BACKGROUND ON DIFFUSION MODELS AND REVERSE-SAMPLING

Denoising diffusion probabilistic models (DDPMs) define a forward Markov chain that gradually
adds Gaussian noise to an image and a learned reverse process that denoises it step by step. Given
a data sample x0 ∼ q(x0), the forward process produces xt by directly adding noise to the data:
q(xt|xt−1) = N

(
xt;
√
αtxt−1, (1− αt)I

)
for t = 1, . . . , T . Here 0 < αt < 1 are predefined vari-

ances. In the reverse generation, one starts from pure noise xT ∼ N (0, I) and iteratively denoises to
x0 using a model ϵθ trained to predict the injected noise. At each step, the model predicts ϵ̂ ≈ ϵ such
that xt−1 can be estimated by removing noise: e.g., xt−1 = 1√

αt

(
xt − (1 − αt)ϵ̂

)
(with additional

variance for stochastic sampling). In practice, one can also use the continuous-time formulation and
solve a reverse stochastic differential equation or its deterministic counterpart (as in DDIM), yield-
ing a mapping from an initial noise u directly to an image x = G(u, c). Importantly, this exogenous
noise u acts as the stochastic latent that accounts for random variation in generated images. Using
a deterministic sampler (e.g.,setting η = 0 in DDIM), one obtains a one-to-one mapping between u
and the output x, and can invert a given image to its corresponding u for a particular conditioning c.

We will leverage this invertibility to extract the latent noise ua from the original image x and the
latent noise ub from the counterfactual image xcf, where x denotes the factual image generated
under the original conditioning, xcf represents the counterfactual image generated under modified
conditioning, ua is the inverted latent noise corresponding to the factual image x, and ub is the
inverted latent noise corresponding to the counterfactual image xcf.
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I.2 BACKGROUND ON CAUSAL COUNTERFACTUALS IN IMAGE GENERATION

In causal terms, we can view the generative model as a structural causal model x := fθ(u, c), where
c is a cause (e.g.,textual description or a set of discrete random variables) and u is an unobserved
exogenous variable accounting for randomness. A counterfactual image aims to answer: “What
would the image look like if we change c from cA to cB , while keeping all other latent factors
the same?” The classical procedure for generating such counterfactuals is the three-step abduction-
action-prediction: (1) Abduction: infer the exogenous noise ua that produced the factual image x
under cA (this ua captures the instance-specific variations of x); (2) Action: intervene by setting the
prompt to cB (while keeping ua fixed); (3) Prediction: generate the new image as xcf = fθ(ua, cB).
This procedure, if the model perfectly captures the true causal mechanism, would change only the
aspects of the image directly affected by c and leave other details intact (satisfying causal consistency
that no non-descendant features of c change). In practice, directly using ua with a new prompt cB
can produce a reasonable edited image, but it may fail or produce artifacts if cB demands alterations
that conflict with the original latent factors.

By contrast, many non-SCM image editing approaches do not explicitly enforce the same latent
noise. For example, one might simply prompt the model with cB and generate a new sample (dif-
ferent u), or apply heuristics like latent interpolation, attention refocusing, or mask-based noising of
only certain regions. These approaches can produce plausible results, but often lack guarantees that
only the intended changes occur—the model might inadvertently change unrelated details because
the random draw u or other generation conditions differ. Our goal is to incorporate causal prin-
ciples into the diffusion editing process to maximize counterfactual faithfulness (only c-dependent
changes) while still allowing the model flexibility to implement the edit realistically.

I.3 CONTRASTIVE TRAINING VIA ALIGNMENT LOSSES

In this section, we provide the necessary background to help understand our method.

I.4 NOTATION

We first define the notation used in our counterfactual editing framework. Let x denote the original
(factual) image, and let xcf denote the counterfactual image we aim to generate (the edited image
after an intervention). We model image generation via a diffusion model as x = G(u, c), where
u is an initial exogenous noise (drawn from a Gaussian prior, typically u ∼ N (0, I)) and c is
the conditioning (in our case, a text prompt). We use cA for the original prompt and cB for the
counterfactual prompt. Using an inversion technique (e.g., reverse ODE or deterministic DDIM
inversion), we can obtain ua as the noise that generates x under cA, and similarly ub as the noise
corresponding to xcf under cB . We denote by xt the (noisy) latent image at diffusion timestep t when
evolving toward x (with x0 = x and xT = ua for the forward noising process), and likewise xcf,t for
the counterfactual trajectory. The diffusion model’s denoiser is denoted ϵθ(xt, c, t), which predicts
the added noise at step t for latent xt and conditioning c. For brevity, we write ϵ(xt, c, t) when θ is
clear from context. Finally, L1, L2, Ltext, and Lsub will denote different loss terms introduced below.

I.5 METHOD 1: L1 – CONSISTENCY ALIGNMENT

Our first new loss function enforces consistency alignment between the factual and counterfactual
generations. We obtain the noise ua and ub corresponding to x and xcf respectively (via the inversion
process described above). The consistency alignment loss is then defined as,

L1 = ∥ua − ub∥22, u∗ = HT←0
θ (x∗, c∗) (5)

where HT←0
θ represents the inversion function that maps from image space back to noise space at

timestep T .

Given the diffusion model x = fθ(u, c), we have:

x = fθ(ua, cA) (6)
xcf = fθ(ub, cB) (7)
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The inversion takes the image back to the noise, which yields:

ua = HT←0
θ (x, cA) (8)

ub = HT←0
θ (xcf, cB) (9)

The L1 is added to the training loss as a regularization term to enforce exogenous invariance. In
the ideal case where ub = ua, the counterfactual generation becomes:

xcf = fθ(ua, cB) (10)

which ensures that all variations between x and xcf are attributed solely to the conditioning change
cA → cB , while preserving the exogenous factors encoded in ua.

This loss directly penalizes any differences between the underlying noise vectors of the original
and edited image. The motivation is to ensure that x and xcf share the same source of variation, so
that as much of the scene’s random details as possible remain unchanged. This approach extracts
editing-related information from the seed, enabling differences to be more expressed by the condi-
tioning c rather than random variations. The primary change affects the reverse mapping/generator’s
decomposition of conditions, belonging to “seed-level” invariance.

Intuitively, if ua and ub are identical, the only differences between xcf and x will come from the
changed conditioning cB vs cA. In the ideal case, L1 = 0 means we are generating the counterfac-
tual with the exact same “random seed” as the factual image (the pure SCM counterfactual). This
encourages maximal consistency: the background, lighting, style, and other incidental attributes
should stay the same unless the new prompt explicitly demands their change. Enforcing L1 provides
strong alignment that leads to stable edits. It prevents the edited image from drifting in appearance
or composition: the counterfactual will tend to have the same objects and layout as the original,
only differing in the aspects dictated by the prompt change. This is beneficial for preserving iden-
tity (e.g.,the same person’s face before and after an edit) and ensuring only the intended attributes
change.

However, this strict constraint can also have a few limitations. If the counterfactual prompt cB is
significantly different from cA, using exactly the same noise ua might overly constrain the genera-
tion, resulting in artifacts or an incomplete edit. The model might struggle to reconcile ua (which
was optimal for the original content) with the new prompt, leading to implausible images or failure
to fully achieve the desired change.

I.6 METHOD 2: L2 – STRUCTURE PRESERVATION AT HIGH-NOISE

As a more relaxed alternative, we propose to align the diffusion model’s behavior for the two im-
ages at the high-noise stages of generation, rather than forcing the initial noises to be identical.
Concretely, let S be a set of diffusion time steps focusing on the high-noise region (e.g.,the latter
half or last third of the diffusion schedule, when xt is still highly noisy). We define the structure
preservation loss L2 as:

L2 =
∑
t∈S
∥ϵθ(xt, cA, t)− ϵθ(xcf,t, cB , t)∥2. (11)

L2 measures the disparity between the model’s denoising predictions for the factual versus counter-
factual image trajectories, but only at very noisy states (where xt is mostly noise). By penalizing
this difference, we encourage the denoiser’s reaction to the two inputs to be the same in the early
stages of generation. This effectively steers xcf,t to evolve in a similar direction as xt while the
image is still coarse and noisy, ensuring the two generation processes start out aligned in terms of
global structure. Importantly, L2 does not enforce that the latent noises xt themselves are exactly
equal, only that the predicted noise residuals (or equivalently, the score vectors) are similar. This
distinction makes L2 a partial relaxation of the L1 constraint. It nudges the counterfactual to have a
similar high-level appearance without locking in all the exact stochastic details.

When using L2, the model is free to adjust ub as needed, but it will still preserve large-scale aspects
of ua. For example, if x depicts a particular scene layout, L2 will bias xcf to keep that layout,
since early denoising steps (which shape the overall composition) will be similar for both. As t
gets smaller (less noise), xcf can gradually diverge more to realize the new content cB specifies.
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This approach maintains structure and identity better than an unconstrained edit, while granting
more flexibility than L1 for the model to incorporate the new prompt. In essence, L2 focuses on
aligning the coarse-grained features (which are determined in high-noise stages) and lets the fine
details emerge freely.

One might consider applying a spatial mask so that structure preservation is enforced only on cer-
tain regions (for instance, only aligning the background areas that should remain unchanged). In our
approach, we generally did not require an explicit mask for L2. Since L2 operates on high-noise
(low-detail) states, it inherently affects global structure more than specific fine features. We found
that a well-balanced L2 encourages overall consistency without needing per-pixel restrictions—the
model naturally preserves unedited parts of the image. However, if a particular application demands
strict locality (e.g.,editing only a small region while leaving everything else exactly as is), a mask
could be introduced to further ensure no influence of L2 on the region to be changed (or conversely,
to focus L2 only on the region to preserve). In summary, L2 already provides a soft, global consis-
tency constraint, and masking is an optional refinement rather than a necessity in most cases.

I.7 ABDUCTION–ACTION–PREDICTION AND ITS DIFFUSION EMULATION

I.7.1 SCM SETUP.

LetM = (U,V,F, P (U)) be a structural causal model with exogenous variables U, endogenous
variables V, structural assignments F, and exogenous distribution P (U) (Pearl, 2009). We single
out: (i) the mechanic variables X ⊆V that we will intervene on; (ii) the controller input C; and
(iii) the visual variable V whose realization is a impact frame snapshot v. Throughout, we explicitly
treat our generation seed ω as a realization of the SCM exogenous variables, i.e., ω ∼ P (U), and
we treat all other shared rendering conditions as part of ω (while C is held fixed explicitly).

I.7.2 ABDUCTION–ACTION–PREDICTION (AAP).

Given a factual observation v0 obtained under (X=x0, C=c), the AAP recipe for the two-world
case proceeds as:

(Abduction) Infer P (U | V=v0, X=x0, C=c), choose a representative ω̂.

(Action) Form the intervened modelMX=x1
while keeping C=c and U=ω̂ fixed.

(Prediction) Evaluate the counterfactual VX=x1(ω̂).

Equivalently, in distributional form,

v̂1 ∼ P
(
V1

∣∣V0=v0, X0=x0, C=c
)
,

which is shorthand for propagating ω̂ ∼ P (U | V0=v0, X0=x0, C=c) throughMX=x1 .

Algorithm 1 Abduction–Action–Prediction (two-world case)

Require: SCMM = (U,V,F, P (U)), factual (v0, x0, c), target x1

1: Abduction: Infer ω̂ ← MAP/mean/sample from P (U | V=v0, X=x0, C=c)
2: Action: ConstructMX=x1

; hold C=c and U:=ω̂
3: Prediction: Compute v̂1 ← VX=x1(ω̂)
4: return v̂1

I.8 DIFFUSION-BASED EMULATION OF AAP

In our latent diffusion setting, we emulate abduction–action–prediction (AAP) by identifying the
SCM exogenous variables with the model’s initial latent noise:

U ←→ ω ∼ N (0, I).

Abduction (DDIM inversion). We estimate ω̂ from a factual impact frame VX=x0 under (x0, c)
via deterministic sampler inversion (DDIM, η=0). Let Zt,X=x0 denote its noisy latents across
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t ∈ [0, T ]. At each step, the denoiser ϵθ(Zt,X=x0
, t, c0) predicts the noise, and inversion equa-

tions (Appendix I.10.5) are used to propagate forward in the schedule, yielding an estimate ω̂ =
Abductθ(Z0,X=x0

, c0).

Action. Hold c fixed and change the mechanic state from x0 to x1.

Prediction (deterministic reverse). Initialize the trajectory with ZT,X=x1
:= ω̂ and run the de-

terministic reverse process conditioned on (x1, c) to obtain a counterfactual latent Z0,X=x1
, then

decode it to the counterfactual impact frame V̂X=x1 .

Algorithm 2 Diffusion-based AAP via DDIM (η=0)

Require: Diffusion model (ϵθ, scheduler, decoder), factual (VX=x0
, x0, c), target x1

1: Abduction: ω̂ ← Abductθ(Z0,X=x0
, c0) // DDIM inversion in latent space

2: Action: Keep c fixed, set X :=x1

3: Prediction: ZT,X=x1
:= ω̂; for t=T, . . . , 1: Zt−1,X=x1

← DDIMStep
(
Zt,X=x1

, t, x1, c; ϵθ
)
;

V̂X=x1
← decoder(Z0,X=x1

)

4: return V̂X=x1

I.8.1 CONNECTION TO OUR TRAINING LOSSES.

The AAP framing clarifies the roles of our loss components. (i) Exogenous alignment L1 encourages
shared-seed invariance by driving

Abductθ(Z0,X=x0 , c0) ≈ Abductθ(Z0,X=x1 , c1),

for elements of the same contrast that share the true ω. This ensures the abduction step produces con-
sistent seeds across worlds. (ii) Structure preservation L2 aligns denoiser outputs ϵθ(Zt,X=xj

, t, cj)
at high-noise steps t ∈ S, enforcing agreement on coarse global structure during the early reverse
process. This mirrors AAP’s assumption that exogenous factors (ω) are held fixed while only X
changes.

I.8.2 SCM↔ DIFFUSION MAPPING (TWO-WORLD CASE).

SCM concept Diffusion instantiation
Exogenous U ↔ Initial latent noise seed ω ∼ N (0, I)
Abduction P (U | VX=x0

, x0, c) ↔ DDIM (η=0) latent inversion ω̂ = Abductθ(Z0,X=x0
, c0)

Action X = x1 ↔ Condition reverse process on (x1, c)

Prediction VX=x1(ω̂) ↔ Deterministic reverse to Z0,X=x1 then decode V̂X=x1

Causal consistency ↔ Shared seed ω̂; early-step structure preservation (L2)

Abduction via DDIM inversion yields an estimate ω̂ whose fidelity depends on the schedule and
conditioning; see Appendix I.10.6 for caveats and tuning guidance.

I.9 ADDITIONAL REGULARIZERS

Beyond the core losses L1 and L2, our framework can incorporate additional terms to improve
consistency and fidelity:

I.9.1 SUBSPACE CONSISTENCY LOSS.

We can encourage the factual and counterfactual images to remain close in certain intermediate rep-
resentations of the diffusion model. For example, one may align hidden latents or cross-attention
maps at corresponding diffusion steps. By penalizing differences in these subspaces (e.g.,the
model’s multi-head attention maps for background tokens, or feature maps in a particular UNet
layer), we enforce that the internal generation pathways for x and xcf stay similar. This helps pre-
serve layout and identity at a semantic level, complementing the pixel-space alignment enforced by
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L1/L2. Formally, if Ft(x) denotes some feature (such as a latent embedding or attention tensor)
computed during the denoising of x at step t, we can define a loss Lsub =

∑
t∈T ∥Ft(x)−Ft(xcf)∥2

for some chosen set of layers or timesteps T . This subspace consistency loss encourages the edited
image to differ only minimally in features unrelated to the intervention.

Text Consistency Loss. To ensure the edited image indeed reflects the counterfactual prompt cB ,
we include a text-image consistency term. We rely on a pretrained image-text similarity model
(such as CLIP) to measure alignment between xcf and the description cB . Let sim(xcf, cB) be a
similarity score (higher means the image matches the prompt better). We define a loss Ltext =
−sim(xcf, cB) (or equivalently 1 − sim, depending on the normalization) so that minimizing Ltext
maximizes the agreement between the generated image and the desired attributes. This ensures that
while preserving content, we do not under-shoot the edit: the new image should clearly exhibit the
prompted change. The text consistency loss guides the generation to remain faithful to the user’s
request, especially when L1 or L2 are pulling towards the original image. It helps avoid the outcome
where the edit is so conservative that the difference between xcf and x is hard to discern.

I.10 LOSS COMBINATION

Our full counterfactual editing objective combines these components in a weighted sum:

Ltotal = λ1L1 + λ2L2 + λ3Ltext + λ4Lsub, (12)

where λi are tunable weights that control the influence of each loss term. In practice, we choose
these weights to balance identity preservation against effective editing. Typical values and trade-offs
are as follows:

λ1 (Consistency Alignment): This is often kept relatively small (e.g., λ1 in the range 0 to 0.5)
unless the edit is very minor. A small λ1 nudges the initial noise vectors closer without forcing
identity completely. Increasing λ1 leads to more literal counterfactuals (very high consistency with
the original image’s details), but if set too high it may prevent the new attributes from appearing
strongly. There is a trade-off between maintaining background/identity (higher λ1 favors this) and
allowing change (lower λ1 gives more freedom).

λ2 (Structure Preservation): We usually give L2 a moderate to high weight (on the order of 1.0)
as it is the principal mechanism to preserve structure. λ2 in a range roughly 0.5 to 2.0 works
well. A larger λ2 tightly constrains the high-level layout and style to match the original, which
is good for identity preservation; however, if λ2 is excessively large, it can act almost as strictly
as L1, potentially impeding necessary changes. Reducing λ2 allows the counterfactual generation
to deviate more in composition if needed, but too low λ2 might result in unwanted alterations in
background or other objects.

λ3 (Text Consistency): This weight should be high enough to ensure the edit actually happens
(especially for subtle changes), but not so high that it overrides the preservation losses. In practice λ3

is often set around 0.5 to 1.0 (assuming similarity is scaled to a comparable range) so that the image
aligns with the prompt without artifacts. If λ3 is set too low, the edit might be too conservative (the
model might simply regenerate the original image to satisfy L1/L2). If λ3 is too high, the model may
introduce exaggerated or incorrect features to satisfy the prompt, possibly compromising identity or
visual quality.

λ4 (Subspace Consistency): If used, this is typically a small auxiliary weight (e.g.,0.1). Since Lsub
operates on internal features, it can strongly bind the generation if overweighted. A modest λ4 helps
reinforce structural consistency without conflicting with the primary losses. Tuning λ4 involves
checking that it indeed improves preservation of details like face identity or scene layout, without,
for example, freezing the image in an early-state that ignores the new prompt. In some cases, we
might set λ4 = 0 (i.e., not use this term) if we find L1 and L2 are sufficient; when used, it serves as
an extra regularizer.

In summary, L1 and L2 provide a spectrum between strict and loose alignment, λ3 drives the fidelity
to the requested counterfactual change, and λ4 can bolster consistency on a feature level. We recom-
mend starting with a balanced combination (for instance, λ1 = 0.2, λ2 = 1.0, λ3 = 0.5, λ4 = 0.1).
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(a) Factual: A 1-on-1 battle. Foe 1 type is archer, ele-
ment is fire, weapon is bow, weapon element is none,
has shield is false, action is shoot. Foe 2 type is war-
rior, element is fire, weapon is long sword, weapon
element is none, has shield is false, action is idle. Foe
turn is foe 1.

(b) Counterfactual: A 1-on-1 battle. Foe 1 type
is warrior, element is fire, weapon is long sword,
weapon element is none, has shield is false, action
is idle. Foe 2 type is warrior, element is fire, weapon
is long sword, weapon element is none, has shield is
false, action is idle. Foe turn is foe 1.

Figure 14: Example counterfactual image pairs generated from finetuned text-to-image diffusion
model.

I.10.1 DIFFUSION BACKBONE.

We use a pretrained Stable Diffusion variant with a deterministic sampler 1, which makes the map-
ping between exogenous noise u and image v approximately invertible. This enables abduction of u
from an image and consistent reuse across parallel worlds. Classifier-free guidance is applied with
scale 7.5, and the scheduler uses T = 50 steps.

I.10.2 CONDITIONING.

In the main text we describe conditioning directly on game state variables (e.g., shield, weapon
type, block outcome). For implementation, these variables and outcomes are converted into natural-
language captions for compatibility with CLIP text encoders. This is a nuisance parameterization:
the underlying conditioning remains the game state variables.

I.10.3 TRAINING SETUP.

We fine-tune the network backbone (UNet) only, keeping the VAE and text encoder frozen. Batch
size is 4, training runs for 50 epochs, with a cosine learning-rate schedule, weight decay 0.01, and
gradient clipping. Images are peak-action snapshots extracted at canonical times in each episode to
minimize temporal ambiguity.

I.10.4 ALIGNMENT LOSSES.

We mainly use two loss functions for finetuning:

• L1: consistency alignment. After inverting both factual and counterfactual images to latent
noise (ua, ub), we penalize ∥ua − ub∥2, enforcing invariance of exogenous factors. Note
that this loss function is very expensive due to it needs to inverse two sampling pathes for
each counterfactual data pair. In practice, we only apply L1 to one data point per batch of
training data.

1specifically we use DDIM η = 0, also the deterministic samplers in Karras et al. (2022)
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• L2: structure preservation at high noisy region (large SNRs). At early diffusion timesteps,
we penalize discrepancies between denoiser predictions for factual vs. counterfactual tra-
jectories, encouraging global structural consistency.

Both terms can be weighted with coefficients λ1, λ2.

I.10.5 SEED ABDUCTION WITH DETERMINISTIC DIFFUSION.

Our multiverse alignment objective requires that consistent contrasts share the same exogenous
noise ω. In deterministic samplers (e.g., DDIM), this means that two parallel reverse processes
(Zt,X=x0

)Tt=0 and (Zt,X=x1
)Tt=0 can be initialized with the same ω, ensuring non-descendant con-

tent is consistent.

Given an observed impact frame VX=x with controller input c, let Z0,X=x denote its clean latent
before decoding and Zt,X=x the noisy latent at step t. At each step, the denoiser ϵθ(·) predicts noise
ϵθ(Zt,X=x, t, c), which is then used to trace the trajectory backward through the noise schedule.
Iterating these updates recovers an estimate ω̂ = Abductθ(VX=x, c).

Applying this inversion procedure to both members of a contrast yields ω̂x0
and ω̂x1

, which ideally
coincide. The seed-consistency loss L1 penalizes their distance, providing a concrete operational-
ization of the causal consistency principle within deterministic diffusion.

I.10.6 CAVEATS.

Deterministic inversion. We use DDIM with η = 0 for Abductθ, yielding an approximately bijec-
tive mapping between seed and latent trajectory under fixed conditioning and schedule. In practice,
invertibility is approximate and sensitive to: (i) the precise noise schedule; (ii) classifier-free guid-
ance settings; and (iii) conditioning (x, c). Hence ω̂ should be treated as a consistent estimate rather
than a ground-truth latent.

I.10.7 CHOOSING THE HIGH-NOISE SET S FOR L2.

We select S as either (i) the last k steps of the schedule (empirically k ∈ [T3 ,
T
2 ]), or (ii) all t with

SNR(t) ≤ τ for a threshold τ . A weighted variant uses wt ∝ SNR(t)−γ and

Lw
2 =

∑
t

wt

∥∥ϵθ(z0,t, t, x0, c)− ϵθ(z1,t, t, x1, c)
∥∥2
2
.

Under mild conditions, aligning score predictions at high-noise is connected to alignment in data
space via Stein’s identity.

I.10.8 SCOPE.

This is a feasibility study. We claim no pixel-level counterfactual identification and provide only
qualitative illustrations. Future work may extend this approach to video sequences and more com-
plex mechanics.

J SOFTWARE DEPENDENCIES

J.1 GAME ENGINE.

The game itself is implemented in Pygame, a lightweight Python library for 2D graphics and in-
teraction. We chose Pygame because it enables rapid prototyping of turn-based combat mechanics,
frame-accurate rendering of impact frames, and reproducible control of random seeds, all within a
Python environment that integrates smoothly with machine learning workflows.

J.2 CAUSAL MODELING.

To formalize and simulate the causal generative process underlying gameplay, we use the Pyro
probabilistic programming library (Bingham et al., 2019). Pyro provides the primitives required to
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implement SCMs consistent with the game’s causal DAG, including stochastic functions for exoge-
nous variables, deterministic assignments for endogenous variables, and intervention operators. This
allows us to align the game engine’s execution trace with an explicit causal model, and to sample
parallel-world contrasts in a principled manner.

J.3 REPRODUCIBILITY.

Both components are integrated in a unified Python codebase, ensuring that gameplay, causal mod-
eling, and data generation can be run deterministically from a single seed.

J.4 GRAPH LIBRARIES.

We generate mDAGs, parallel-world graphs and counterfactual graphs using the Y0 library (Hoyt
et al., 2025).

J.5 GRAPH SERIALIZATION.

All graphs are serialized as directed graphs in JSON using a node-link format. Nodes are repre-
sented as JSON objects with keys for the node identifier and attributes, while edges are represented
as objects with source and target identifiers and an edge type field. In the case of mDAGs and
parallel world graphs, exogenous nodes are marked with the attribute "exogenous": true.
For example, the above example of an mDAG with observed nodes {A,B,C}, one directed edge
A→ B, and one hyper-edge {B,C}, is converted to a CL-DAG and serialized as follows:

{
"nodes": [

{"id": "A"},
{"id": "B"},
{"id": "C"},
{"id": "N_{B,C}", "exogenous": true}

],
"links": [

{"source": "A", "target": "B", "type": "directed"},
{"source": "N_{B,C}", "target": "B", "type": "directed"},
{"source": "N_{B,C}", "target": "C", "type": "directed"}

]
}
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