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Abstract—Domain Incremental Learning (DIL) is a continual
learning sub-branch that aims to address never-ending arrivals of
new domains without catastrophic forgetting problems. Despite
the advent of parameter-efficient fine-tuning (PEFT) approaches,
existing works create task-specific LoRAs overlooking shared
knowledge across tasks. Inaccurate selection of task-specific
LORAs during inference results in significant drops in accuracy,
while existing works rely on linear or prototype-based classi-
fiers, which have suboptimal generalization powers. Our paper
proposes continual knowledge consolidation low rank adaptation
(CONEC-LoRA) addressing the DIL problems. CONEC-LoRA
is developed from consolidations between task-shared LORA to
extract common knowledge and task-specific LORA to embrace
domain-specific knowledge. Unlike existing approaches, CONEC-
LoRA integrates the concept of a stochastic classifier whose
parameters are sampled from a distribution, thus enhancing
the likelihood of correct classifications. Last but not least, an
auxiliary network is deployed to optimally predict the task-
specific LoRAs for inferences and implements the concept of
a different-depth network structure in which every layer is
connected with a local classifier to take advantage of intermediate
representations. This module integrates the ball-generator loss
and transformation module to address the synthetic sample bias
problem. Our rigorous experiments demonstrate the advantage of
CONEC-LoRA over prior arts in 4 popular benchmark problems
with over 5% margins.

Index Terms—Continual Learning, Incremental Learning, Do-
main Incremental Learning

I. INTRODUCTION

CONTINUAL learning (CL) constitutes a research area
of growing interests where the main goal is to develop

a learning agent that can accumulate knowledge overtime [1],
[2], [3], [4]. This task is challenging for a deep neural network
(DNN) because of the catastrophic forgetting (CF) problem
[5] where learning a new task over-writes previously valid
parameters thus suffering from significant performance drops
on previous tasks. In other words, a plastic model is capable
of mastering new tasks, but its performance on previous tasks
is compromised. In contrast, a stable model retains its old
knowledge but fails to learn new tasks. Hence, the key is to
balance the issue of plasticity and stability [5].

There exist three classical approaches in combating the
CF problem: regularization-based approach [6], [7], [8], [9],
[10], [11], [12], [13], memory-based approach [14], [15],
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[16], [17], [18], [19], [20], [21], [22], [23] and architecture-
based approach [24], [25], [26], [27], [11], [28]. Although
the memory-based approaches generally outperform the other
two approaches, they impose storage and privacy concerns.
Recently, there is a trend toward a rehearsal-free continual
learning approach benefiting from strong generalization power
of pre-trained model (PTM) [29], [30], [31], [32], [33]. That
is, these approaches fix the backbone network to avoid the CF
problem while adapting to new tasks via parameter-efficient
fine-tuning (PEFT) approaches such as prompts [29], [30],
[31], LoRA [34], [35] and adapter [36]. Such an approach
is effective because it involves a small number of trainable
parameters and is powerful because it enjoys generalized
features of the foundation model. Nevertheless, most of these
efforts are devoted to addressing the class-incremental learning
(CIL) problems [4] where each task features disjoint classes
and a model is expected to handle all classes of all tasks in
the testing phase.

Domain Incremental Learning (DIL) is a CL sub-problem
where the goal is to handle a sequence of varying domains.
It differs from the CIL problem because each task is drawn
from different domains while sharing the same label space
[37]. That is, a model is trained to be robust against various
changes, such as data style shifts, data quality degradation,
environmental changes, etc., rather than to recognize new
classes. In [38], Compositional Prompt (C-Prompt) is proposed
as a rehearsal-free solution to the DIL problem, where it
puts forward the notion of a domain-specific prompt pool.
[39] proposes the concept of dual-level concept prototypes
(DualCP), which consists of coarse-grained and fine-grained
prototypes for each class. The idea of SOYO is presented
in [40], where the key idea lies in the Gaussian Mixture
Compressor and Domain Feature Resampler. [41] offers the
idea of dual consolidations in the feature level and in the
classifier level. Although DIL has rapidly grown, existing
works suffer from at least three bottlenecks: 1) they overlook
shared knowledge across tasks. Notwithstanding that [38] also
makes use of the global prompt to capture shared knowledge.
We offer an alternative approach here, where the idea of
low-rank adaptation (LoRA) is implemented. In addition,
[38] imposes considerable complexities because of the use
of domain-specific prompt pools; 2) they suffer from low
parameter selection accuracies, leading to incorrect parameters
being utilized for inferences. That is, existing approaches often
apply the matching degree between the prompt key and query
to select task-specific prompts during inferences, resulting
in inaccurate parameter selections; 3) they adopt the linear
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or prototype-based classifiers having subpar generalization
power.

To correct this shortcoming, we propose continual knowl-
edge consolidation low-rank adaptation (CONEC-LoRA) to
deal with the DIL problems. CONEC-LoRA features task-
specific LoRAs and task-shared LoRAs in which the first
l blocks are assigned to the task-shared LoRA, leaving the
remainder L − l blocks for the task-specific LoRA. Our
parameter selection strategy for inference is driven by an
auxiliary network predicting the domain ID of a testing
sample. The auxiliary network is trained during the training
process with the projection-based Gaussian mixture model
(PGMM) to address the class imbalance problem caused by
the absence of previous samples. The idea of the projection or
transformation module is introduced to prevent the synthetic
sample-bias problem. Another innovation lies in the different-
depth network structure, where every layer is assigned a
local classifier. The final prediction is drawn from a local
classifier maximizing the logit. Last but not least, the concept
of a stochastic classifier is integrated to improve the model’s
generalizations. Unlike the popular prototype-based classifier,
the stochastic classifier benefits from the mean and variance
vectors sampled from a distribution. This technique guarantees
the presence of an infinite number of classifiers, promoting
correct classifications.

The key differences between our approach and [34] lie in
the task-specific LoRA selection strategy, where the auxiliary
network is implemented to select the task-specific LoRA rather
than the similarity-based weighting scheme. Such a strategy
guarantees the isolation of task-specific LoRAs, allowing
for the retention of task-specific details, i.e., robust against
the CF problem. By extension, [34] applies the prototype-
based classifier, whereas ours is underpinned by the stochastic
classifier. We also address the DIL problem here rather than
the CIL problem. Note that the adapter fusion strategy in
[34] undermines the domain-specific knowledge because all
task-specific LoRAs are aggregated. Consequently, this issue
leads to the use of orthogonality loss in their approach. In
addition, such an approach incurs considerable complexities
because multiple forward passes need to be carried out for all
task-specific LoRA. On the contrary, our approach is much
simpler than that because it predicts the correct task-specific
LoRA followed by the network inference. This paper conveys
at least four major contributions.

• This paper proposes continual knowledge consolidation
low rank adaptation (CONEC-LoRA) for domain in-
cremental learning (DIL) problems, where it features
general LoRAs to extract cross-task knowledge and task-
specific LoRAs to capture domain-specific knowledge.
The building block of CONEC-LORA is constructed
under a stacked pretrained transformer block of L layers,
where the first l blocks are designated for the task-shared
LoRA, while the remaining L− l blocks are reserved for
the task-specific LoRA.

• A parameter selection strategy is proposed based on an
auxiliary network predicting the domain label for the
task-specific LoRAs for inferences. The auxiliary network
receives an input of the frozen backbone and is trained

with the projection-based GMM under a joint loss to ad-
dress the class imbalance issue as a result of the absence
of previous samples. The concept of the projection or
transformation module is applied to random inputs of the
GMM to prevent the synthetic sample bias problem. In
addition, we introduce the ball-generator loss to prevent
the synthetic sample bias problem. The auxiliary network
is structured under a different-depth configuration, where
each layer is connected to a local classifier with an
early exit strategy to reduce computational complexities.
The local classifier with the most confident prediction is
selected for inferences.

• The concept of the stochastic classifier is put forward for
domain incremental learning (DIL) problems. This idea
extends [42] devised for the CIL problem. This classifier
is represented by learnable mean and covariance vectors,
with the classifier weight defined as a distribution. This
trick enables the creation of an arbitrary number of
classifiers, increasing the chance of correct predictions.

• The advantage of CONEC-LORA has been rigorously
evaluated under four benchmark DIL problems. It is com-
pared with prominent DIL algorithms where CONEC-
LORA outperforms them by over 5% margin. In addition,
the source code of CONEC-LORA is made publicly
available in https://github.com/Naeem-Paeedeh/CONEC-
LoRA for reproducibility and convenient further study.

The remainder of this paper is structured as follows: Section 2
discusses the related works; Section 3 outlines preliminaries,
including a problem definition and basic concepts; Section
4 describes our algorithm, namely CONEC-LoRA; Section 5
offers our numerical study; and some concluding remarks are
drawn in the last section of this paper.

II. RELATED WORKS

Continual learning (CL) aims to address non-stationary
learning problems, where a model cannot be fixed once
deployed because its predictions quickly become outdated due
to changing learning environments. That is, a CL agent is faced
with never-ending environments under dynamic conditions [1],
[2], [3], [4], resulting in the stability-plasticity dilemma. The
CL problem can be divided into three sub-problems [37]: task-
incremental learning (TIL), class-incremental learning (CIL),
and domain-incremental learning (DIL). The TIL and the CIL
are inherently identical, where the difference lies in only the
presence of task identifiers during the evaluation phase in the
TIL. Therefore, the CIL is deemed more challenging than the
TIL.
Class-Incremental Learning (CIL) problem is formulated
as a learning problem of sequentially arriving classes. That
is, each task presents a set of classes disjoint across tasks.
Learning a new task, thus, induces the CF problem because
previously valid parameters are catastrophically erased with
new ones, i.e., parameter drifts. The regularization-based ap-
proach [6], [7], [8], [9], [10], [11], [12], [13] deals with the
CF problem via integration of a regularization term to avoid
the parameter drift problem. However, the regularization-based
approach usually doesn’t scale well for large-scale problems

https://github.com/Naeem-Paeedeh/CONEC-LoRA
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because it is difficult to find an overlapping region of all tasks.
The architecture-based approach [24], [25], [26], [27], [11],
[28] adds new components while isolating old components
when learning new tasks to combat the CF problem. Never-
theless, the architecture-based approach usually calls for the
existence of the task IDs, thus being incompatible with the CIL
problem, otherwise, it requires old samples to be stored. The
memory-based approach [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23] utilizes a memory buffer storing old samples.
Old samples can then be interleaved with new samples for
experience replay steps to prevent the CF problem. Although
it is evident that the memory-based approach outperforms the
other two approaches, it raises storage and privacy concerns.
This issue motivates the development of rehearsal-free ap-
proaches benefiting from the strong generalization power of
pretrained model (PTM) [33]. This approach is combined with
the parameter-efficient fine-tuning (PEFT) approaches such
as prompts [29], [30], [31], LoRA [34], [35], and adapter
[36]. Such an approach offers strong performances because
the CF problem can be effectively alleviated to a very low
level by freezing the backbone networks while only adjusting
a small number of external parameters. Although there exist
numerous contributions in the realm of the CIL problem, the
DIL problem remains a relatively uncharted territory.

Domain Incremental Learning (DIL) problem is unlike the
CIL problem, where each task carries a unique domain while
sharing the same label space. That is, a model is trained to
be robust against various changes rather than to recognize
new classes. [38] proposes the idea of compositional prompts,
where each domain is assigned a prompt pool. In addition,
the global prompt is injected and shared across all tasks. [39]
proposes the idea of dual prototypes, where coarse-grained and
fine-grained prototypes are put forward. In [40], the concepts
of Gaussian Mixture Compressor and Domain Feature Resam-
pler are introduced to address inaccurate parameter selections
in the DIL context. [41] proposes dual knowledge consoli-
dations in the feature level as well as in the classifier level.
The class imbalance problem in the DIL context is analyzed
and addressed in [43] by using the multi-expert concept. In
[44], the KA-prompt is proposed, where the key idea lies in
the initialization of the new prompt with the most compatible
previous prompt, thus promoting cross-domain knowledge.
Nonetheless, we note at least three shortcomings in existing
works: 1) they focus on the domain-specific knowledge while
overlooking the domain-shared knowledge, resulting in sub-
optimal performances. Note that [38] is based on the idea of
the prompt, whereas our approach is constructed under the
LoRA concept. In addition, [38] imposes prohibitive com-
plexities due to the use of prompt pools for every domain; 2)
existing approaches suffer from inaccurate parameter selection
during inferences, significantly affecting the model’s perfor-
mance because wrong components are associated when pro-
ducing an output. Although this problem is partially addressed
in [44], this approach relies on the greedy search technique,
incurring prohibitive complexities; 3) existing approaches are
built upon a linear or prototype-based classifier having limited
generalization power.

III. PRELIMINARIES

A. Problem Definition

Domain-incremental learning (DIL) is formulated as
a learning problem of sequentially arriving domains
{D1,D2, ...,DB}, where B is the number of domains. Each
domain comprises the training set T btr and the testing set T bte ,
where Db = {T btr , T bte }. When encountering the b−th domain,
a model is only presented with the training set of the b − th
domain T btr with the absence of any training samples of the
previous domains T 1∼(b−1)

tr = ∪b−1
t=1T ttr and any exemplars

of the previous domains leading to the catastrophic forgetting
(CF) problem. The evaluation is performed against the testing
samples of all already seen domains T 1∼b

te = ∪bt=1T tte . The
training set of the b − th domain is formed by Nb tuples
T btr = {(xi, yi)}Nb

i=1, where xi is an i − th image and yi is
its corresponding label. Suppose that Yb presents the label
set of the b− th domain, each domain shares the same label
set ∀i ∈ [1, Nb], yi,b ∈ Yb, where ∀b, b′ ∈ [1, B],Yb = Yb′
but features different characteristics such as styles and/or
environmental changes. That is, there exists the presence of
concept drifts P (X ,Y)b ̸= P (X ,Y)b′ . No domain identifiers
(IDs) are offered for inferences. In other words, a model is
supposed to infer the domain IDs b by itself.

Our model fθ = hϕ ◦ gψ relies on a pre-trained vision
transformer (ViT) model, where hϕ : Z → Y constitutes a
classifier and gψ : X → Z denotes a feature extractor frozen
during the training process. The training process of the b− th
domain is to adapt lightweight parameters gW inserted into
the query and key projections of the attention module of all
transformer blocks of the ViT backbone. Specifically, this is
written as follows:

z(ℓ) = g
(ℓ)
ψ (x) + g

(ℓ)
W (x), (1)

where z(ℓ) is an embedded feature of layer ℓ for query or
values. In addition, the classifier hϕ is defined as the stochastic
classifier here.

B. Low-Rank Adaptation (LoRA)

LoRA is a parameter-efficient fine-tuning (PEFT) approach
[45], [34], which is capable of adapting a foundation model
to downstream tasks. The key idea is seen in the use of a pair
of rank decomposition matrices, namely a down-projection
matrix B ∈ ℜr×k and an up-projection matrix A ∈ ℜd×r with
rank r ≪ min(d, k). Hence, it achieves learning efficiency by
only learning r× (d+ k), which can be expressed as follows:

z = gψ(x) + ∆Wx, (2)

where ∆W = AB. The low-rank matrices can then be
attached to the transformer block. For DIL, these matrices can
be set to be domain-specific {Ab, Bb}. When adapting to the
b−th domain, only ∆W is learnable, leaving other parameters
fixed, thus combating the CF problem. However, such naı̈ve
approach of using the same LoRAs in all continual learning
tasks loses shared knowledge across domains. Besides, it risks
inaccurate parameter selection during inference, which can
lead to a loss of performance because no oracle for domain
IDs is provided during the testing process.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

C. Stochastic Classifier

Given a classifier hϕ : Z → Y mapping the latent space
to the label space, the prototype-based classifier relies on a
set of prototypes defined as an empirical mean of each class
ϕm = {µm}.

µm =
1

Nm

Nm∑
i=1

Iyi=mzi, (3)

where M denotes the dimension of the label space and Iyi=m
is an indicator function being true if yi = m. Suppose that
⟨.⟩ stands for the cosine similarity, the predicted output of the
prototype-based classifier is expressed as follows:

P (y = m|x) = exp(η⟨ϕm, z⟩)∑M
i=1 exp(η⟨ϕm, z⟩)

, (4)

where η is a temperature controlling the smoothness of a
distribution. Such classification implies the use of a single
static classifier, leading to suboptimal generalizations. The
stochastic classifier [46], [42] offers a different perspective
where the classifier weights are sampled from a distribution
ϕm = {µm, σm}, paving the way for the applications of mul-
tiple classifiers at once. The stochastic classifier is formalized:

⟨ϕm, z⟩ s.t. ϕm = µm +N (0, 1)⊙ σm, (5)

where µm, σm are mean and variance vector automatically
learned in an end-to-end manner and ⊙ is an element-wise
multiplication. Such a trick enables the creation of an arbitrary
number of classifiers, thereby increasing the number of correct
classifications. Fig. 1 visualizes the stochastic classifier.

IV. METHODOLOGY

This paper proposes continual knowledge consolidation
low-rank adaptation (CONEC-LORA) built upon a synergy
between task-shared LoRA and task-specific LoRA. That is,
the first l transformer blocks are attached with task-shared
LoRAs while the remainder L − l blocks are assigned with
task-specific LoRAs. The classification decision is navigated
with the stochastic classifier. For selecting the task-specific
LoRAs during inference, the auxiliary network is applied to
predict the domain label and is trained with the projection-
based Gaussian mixture model (GMM) to address the class im-
balance issue resulting from the absence of previous samples
and any exemplars. The projection or transformation concept
is implemented to cope with the synthetic sample bias prob-
lem while introducing a different-depth network structure for
inference. An overview of CONEC-LORA’s learning policy is
outlined in Fig. 2.

A. Network Architecture

Suppose the ViT backbone with L blocks, the shared LoRAs
{As, Bs} are inserted to the first l blocks where l ≤ L while
the remaining L− l blocks are designated to the task-specific
LoRA {Ab, Bb}. Therefore, the output of the i−th transformer
block zi is written:

zi = gψi
(zi−1) +

{
AisB

i
szi−1 i ≤ l

AibB
i
bzi−1 l < i ≤ L

, (6)

where zi−1 denotes the output of the previous transformer
block z0 = x while gψi represents the i − th transformer
block frozen during the training process. b is the domain label
to be predicted during the inference. Note that early layers (1
to l) focus on general patterns to be shared across domains
while deep layers (l+1 to L) capture domain-specific details.

Motivated by [34], the domain-shared LoRA applies a fixed
random orthogonal down-projection matrix Bs ∈ ℜr×k and a
trainable up-projection matrix As ∈ ℜd×r initialized as zeros.
It satisfies the following property

∆Wx = AsBsx, BsB
⊤
s = I, (7)

where I ∈ ℜr×r is an identity matrix. [47] shows that
adjusting A is more effective than adjusting B. We also
confirm that a random B can compete to a fully trained
one. First, a random matrix M ∈ ℜr×k is generated from a
normal distribution N (0, 1). A random orthogonal matrix can
be obtained via the singular value decomposition (SVD) [48].

M = UΣV ⊤, Bs = UV ⊤
r , (8)

where vr is the first r rows of V . In a nutshell, our effort is
devoted to learn As during the training process while keeping
the random orthogonal matrix Bs frozen.

CONEC-LoRA relies on the stochastic classifier during the
training process, whose parameters are drawn from a distri-
bution under the cosine classification strategy as per (5). This
strategy allows proper training process where ϕm = {µm, σm}
are trained in an end-to-end fashion. Our investigation reveals
that replacing each µm with the corresponding prototype after
training leads to performance improvements at the inference
phase. Note that the stochastic classifier with learnable µm
must still be applied during the mini-batch training process,
as using a prototype classifier during training results in per-
formance degradation. In other words, the use of multiple
classifiers as per the stochastic classifier is useful during the
training process to boost the learning performance, but it may
not surpass the flexibility of the prototype classifier during
the inference phase. Therefore, µm vectors of the stochastic
classifier are replaced with prototypes for the inference phase.

B. Loss Function

CONEC-LORA is learned by minimizing a joint loss func-
tion consisting of the conventional cross-entropy loss and the
knowledge distillation (KD) loss.

L = Lce + λ1Lkd, (9)

where λ1 is a trade-off coefficient controlling the strength of
the KD loss function. The KD strategy is omnipresent in the
CL domain to combat the CF problem but this strategy is often
too strict and leads to degraded plasticity. Hence, an early exit
mechanism is implemented here where the KD approach is
applied at the transition point between task-shared and task-
specific LoRA, i.e., the l−th block. Specifically, using a local
classifier hϕ, the KD mechanism is done by extracting the
[CLS] token representation through the shared LoRAs, i.e., 1
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Fig. 1: A stochastic classifier. a) The decision boundary for a single cosine classifier with two weight vectors for two classes.
The feature vector belongs to the blue class. b) The illustration of the effect of having two weight vectors per class, resulting
in four decision boundaries. c) It shows the effect of having an infinite number of weight vectors on the decision boundary. d)
The stochastic nature of the classifier improves the feature separation of the model and classifier by resolving the confusion
when the margin is unclear.

to l, for both current domain zlb[CLS] and previous domain
zlb−1[CLS].

Lkd =
∑
i∈Db

sτb−1,i log s
τ
b,i, (10)

where sτb = Softmax(hbϕ(z
l
b[CLS])/τ) and τ = 2 is a tem-

perature. Because As is initialized as zero and learned during
the training process, its norms mirror the contribution of each
element, implying which parts need further tuning. This fact
enables redistribution of the gradient from Lkd based on the
weight importance in the previous training session. Suppose
that ||ab−1

s,j ||2 denotes the L2 norm of the j − th element of
the up-projection matrix Ab−1

s of the previous domain, the
gradient of Abs of the current domain is redistributed:

∇Ab
s
Lkd = ∇Ab

s
Lkd ⊙ σ({||ab−1

s,j ||}
d
j=1), (11)

where ⊙ is Hadamard product, σ(w) = d × w/
∑d
i=1 wi

is the dimension-preserving normalization function, and d is
the embedding dimension. This redistribution strategy assures
that each element is adaptively adjusted, i.e., the essential
dimension for the previous task is preserved while allowing
other dimensions to move freely in respect to the new task.

C. Auxiliary Domain Classifiers

CONEC-LORA is guided by an auxiliary network that
predicts the domain label during inference. The predicted
domain label is thus exploited to select the task-specific
LoRAs without the CF problem. Since the auxiliary network is
trained, it is expected to be more reliable than a non-parametric
approach, such as the proposed method in [42] that uses the
Mahalanobis distance. The representations of the intermediate
layers of Neural Networks (NNs) are more robust to the
changes during the continual learning and suffer less from
forgetting [49]. Furthermore, the classification can potentially
be finished on earlier layers with even higher accuracy. In
CONEC-LoRA, we keep the backbone frozen without utilizing
the LoRAs and train independent domain classifiers at different
levels of abstraction in the selected layers of a ViT. This
ensures that the domain classification module would not be
affected during the weight updates.

The domain label is predicted by a local linear classifier
for every layer. That is, every layer is assigned with a local
classifier hϕl

aux
(.). We also insert a transformation module

constructed as a two-layer MLP κlγ(.) to prevent the synthetic
sample bias problem, where γl denotes the parameters of the
transformation module of the l−th layer. Given the embedding
of the l − th layer with the frozen backbone network and
without any LoRAs zl, the local output of the l− th layer of
the domain classification module is expressed as follows:

b = hϕl
aux
(κγl(zl)), l ∈ [1, L], (12)

where b ∈ [0, 1] denotes the output logit of the l − th local
classifier and L is the number of layers. The aggregation is
performed by applying the maximum operator to each local
classifier in every layer.

b̂ = arg max
1≤l≤L

hϕl
aux
(κγl(zl)), (13)

where b̂ ∈ B and B is the number of domains. In other words,
the local classifier having the most confident prediction is
selected for inferences. The different-depth network structure
is designed to benefit from the intermediate representation,
making it more robust to dynamic conditions than a single
classifier [49]. During the inference, we also implement the
early exit mechanism to relieve the computational burden.
That is, we set a confidence threshold ς and examine whether
the confidence of local classifiers exceeds the threshold. The
earliest layer passing the threshold is selected for inference.
This strategy avoids going through all layers for inference.

hϕl
aux
(κγl(zl)) ≥ ς → b̂ = argmax

b
hϕl

aux
(zl) (14)

The earliest layer satisfying (14) is selected for inference, or
the early exit mechanism is implemented. Nonetheless, the
training process of the auxiliary network is non-trivial since
there exists a class imbalance problem between the current
domain and the previous domains. As with [40], we model the
previous data distributions using a mixture of C multivariate
Gaussian distributions N (ν,K).

N (z|ν,K) =
1

(2π)
d
2 |K| 12

exp(−1

2
(z − ν)⊤K−1(z − ν)),

(15)
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Fig. 2: The architecture of the model and pipeline of CONEC-LoRA. CONEC-LoRA consists of two main stages. First, the
input is given to the frozen backbone. The logits of the domain classifiers (DCs) are being calculated. The domain is detected
based on the decision of the most confident domain classifier. Second, the domain-specific LoRAs are chosen for use in the
domain-specific blocks. The gray rectangles represent the frozen layers of the ViT.

where d is the dimension of embeddings. That is, the mean and
covariance matrix of every domain (νb,Kb) in the embedding
space Z is calculated for each one of the C components.

The probability density function of the mixture of the
Gaussian distributions can be defined as:

p(z) =

C∑
c=1

ωcN (z|νc,Kc), (16)

where 0 ≤ ωc ≤ 1 and
∑C
c=1 ωc = 1. The GMM parameters

are trained with the Expectation-Maximization (EM) algorithm
[50]. By storing the {ωc, νc,Kc}Cc=1, we can generate embed-
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dings of the previously seen domain from the GMMs:

ql ∼ Categorical(ωl), (17)

ẑl|ql ∼ N (νlql ,K
l
ql
). (18)

Nevertheless, this naı̈ve sampling strategy causes the synthetic
sample bias problem. To remedy this problem, the trans-
formation module κγl(.) is integrated. Specifically, we feed
{žℓ} = {ẑℓ} ∪ {zℓ} set to the transformation module. For
žil ∈ {žℓ} we calculate ˆ̂zil = κγl(žil ), where ˆ̂zl ∈ ℜd. The ball-
generator loss [51] is introduced and inspired by the triplet and
hinge losses.

Llball =
∑

ˆ̂zl∈ȳi,ˆ̂zl /∈ȳj

max{0, d(ˆ̂zl, µi) + r − d(ˆ̂zl, µj)}, (19)

where r is a predefined margin constant, ȳ is the domain label,
and d(.) is a distance measure. The goal of the ball-generator
loss is to pull the synthetic sample towards and close to its
center while keeping it away from other centers. Hence, the
local auxiliary network hϕl

aux
(.) of the l − th layer is trained

to minimize the following joint loss.

Llaux = Llce + λ2Llball, (20)

where λ2 is a tradeoff coefficient controlling the strength
of the ball generator loss. Note that Llce is subject to both
the current samples z ∼ Db and the synthetic samples
ẑl|ql ∼ N (νlqd,k ,K

l
qd,k

), ql ∼ Categorical(ωl) representing
the previous domains. The pseudo-codes of different phases
of the CONEC-LoRA are shown in Algorithms 1 to 3.

D. Time Complexity Analysis

The proposed method requires two forward passes during
training or inference. In one pass, we forward the inputs
without LoRA modules to obtain the embeddings for the
intermediate layers for the intermediate domain classifiers. In
another pass, we should obtain the network’s outputs by using
both the shared and domain-specific LoRA modules. The cru-
cial parts of the network that their calculations primarily affect
in terms of time complexity include the two forward passes
of the ViT and LoRA modules, the auxiliary components of
the network, and fitting the GMM. In the following, we first
calculate the time complexity of those components. Next, we
calculate the overall complexity.

The major components of ViT calculations are the MLPs
and attention mechanisms within each block. In a ViT with
the embedding dimension of d and sequence length of s,
the query, key, and value projections require O(sd2). The
attention mechanism requires O(ds2 + sd2) operations. If a
weight matrix in one layer of the MLP is h̃ℓ−1 × h̃ℓ and
the width of an input is n0, an MLP with LMLP layers re-
quires O

(
s
∑LMLP

1 (h̃ℓ−1h̃ℓ)
)
. Since a shallow two-layer MLP

is commonly used in the ViTs, the time complexity becomes
O(sdh̃1). Each LoRA adapter has the same time complexity
as a shallow two-layer MLP. Two LoRA adapters for the Q
and V with rank r add O(srd) operations (r ≪ d) overhead
to each block of the ViT. Therefore, the total time complexity

Algorithm 1 CONEC-LoRA: Training the LoRAs and classi-
fiers
Require: Training sets {T btr }Bb=1 for B domains, where T btr =
{(xi, yi)}Nb

i=1, backbone gψ with L layers, classifiers set
{hϕb
}Bb=1, task-shared LoRAs {gW s

ℓ
}lℓ=1, task-specific

LoRAs {gW b
ℓ
}Lℓ=l+1, M as the number of epochs, B

domains, and C classes for every domain.
1: ▶ Training:
2: for each b ∈ {1, 2, . . . , B} do
3: htemp ← TEMPORARY STOCHASTIC CLASSIFIER
4: for each i ∈ {1, 2, . . . ,M} do
5: for each (xj , yj) ∈ T btr do
6: zj ← gψ(xj ; {gW s

ℓ
}lℓ=1, {gW b

ℓ
}Lℓ=l+1)

7: zj ← htemp(zj)
8: Lce ← LossCE(z, yj) {Classification loss}
9: zbj ← xj

10: if b > 1 then
11: zbj ← gψ(xj ; {gbW s

ℓ
}lℓ=1)

12: zb−1
j ← gψ(xj ; {gb−1

W s
ℓ
}lℓ=1)

13: Ljkd ← L
j
kd + sτb−1,j log s

τ
b,j {Eq. (10)}

14: for each ℓ← {1, 2, . . . , l} do
15: ∇Ab,ℓ

s
Ljkd = ∇Ab,ℓ

s
Ljkd ⊙ σ({||ab−1,ℓ

s,k ||}dk=1)
16: end for
17: end if
18: end for
19: Minimize the L = Lce(z, y) + λ1Lkd {Eq. (9)}
20: end for
21: {Setting the weight of the classifier to prototypes}
22: for each c ∈ C do
23: S = {xj |yj = c}, (xj , yj) ∈ T btr
24: µc ← 1

|Sc|
∑
x∈Sc

gψ(xj ; {gW s
ℓ
}lℓ=1, {gW b

ℓ
}Lℓ=l+1)

{Prototypes}
25: σc ← htemp
26: hϕb

← (µc, σc)
27: end for
28: end for

of a ViT with LoRAs is O
(
Ls(ds+ d2 + dh̃1 + rd)

)
or an

L-layer ViT.
In GMM calculations, the most complex operations are the

Mahalanobis distance calculations and matrix inversion. If the
number of samples is n and the number of components is
c, the Mahalanobis distance operations are of O(ncd2). The
matrix inversion requires O(cd3). However, since c is usually
small (2 in our experiments) and the dimension of embeddings
in the network is fixed, this operation is not affected by the
number of samples; therefore, it is negligible. Overall, the time
complexity of the GMM is O(IGLncd

2), where IG represents
the maximum number of iterations for fitting the GMM. The
GMM training occurs only during the training.

Finally, there are L MLPs as transformation modules
and domain classifiers after each layer of the ViT. Each
MLP as a transformation module with LTM layers requires
O
(
s
∑LTM

1 (ĥℓ−1ĥℓ)
)

if a weight matrix in an MLP layer
is ĥℓ−1 × ĥℓ. Moreover, each domain classifier requires
O(sd2) operations. Therefore, the total time complexity of



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 2 CONEC-LoRA: Training the Domain Classifi-
cation Module
Require: Training sets {T btr }Bb=1 for B domains, where T btr =
{(xi, yi)}Nb

i=1, backbone gψ with L layers, domain classi-
fiers set {hϕℓ

aux
}Lℓ=1, M as the number of epochs, C classes

for every domain, a set of transformation modules {κℓγ}, C
components for GMMs, and N as the number of synthetic
embeddings to generate.

1: ▶ Training the Domain Classification Module:
2: for each b ∈ {1, 2, . . . , B} do
3: {Obtaining the embeddings for every layer of the cur-

rent domain}
4: for each xj ∈ T btr do
5: zj0 ← xj
6: for each ℓ ∈ {1, 2, . . . , L} do
7: zjℓ ← gψℓ−1

(zjℓ−1) {Without LoRAs}
8: ȳb,j ← b
9: end for

10: end for
11: {Calculating the centers for ball-generator loss}
12: for each ℓ ∈ {1, 2, . . . , L} do
13: µbℓ ← 1

|Zℓ|
∑
z∈{zℓ} z {Center for layer ℓ}

14: end for
15: {Finding the GMM parameters for the following tasks}

16: for each ℓ ∈ {1, 2, . . . , L} do
17: {ωb,ℓc , νb,ℓc ,Kb,ℓ

c }Cc=1 ← GMMEM(Zℓ)
18: end for
19: {Generating the synthetic embeddings}
20: for each d ∈ {1, 2, . . . , b− 1} do
21: for each k ∈ {1, 2, .., N} do
22: qd,k ∼ Categorical(ωd)
23: ẑd,k|qd,k ∼ N (νdqd,k ,K

d
qd,k

)
24: ȳd,k ← d
25: end for
26: end for
27: for each m ∈ {1, 2, . . . ,M} do
28: for each ℓ ∈ {1, 2, . . . , L} do
29: {Calculation of the ball-generator loss}
30: if b > 1 then
31: {žℓ} ← {ẑℓ} ∪ {zℓ}
32: for each žjℓ ∈ {žℓ} do
33: ˆ̂zjℓ ← κγℓ(žjℓ )
34: end for
35: Lℓball =

∑
ˆ̂zℓ∈ȳi,ˆ̂zℓ /∈ȳj max{0, d(ˆ̂zℓ, µiℓ) + r −

d(ˆ̂zℓ, µ
j
ℓ)}

36: Lℓaux ← Lℓce(hϕℓ
aux
(ˆ̂zℓ)) + λ2Lℓball

37: else
38: Lℓaux ← Lℓce(hϕℓ

aux
(zℓ))

39: end if
40: end for
41: Minimize the Laux
42: end for
43: end for

the domain classification phase (parameter selection) is of

Algorithm 3 CONEC-LoRA: Inference phase

Require: Test set T 1∼b
te = ∪bt=1T tte , backbone gψ , classi-

fiers set {hϕb
}Bb=1, domain classifiers set {hϕℓ

aux
}Lℓ=1, a

set of transformation modules {κℓγ}, task-shared LoRAs
{gW s

ℓ
}lℓ=1, task-specific LoRAs {gW b

ℓ
}Lℓ=l+1, C classes for

every domain, and threshold value τ .
1: ▶ Inference phase:
2: for each xi ∈ T bte do
3: {Obtaining the embeddings for every layer}
4: zi0 ← xi
5: for each ℓ ∈ {1, 2, . . . , L} do
6: {Embedding vectors from the frozen backbone for

every layer without LoRAs}
7: ziℓ ← gψℓ−1

(ziℓ−1)
8: z̃iℓ ← hϕℓ

aux
(κγℓ(ziℓ))

9: {Confidence of every domain classifier}
10: ρiℓ ← max z̃iℓ
11: end for
12: Si ← {ℓ|ρiℓ ≥ τ}, 1 ≤ ℓ ≤ L
13: if S ̸= ∅ then
14: {The index of the first classifier that meets the

criterion}
15: γi ← min(Si)
16: else
17: {The index of the most confident classifier}
18: γi ← argmax

ℓ
(ρiℓ)

19: end if
20: b̂i ← argmax(ρiγi) {Predicted domain label}
21: zi ← gψ(xi; {gW s

ℓ
}lℓ=1, {gW b̂i

ℓ

}Lℓ=l+1)

22: zi ← hϕb̂i
(zi)

23: ŷi ← argmax(zi)
24: end for

O
(
Ls

(
ds+ d2 +

∑LTM
1 (ĥℓ−1ĥℓ)

))
.

Considering all the complexities of the components, with a
batch size of B, ITC iterations for training for the classification,
and ITD iterations for the domain classification phase of the
training, the time complexity of the training is

O
(
BL

(
(ITC + ITD)(ds

2 + sd2 + sdh̃1)+

ITCsrd+ ITDs

LTM∑
1

(ĥℓ−1ĥℓ)
)
+

IGLncd
2
)
,

(21)

and the time complexity of the inference for a sample is

O
(
Ls

(
ds+ d2 + dh̃1 +

LTM∑
1

(ĥℓ−1ĥℓ)
))

. (22)

V. EXPERIMENTS

A. Datasets

We evaluate the effectiveness of CONEC-LoRA on four
established DIL datasets: DomainNet [52], CORe50 [53],
CDDB-Hard [54], and Office-Home [55]. These datasets are
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executed with a random seed across five domain orders. The
final numerical results are taken from the average across five
different domain orders.

B. Baseline Methods

We compare our method comprehensively with DCE [43],
DualCP [39], S-iPrompt [56], CODA-Prompt [57], Ran-
PAC [58], EASE [59], DualPrompt [30], L2P [29], and
SimpleCIL [60]. Moreover, we report the results for the
replay-based method, including MEMO [61], iCaRL [62], and
Replay [63].

C. Implementation Details

The CDDB, Office-Home, and CORe50 experiments are
conducted on an NVIDIA RTX 4090 GPU, while the Do-
mainNet experiments are performed on an RTX A5000 GPU.
The images are resized to 224x224 pixels for all experiments.
The transformation modules are two-layer MLPs with a hidden
layer dimension of 1024. Regarding to the hyper-parameters,
the rank for LoRA matrices is set to 8, λ1 and λ2 are set to
5 and 2, respectively. The margin is set to 1. ς is set to 0.9.
The learning rate for the LoRAs and the temporary classifier
is set to 0.02. The learning rates for the domain classifiers
and transformation modules are set to 2×10−3 and 1×10−4,
respectively. We use the SGD optimizer for training the model
with a batch size of 64. The first 6 blocks of the network are
dedicated to the task-shared LoRAs, and the next 6 layers are
utilized for the task-specific LoRAs.

D. Numerical Results

Table I reports the accuracy of CONEC-LoRA and other
consolidated algorithms. It is clearly seen that our algorithm
outperforms other algorithms across all datasets with signifi-
cant margins. In the CDDB case, our algorithm outperforms
DualCP by 6%, while CONEC-LoRA surpasses DCE by 2%
in the office-home problem. Ours is also superior in the
CORe50 problem, with an over 3% margin, despite the fact
that the test samples belong to 3 unseen domains rather than
the 8 domains the network is trained on, which demonstrates
the generalization capability of CONEC-LoRA. Last but not
least, our method outperforms DCE with over 2% margins
in the challenging DomainNet problem. This finding clearly
demonstrates the advantage of our approach based on the com-
bination of task-shared and task-specific LoRAs, the concept
of the stochastic classifier, and the introduction of an auxiliary
network for domain ID predictions. On the other hand, we
find that the gap between that with and without an oracle
is negligible, i.e., < 1%. This confirms the efficacy of our
auxiliary network, which produces reliable domain ID predic-
tions for the selection and isolation of task-specific LoRA.
Such a parameter isolation approach assures that task-specific
knowledge can be maintained and effectively combined with
shareable information to deliver accurate classifications.

E. Domain Classification Accuracies

Since our approach relies on the auxiliary network for the
parameter selection strategy, Table II compares the domain
classification accuracy of CONEC-LoRA, SOYO [40], and S-
iPrompt [56]. Note that both SOYO and S-iPrompt utilize
an external network for parameter isolation strategies. The
advantage of our auxiliary network is clearly reported in
Table II, where it outperforms other methods with significant
margins. It beats SOYO by a 5% margin in the CDDB problem
while surpassing SOYO with 3% gap in the domainNet
problem. We don’t show the domain classification accuracies
of other methods in the Office-Home problem because they
are absent in their original papers. On the other hand, our
auxiliary network performs well in the Office-Home problem,
where it attains 83.72% accuracy. Note that the novelty of our
auxiliary network is found in at least 3 facets: 1) it applies
the concept of ball-generator loss to cope with the synthetic
sample-bias problem; 2) it is structured under the different-
depth network structure to exploit the strength of intermediate
representations; 3) it makes use of the transformation module
under a fixed backbone network.

F. Ablation Studies

Table III reports the numerical results of our ablation
studies, where the contribution of different components is
analyzed. It is observed that the use of the cosine classifier in
lieu of the stochastic classifier reduces the domain incremental
learning accuracy. A significant performance deterioration is
observed when changing the classifier to the linear classifier,
i.e., CONEC-LoRA suffers from over 10% loss of perfor-
mance. This finding confirms our claim that the stochastic
classifier plays a key role in our algorithm. On the other
hand, the importance of the shared LoRAs is perceived by
configuring our method with only the task-specific LoRA.
CONEC-LoRA suffers from performance degradation using
only the task-specific LoRA without the shared LoRA, i.e.,
the final accuracy deteriorates, showing the CF problem due
to the absence of task-invariant features.

We also evaluate the performance of our auxiliary classifier
without the ball generator loss. The removal of ball generator
loss results in a decline in domain classification accuracy
by about 4%, ultimately affecting the domain incremental
learning accuracy. On the other hand, using a single classifier
instead of multiple local classifiers, i.e., the different-depth
network structure, reduces domain classification accuracy. The
different-depth network structure fully exploits the intermedi-
ate representations in identifying the correct domain labels.

G. Robustness Analysis

We evaluate the robustness of the CONEC-LoRA to the
variations of λ1 and λ2, which are crucial coefficients to
control the contributions of loss functions. Table IV shows
the robustness of the proposed method to the variations of
each coefficient while keeping the other fixed. It is seen that
CONEC-LoRA is not sensitive to different trade-off constants
λ1, λ2 where variations of these parameters do not signifi-
cantly affect the performances of CONEC-LoRA. This finding
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TABLE I: Comparison of the average and last accuracies of different methods. The ViT-B/16 IN1K is used as a backbone. Other backbones
are mentioned after the method name. Methods with † indicate implemented with exemplars (10 per class). Note that since the train and test
domains of the CORe50 dataset do not overlap, the ground truth domain labels are not available, and the accuracy with the oracle cannot
be calculated.

Office-Home DomainNet CORe50 CDDB-Hard

Method Venue Avg Last Avg Last Avg Last Avg Last

Fine-tune [41] CVPR 2025 78.32±3.28 76.16±1.39 28.17±6.47 38.82±7.65 75.44±1.68 76.19±2.36 52.08±1.35 50.11±1.62

Replay† [63] Psychology Review 84.23±2.31 83.75±0.68 64.78±2.98 61.16±1.19 85.56±0.38 92.21±0.63 66.91±18.0 63.21±11.6

iCaRL† [62] CVPR 2017 83.2 ±3.2 83.5 ±0.7 58.4 ±5.3 55.9 ±1.7 71.0 ±3.7 76.0 ±2.7 57.5 ±9.9 54.4 ±9.9

MEMO† [61] ICLR 2022 78.7 ±3.7 79.1 ±1.2 57.8 ±6.7 56.4 ±1.4 66.0 ±2.7 68.2 ±1.7 66.0 ±2.7 68.2 ±1.7

SimpleCIL [60] IJCV 2025 75.2 ±4.9 76.2 ±0.0 41.1 ±6.8 40.6 ±0.0 62.5 ±1.6 67.2 ±0.0 65.5 ±3.2 64.1 ±1.7

L2P [29] CVPR 2022 78.7 ±4.2 80.5 ±0.6 48.5 ±6.8 45.2 ±2.3 72.3 ±1.3 81.7 ±0.5 67.3 ±5.3 65.0 ±6.5

DualPrompt [30] ECCV 2022 77.2 ±3.1 79.1 ±0.6 52.3 ±9.7 50.9 ±4.3 71.0 ±4.5 77.7 ±1.0 66.9 ±5.8 65.6 ±2.6

CODA-Prompt [57] CVPR 2023 82.4 ±3.8 83.3 ±0.3 47.6 ±6.1 45.1 ±1.2 72.8 ±1.2 81.4 ±1.1 67.9 ±6.5 66.6 ±2.8

EASE [59] CVPR 2024 81.16±3.52 76.33±2.16 50.50±2.27 43.72±1.70 86.30±0.04 87.02±1.21 67.78±2.44 64.96±8.36

RanPAC [58] NeurIPS 2023 83.4 ±3.8 83.3 ±0.3 57.8 ±5.5 56.1 ±0.6 76.7 ±1.3 78.4 ±1.7 61.7 ±4.3 62.5 ±2.8

S-iPrompt [56] NeurIPS 2022 81.40±3.3 80.80±0.20 59.00±6.8 57.90±0.2 62.7 ±2.2 65.8 ±0.9 64.2 ±5.8 63.4 ±2.8

DCE [43] ICML 2025 84.6 ±3.0 84.4 ±0.2 64.3 ±6.0 63.5 ±0.5 80.1 ±0.70 84.8 ±0.30 74.6 ±6.5 71.8 ±4.2

DualCP [39] AAAI 2025 N/A N/A N/A 60.13 N/A 88.10 N/A 82.16

CONEC-LoRA 86.29± 1.53 86.43± 0.38 66.79± 2.94 66.42± 0.38 88.88± 0.54 90.24± 1.64 88.43± 2.21 88.21± 0.88

CONEC-LoRA with the oracle 86.98±1.55 87.63±0.20 68.16±2.96 68.48±0.22 N/A N/A 88.98±2.24 89.68±0.68

TABLE II: Domain classification accuracy

Method Venue CDDB-Hard DomainNet Office-Home

S-iPrompts [56], [40] NeurIPS 2022 81.79 80.35 N/A
PINA-D+SOYO [40] CVPR 2025 89.84 85.37 N/A
CONEC-LoRA 94.70± 2.09 88.52± 2.58 83.72± 5.74

TABLE III: Ablation study on the CDDB-Hard dataset. The columns show the average and last domain-incremental learning
(DIL) accuracies for modifications to the domain-incremental classification module, as well as the domain classification accuracy
(DC) for modifications to the domain classification module, across five different orders of domains.

Description DIL Average DIL Last Description DC Average

CONEC-LoRA 88.43±2.21 88.21±0.88 CONEC-LoRA 94.73±2.08

Cosine classifier instead of the stochastic classifier 87.42±3.18 87.80±2.40 Without the ball-generator loss 90.53±3.66

Linear classifier instead of the stochastic classifier 81.26±3.47 77.96±6.74 Without the intermediate domain classifiers 94.31±2.46

Only task-specific LoRAs 88.79±2.54 87.62±3.80

TABLE IV: Robustness of CONEC-LoRA to the variations
of λ1 coefficient on the domain-incremental learning (DIL)
accuracy and λ2 coefficient on the domain classification (DC)
accuracy on the CDDB-Hard dataset.

λ1 DIL Average DIL Last λ2 DC Average

3 88.36±2.24 88.23±1.12 1 94.23±2.32

4 88.43±2.21 88.23±0.94 1.5 94.66±2.09

5 88.43±2.21 88.21±0.88 2 94.73±2.08

6 88.49±2.24 88.20±1.03 2.5 94.83±2.05

7 88.57±2.22 88.34±1.08 3 94.96±2.00

confirms the robustness of CONEC-LoRA against different
trade-off constants steering the contributions of loss functions.
For the sake of convenience, the parameters are simply set to
λ1 = 5, λ2 = 2 for our experiments.

H. UMAP Analysis

Fig. 3 exhibits the UMAP [64] graphs of the network on 5
domains of the CDDB dataset before training and after training
with CONEC-LoRA. It is clearly seen that before the training
process, the embeddings are scattered in the feature space, and
the pre-trained model seems to be confused in distinguishing
samples of different domains and classes. After the training
process, CONEC-LORA exhibits strong discriminative fea-
tures, where samples of different domains are projected into

Fig. 3: UMAP plots on the embedding space of the model
before training on the left and after training on the right on
five domains of the CDDB-Hard dataset.

different locations of the latent spaces. Besides, our algorithm
is capable of separating different classes within the domains.
This finding also confirms that our approach is relatively
robust to the CF problem, where our model recognizes all
sequentially presented domains well, i.e., the UMAP plot
refers to the model after training on the last domain.

VI. CONCLUSION

This paper proposes continual knowledge consolidation low
rank adaptation (CONEC-LoRA) as a solution to domain
incremental learning (DIL) problems. CONEC-LoRA resolves
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the three shortcomings of existing methods: parameter iso-
lation, inaccurate selection of task-specific parameters, and
the use of traditional classifiers. CONEC-LoRA features a
synergy between shared LoRA and task-specific LoRA while
putting forward the auxiliary domain classifier, which includes
the ball-generator loss, the different-depth network structure,
and the transformation module. It integrates the concept of
stochastic classifiers having class mean and variance vectors
drawn from a distribution. The efficacy of CONEC-LoRA has
been rigorously evaluated with the four benchmark problems
of DIL, where it beats recently published works across all
problems with over 5% margins. Its domain classification ac-
curacies are also superior to existing works, while the ablation
study substantiates the advantage of each learning component.
The robustness analysis confirms that our algorithms are not
sensitive to variations of loss coefficients. Our future work is
devoted to studying the data scarcity problem in DIL.
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