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Abstract
The concept of sharpness has been successfully
applied to traditional architectures like MLPs and
CNNs to predict their generalization. For trans-
formers, however, recent work reported weak cor-
relation between flatness and generalization. We
argue that existing sharpness measures fail for
transformers, because they have much richer sym-
metries in their attention mechanism that induce
directions in parameter space along which the net-
work or its loss remain identical. We posit that
sharpness must account fully for these symme-
tries, and thus we redefine it on a quotient man-
ifold that results from quotienting out the trans-
former symmetries, thereby removing their ambi-
guities. Leveraging tools from Riemannian geom-
etry, we propose a fully general notion of sharp-
ness in terms of a geodesic ball on the symmetry-
corrected quotient manifold. In practice, we need
to approximate the geodesics. Doing so up to first
order yields existing adaptive sharpness measures,
and we demonstrate that including higher-order
terms is crucial to recover correlation with gen-
eralization. We present results on diagonal nets
with synthetic data and show that our geodesic
sharpness reveals strong correlation with general-
ization for real-world transformers on both text
and image classification tasks.

1. Introduction
Predicting generalization of neural nets (NNs)—the discrep-
ancy between training and test set performance—remains an
open challenge. Generalization-predictive metrics are valu-
able though: they enable explicit regularization of training
to enhance generalization (Foret et al., 2021), and provide
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broader theoretical insights into generalization itself.

There is a long history of hypotheses linking sharpness to
generalization, but evidence has been conflicting (Hochre-
iter & Schmidhuber, 1994; Andriushchenko et al., 2023).
Generalization has been speculated as correlating with flat-
ness, but recent evidence has indicated that, in the case of
transformers, it has little to no correlation whatsoever. Mea-
sures of sharpness have varied widely, ranging from trace of
the Hessian to worst-case loss within a local neighborhood,
with adaptive and relative variations proposed to address
specific challenges (Kwon et al., 2021; Petzka et al., 2021).

We suspect that some of the confusion stems from the speci-
ficity of the problem these measures have attempted to ad-
dress: the issue of parameter rescaling. In contrast, we argue
that rescaling (Dinh et al., 2017) is merely a special case of a
broader, more fundamental obstacle to measuring sharpness
accurately: the presence of full and continuous parameter
symmetries. Addressing this challenge is crucial to ensure
that we are studying the right quantity when investigating
the relationship between sharpness and generalization.

Beyond discrete permutation symmetries, neural nets nat-
urally exhibit continuous symmetries in their parameter
space. These symmetries are intrinsic, data-independent
properties that emerge from standard architectural compo-
nents. For example: normalization layers (Ioffe & Szegedy,
2015; Ba et al., 2016; Wu & He, 2018) induce scale invari-
ance on the pre-normalization weights (Salimans & Kingma,
2016); homogeneous activation functions like ReLU intro-
duce re-scaling symmetries between pre- and post-activation
weights (Dinh et al., 2017); some normalization layers and
softmax impose translation symmetries in the preceding
layer’s biases (Kunin et al., 2021). As a result, arguably
almost any NN, along with its corresponding loss, exhibit
symmetries and can therefore represent the same function
using different parameter values (Figure 1a).

Adaptive flatness (Kwon et al., 2021) accounts for some
symmetries, both element- and filter-wise re-scaling, but
fails to capture the attention mechanism’s full symmetry,
represented by GL(h) (re-scaling by invertible h× h matri-
ces, where h is the hidden dimension), as we will discuss
later. Aiming to break the cycle between discovery of a
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Figure 1: Quantities from the Riemannian quotient manifold respect the loss landscape’s symmetry; Euclidean
quantities do not. We illustrate this here for a synthetic least squares regression task with a two-layer NN, where x 7→ θ2θ1x
with scalar parameters θ ∈ R2 and input x ∈ R (i.e. each layer is a linear function). The NN is re-scale invariant, i.e. has
GL(1) symmetry: For any α ∈ R \ {0}, the parameters (θ′1, θ

′
2) = (α−1θ1, αθ2) represent the same function. (a) The loss

function inherits this symmetry and has hyperbolic level sets. (b) The Euclidean gradient norm does not share the loss
function’s geometry and changes throughout an orbit where the NN function remains constant. (c) The Riemannian gradient
norm follows the loss function’s symmetry and remains constant throughout an orbit, i.e., it does not suffer from ambiguities
for two points in parameter space that represent the same NN function.

specific symmetry and techniques to deal with it, we ask:

Can we provide a one-size-fits-many recipe for developing
symmetry-invariant quantities for a wider range of continu-
ous symmetries?

Here, we positively answer this question by proposing a prin-
cipled approach to eliminate ambiguities stemming from
symmetry. Essentially, this boils down to using the geom-
etry that correctly captures symmetry-imposed parameter
equivalences. We apply concepts from Riemannian geome-
try to work on the Riemannian quotient manifold implied
by a symmetry group (Boumal, 2023, §9). We thus identify
objects on the quotient manifold—like the Riemannian met-
ric and gradient—and show how to translate them back to
the Euclidean space. Our contributions are the following:

(a) We introduce the application of Riemannian geome-
try (Boumal, 2023) to the study of NN parameter space
symmetries by using geometry from the quotient man-
ifold induced by a symmetry as a general recipe to
remove symmetry-induced ambiguities in parameter
space. We do so by translating concepts like gradients
from the quotient manifold back to the original space
through horizontal lifts.

(b) Based on (a), we propose and analyze geodesic sharp-
ness, a novel adaptive sharpness measure: By Taylor-
expanding our refined geometry, we show that (i) sym-
metries introduce curvature into the parameter space,
which (ii) results in previous adaptive sharpness mea-
sures when ignored. Geodesic sharpness differs from
traditional sharpness measures in two key aspects: (i)
the norm of the perturbation parameter is redefined
to reflect the underlying geometry; (ii) perturbations

follow geodesic paths in the quotient manifold rather
than straight lines in the ambient space.

(c) For diagonal nets, we analytically solve geodesic sharp-
ness and find a strong correlation with generalization.
Then, we apply our approach to the unstudied and
higher-dimensional GL(h) symmetry in the attention
mechanism. On both large vision transformers and
language models, we empirically find stronger corre-
lation than any previously seen (that we are aware of)
between our geodesic sharpness and generalization.

2. Related Work
Symmetry versus reparameterization: Kristiadi et al.
(2023) pointed out how to fix ambiguities stemming from
reparameterization, i.e. a change of variables to a new pa-
rameter space: Invariance under reparameterization follows
by correctly transforming the (often implicitly treated) Rie-
mannian metric into the new coordinates. Our work focuses
on invariance of the parameter spaceM under a symmetry
group G with action ψ : G ×M→M, (g,θ) 7→ ψ(g,θ)
that operates on a single parameter space.

Symmetry teleportation: Another ways to use symmetry-
implied ambiguity is to view it as a degree of freedom and
develop adaptation heuristics to improve algorithms which
are not symmetry-agnostic (Zhao et al., 2022a).

Geometric constraints & NN dynamics: Previous stud-
ies analyze how parameter space symmetries impose geo-
metric constraints on derivatives and introduce conserved
quantities during training (Kunin et al., 2021). Our approach
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differs by systematically removing symmetry-induced am-
biguity through quotienting out the the symmetry group.

We generalize earlier post-hoc solutions for simpler sym-
metries (e.g., GL(1)) to more complex, higher-dimensional
symmetries such as GL(h), common in neural network
attention mechanisms. Unlike Kunin et al. (2021), who con-
sider geometry in augmented spaces for simpler symmetries,
we directly use the quotient space geometry. Objects are
then ‘lifted’ back into the original space, yielding symmetry-
corrected quantities. This method provides a principled
framework capable of handling high-dimensional symme-
tries, leading to a more effective dimensionality reduction.

Quotient manifolds in deep neural networks: Ranga-
mani et al. (2019) introduce a quotient manifold construc-
tion for re-scaling symmetries and then use the Riemannian
spectral norm as a measure of worst-case flatness. This
differs from our approach in several ways:

(a) Our approach is more general and contains both the
GL(h) symmetry of transformers, and the original re-
scaling/scaling symmetry of CNNs/MLPs, rendering it
applicable to a wider range of modern architectures.

(b) Our experimental setup is more challenging: we test on
large-scale models (large transformers vs CNNs) and
large-scale datasets (ImageNet vs CIFAR-10). Sharp-
ness measures that account for re-scaling/scaling sym-
metries (e.g. adaptive sharpness) work quite well on
CIFAR-10 with CNNs, and tends to break down on
datasets like ImageNet with transformers.

(c) Conceptually, Rangamani et al. (2019) defines worst-
case sharpness on the usual norm-ball, appropriately
generalized to the Riemannian setting. We propose
instead that the ball should be the one traced out by
geodesics, to better respect the underlying geometry.

(d) Performance-wise, our approach is cheaper as it does
not use the Hessian and only uses symmetry-corrected
gradients (see Dagréou et al. (2024) for an in-depth
cost comparison of computing Hessians vs gradients).

Relative sharpness: Another promising approach to
sharpness was proposed by Petzka et al. (2021), where the
generalization gap is shown to admit a decomposition into a
representativeness term and a feature robustness term. Fo-
cusing on the feature robustness term, they introduce relative
sharpness, which is invariant to a layer- and neuron-wise
re-scaling, and performs better than traditional sharpness
measures (Adilova et al., 2023; Walter et al., 2025).

3. Preliminary Definitions, Notation & Math
Generalization measures: We consider a neural net fθ
with parameters θ ∈ Rd that is trained on a data set Dtrain
using a loss function ℓ by minimizing the empirical risk

LDtrain(θ) :=
1

|Dtrain|
∑

(x,y)∈Dtrain
ℓ(fθ(x),y) .

Our goal is to compute a quantity on the training data that is
predictive of the network’s generalization, i.e. performance
on a held-out data set.

Sharpness: A popular way to predict generalization is
via sharpness—i.e., how much the loss changes when per-
turbing the weights in a small neighbourhood—like average
(Savg) or worst-case sharpness (Smax) (Keskar et al., 2017)

Savg = ES [LS(θ + δ)− LS(θ)] , δ ∼ N (0, ρ2I) ,

Smax = ES

[
max

∥δ∥2≤ρ
(LS(θ + δ)− LS(θ))

]
,

with batches S ∼ Dtrain of size |S| = m, neighbourhood size
ρ, and perturbation δ. Near critical points, they closely re-
late to the HessianH (and thus parameter space curvature):
Savg ∝ Tr(H), and Smax ∝ λmax(H).

Adaptive sharpness: Hessian-based sharpness measures
can be made to assume arbitrary values by rescaling param-
eters, even though the NN function stays the same. To fix
this inconsistency, Kwon et al. (2021) proposed adaptive
sharpness (invariant under special symmetries), and An-
driushchenko et al. (2023) use adaptive notions of sharpness
that are invariant to element-wise scaling,

Sad
max(w, c) = ES

[
max

∥δ⊘c∥2≤ρ
LS(θ + δ)− LS(θ)

]
, (1)

with scaling vector c (usually set to |θ|, Kwon et al., 2021).

The problem: Adaptive sharpness only considers the sym-
metry induced by element-wise re-scaling. But symmetries
of transformers go beyond the invariance that adaptive sharp-
ness captures. Maybe unsurprisingly, Andriushchenko et al.
(2023) find inconsistent trends for adaptive sharpness in
transformers, with sharpness failing to correlate with gen-
eralisation, versus other architectures. We hypothesize this
is related to adaptive sharpness not accounting for the full
symmetry in transformers. In this paper, we address this.
The central question is: If adaptive sharpness is the fix for
a special symmetry, can we provide a more general solu-
tion for the symmetries of transformers, to fix the above
inconsistency?
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3.1. Symmetries in Neural Networks

Here, we give a brief overview and make the notion of
NN symmetries more concrete, focusing on those studied
by Kunin et al. (2021). Those symmetries lead to rather
small effective dimensionality reduction as they are often
of GL(1) or GL+(1), but they can still impact the network
behaviour. Let θ denote the parameters of a neural net, 1A a
binary mask, and 1¬A its complement such that their sum is
a vector of ones, 1A+1¬A = 1. Let θA := θ⊙1A with⊙
the element-wise product. Further, let A1,2 be two disjoint
subsets, A1 ∩ A2 = ∅ with masks 1A1

,1A2
. Then we have

the following common symmetries, characterized by their
symmetry group G, such that for any g ∈ G the parameters
ψ(g,θ) and θ represent the same function:

• Translation: ψ(α,θ) = 1A ⊙α+ θ with α ∈ Rh

• Scaling: ψ(α,θ) = αθA + θ¬A with α ∈ R>0

• Re-scaling: ψ(α,θ) = αθA1
+ 1/αθA2

+ θ¬(A1∨A2)

with α ∈ R>0

Their associated groups are G = Rh,GL+(1),GL+(1). In
practice, there may be multiple symmetries acting onto
disjoint parameter sub-spaces. Note that re-scaling is essen-
tially the symmetry that adaptive sharpness corrects for.

3.2. Rescale Symmetry of Transformers

Transformers exhibit a higher-dimensional symmetry than
the previous examples; we formalize the treatment of this
symmetry in the following canonical form.

Definition 3.1 (Functional GL-symmetric building block).
Consider a function f(G,H) on Rm×h × Rn×h that con-
sumes two matricesG ∈ Rn×h,H ∈ Rm×h but only uses
the product GH⊤, i.e. f(G,H) = g(GH⊤) for some g
over Rm×n. f is symmetric under the general linear group

GL(h) :=
{
A ∈ Rh×h | A invertible

}
with dim(GL(h)) = h2 and action

ψ(A, (G,H)) = (GA−1,HA⊤). (3)

In other words, we can insert and then absorb the iden-
tity A−1A into G,H to obtain equivalent parameters
GA−1,HA⊤ that represent the same function.

Example A.2 illustrates GL symmetry for a shallow lin-
ear net. Indeed, many popular NN building blocks feature
this form, most prominently the attention mechanism in
transformers (Vaswani et al., 2017). We give the attention
symmetry in Example A.1, and we provide the symmetry for
low-rank adapters (Hu et al., 2022) in Example A.3. These
examples are NN building blocks that introduce GL symme-
tries into a loss function and can all be treated through the

canonical form in Definition 3.1. In contrast to the symme-
tries from Section 3.1, they lead to more drastic dimension-
ality reduction. Consider for example a single self-attention
layer where h = hv = hk. The number of trainable pa-
rameters is 4h2 and the two GL(d) symmetries reduce the
effective dimension to 4h2−2 dim(GL(h)) = 2h2, i.e. they
render half the parameter space redundant. We hypothesize
that the impact of a low-dimensional symmetry on objects
like the Euclidean Hessian’s trace (Dinh et al., 2017) may
be amplified for such higher-dimensional symmetries.

3.3. Mathematical Concepts for Riemannian Geometry

We now outline required properties of manifolds for the full
development of our approach. We list essential concepts
here, and provide definitions and a brief review Appendix B.
For further information, see for instance Lee (2003). Fig-
ure 2 illustrates the main concepts we will require.

Ambient embedding space: We assume that the manifold
of possible parameters is embedded in a linear Euclidean
space E ≃ Rd with d the number of parameters. We can
think of E as the ambient space. For instance, for a loss
function ℓ : E → R,θ 7→ ℓ(θ) , we can use ML libraries to
evaluate its value, as well as its Euclidean gradient

gradθ ℓ =

(
∂ℓ(θ)

∂θi

)
i=1,...,d

∈ Rd .

Because the geometry of E is flat, i.e. uses the standard
metric ⟨θ1,θ2⟩ := θ⊤1 θ2, this object consists of partial
derivatives. However, the Riemannian generalization will
add correction terms. In what follows we consider only the
restriction of objects like ℓ to the parameter manifold.

Definition 3.2. We takeM to be the manifold of network
parameters, and consider it a sub-manifold embedded into
E , the computational space of matrices on which all our
numerical calculations are done. We callM the total space.
On the total space we have a loss function ℓ :M→ R.

Our goal is to calculate derivatives/geometric quantities af-
ter removing the NN’s symmetries. The symmetry relation
induces natural equivalence classes, which we write [θ], and
explain in Appendix B.1. We letM = M/ ∼ represent
the quotient of the original parameter space manifold by
the equivalence relation ∼ associated with the symmetry
(Appendix B.2). We also require tangent vectors; these are
straightforward on the total spaceM, but the tangent space
of the quotient manifold,M, requires more machinery: ver-
tical and horizontal spaces, and corresponding lifts. These
concepts are all defined in Appendix B.3.

Once we endowM with a smooth inner product over its
tangent vectors, we obtain a Riemannian manifold (defined
in Appendix B.4). This construction lets us analyze differ-
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E Ambient embedding space
M Total space
M Quotient space
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x̄, ȳ Points on the total space
x, y Points on the quotient space
ξ̄x̄ Tangent vector in the tangent space at point x̄, Tx̄M
ξx Tangent vector in the tangent space at point x, TxM
ξ̄Vx̄ Vertical component of ξ̄x̄ in the vertical space Vx̄M
ξ̄Hx̄ Horizontal component of ξ̄x̄ in the horizontal space

Hx̄M ≃ TxM, horizontal lift of ξx

Figure 2: Illustrative sketch relating total and quotient space and their tangent spaces. A tangent vector at a point
in total space, ξ̄x̄ ∈ Tx̄M can be decomposed into a horizontal component ξ̄Hx̄ and a vertical component ξ̄Vx̄ . The vertical
component points along the direction where the quotient space x = [x̄] remains unaffected. The horizontal component
points along the direction that changes the equivalence class. We can use ξ̄Hx̄ as a representation of the tangent vector
ξx ∈ TxM on the quotient space. The component ξ̄Hx̄ represents the horizontal lift of ξx.

ential objects that live on quotient manifolds, in the ambient
space in a natural way. Furthermore, this allows us to de-
fine the horizontal space as the orthogonal complement of
the vertical space (Appendix B.4), and to define a Rieman-
nian gradient (Appendix B.5). Most properties from the
Euclidean case still hold for the Riemannian gradient, but of
particular interest to us is the fact that the direction gradf(x)
is still the steepest-ascent direction of f at a point x.

We additionally make use of geodesic curves. Intuitively,
geodesic curves can either be seen as curves of minimal
distance between two points on a manifold M, or equiv-
alently, as curves through a given point with some initial
velocity, and whose acceleration is zero—a generalization
of Euclidean straight lines. See Appendix B.6 for details.

Putting it all together, this gives us a recipe for computing
quantities invariant to a given symmetry relation: (i) find
a Riemannian metric compatible with this symmetry; (ii)
determine the vertical space for the symmetry relation; (iii)
use the metric to find the orthogonal complement of this
vertical space, i.e. the projector into the horizontal space;
(iv) find the horizontal geodesics. Combined, these steps
allow us to do calculations in the quotient manifold along
the proper paths (given by geodesics).

4. Geodesic Sharpness
We posit that adaptive sharpness measures should take into
account the geometry of the quotient parameter manifold
that arises after removing symmetries from the parameter
space. We base our sharpness measure on the notion of
a geodesic ball: the set of points that can be reached by
geodesics, starting at a point p and whose initial velocity
has a norm smaller than ρ, after one time unit. In Rd this

is just the usual definition of a ball, since the geodesics are
straight lines. If ξ̄ ∈ Hx̄M is a horizontal vector, and γ̄(t)
is a geodesic starting at θ and with initial velocity ξ̄:

Sρ
max(w) = ES

[
max

∥ξ̄∥γ̄(0)≤ρ
LS(γ̄ξ̄(1))− LS(γ̄ξ̄(0))

]
. (4)

If the initial velocity, ξ̄, is a horizontal vector, then the veloc-
ity of the geodesic, ˙̄γξ̄, will stay horizontal. The choice of
t = 1 in γ̄ξ̄(1) is not as arbitrary as it first seems (do Carmo,
1992): since for a positive a, γ̄ξ̄(at) = γ̄aξ̄(t), positions
reached with arbitrary t can be reached by instead fixing
t = 1 and manipulating the initial velocity’s norm via ρ.

When we do not have an analytical solution for the geodesic,
we can use the approximation:

γ̄i
ξ̄(t) = γ̄

i
ξ̄(0) + ξ̄

it− 1

2
Γi
klξ̄

kξ̄lt2 +O(ξ̄3) , (5)

where ξ̄ = (ξ̄i) is the initial (horizontal) velocity, and Γi
kl

are the Christoffel symbols. We show that geodesic sharp-
ness reduces to adaptive sharpness measures in Appendix F,
under appropriate metric choices and by taking a first-order
approximation to the geodesics, that is, ignoring the terms
corresponding to the curvature, Γi

kl.

5. Geodesic Sharpness in Practice
We now apply geodesic sharpness to concrete examples. A
fully worked out scalar toy model is in Appendix D.

Following previous works by Dziugaite et al. (2020); Kwon
et al. (2021); Andriushchenko et al. (2023), we use the
Kendall rank correlation coefficient (Kendall, 1938) to as-
sess the correlation between generalization and sharpness
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in the empirical validations of our approach:

τ(t, s) =
2

M(M − 1)

∑
i<j

sign(ti − tj) sign(si − sj) ,

where t and s are the vectors of observed variables between
which we are measuring correlation.

Although the criterion of symmetry compatibility restricts
the class of suitable metrics, these are not necessarily unique.
As long as it is symmetry-compatible, we have no reason to
prefer one metric over another, except for practical aspects
like numerical cost and stability. We will present results on
two symmetry-compatible metrics that are simple, yet non-
trivial, and often used in the related literature on Riemannian
optimization on fixed-rank matrix spaces (Luo et al., 2023).

5.1. Diagonal Networks

We start by studying diagonal linear nets, one of the sim-
plest non-trivial neural networks (Pesme et al. (2021), Wood-
worth et al. (2020)). These have two parameters, u,v, and
predict a label, y, given an input, x, via y = x⊤(u ⊙ v).
We consider linear regression with labels y ∈ Rn, a
data matrix X ∈ Rn×d, and take as our loss L(u,v) =
∥X(u⊙ v)− y∥22. Our parameter manifoldM is Rd×Rd.

The nets are symmetric under element-wise rescaling:
(u,v) 7→ (αu, α−1v), leaves β= u⊙ v and L invariant.

Metric: At a point (u,v) ∈ M, for two tangent vectors
η = (ηu,ηv), ν = (νu,νv) ∈ T(u,v)M, we use the
following two symmetry-compatible metrics:

⟨η,ν⟩inv :=

d∑
i=1

ηiuν
i
u

(ui)2
+
ηivν

i
v

(vi)2
, , (6)

⟨η,ν⟩mix :=

d∑
i=1

ηiuν
i
u(v

i)2 + ηivν
i
v(u

i)2 . (7)

Horizontal space: Both have the same horizontal space

H(u,v)M =

{
(ηu, ηv) ∈ T(u,v)M |

ηiu
ui

=
ηiv
vi
∀i
}
.

Geodesics: With bi :=
ηi
u

ui =
ηi
v

vi , the geodesics are

γinv(t)
i =

(
ui
0 exp(bit),v

i
0 exp(bit)

)
,

γmix(t)
i =

(
ui
0

√
1 + 2bit,v

i
0

√
1 + 2bit

)
,

with starting points ui
0 and vi0, i.e. the trained parameters.

Geodesic sharpness: Assume that X⊤X = Id (An-
driushchenko et al., 2023), and denote β0 = u0 ⊙ v0.
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Figure 3: Adaptive vs. geodesic sharpness on diagonal
nets. The generalization gap is the test loss (remember all
models are trained to 10−5 training loss). The correlation
coefficient’s magnitude is larger for geodesic sharpness.

The minimum norm least squares predictor is β∗ :=
(X⊤X)−1X⊤y = X⊤y. Using Equation (4) (details in
Appendix E), we get (to first and to second order)

Sρ
max; inv(u,v) =4ρ∥β0 ⊙ (β0 − β∗)∥2

+ 4ρ2 max
[
(βi

0)
2
]
,

(8)

which depends on ρ and the difference between the learned,
and the optimal minimum norm, predictor. Eq. 8 is the
square of adaptive sharpness (when the residual ∥β0⊙(β0−
β∗)∥2 is small) if very carefully chosen hyperparameters
were used (by contrast, this result naturally appears using
our geodesic approach). For the second metric, we have

Sρ
max; mix(u,v) = ρ∥β0 − β∗∥2 .

5.1.1. EMPIRICAL VALIDATION

Experimental setup: We follow Andriushchenko et al.
(2023), generate a randomly distributed data matrix X , a
random ground-truth vector β∗ that is 90% sparse, and train
50 diagonal networks to 10−5 training loss on a regression
task.

We focus on the more practically relevant case of over-
parametrization (d > n). One downside of this is that the
theoretical expressions derived in the previous section, while
a useful sanity check, no longer hold (since overparameteri-
zation breaks the assumptionX⊤X = Id=200). To obtain
our geometric sharpness, we directly solve Equation (4).

Results: All three notions of sharpness are able to predict
generalization (Figure 3). Geodesic sharpness, although
closely related for diagonal nets to adaptive worst-case
sharpness, does slightly better. This applies to both metrics
studied, and they perform roughly the same. See Section 7
for comments about the sign of the correlation.

5.2. Attention Layers

Next, we look at the symmetric functional block from Defi-
nition 3.1. Our computation space is E := Rn×h×Rm×h ≃
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R(n+m)h and we restrict weights to have full column rank:

Assumption 5.1. The rank of G,H corresponds to their
number of columns, rank(G) = rank(H) = h.

This implies h ≤ n,m, which is usually satisfied in (multi-
head) attention layers (Example A.1) for the default choices
of dv, dk. While the weights of multi-head attention tend
to have high column rank (Yu & Wu, 2023), they are not
guaranteed to be full column rank. To account for this, we
introduce a small relaxation parameter, ϵ, to the Gram ma-
trices s.t. G⊤G→ G⊤G+ ϵIh. Empirically, we observe
that as long as ϵ is sufficiently small, it does not affect our
results (Appendix H.2). Therefore, we restrict bothG,H to
the set of fixed-rank matrices,M← Rn×h

h × Rm×h
h where

Rn×h
k :=

{
B ∈ Rn×h | rank(B) = k

}
. We can represent

a point x̄ ∈M by a matrix tuple (G,H) ∈ Rn×h
h ×Rm×h

h .
Its tangent space Tx̄M is

Tx̄M =
{
η̄ = (η̄G, η̄H) ∈ Rn×h × Rm×h

}
,

Metric: We endowM with the two metrics ⟨·, ·⟩inv,mix
x̄ :

Tx̄M× Tx̄M→ R (proof they are valid in Appendix I.1):

⟨η̄, ζ̄⟩inv
x̄ := Tr

(
(G⊤G)−1η̄⊤

Gζ̄G + (H⊤H)−1η̄⊤
H ζ̄H

)
,

(9)

⟨η̄, ζ̄⟩mix
x̄ := Tr

(
(H⊤H)η̄⊤

Gζ̄G + (G⊤G)η̄⊤
H ζ̄H

)
. (10)

They differ from the Euclidean metric that simply flattens
and concatenates the matrix tuples into vectors and takes
their dot product, ⟨η, ζ⟩ = Tr

(
η⊤
GζG + η⊤

HζH
)
. Impor-

tantly, they are invariant under symmetries of the attention
mechanism, and thus define valid metrics on the quotient
manifold (Absil et al., 2008).

Horizontal space: For ⟨·, ·⟩inv, mix
x̄ and ξ̄G,H ∈ Rm×r we

have (for a proof, see for example Luo et al. (2023))

Hinv
x̄ M = {(ξ̄G, ξ̄H) | ξ̄⊤GGH⊤H = G⊤GH⊤ξ⊤H} ,

Hmix
x̄ M = {(ξ̄G, ξ̄H) | G⊤ξ̄GH

⊤H = GTGξ⊤HH} .

Projection onto horizontal space: Given ξ ∈ TxM in
the total tangent space, the horizontal space is

Hinv, mix
x̄ M =

{
(ξ̄G +GΛinv, mix, ξ̄H −H(Λinv, mix)⊤)

}
where Λinv solves the Sylvester equation AΛ + ΛA⊤ =
B, with A = G⊤GH⊤H , B = G⊤GH⊤ξ̄H −
ξ̄⊤GGH

⊤H , whereas Λmix has an explicit form: Λmix =
1/2
(
ξ̄⊤HH(H⊤H)−1 − (G⊤G)−1G⊤ξ̄G

)
.

Geodesics: We are unaware of analytical solutions for the
geodesics of either (Eq. 9 and Eq. 10), so we approximate
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Figure 4: Adaptive vs. geodesic sharpness on ImageNet
ViTs. We use 72 trained models from Wortsman et al.
(2022), and measure their generalization gap as the dif-
ference between test and train error. The correlation coeffi-
cient’s magnitude is larger for geodesic sharpness.

them with Eq. 5. For horizontal tangent vectors (ξ̄G, ξ̄H),
we have for ⟨·, ·⟩inv

x̄

(Γi
kl)

invξ̄kGξ̄
l
G =− ξ̄G(G⊤G)−1

[
ξ̄⊤GG+G⊤ξ̄G

]
+G(G⊤G)−1ξ̄⊤Gξ̄G

(11)

(similar for theH components). For ⟨·, ·⟩mix
x̄ , the geodesic

equations are coupled and theG components are[
(Γi

kl)
mixξ̄kξ̄l

]
G

=ξ̄G
[
ξ̄⊤HH +H⊤ξ̄H

]
(H⊤H)−1

−G(ξ̄TH ξ̄H)(H⊤H)−1
(12)

(theH components are similar, proof in Appendix I.2).

5.3. Transformers

Transformers have a mix of attention layers and layers with
more restricted symmetries for which adaptive sharpness
is more appropriate. We present in Appendix C.1 how we
treat each layer of transformers. We introduce relaxations
In Appendix C.2 we present Algorithm 1, which we use to
solve for geodesic sharpness.

5.3.1. EMPIRICAL VALIDATION: VISION TRANSFORMERS

Experimental setup: We follow Andriushchenko et al.
(2023), and look at models obtained from fine-tuning CLIP
on ImageNet-1k (Radford et al., 2021). Specifically, we
use the trained classifiers after fine-tuning a CLIP ViT-B/32
on ImageNet with randomly selected hyperparameters from
(Wortsman et al., 2022). We compute adaptive worst-case,
and our geodesic, sharpness on the same 2048 data points
from the ImageNet training set, divided into batches of 256,
by calculating sharpness on each batch separately, then av-
eraging the results. The generalization gap is the difference
between test and training error.

Results: Figure 4 shows our results. We find a strong
correlation between geodesic sharpness and the generaliza-
tion gap on ImageNet. This correlation is stronger than
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Figure 5: Adaptive vs. geodesic sharpness on MNLI lan-
guage models. We use 35 trained models from McCoy et al.
(2020), and show the generalization gap on the MNLI dev
matched set (Williams et al., 2018). Geodesic sharpness
shows the largest correlation.

that observed with adaptive sharpness and is consistently
negative, implying that the geodesically sharpest models
studied on ImageNet are those that generalize best–contrary
to what might have been expected, but consistent with the
correlation from the diagonal networks.

5.3.2. EMPIRICAL VALIDATION: LANGUAGE MODELS

Experimental Setup: We also consider BERT models
that were fine-tuned on MNLI (Williams et al., 2018) by Mc-
Coy et al. (2020) . We compute adaptive worst-case, and
our geodesic, sharpness on the same 1024 data points from
the MNLI training set, with batches of 128 points, by calcu-
lating then averaging sharpness on each batch.

Results: Figure 5 shows our results. We find a consistent
correlation between geodesic sharpness and the generaliza-
tion gap on MNLI for both metrics, while adaptive sharpness
(τ = 0.06) cannot find any correlation. The correlation is
positive, i.e. geodesically flatter models generalize better.

6. Additional Experiments
6.1. Comparison With Relative Sharpness

Relative sharpness (Petzka et al., 2021) is a promising sharp-
ness measure that has proven useful in regularizing trans-
former training, outperforming other approaches (Adilova
et al., 2023). We compare it with our geodesic sharpness in
the language model setting from Section 5.3.2; see Figure 6.

6.2. Verification of Reparametrization Invariance

Mathematically, geodesic sharpness is invariant to symmetry
transformations of the form of Equation (3). Here, we verify
empirically that our practical version that can be computed
efficiently numerically is close to invariant.

Experimental setup: We take a single batch and language
model from Section 5.3.2, and compute geodesic sharpness
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Figure 6: Extension of Figure 5 to
relative sharpness. We find that rela-
tive flatness (Petzka et al., 2021) fails
to find a significant correlation, com-
pared to our geodesic sharpness.

for various points on an orbit that represent the same func-
tion. Specifically, we reparametrize usingA = aG, where
G is a random standard Gaussian matrix (which is almost
always invertible and sampled once in each run), and control
the scale a. We sample oneG for each attention head. We
compare this with adaptive sharpness.

Results: Figure 7 visualizes the sharpness ratio before
and after reparameterization. The colors represent different
values of the scale factor, which goes from 10−2 to 102. Our
numerically computed geodesic sharpness remains constant.
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Figure 7: Variation of adaptive vs. geodesic sharpness
within an orbit where the neural net function remains
unchanged. We show the ratios between the original sharp-
ness and the sharpness obtained after applying a symmetry
transformation. Geodesic sharpness stays constant, whereas
adaptive sharpness assumes several different values.

7. Remarks, Limitations & Future Work
Discovering correlation: Adaptive sharpness, as dis-
cussed thoroughly by Andriushchenko et al. (2023), is un-
able to reveal a correlation between sharpness and gener-
alization for transformers. Our geodesic sharpness con-
sistently recovers strong correlation on transformers, and
strengthens the correlation in the case of diagonal networks.

Metric choice: Our results are robust w.r.t. the choice of
metric, as long as it captures the parameter symmetry. The
mixed metric yields slightly better results on BERT, perhaps
owing to its more stable numerics (e.g. possible inversion of
nearly singular matrices is side-stepped). Additionally, the
mixed metric avoids calling expensive Sylvester equation
solvers and has a simple horizontal space projection.
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Sign of the correlation: One of our surprising results is
that the sign of the correlation between geodesic sharpness
and generalization varies depending on the setting and is at
times negative, somewhat at odds with the common view
that sharpness always positively correlates with generaliza-
tion (i.e., flatter models generalize better). This artifact is not
inherent to our proposed metrics. E.g., adaptive sharpness
anti-correlates with generalization in our diagonal network
setting, but was previously found to positively correlate with
generalization on other tasks (Kwon et al., 2021).

Our geodesic sharpness improves over adaptive sharpness
in the following sense: Where adaptive sharpness finds
no correlation, our metrics do find a signed correlation,
and where adaptive sharpness finds signed correlation, our
metrics find a stronger similarly-signed correlation. That is,
we for the first time observe consistent correlations within-
task for transformers, opening questions for further study.

Limitations: While our geodesic sharpness is more gen-
eral than previous measures, there remain symmetries for
which taking the quotient may be computationally expen-
sive or intractable. Still, we think that accounting for some
symmetry is better than none, and even under computational
constraints it could be useful as a diagnostic “probe”.

Our new measures detect previously undetected correlation
with generalization. In the process, however, we also discov-
ered that the sign of the correlation, while consistent across
metrics and models, can vary across tasks. Until this new
variability is understood, this limits the utility of geodesic
sharpness, e.g. for regularizing transformer training.

Future work: Our work is concerned with accounting for
parameter space symmetries that are data-independent. This
opens up the question: what is the role of data and how
can it be integrated into our framework? A more complete
understanding of the interplay between data and parameter
symmetries might help explain when geodesic sharpness
correlates or anti-correlates with generalization.

8. Conclusion
In this paper, we revisited the limitations of traditional
sharpness measures attempting to predict generalization
for transformers, highlighting how traditional sharpness
measures fail to properly account for the rich GL(h) sym-
metries present in transformers. Addressing this, we intro-
duced geodesic sharpness, a measure defined on the Rieman-
nian quotient manifold obtained by quotienting out trans-
former symmetries. This framework provides a principled,
symmetry-aware measure of sharpness and contains prior
adaptive sharpness metrics as first-order approximations.

Through experiments on diagonal networks, vision trans-

formers (ImageNet), and language models (MNLI), we
demonstrated that properly accounting for the transformer
symmetries restores the correlation between sharpness and
generalization. Interestingly, our findings indicate that the
sign of the correlation between sharpness and generalization
can vary across tasks, suggesting deeper underlying relation-
ships involving data distribution and model structure. This
work lays the groundwork for further exploration of these
interactions and motivates future research into geometry-
informed optimization strategies tailored to transformers.
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We provide in Table 1 a summary of correlation coefficients between sharpness and generalization for our experiments.

Rank correlation coefficient τ

Setting Adaptive sharpness ⟨·, ·⟩inv - geodesic sharpness ⟨·, ·⟩mix- geodesic sharpness ()

Diagonal networks -0.68 -0.83 -0.86
ImageNet -0.41 -0.71 -0.7

MNLI 0.06 0.28 0.38

Table 1: Summary of the correlation between sharpness measures and generalization. We boldface the best performing
metric

In the sections that follow, we provide additional details to supplement the main text.

A. Additional Examples of GL symmetries Symmetries in Neural Networks
Example A.1 (Self-attention (Vaswani et al., 2017)). Given a sequenceX ∈ Rt×d with t tokens and model dimension d,
self-attention (SA) uses four matricesWq,Wk ∈ Rd×dk ,Wv,W

⊤
o ∈ Rd×dv (usually, d = dv = dk) to produce a new t× d

sequence

SA(Wq,Wk,Wv,Wo)

= softmax

(
XWqW

⊤
k X

⊤
√
dk

)
XWvWo .

(13)

This block contains two GL symmetries: one of dimension dk between the key and query projection weights, G,H ←
Wq,Wk, and one of dimension dv between the value and out projection weights,G,H ←Wv,W

⊤
o . Similar to Eq. 14, we

can account for biases in the key, query, and value projections by appending them to their weight,

G,H ←
(
Wk

b⊤k

)
,

(
Wq
bq

)⊤

, G,H ←
(
Wv
bv

)
,W⊤

o .

Commonly, H attention heads {W i
q ,W

i
k ,W

i
v,i,W

i
o}Hi=1 independently processX and concatenate their results into the

final output (usually dk = dv = d/H). This introduces 2H GL symmetries. Everything also applies to general attention
where, instead ofX , independent data is fed as keys, queries, and values to Eq. 13.
Example A.2 (Shallow linear net). Consider a two-layer linear net NN(W2,W1) =W2W1x with weight matricesW1 ∈
Rh×din ,W2 ∈ Rdout×h and some input x ∈ Rdin . This net has GL symmetry with correspondenceG,H ←W2,W1

⊤ to
Definition 3.1. With first-layer bias, we have

W2(W1x+ b1) =W2

(
W1 b1

)(x
1

)
, (14)

corresponding toG,H ←W2,
(
W1 b1

)⊤
.

Example A.3 (Low-rank adapters (LoRA, Hu et al. (2022))). Fine-tuning tasks with large language models add a trainable
low-rank perturbation L ∈ Rd1×h,R ∈ Rd2×h to the pre-trained weightW ∈ Rd1×d2 ,

LoRA(W ) =W +LR⊤ , (15)
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introducing a GL(h) symmetry whereG,H ← L,R. Yen et al. (2024) propose an invariant way to train the parameters
L,R and show that doing so improves the result obtained via LoRA.

B. Concepts and Review for Riemannian Geometry
Recall thatM is the total space: the manifold of parameters of our network. Also, on the total space we have a loss function
ℓ :M→ R. Useful resources are Lee (2003), Absil et al. (2008), and Boumal (2023).

B.1. Orbit of x

A symmetry relation naturally defines an equivalence relation: two points x, y ∈M are equivalent under the symmetry, if
they can be mapped onto each other by the action,

x ∼ y ⇔ ∃g ∈ G : y = ψ(g, x) . (16)

In other words, if we let orbit(x) :− {ψ(g, x) | g ∈ G} be all points on the total space that are reachable from x through the
action of G, all points in an orbit are equivalent. Instead of orbit(x), we will write

[x] := {y ∈M | y ∼ x} (17)

for the symmetry-induced equivalence class [x] of x ∈M.

Let’s further assume that ℓ is symmetric under G, i.e. for any x ∈M and all g ∈ G, ℓ(x) = ℓ(ψ(g, x)).

B.2. QuotientM and Natural Projection

If we take the quotient of the original parameter space manifold M, by the equivalence relation, ∼, induced by the
symmetries of our neural architecture, we get a quotientM =M/ ∼. Under certain conditions,M is a quotient manifold.
The mapping between a point in total space to its equivalence class is called the natural projection:

Definition B.1. Let π :M→M/ ∼, be defined by x 7→ x. π is called the natural, or canonical projection. We use π(x)
to denote x viewed as a point ofM :−M/ ∼.

B.3. Tangent Space, Vertical and Horizontal Spaces

Tangent vectors on the total space M, embedded in a vector space E can be viewed as tangent vectors to E , but the
tangent space of the quotient manifold,M is not as straightforward. First, note that any element ξ̄ ∈ Tx̄M that satisfies
Dπ(x̄)[ξ̄] = ξ (where D is the differential) is a candidate for a representation of ξ ∈ TxM. These aren’t unique, and as we
wish to work without any numerical ambiguity we introduce the notions of the vertical and horizontal spaces:

Definition B.2. For a quotient manifoldM =M/ ∼, the vertical space at x̄ ∈M is the subspace Vx̄ = Tx̄F = kerDπ(x)
where F = {ȳ ∈M : ȳ ∼ x̄} is the fiber of x̄. The complement of Vx̄ is the horizontal space at x̄: Tx̄M = Vx̄ ⊕Hx̄.

Definition B.3. There is only one element ξ̄x̄ that belongs to Hx̄ and satisfies Dπ(x̄)[ξ̄x̄] = ξ. This unique vector is called
the horizontal lift of of ξ at x̄. We denote the operator that affects the procedure by liftx̄(·) When the ambient space, E is a
subset of Rn×p, the horizontal space can also be seen as such a subset, providing a convenient matrix representation of a
priori abstract tangent vectors ofM.

B.4. Riemannian Manifold

We give our total spaceM a smooth inner product over its tangent vectors to give a Riemannian manifold.

Definition B.4. A Riemannian manifold is a pair (M, g), whereM is a smooth manifold and g is a Riemannian metric,
defined as the inner product on the tangent space TxM for each point x ∈M, gx(·, ·) : TxM× TxM→ R. We also use
the notation ⟨·, ·⟩x to denote the inner product.

Note that this definition is not as arcane as it may appear since any smooth manifold admits a Riemannian metric, and we
can consider the space of parameters of most neural architectures as constituting a smooth manifold, admitting at least a
simple, Euclidean, metric.
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The horizontal space can now be defined as the orthogonal complement of the vertical space: Hx̄ = (Vx̄)
⊥ = {u ∈ Tx̄M :

⟨u, v⟩x = 0 for all v ∈ Vx̄}. Additionally, letting ḡx̄ denote the metric onM, if for every x ∈M and every ξx, ζx in TxM,
ḡx̄(ξ̄x̄, ζ̄x̄) does not depend on x̄ ∈ π−1(x) then, gx(ξx, ζx) = ḡx̄(ξ̄x̄, ζ̄x̄) defines a valid metric on the quotient manifold
M.

B.5. Riemannian Gradient

Definition B.5. If f̄ is a smooth scalar field on a Riemannian manifoldM, then the gradient of f̄ at x̄, gradf̄(x̄) is the
unique element of Tx̄M such that

⟨gradf̄(x̄), ξ̄⟩x̄ = Df̄(x̄)[ξ̄],∀ξ̄ ∈ Tx̄M

If f̄ is a function onM, that induces a function f on a quotient manifoldM ofM, then we can express the horizontal lift
of grad f at x̄ as

liftx̄(grad f) = gradf̄(x̄).

B.6. Geodesic Curves

Definition B.6.

(a) Geodesic curves, γ̄, are the curves of minimal distance between two points on a manifoldM. The distance along the
geodesic is called the geodesic distance. IfM is a Riemannian quotient manifold ofM, with canonical projection π,
and γ̄ is a geodesic onM, then γ = π ◦ γ̄ is a geodesic curve onM.

(b) Alternatively, geodesics, γ̄(t) = 0 can be defined as curves from a given point p ∈ M, (i.e., γ̄(0) = p), with initial
velocity, ˙̄γ(0) = ξ̄ ∈ Tp̄M, such that their acceleration is zero (a generalization of Euclidean straight lines). This
characterization provides us with the following equation in local coordinates for the geodesic:

d2γλ

dt2
+ Γλ

µν

dγµ

dt

dγν

dt
= 0

where Γλ
µν are the Christoffel symbols, Γλ

µν = 1
2g

λσ
(

∂gσµ

∂xν + ∂gσν

∂xµ − ∂gµν

∂xσ

)
. Additionally, the geodesics can also be

derived as the curves that are minima of the energy functional

S(γ) =

∫ b

a

gγ(t)(
˙γ(t), ˙γ(t))dt

This second perspective will prove useful for the geodesics of the attention layers.

If the initial velocity tangent vector, ξ, is horizontal then, ∀t, ˙̄γ(t) ∈ Hγ̄(t), that is, if the velocity vector starts out
as horizontal, then it will stay horizontal. We call these geodesics, horizontal geodesics. The curve γ = π ◦ γ̄ is a
geodesic of the quotient manifoldM, with the same length as γ̄. This also holds the other way, i.e., a geodesic in the
quotient manifold can be lifted to a horizontal geodesic in the total space.

C. Geodesic sharpness: practical concerns
C.1. Transformers

Transformers, introduced by Vaswani et al. (2017), consist of multiheaded self-attention and feedforward layers, both
wrapped in residual connections and layer normalizations. Visual transformers, in addition, tend to have convolutional
layers.

Mathematically, focusing for the moment on the multi-headed attention blocks,

MultiHead(Q,K, V ) =
[
head1, . . . , headh

]
W o

where headi = Attention
(
QWQ

i ,KW
K
i , V WV

i

)
13
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where Attention(Q,K, V ) = softmax
(

QKT

√
dk

)
V . From this we can ascertain the following symmetries:

1) (WQ
i ,W

K
i )→ (WQ

i G
−1,WK

i GT ) ,∀G ∈ GLn(dhead)

2) (WV
i ,W

o
i )→ (WV

i G
−1,W o

i G
T ) ,∀G ∈ GLn(dhead)

where W o
i are the columns of W o that are relevant for the matrix multiplication with each WV

i , taking into consideration
the head concatenation procedure.

In the full transformer model when solving for geodesic sharpness, for each layer, we apply Eq. 5 to each (WQ
i ,W

K
i ) and

(WV
i ,W

o
i ), using Eq. 11. This results in horizontal vectors (ξ̄Qi , ξ̄

K
i ) and (ξ̄Vi , ξ̄

o
i ). For the non-attention parameters, w,

(belonging to fully connected layers, convolutional layers and layer norm), we keep to the recipe of adaptive sharpness, so
that ||ξ̄w|| = ||

(
ξ̄w ⊙ |w|−1

)
||2. The norm of the full update vector, ξ̄ = concat(ξ̄Qi , ξ̄

K
i , ξ̄

V
i , ξ̄

o
i , ξ̄w), where a sum over all

parameters of the network is implicit, is ||ξ̄||2 =
∑(
||(ξ̄Qi , ξ̄Ki )||2 + ||(ξ̄Vi , ξ̄oi )||2 + ||ξ̄w||2

)
.

C.2. Algorithm

Following the lead of Andriushchenko et al. (2023), we use Auto-PDG, proposed in Croce & Hein (2020), but now
optimizing the horizontal vector ξ̄ instead of the input. In Algorithm 1, ℓ is the loss over the batch we are optimizing over,
S is the feasible set of horizontal vectors, ξ̄, with norm smaller than ρ, and PS is the projection onto this set. Γ are the
Christoffel symbols for the parameters. η and W are fixed hyperparameters, which we keep as in Andriushchenko et al.
(2023), and the two conditions in Line 20 can be found in Croce & Hein (2020). The only differences to the algorithm
employed to calculate adaptive sharpness are in lines 3, 8, 10, and 12. For the metric ⟨·, ·⟩mix the only differences are in the
Christoffel symbols and in the Riemannian gradient (∇Gℓ→ ∇Gℓ

(
HTH

)−1
)

Algorithm 1 Auto-PGD

1: Input: objective function ℓ, perturbation set S, ξ̄(0), initial weights w(0), η, Niter, W = {w0, . . . , wn}
2: Output: ξ̄max, ℓmax
3: v(1) ← w(0) + ξ̄(0) − 1

2Γξ̄
(0)ξ̄(0) ▷ Perturb weights according to Eq. 5

4: ξ̄(1) ← PS
(
ξ̄(0) + η∇ξ̄ℓ(v

(1))
)

5: ℓmax ← max{ℓ(w(0)), ℓ(v(1))}
6: ξ̄max ← ξ̄(0) if ℓmax ≡ ℓ(w(0)) else ξ̄max ← ξ̄(1)

7: for k = 1 to Niter − 1 do
8: v(k+1) ← w(0) + ξ̄(k) − 1

2Γξ̄
(k)ξ̄(k) ▷ Perturb weights according to Eq. 5

9: if w(0) is an attention weight then
10: g ← ∇ξ̄ℓ(v

(k+1))w(0),Tw(0) ▷ Make attention gradients Riemannian
11: else
12: g ← ∇ξ̄ℓ(v

(k+1))⊙ (w(0))2 ▷ Make the other gradients Riemannian
13: end if
14: z(k+1) ← PS

(
ξ̄(k) + ηg)

)
15: ξ̄(k+1) ← PS

(
ξ̄(k) + α(z(k+1) − ξ̄(k)) + (1− α)(ξ̄(k) − ξ̄(k−1))

)
16: if ℓ(v(k+1)) > ℓmax then
17: ξ̄max ← ξ̄(k+1) and ℓmax ← ℓ(v(k+1))
18: end if
19: if k ∈W then
20: if Condition 1 or Condition 2 then
21: η ← η/2 and w(k+1) ← wmax
22: end if
23: end if
24: end for

14
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C.3. Complexity

Geodesic sharpness is slightly more expensive than adaptive sharpness in the following sense: Our approach consists of
three steps: 1) perturbing the weights according to Eq. 5, 2) optimizing the perturbations with gradient descent, and 3)
projecting them onto the feasible set, i.e. horizontal vectors within the geodesic ball with a small enough norm.

Steps 1) and 2) are also present in adaptive sharpness. Step 1) in our approach is slightly more expensive because we need to
evaluate the quadratic form that involves the Christoffel symbols (given by Eq. 11 and Eq. 12); this step introduces nparams
weight matrix multiplications, but these are quite efficient. Making the gradients Riemannian, costs another nparams weight
matrix multiplications. Neither of these bottleneck our approach. For ⟨·, ·⟩inv, Step 3) requires solving a Sylvester equation
to project the direction of the updated geodesic back onto the horizontal space. This solve is cubic in h (Kirrinnis, 2001), but
h is usually small (e.g. h = 64 in the ImageNet and BERT experiments). For ⟨·, ·⟩mix, only efficient matrix multiplications
are required.

On practical transformers, we expect the bottleneck to be the forward and backward propagations, just like in adaptive
sharpness.
D. Geodesic sharpness: Scalar Toy model
To make our approach explicit, we illustrate it on a NN with two scalar parameters G and H , square loss, and a single
(scalar) training point (x, y). We use ⟨·, ·⟩inv throughout. For this example, everything is analytically tractable. We also
contrast our sharpness measure with previously proposed ones to highlight its invariance.

Since we require full column-rank, our parameter space isM = R∗ × R∗ with R∗ = R \ {0}.

Metric: At a point (G,H) ∈M, for two tangent vectors η = (ηG, ηH), ν = (νG, νH) ∈ T(G,H)M, we have

⟨η,ν⟩inv =
ηGνG
G2

+
ηHνH
H2

= η⊤
(

1
G2 0
0 1

H2

)
︸ ︷︷ ︸

gkl

ν (18)

We denote the inverse metric by gkl =
(
G2 0
0 H2

)
Horizontal space: H(G,H) = {(ηG, ηH) ∈ T(G,H)M | ηG

G = ηH

H }

Geodesics: To compute the geodesics on the quotient space, we need the Christoffel symbols Γi
km.

Using a coordinate system (p1, p2) = (G,H), we have the following equation for a geodesic γ(t) = (γG(t), γH(t)), with
initial conditions γ(0) = (G0, H0) and γ̇(0) = (ηG0 , ηH0)

d2γG
dt2

+ Γ1
11

(
dγG
dt

)2

= 0

and similarly for H with Γ2
22 instead of Γ1

11.

The Christoffel symbols can be found using the metric, g, and its inverse. Using the Einstein notation and denoting the
inverse of g by the use of upper indices:

Γi
kl =

1

2
gim

(
∂gmk

∂xl
+
∂gml

∂xk
− ∂gkl
∂xm

)

Then

Γ1
11 =

1

2
g1m

(
∂gm1

∂p1
+
∂gm1

∂p1
− ∂gkl
∂pm

)
= − 1

G

Γ2
22 = − 1

H

15
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All other Christoffel symbols are 0. Our geodesic equations then become (we omit the derivation for H, which is identical
but with G↔ H)

d2γG
dt2

− 1

γG

(
dγG
dt

)2

= 0

This ODE has the (unique) solution γG(t) = AG exp(bGt). Taking into account the initial conditions, AG = G0, AH = H0

and due to the definition of the horizontal space, bG = ηG

G0
and bH = ηH

H0
, this becomes

γ(t) =

(
G0 exp

(
ηG
G0

t

)
, H0 exp

(
ηH
H0

t

))
One important detail to note is that these geodesics are not complete, that is, not all two points can be connected by a
geodesic. Points with different signs cannot be connected, which makes sense since we excluded the origin from the
acceptable parameters and in 1D we need to cross it to connect points with differing signs. All points that lie in the same
quadrant as (G0, H0) can be connected through a geodesic.

Putting it all together

Sρ
max((G0, H0)) =

[
max
||b||≤ρ

x2G2
0H

2
0 (exp(4b)− 1)− 2yxG0H0(exp(2b)− 1)

]
, (19)

Letting y0 = G0H0x, this becomes:

Sρ
max((G0, H0)) =

[
max
||b||≤ρ

y20(exp(4b)− 1)− 2yy0(exp(2b)− 1)

]
, (20)

Since ηH is completely determined by ηG we can ignore the maximization over it.

Since in practice we’ll take ρ≪ 1, we Taylor expand to get

Sρ
max ≈ 4ρ|y0||y − y0|

This presents an issue when the residual, |y − y0|, is zero, so we can also expand to second order, to get, when |y − y0| ≈ 0

Sρ
max ∝ ρ2|y0||y − 2y0| = 2ρ2y20

This is, up to constants, just ||G⊙H||22. This is also invariant to GL1 transformations, as expected.

Very close to the minimum we only capture (second-order in ρ) properties of the network, a bit further away from it we
capture a (first-order in ρ) mix of data and network properties.

Comparison with more traditional measures: The local average and worst case Euclidean sharpness (at a minimum) are

Savg = Tr∇2LS = G2 +H2

Smax = λmax(∇2LS) = G2 +H2

Adaptive sharpness is defined as

Sρ
avg(w, c) = ES∼Pm

[LS(w + δ)− LS(w)] , δ ∼ N (0, ρ2diag(c2))

Sρ
max(w, c) = ES∼Pm

[
max

∥δ⊙c−1∥p≤ρ
LS(w + δ)− LS(w)

]
,

By picking c very carefully one can get

Sρ
avg(w, c) = |GH|

Sρ
max(w, c) = |GH|

By contrast, in our approach there is no need for careful hyperparameter choices

16
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Geodesic flatness with more data points: How does the geodesic flatness look like with more data points?

LS(G,H) =
1

n

n∑
i=1

(GHxi − yi)2

which leads to (defining y0i = GHxi):

Sρ
max = max

b

1

n

n∑
i=1

[
(y0i )

2

(
exp

(
b

|b|
2
√
2ρ

)
− 1

)
− 2yy0i

(
exp

(
b

|b|
√
2ρ

)
− 1

)]
(21)

Taylor expanding (in ρ) once more, we see that

Sρ
max ≈ max

b

1

n

n∑
i=1

[
2
√
2ρ

b

|b|
y0i (y

0
i − y) + 2ρ2(y0i )

2

]
(22)

Which b maximizes Eq. 22, depends on the sign of
∑n

i=1

[
y0i (y

0
i − y)

]
: b < 0 if the sum is negative, the reverse if the

opposite is true.

D.1. Traditional flatness

In Figure 8 we extend Figure 1 to include the trace of the Hessian, both Euclidean and Riemannian. The trace of the network
Hessian is a quantity that can be used to quantify flatness. We plot, for the scalar toy model, the level sets of: a) the loss
function; b) the Euclidean and Riemannian gradient; c) the traces of the Euclidean and Riemannian network Hessian. Several
features of the plots are important to note: a) the Riemannian version of the gradient and Hessian have the same level set
geometry as the loss function; b) both the Riemannian gradient norm and the trace of the Riemannian Hessian have smaller
values throughout than their Euclidean equivalents; c) the trace of the Riemannian Hessian actually reaches 0 when at the
local minimum, whereas the Euclidean Hessian actually attains its highest value there; d) the Euclidean trace of the Hessian
cannot distinguish between a minimum and a maximum whereas the Riemannian trace can actually do so. Even for simple
flatness measures, correcting for the quotient geometry can provide a much clearer picture.

E. Geodesic sharpness: Diagonal networks in full generality
E.1. Metric (6)

Metric: At a point (u,v) ∈M, for two tangent vectors η = (ηu,ηv), ν = (νu,νv) ∈ T(u,v)M, we have

⟨η,ν⟩inv =

d∑
i=1

ηi
uν

i
u

(ui)2
+
ηivν

i
v

(vi)2
(23)

Horizontal space: H(u,v) = {(ηu, ηv) ∈ T(u,v)M | ηi
u

ui =
ηi
v

vi ∀i ∈ {1, . . . , d}}

Geodesics: We define bi = ηi
u

ui =
ηi
v

vi ∀i ∈ {1, . . . , d}, so that

γ(t)i = (u(t),v(t)) =
(
ui
0 exp(bit),v

i
0 exp(bit)

)
∀i ∈ {1, . . . , d} (24)

where ui
0 and vi0 are the initial positions for our parameters, i.e., the parameters that the network actually learned.

Geodesic sharpness: We assume that in what follows XTX = Idd, and we denote β0 = u0 ⊙ v0,γt =(
exp
(
2b1t

)
, . . . exp

(
2Bdt

))
,βt = (ut ⊙ vt) = β0 ⊙ γt,β∗ = XT y. Note that β∗ is just the optimal least squares

predictor whenXTX = Id. With this notation

Smax = max
||b||≤ρ

d∑
i

[
(βi

0)
2(γt ⊙ γt − 1)

]
− 2(β0 ⊙ γt − 1)Tβ∗ (25)
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(a) Loss
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Figure 8: Quantities from the Riemannian quotient manifold respect the loss landscape’s symmetry; Euclidean
quantities do not. We use a synthetic least squares regression task with a two-layer NN x 7→ θ2θ1x with scalar parameters
θi ∈ R and input x ∈ R. The NN is re-scale invariant, i.e. has GL(1) symmetry: For any α ∈ R \ {0}, the parameters
(θ′1, θ

′
2) = (α−1θ1, αθ2) represent the same function. (a) The loss function inherits this symmetry and has hyperbolic

level sets. (b,c) The Euclidean gradient norm does not share the loss function’s geometry and changes throughout an orbit
where the NN function remains constant. (d,e) The Riemannian gradient norm and Hessian trace follow the loss function’s
symmetry and remain constant throughout an orbit, i.e. they do not suffer from ambiguities for two points in parameter space
that represent the same NN function. All quantities were normalized to [0; 1] and we fixed six points in parameter space and
computed the level sets running through them to illustrate the geometry.

At a first glance, this expression does not seem to have a simple interpretation, but we Taylor expand it to second order in B
(since ρ is supposed to be small):

Smax ≈ max
||b||≤ρ

4bTr + 4bTDβ0,β∗b (26)

where r = {βi
0(β

i
0 − βi

∗), i = 1, . . . , d}, r′ = {(βi
0 − βi

∗), i = 1, . . . , d} and Dβ0,β∗ = diag(βi
0(2β

i
0 − βi

∗)) =
diag(βi

0(β
i
0 + (r′)i)). We separate the analysis of Eq.26 into three cases:

case a): r ̸= 0 and first order suffices Eq.26 becomes

Smax = max
||b||≤ρ

4bTr

with solution Smax = 4ρ||r||. This is essentially the gradient norm– a useful quantity for understanding generalization (Zhao
et al., 2022b).

case b): r = 0 Here we necessarily have to consider the second order terms, so that Eq.26 becomes

Smax = max
||b||≤ρ

4bTDβ0,β∗b

This has the well known solution of Smax = ρ2λmax(Dβ0,β∗) = ρ2 max((βi
0)

2). This is just ||β||2∞, which is the square of
what we would get by using adaptive sharpness, Eq.39, with a very carefully chosen hyper-parameter c. This is a quantity
that is useful when our ground-truth, β∗ is dense.

case c): r ̸= 0 and we need both first and second order terms In this case, Eq.26 needs to be considered in full, and we
solve the maximization problem using Lagrange multipliers. The Lagrangian will be

L = −4bTr − 4bTDβ0,β∗b+ λ(bT b− ρ2)

The KKT conditions then are

18
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∂L
∂b

= −4r − 8Dβ0,β∗b+ 2λb = 0 (27)

λ(bTB − ρ2) = 0 (28)
λ ≥ 0 (29)

If the constraint is not active, then λ = 0 and

b∗ = −1

2
D−1

β0,β∗
r

In practice, unless ρ is large the constraint will always be active, in which case 27 becomes

− 4r − 8Dβ0,β∗b+ 2λ(B) = 0

(bT b− ρ2) = 0

λ ≥ 0

this then becomes

B∗ = 2 (λI − 4Dβ0,β∗)
−1
r

4

d∑
i

(ri)2(
λ− 4(βi

0(β
i
0 + r

′)
)2 = ρ2

λ ≥ 0

E.2. Metric (7)

We follow the same approach as in the previous section. The main difference will be in the form of the geodesics:
u(t)⊙ v(t) = (u0 ⊙ v0)⊙ (1+ 2bt), where bi = ηi

u

ui =
ηi
v

vi , as in the previous section. This essentially treats the two-layer
neural network as if it were a single layer, with predictor β = u⊙ v, that it then perturbs linearly to determine sharpness.
For ⟨·, ·⟩mix, and denoting byDβ = diag(βi

0):

Smax = max
||η||mix≤ρ

4
[
bT (β0 − β∗) + b

TD2
βb
]

(30)

We also have that

(||η||mix)2 =
[
. . .+ (vi)2(ηiu)

2 + (ui)2(ηiv)
2 + . . .

]
(31)

=

[
. . .+ (vi)2(ui)2

(
(ηiu)

2

(ui)2
+

(ηiv)
2

(vi)2

)
+ . . .

]
(32)

=
[
. . .+ 2(vi)2(ui)2(bi)2 + . . .

]
= ||2Dβ0

b||2 (33)

Substituting 2Dβ0
b = δ, Eq. 30 becomes

Smax = max
||δ||≤ρ

[
δT (β0 − β∗) + δ

T δ
]

(34)

with the solution (up to constants)

Smax = ρ||β0 − β∗||2 (35)
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F. Geodesic Sharpness: GL1 symmetry and Adaptive Sharpness
What happens if instead of a general GLn symmetry, we factor out a GL1 re-scaling symmetry? That is, we identify,
element-wise, (x̄, ȳ) ∼ (x̄′ȳ′) if ∃α ∈ R∗ = R \ {0} s.t. x̄ = αx̄′ and ȳ = α−1ȳ.

This is the symmetry present in diagonal networks, and so we utilize the metric given by Eq. 6, reproduced below for
convenience of the reader:

g [(ηu, ηv) , (νu, νv)] =

d∑
i=1

ηiuν
i
u

(ui)2
+
ηivν

i
v

(vi)2
(36)

Note that this metric is equivalent to the following metric:

g [(ηu, ηv) , (νu, νv)] = g [(ηu/|u|, ηv/|v|) , (νu/|u|, νv/|v|)]euc (37)

where geuc is the usual Euclidean metric and the division is taken to be element-wise. Denoting the concatenation of all
tangent vectors by ξ, the concatenation of all parameters by w, we have ||ξ|| = ||ξ/|w|||2.

In this situation Eq. 4 becomes (γ denotes our geodesics as usual)

Sρ
max(w, c) = ES∼D

[
max

||ξ/|w|||2≤ρ
LS(γ̄ξ̄(1))− LS(γ̄ξ̄(0))

]
, (38)

If we then ignore the corrections induced by the geometry of the metric on the geodesics, i.e., take γ̄ξ̄(1) = γ̄ξ̄(0)+ξ̄ = w+ξ̄,
then we get

Sρ
max(w, c) = ES∼D

[
max

||ξ/|w|||2≤ρ
LS(w + ξ)− LS(w)

]
(39)

which is exactly the formula for adaptive sharpness.

G. Geodesic Sharpness: Ablations
In this appendix we conduct ablation studies on geodesic sharpness (Equation (4)). There are two main components to
our recipe that differ from adaptive sharpness: a) the norm ||ξ̄||; b) the weight update formula, which instead of the usual
wi = wi + ξ̄ takes into account the curvature induced by the parameter space symmetries wi = wi + ξ̄i − 1

2Γ
i
klξ̄

k ξ̄l.
Below we turn off these components one by one and re-compute the resulting sharpness on MNLI using the BERT models
described in Section 5.3.2.

Metric (9): In Figure 9 we show the results for our ablation studies using metric (9). The norm component is much more
impactful than the second-order weight corrections. Turning off the second-order weight corrections results in a small
performance drop only.

Metric (10): In Figure 10 we show the results for our ablation studies using metric (10). The norm component is still
much more impactful than the second-order weight corrections for this metric, but now the second-order weight corrections
are essential, and without them sharpness loses a considerable amount of predictive power.

H. Geodesic Sharpness: Ranks and Relaxation
H.1. Ranks: how natural is Assumption 5.1?

In general, in non-linear networks there is a tendency towards low-rank representations, which might make Assumption 5.1
seem excessive and counter to realistic situations. However, while the learned WQW

T
K tend to be low-rank, WQ and WK

(on which Assumption 5.1 ought to apply) themselves are usually high/full (column) rank (Yu & Wu, 2023).
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Figure 9: The generalization gap on the MNLI dev matched set (Williams et al., 2018) vs. worst-case adaptive sharpness
with metric (9) is shown for 35 models from (McCoy et al., 2020). On the left we plot the results when we turn off the
corrected norm, and on the middle when we turn off the second-order weight corrections. Right are the results with no
ablations.

4.6 4.8 5.0 5.2 5.4 5.6 5.8
Geodesic sharpness

0.102

0.103

0.104

0.105

0.106

0.107

0.108

Ge
ne

ra
liz

at
io

n 
ga

p

Geodesic sharpness vs. generalization gap. =0.01

4.8 5.0 5.2 5.4 5.6
Geodesic sharpness

0.102

0.103

0.104

0.105

0.106

0.107

0.108

Ge
ne

ra
liz

at
io

n 
ga

p

Geodesic sharpness vs. generalization gap. =0.24

4.9 5.0 5.1 5.2 5.3 5.4 5.5
Geodesic sharpness

0.102

0.103

0.104

0.105

0.106

0.107

0.108

Ge
ne

ra
liz

at
io

n 
ga

p

Geodesic sharpness vs. generalization gap. =0.38

Figure 10: The generalization gap on the MNLI dev matched set (Williams et al., 2018) vs. worst-case adaptive sharpness
with metric (10) is shown for 35 models from (McCoy et al., 2020). On the left we plot the results when we turn off the
corrected norm, and on the middle when we turn off the second-order weight corrections. On the right are the results with
no ablations.

H.2. Relaxation

Due to the definition of metric 9, we need to invert matrices of the type of WT
QWQ. When these are not full-rank,

numerical stability can suffer. Due to floating-point precision rounding errors, in practice WT
QWQ is always invertible, but

sometimes the inverted matrices have huge singular values. To combat this, we introduce a relaxation parameter, so that
WT

QWQ →WT
QWQ + ϵIh, which dampens the resulting singular values. Although we cannot take it to be exactly zero, as

long as it is small enough, numerical stability is improved and the results remain roughly the same. We study the effects of
varying this parameter on our results empirically below (Figure 11), using the same setup as in Section 5.3.2. The results are
not significantly affected by the variation of this parameter.

I. Additional Derivations and Proofs
I.1. Proof that Eq. 9 defines a valid Riemannian metric

Eq. 9 defines a valid metric on the total space M if it is smooth, and for each point (Ḡ, H̄) ∈ M it defines a
valid inner product on the tangent space T(Ḡ,H̄)M. That it is smooth is obvious, so we show that ⟨η̄, ζ̄⟩(Ḡ,H̄) =

Tr
(
(G⊤G)−1η̄⊤Gζ̄G + (H⊤H)−1η̄⊤H ζ̄H

)
defines a valid inner product:

(i) Symmetry ⟨η̄, ζ̄⟩ = ⟨ζ̄, η̄⟩: omitting the H term as it is identical, ⟨η̄, ζ̄⟩ = Tr
(
(G⊤G)−1η̄⊤Gζ̄G

)
=

Tr
(
(G⊤G)−1ζ̄⊤Gη̄G

)
= ⟨ζ̄, η̄⟩ ;
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Relaxation = 10−2
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Relaxation = 10−3
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Relaxation = 10−4
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Figure 11: The generalization gap on the MNLI dev matched set (Williams et al., 2018) vs. worst-case adaptive sharpness
(left) and geodesic sharpness (⟨·, ·⟩inv), is shown for 35 models from (McCoy et al., 2020). Only the relaxation parameter
differs between plots. The results stay broadly the same.

(ii) Bilinearity ⟨aη̄ + bζ̄, λ̄⟩ = a⟨η̄, λ̄⟩+ b⟨ζ̄, λ̄⟩ = ⟨λ̄, aη̄ + bζ̄⟩: follows by linearity of the trace;

(iii) Positive Definiteness ⟨η̄, η̄⟩ ≥ 0: using assumption 5.1, GTG is invertible and is positive-definite; this means that
(GTG)−1 is also positive-definite, and so ⟨η̄, η̄⟩ ≥ 0, with equality only when η̄ = 0.

The proof that Equation (10) defines a valid metric is analogous.

I.2. Derivation of the geodesic corrections for attention

We apply the Euler-Lagrange formalism to the energy functional to derive the geodesic equation on the attention quotient
manifold, and hence Γi

klξ̄
k
Gξ̄

l
G, remembering that geodesics, in local coordinates, obey the equation d2γi

dt2 + Γi
kl

dγk

dt
dγl

dt = 0.

Starting from
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E(γ) =

∫ 1

0

L dt =
∫ 1

0

⟨γ̇(t), γ̇(t)⟩γ(t)dt (40)

=

∫ 1

0

[
Tr
(
γG(t)T γG(t)

)
γ̇G(t)T γ̇G(t) + Tr

(
γH(t)T γH(t)

)
γ̇H(t)T γ̇H(t)

]
dt (41)

,

The Euler-Lagrange equation, for theG part only, reads

d

dt

(
∂L
∂Ġ

)
− ∂L
∂G

= 0 (42)

We have

∂L
∂G

= −2G
(
GTG

)−1
(
ĠT Ġ

) (
GTG

)−1
(43)

d

dt

(
∂L
∂Ġ

)
= 2G̈

(
GTG

)−1 − 2Ġ
(
GTG

)−1
(
ĠTG+GT Ġ

) (
GTG

)−1
(44)

So that Eq. 42 becomes:

G̈− Ġ
(
GTG

)−1
(
ĠTG+GT Ġ

)
+G

(
GTG

)−1
(
ĠT Ġ

)
= 0 (45)

From which we read

Γi
klξ̄

k
Gξ̄

l
G =

[
−ξ̄
(
GTG

)−1 (
ξ̄TG+GT ξ̄

)
+G

(
GTG

)−1 (
ξ̄T ξ̄

)]i
(46)

The same reasoning is used to deduce Eq. 12.

I.3. Metrics related by scaling and constants

If g is a metric and gscaled = Cg +D, then from Eq. 40 and Eq. 42 we see that the geodesics induced by gscaled are the same
as those induced by g. The geodesic sharpness induced by gscaled is

Sρ
max(w) = ES∼D

[
max

||ξ̄||γ̄scaled≤ρ
LS(γ̄ξ̄;scaled(1))− LS(γ̄ξ̄;scaled(0))

]
=

= ES∼D

[
max

C||ξ̄||γ̄+D≤ρ
LS(γ̄ξ̄(1))− LS(γ̄ξ̄(0))

]
,

= ES∼D

[
max

||ξ̄||γ̄≤ρ′
LS(γ̄ξ̄(1))− LS(γ̄ξ̄(0))

]
,

So they are the same up to some re-definition of the hyperparameter ρ.
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