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Abstract— Accurate 6DoF pose estimation is an important
topic in robotics applications, from interactive systems to
autonomous navigation and manipulation in augmented reality
environments. Previous studies, that rely on single RGB im-
age captured in uncontrolled environments often struggle to
accurately estimate both the camera’s internal focal length and
the object’s external pose parameters, primarily due to the
inherent ambiguity of the perspective projection parameters of
the pinhole camera model. Addressing this challenge, our study
presents a two-stage approach by decoupling two projection
related parameters by employing a render and compare strat-
egy. Initially, we fix the z-axis translation (tz) to an arbitrary
value, effectively estimating the other pose parameters and
focal length, and achieving accurate results when depth is
assumed to be fixed. Subsequently, we predict all parameters
in the second stage, enhancing the method’s adaptability and
accuracy by keeping the scale of the focal length to the object
depth. This approach significantly overcomes projection scale
ambiguity, devising improvements over existing methods. Both
quantitative and qualitative results demonstrate the validity
of presented approach showcasing its applicability for diverse
robotics applications where accurate pose estimation is critical,
yet camera metadata is either unreliable or unavailable.

I. INTRODUCTION

6DoF pose estimation is a fundamental topic in computer
vision which identifies object 3D position and orientation
using translation and rotation matrices. It’s importance is
evident in many applications ranging from robotics [1], [2],
Extended Reality (XR) [3], [4] and Simultaneous Localiza-
tion and Mapping (SLAM) [5], [6]. Despite the existence of
advanced techniques for 6DoF pose estimation from single
RGB image [7], [3], a notable research gap persists in
accurately estimating poses from images lacking metadata
such as focal length. While cameras typically provide focal
length metadata, there are numerous scenarios in robotics
where this information may be absent, subject to change, or
unreliable. These situations may include environments like
disaster response zones, outer space missions, and under-
water exploration, where conditions can significantly alter
camera functionality or where pre-set metadata might not
apply.

While Focalpose [8] presents a 6DoF pose estimation tech-
nique from in-the-wild obtained single RGB image without
metadata like focal length, there exists an ambiguity in the
predictions. This arises because of attempting a simultaneous
prediction of the focal length and the translation along
the Z-axis which influence the scaling of objects within
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the image. This method, employing a render-and-compare
strategy, projects 3D pose estimations of objects onto 2D
images to minimize projection error. However, the inherent
coupling of internal focal length and external Z-axis trans-
lation in the perspective projection of the pinhole camera
model complicates this process, as these parameters have
opposite effects on projection scale. Despite a disentangled
loss function aiming to separately adjust focal length and
pose predictions, their update mechanisms remain coupled,
leading to an inherent ambiguity which results in multiple
solutions. Motivated by this work, a two stage approach
is presented by decoupling the focal length and z-axis
translation tz predictions. In the first stage , we fix the z-axis
translation to an arbitrary constant and predict all the other
parameters. The outputs from the first stage, where the values
are with respective to fixed tz are used to initialize the values
for the second stage. In the second stage, we predict all the
6DoF pose parameters except focal length which is scaled
by predicted tz . This two-stage methodology significantly
mitigates the projection scale ambiguity inherent in single-
image pose estimation tasks, and yeilds more accurate and
reliable pose and focal length estimations.

In our evaluation, we observed a significant decrease of
18.04% in average median projection error, and 29.52% de-
crease in average median transformation error (Pose). These
results demonstrate the method’s effectiveness for robotics
applications that require precise 6DoF pose and focal length
estimations from single RGB image without metadata.

Fig. 1: Fixing tz to an arbitrary constant to prevent the
ambiguity between simultaneous prediction of focal length
and tz .



Fig. 2: Pose and Focal Length Estimator Network using a two stage approach to predict 6DoF and Focal Length.

II. METHODOLOGY
A. Motivation

Our methodology was motivated by the 2D image for-
mation based on the perspective projection model (PPM)
of a pin-hole camera setting. This model is comprised of
two key parameters which affect the scale of an object’s
projection: the focal length and the object’s translation along
the Z coordinate in the camera’s coordinate system. This
setup introduces ambiguity in predicting the pose when these
parameters are estimated simultaneously.

Our objective is to estimate the 6DoF pose from a single
RGB image without metadata. As illustrated in Fig. 1, we
need to determine the pose of the object such that its
projection can be accurately rendered onto the RGB image
when it is properly positioned within the camera’s coordinate
system. Conversely, given an object in the world coordinate
system and a single RGB image, we seek to adjust the
camera’s position to ensure the object’s accurate projection
within the image.

Referring to Fig. 1, to project the model of the chair on to
the image plane, it has to be positioned at Xc = (Xc, Yc, Zc)
in the camera space, and it’s resultant image coordinate will
be x (for simplicity we will consider only x). The world
coordinate system(Xw - CAD Coordinates) is located at the
origin and let’s denote it by Xw. If we consider the rotation
components of extrinsic matrix to be R = [r1, r2, r3]

T , the
translation vector to be t = [tx, ty, tz]

T , and focal length by
f , we can represent the relationship between x and Xc by
the Eq. (1)

x =
f

rT3 Xw + tz
Xc (1)

Predicting the object’s pose involves estimating the rota-
tion matrix R, translation vector t, and focal length f . In
the equation above, tz and f directly impact the projection
scale, leading to ambiguity in their simultaneous prediction.
To tackle this, we initially set tz to a constant in the first
stage and re-calibrate f accordingly.

Letting z0 represent the fixed tz , the change in image space
from x to x′ and CAD coordinates to X′

c = (X ′
c, Y

′
c , Z

′
c) is

illustrated in Eq. (2).

x′ =
f

rT3 Xw + z0
X ′

c (2)

To align x′ with x after setting z0, we re-calibrate f by
the ratio of x : x′ (denoted Sf ), as shown in Eq. (3):

Sf = x/x′ =
rT3 Xw + z0
rT3 Xw + tz

(3)

This re-calibration to align x′ −→ x is given in Eq. (4). Here
f ′ is the re-calibrated focal length (f ′ = Sff ). As there is
no change done on tx and ty , Xc = X ′

c and Yc = Y ′
c .

x′ x

x′ = x′Sf =
fSf

rT3 Xw + tz
Xc =

f ′

rT3 Xw + tz
Xc (4)

Our CAD models are computed as point clouds with the
centroids at the origin. If we are to re-calibrate the focal
lengths and do the computations for every point, it will
be computationally expensive. Hence, by weak perspective
projection [9] we set rT3 Xw = 0. Thus, after fixing tz , the
focal length adjustment simplifies to Eq. (5):

f ′ = f
z0
tz

(5)

B. Approach Overview

Fig. 2 demonstrates a two-stage approach for predicting
the 6DoF pose from an uncontrolled RGB image. In the
first stage, tz is fixed to an arbitrary constant, and other
pose parameters and focal length are estimated. To offset the
arbitrary setting, re-calibration of the focal length is neces-
sary, as indicated by Eq. (5). Initially, a coarse estimation is
performed, followed by iterative refinements. Outputs from
the first stage are then utilized to initialize the values for
the second stage, where tz is predicted. In the second stage,
instead of predicting the focal length anew, it is scaled based
on the tz update.

C. Stage-I : Prediction relative to fixed tz

Inputs are an image and a 3D model with initial pose
θk = (Rk, tkx, t

k
y , t

k
z , f

k), with tz fixed at z0 and focal length
re-calibrated according to Eq. (5). After rendering the model
with fixed tz and adjusted focal length, a Resnet-50 network
predicts the pose updates ∆θk. Eventhough a disentangled
loss function has been proposed in [8] to decompose the pose
and focal length updates, in their update rule for translation,
focal length is taken in to consideration, which results in
an ambiguity. Addressing this ambiguity in update, we fix



tz in Stage-I, modifying the update rules U = (θ,∆θ) for
tx and ty as per Eq. (6) and Eq. (7), with updates (∆θ)
from network-1 outputs. Here vkx and vky are the outputs from
network-1 which are the values required for the update of tx
and ty respectively during k iteration (k > 1 in refiner).
In this stage, the update rule for rotation and focal length
remains the same as [8].

tx
k+1 =

vkx
fk+1

z0 + tx
k (6)

ty
k+1 =

vky
fk+1

z0 + ty
k (7)

The loss function Lstage1, tailored for fixed tz and re-
calibrated focal length, is given by Eq. (8) to (10). Even
though we have fixed a component of translation, we are
estimating focal length at this stage. Hence for jointly learn-
ing the pose parameters and focal length, Lpose and Lfocal

are used. In Eq. (9), function D, computes the L1 norm of
the transformed points with given rotation and translation,
between predicted and ground-truth values. txy = (tx, ty, z0)
represents the translation with fixed tz .

Lstage1(θ, θ̂
′) = αLfocal + Lpose (8)

Lpose = D(U(θk, {vkx, vky , z0, R̂k, v̂kf}), R̂, t̂)

+D(U(θk, {v̂kx, v̂ky , z0, Rk, v̂kf}), R̂, t̂)
(9)

Eq. (10) defines Lfocal as the Huber Regression and
disentangled re-projection loss, calculating the L1 norm of
projected points. f̂ ′ and t̂xy denote the re-calibrated ground
truth focal length and x, y translations respectively, with f
being the predicted focal length.

Lfocal = βLH

(
f, f̂ ′

)
+

1

2
Lproj.

(
(R, txy, f̂

′), (R̂, t̂xy, f̂
′)
)
+

1

2
Lproj.

(
(R̂, t̂xy, f), (R̂, t̂xy, f̂

′)
) (10)

D. Stage-II : Estimating 6DoF pose while scaling f

Utilizing Stage-I outputs relative to the fixed tz , Stage-II
directly predicts tz using another Resnet-50, while scaling
focal length according to the updated tz . This stage omits
refinement for direct pose prediction. Using just the a single
pass in the network in second stage led to better results
than iterative refinement, likely because the refiner can cause
overfitting and make initial errors worse. When considering
the update rules of the second stage, similar to previous, the
rotation update remains the same. Update rule for tz is given
by Eq. (11). tzinit and f init are the outputs from Stage-I.

tz
output = vztz

init (11)

Here instead of predicting, we scale the focal length simi-
lar to relative tz

output update as in Eq. (12), thus eliminating
the ambiguity.

foutput = f init

(
tz

output

z0

)
(12)

Then we update the x and y components of the translation
as given by Eq. (13) and Eq. (14)

tx
output =

(
vx

foutput
+

tx
old

tz
init

)
tz

output (13)

ty
output =

(
vy

foutput
+

ty
old

tz
init

)
tz

output (14)

Lpose = D(U(θold, {vx, vy, vz, R̂k}), R̂, t̂)

+D(U(θold, {v̂kx, v̂ky , vz, R̂k}), R̂, t̂)

+D(U(θold, {v̂kx, v̂ky , v̂z, Rk}), R̂, t̂)

(15)

The pose loss function Lpose given by Eq. (15), speci-
fied for this stage, concentrates solely on pose parameters
excluding focal length estimation.

III. EXPERIMENTAL RESULTS

We evaluate our two-stage approach by comparing with
FocalPose using the Pix3D dataset [10], showing marked
improvements. We only used real dataset of Pix3D without
synthetic data, due to the hardware constraints on training.
Results in Table I shows our Stage-I (Ours-Fixed tz) and
Stage-II (Ours) performances versus FocalPose.

A. Quantitative Results

Our experiments, using metrics from [8], evaluate rotation,
translation, pose, and projection via median reprojection
errors (Med.Err.) and the percentage of images with re-
projection errors below 0.1 (AccP0.1

) and 0.05 (AccP0.05
) of

the image size. Pose error represents the error between 3D
points of CAD model transformed using estimated rotation
and translation with the ground truth in camera coordiante
system. These metrics confirm our method’s precision in
aligning 3D models with 2D images.

Stage-I significantly outperforms FocalPose, demonstrat-
ing effectiveness with a fixed tz . This stage is applicable
where depth data is measurable. Stage-II, while not exceed-
ing Stage-I’s performance, improves upon FocalPose, sup-
porting our method’s capability for full 6DoF pose estimation
including focal length.

Training was performed on an NVIDIA RTX 3090 GPU.
All datasets were trained for 500 epochs, except for the
chair dataset, which was trained for 200 epochs after noting
performance stabilization at 150 epochs, ensuring efficient
resource use while maintaining quality. Despite real data’s
noise, our method outperformed FocalPose in many metrics
but faced challenges in projection accuracy for the Sofa
dataset. This issue likely comes from real data’s noise.
However, better performance even on noisy real data indi-
cates potential for enhanced accuracy on synthetic data with
precise annotations.



TABLE I: Quantitative Comparison of Our Approach with FocalPose.

Dataset Rotation Translation Pose Focal Projection

Med. Err. Acc 30° Acc 15° Acc 5° (Med. Err.) (Med. Err.) (Med. Err.) Med. Err. 2 AccP0.1
AccP0.05

Pix3d Bed
FocalPose 0.436 53.68 % 32.11 % 3.16 % 0.251 0.202 0.222 0.132 41.05 % 13.16 %

Ours-Fixed tz 0.389 62.11 % 37.89 % 6.32 % 0.019 0.044 0.064 0.104 47.37 % 20.53 %

Ours 0.382 60.00 % 36.32 % 7.89 % 0.200 0.179 0.208 0.119 45.26 % 18.42 %

Pix3d Sofa
FocalPose 0.236 79.78 % 56.77 % 10.39 % 0.230 0.153 0.208 0.057 74.77 % 43.04 %

Ours-Fixed tz 0.134 94.07 % 80.37 % 30.56 % 0.012 0.017 0.038 0.038 87.04 % 65.37 %

Ours 0.169 92.02 % 74.21 % 20.04 % 0.200 0.132 0.194 0.056 81.45 % 41.19 %

Pix3d Table
FocalPose 0.762 36.75 % 17.38 % 1.71 % 0.503 0.312 0.323 0.204 19.09 % 3.70 %

Ours-Fixed tz 0.500 51.28 % 27.07 % 3.70 % 0.021 0.053 0.075 0.136 38.46 % 15.38 %

Ours 0.587 47.29 % 26.50 % 4.56 % 0.279 0.213 0.315 0.180 27.07 % 7.41 %

Pix3d Chair
FocalPose 0.964 24.08 % 7.47 % 0.44 % 0.553 0.376 0.210 0.182 16.17 % 1.45 %

Ours-Fixed tz 0.278 66.69 % 47.95 % 7.86 % 0.020 0.026 0.061 0.068 62.44 % 35.26 %

Ours 0.288 66.35 % 44.96 % 7.40 % 0.216 0.146 0.210 0.096 51.56 % 20.96 %

Fig. 3: Qualitative Comparison of Our Approach vs Focal-
pose.

Our approach shows notable improvements in key metrics
as given in Table I. These are crucial for robotics, where
accurate environmental understanding is necessary for tasks
such as object manipulation and navigation. Better depth
and focal length estimations enhance object manipulation

and spatial awareness, while improvements in rotation and
translation aid in precise pose estimation. These advance-
ments enable more effective navigation and interaction within
various environments, highlighting our approach’s potential
to boost robotics in settings where camera metadata is
uncertain.

B. Qualitative Results

Fig. 3 visually illustrates our approach’s performance,
comparing with FocalPose. It shows instances where projec-
tion scales of rendered CAD models of our approach closely
align with RGB images, reflecting accurate focal length
and depth estimations. It can be observed that, improper
projection scales exists in [8] which is due to ambiguity in
simultaneous estimation of parameters. However, our results
have room for improvements in rotation and translation,
highlighting the potential advantages of integrating more
synthetic data into our training process.

IV. CONCLUSION

In conclusion, this paper presents a novel two-stage ap-
proach to 6DoF pose estimation from single RGB image,
effectively addressing the inherent scale ambiguity in simul-
taneous focal length and translation (tz) estimation. By sep-
arating the estimation processes for tz and focal length, we
achieve enhanced performance, demonstrating significant im-
provements across a range of metrics. Our experiments on the
real-world Pix3D dataset show the robustness and adaptabil-
ity of our method. The qualitative evaluation further shows
our approach’s advantage in more accurately estimating pose
and focal length. This research makes our method suitable for
advanced robotics applications, promising advancements in
autonomous navigation, object manipulation, and interaction
within unstructured environments where camera metadata is
is unreliable or unavailable.
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