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Abstract
We design improved approximation algorithms
for NP-hard graph problems by incorporating
predictions (e.g., learned from past data). Our
prediction model builds upon and extends the ε-
prediction framework by Cohen-Addad, d’Orsi,
Gupta, Lee, and Panigrahi (NeurIPS 2024). We
consider an edge-based version of this model,
where each edge provides two bits of informa-
tion, corresponding to predictions about whether
each of its endpoints belong to an optimal solu-
tion. Even with weak predictions where each bit is
only ε-correlated with the true solution, this infor-
mation allows us to break approximation barriers
in the standard setting. We develop algorithms
with improved approximation ratios for MaxCut,
Vertex Cover, Set Cover, and Maximum Indepen-
dent Set problems (among others). Across these
problems, our algorithms share a unifying theme,
where we separately satisfy constraints related to
high degree vertices (using predictions) and low-
degree vertices (without using predictions) and
carefully combine the answers.

1. Introduction
Learning-augmented algorithms have recently emerged as a
popular paradigm for beyond worst-case analysis via incor-
porating machine learning into classical algorithm design.
By utilizing predictions, e.g. those learned from past or
similar instances, prior works have improved upon worst-
case bounds for competitive ratios for online algorithms
(Lykouris & Vassilvitskii, 2021; Mitzenmacher & Vassil-
vitskii, 2022), space usage in streaming applications (Hsu
et al., 2019; Jiang et al., 2020; Chen et al., 2022b), and
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running times for classical algorithms (Mitzenmacher &
Vassilvitskii, 2022; Chen et al., 2022a), among many other
highlights.

We focus on a recent line of work on improving approxi-
mation guarantees for fundamental NP-hard problems. The
goal of this line of work is to use predictions to circum-
vent hardness of approximation results in the worst case
(under standard complexity conjectures). One compelling
motivation for learning-augmented algorithms for NP-hard
problems is the following: if we run a heavy-duty com-
putation on a single input, such as running a commercial
integer linear programming solver, can we avoid repeated
computation for a similar future inputs? Can we augment
classical approximation algorithms with insights learned
from an expensive computation to warm-start any future
calls to the algorithm? More generally, how can we incor-
porate noisy information, which is weakly correlated with
an optimal solution, into the algorithm design pipeline for
NP-hard problems?

To formalize this, the starting point of our paper is the re-
cent work of Cohen-Addad et al., which introduced the
ε-accurate vertex prediction model for the MaxCut problem.
Their model provides the algorithm designer with vertex
predictions: one bit for the side of the MaxCut each ver-
tex lies in. Every bit is equal to the correct answer with
probability 1/2 + ε.

We are motivated by three follow up directions. The first
direction explores the setting where we are optimizing a
global objective function (as in MaxCut) with additional
edge-constraints. For example, this captures the classic
vertex-cover or independent set problems.

Can we generalize the setting of Cohen-Addad
et al. to obtain learning-augmented algorithms
for NP-hard graph optimization problems with
edge constraints?

This naturally leads us to introduce edge predictions as an
extension of the vertex prediction model (Cohen-Addad
et al., 2024). In our edge prediction model, every edge is
equipped with i.i.d. bits for each variable participating in
the edge constraint. Similar to the vertex prediction model,
our predicted bits are also ε-correlated with the ground truth
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Problem Classical Approx.
Our Learning-Augmented Approx.

with ε-correlated Predictions
Reference

Vertex Cover 2 2− Ω
(

log log 1/ε
log 1/ε

)
Theorem 4.1.

Weighted Vertex Cover 2 2− Ω
(

log log 1/ε
log 1/ε

)
Theorem A.1.

Set Cover O(log n) O(log 1/ε) Theorem B.2.

Maximum Independent Set Ω
(

logn
n log logn

)
Ω
(

ε2

log log 1/ε

)
Theorem 5.4.

MaxCut αGW ≈ .8786 αGW + Ω̃(ε2) Theorem C.2.

Table 1. Summary of our main results. All approximation factors are for multiplicative approximation. Note that the first three problems
are minimization problems, so we want the approximation factor to be as as small as possible. The last two problems are maximization
problems, so we desire a large approximation factor. The bounds listed above are consistent with this distinction. αGW refers to the
Goemans-Williamson constant (Goemans & Williamson, 1995). For all of these problems, the stated classical approximation bounds are
tight assuming P ̸= NP and the Unique-Games conjecture (for MaxCut).

(see Definition 1.1 for a formal definition of our model),
meaning each bit is equal to the correct assignment (e.g. is
the vertex adjacent to the edge in the optimal vertex cover or
not) with probability 1/2+ε. The second direction explores
the power of our newly introduced edge predictions.

What is the power of edge predictions in the
learning-augmented setting for NP-Hard graph
problems? Can we understand a general frame-
work for designing augmented graph algorithms
with edge-predictions?

It is important to note that several concurrent or follow-up
works to (Cohen-Addad et al., 2024) have appeared, such
as (Bampis et al., 2024; Ghoshal et al., 2025; Antoniadis
et al., 2024; Braverman et al., 2024) which also study graph
problems with edge constraints, albeit with only vertex pre-
dictions, as opposed to edge predictions introduced in our
work (see Section 3 for a detailed comparison). Thus, we
also ask:

Can our edge predictions lead to improved ap-
proximation algorithms beyond vertex predictions
for fundamental NP-Hard graph problems?

Our Contributions We individually address the three
directions above and our contributions towards them.

Direction 1: For the first direction, we introduce edge pre-
dictions for NP-hard graph problems. As a prototypical
example, the following is our prediction model for the Ver-
tex Cover problem. Recall in the Vertex Cover problem we
want to find the smallest subset of vertices such that every
edge is adjacent to some vertex in the subset.

Definition 1.1 (VC Prediction Model). Given an input un-
weighted and undirected graph G, we fix some optimal
vertex cover C of G. Every edge e = (u, v) outputs two
bits (bu(e), bv(e)) of predictions. If u ∈ C then bu(e) = 1
with probability 1/2 + ε and 0 with probability 1/2 − ε.
Similarly if u ̸∈ C then bu(e) = 0 with probability 1/2 + ε
and 1 with probability 1/2− ε. bv(e) is similarly sampled
and all predictions are i.i.d. across all edges and bits.

We appropriately generalize the above edge prediction
model to a wide range of problems, including weighted
Vertex Cover, Set Cover, Maximum Independent Set, and
MaxCut. Our prediction models are unified under a similar
theme (the natural analogues of Definition 1.1 to other
NP-hard problems): every edge (or a hyper-edge in the
context of Set Cover) gives a single bit of information for
each vertex that it is adjacent to. These bits are ε-correlated
with a true underlying assignment. For brevity, we omit
their definitions here and refer to Section 2.

Direction 2: We demonstrate the power of our edge predic-
tions by giving improved approximation bounds, which go
beyond known approximation barriers, for many fundamen-
tal NP-hard graph optimization problems. Our results are
summarized in Table 1.

For Vertex Cover and weighted Vertex Cover, we ob-
tain an algorithm with approximation ratio 2 − f(ε) for
f(ε) = Ω

(
log log 1/ε
log 1/ε

)
. Note that f is a much faster grow-

ing function than any polynomial in ε in the sense that
f(ε) = Ω(εC) for any constant C. For any constant ε, this
implies a strictly smaller constant than 2. Such an algorithm
in the standard setting without predictions, would imply
that the Unique Games Conjecture is false (Khot & Regev,
2003).
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For Set Cover we obtain a constant approximation factor for
any constant ε > 0, in comparison to the classical setting
where a O(log n) factor is tight (again assume P ̸= NP )
(Dinur & Steurer, 2014). We defer the discussion of Maxi-
mum Independent Set and MaxCut.

We highlight that in all of our main results, the notion of
heavy vertices (those with large degree for an appropri-
ately defined threshold) vs light vertices (those with degree
smaller than the threshold) is a central theme. In fact, our
methodology in improving approximation ratios for differ-
ent NP-hard problems can appropriately be captured by the
high-level algorithm design framework of Figure 1. In this
framework, high degree vertices use the majority of their
prediction bits bv(e) for each edge e incident to v of incident
edges to decide if they should be included in the solution or
not.

Then, all high degree vertices as well as low-degree ver-
tices having an edge to a high-degree vertex are removed
from the graph, and we run an appropriate solver on the
remaining low-degree graph. The idea is that on the one
hand, for the high degree vertices, the majority vote is a very
accurate prediction, and on the other hand, for graphs with
bounded maximum degree, there often exist polynomial
time algorithms with better approximation guarantees.

We emphasize that the framework is as a guiding principle,
but the nuances of each problem must be separately dealt
with individually. Nevertheless, we find it useful to highlight
this connecting thread among our different algorithms, as it
demonstrates the wide applicability of our prediction model.

Some of the non-trivial parts that Figure 1 glosses over
which must be handled on a problem-by-problem basis are:

• False-positive vertices: (high degree vertices v in Line
2 on which the majority incorrectly sets b′v = 1). These
are problematic since there are potentially Ω(n) many
false-positive vertices, which may artificially increase the
size of the solution we output. For example in the Vertex
Cover problem, if OPT is sublinear in n, we would not
get any bounded competitive ratio, let alone a ratio that is
smaller than 2.

• False-negative vertices (high degree vertices v in Line 2
on which the majority incorrectly sets b′v = 0). On the
flip side, if we fail to identify a vertex that is actually in
OPT, we may not satisfy all the edge constraints, even
among only those that high-degree vertices participate in.

• Boundary effects: We must be careful when combining an
assignment on high-degree vertices (obtained via voting
in line 2 of the framework in Figure 1) and an assignment
for low-degree vertices (computed using a solver on the
low-degree vertices in line 4 of Figure 1). These two
solutions may conflict with each other. For example in

A Framework for Incorporating Edge-Predictions in
Learning-Augmented Algorithms.

Input: Graph G = (V,E), edge predictions (bu(e),
bv(e)) ∈ {0, 1}2 for every edge e = (u, v) ∈ E.
Output: A bit b′v for all v ∈ V satisfying certain edge
constraints.

1. Set an appropriate vertex degree threshold ∆.

2. Loop over vertices v satisfying deg(v) ≥ ∆ and set
b′v = Majority({bv(e)}e∈E,v∈e).

3. Remove all high-degree vertices from G, all low
degree vertices which share a constraint with any
high-degree vertex, as well as all the constraints
corresponding to their edges

4. Run an appropriate solver on the remaining
low-degree graph.

Figure 1. A high-level description of the underlying structure com-
mon among our algorithms.

the Independent Set problem, an edge may be adjacent to
both low-degree and high-degree vertices, and both steps
(lines 2 and 4) may select both endpoints which would
violate the constraints of the problem.

We refer to the individual problem sections for more details.

To complement our theoretical results, we also experimen-
tally test our algorithm compared to baselines which only
run a worst-case approximation algorithm or only follow
the predictions for the problem of Maximum Independent
Set.

Direction 3: Lastly for the third direction, we show separa-
tions between our edge predictions and previously consid-
ered vertex predictions for Vertex Cover (Antoniadis et al.,
2024), Maximum Independent Set (Braverman et al., 2024),
and MaxCut (Cohen-Addad et al., 2024).

We begin by discussing the Vertex Cover problem. Recent
work by Antoniadis, Eliáš, Polak, and Venzin (2024) ex-
plores the learning-augmented setting of Vertex Cover with
vertex predictions. Their algorithm achieves an approxima-
tion ratio of 1 + (η+ + η−)/OPT, where η+ and η− are
the number of false positive and false negative vertices, re-
spectively in a given predicted solution. They further prove
that, under the Unique Games Conjecture and the condition
(η+ + η−)/OPT ≤ 1, this bound is tight. However, this
result necessarily requires strong assumptions about the pre-
diction oracle to go beyond the known approximation results
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without prediction. For instance, if we apply this result to
the ε-correlated vertex prediction model of (Cohen-Addad
et al., 2024), where each vertex is predicted to belong to
an optimal solution with probability 1/2 + ε independently,
the ratio 1 + (η+ + η−)/OPT can become arbitrarily larger
than 2, which is significantly larger than the classic factor
of 2-approximation.

Thus, a meaningful instantiation of their theorem requires
an implicit assumption that both the number of false pos-
itive and false negative vertices are bounded. We remark
that in our edge prediction model, we make no such as-
sumptions about the number of false positive or negative
vertices. Rather, we show that these terms can be related to
the optimal vertex cover size, through a technical charging
argument, detailed in Section 4.

A qualitatively similar barrier for vertex predictions arises in
the Maximum Independent Set (MIS) problem. Braverman,
Dharangutte, Shah, and Wang (2024) similarly address MIS
with the same vertex prediction model of (Cohen-Addad
et al., 2024): for each vertex, the oracle predicts its mem-
bership in a fixed optimal MIS solution with probability
1/2+ ε. Their algorithm achieves an approximation ratio of
Õ(
√
∆/ε), where ∆ is the maximum degree of the graph.

Note that in the worst case, this is an approximation ration
of Ω(

√
n) if there are high-degree nodes in the graph. In

contrast, using edge predictions allow us to obtain a constant
factor approximation for any fixed ε.

Lastly, we discuss MaxCut, the original problem studied
in (Cohen-Addad et al., 2024). Here, Cohen-Addad et al.
(2024) obtain a αGW+Ω̃(ε4) approximation factor, whereas
we obtain a larger advantage of αGW + Ω̃(ε2) over αGW ,
the Goemans-Williamson (since ε ∈ (0, 1), ε4 ≪ ε2).

In summary, the vertex prediction model and our edge pre-
diction models are to a degree incomparable: we obtain
information from every edge (i.e. we receive more bits as
predictions than the vertex prediction model), but our ap-
proximation ratios are also stronger for MaxCut and MIS.
For other problems such as Vertex Cover, we obtain a strictly
smaller competitive ratio than 2, which the aforementioned
results cannot without assuming bounds on the false positive
and negative ratio among the predictions.

Organization The paper is organized as follows. Sec-
tion 2 provides formal definitions of the studied problems.
Section 3 reviews related work. Section 4 presents our algo-
rithm for the Vertex Cover problem. Section 5 introduces
our algorithm for the Maximum Independent Set problem.
Section 6 shows experimental results for our algorithm in
the context of Maximum Independent Set. Due to space con-
straints, our algorithms for the Weighted Vertex Cover, Set
Cover, and Max Cut problems are included in Appendix A,
Appendix B, and Appendix C, respectively. Our empirical

results are in Section 6.

2. Preliminaries
We recall the definitions of the class NP-Hard problems
studied here. Let G = (V,E) be an undirected graph with
n = |V | vertices and m = |E| edges.

• Vertex Cover Given an input graph G, the Vertex Cover
(VC) problem seeks a minimum cardinality vertex subset
such that every edge is incident to at least one vertex in
the subset.

• Weighted Vertex Cover The weighted Vertex Cover
(WVC) problem is an extension of the VC problem, where
each vertex v ∈ V is associated with a weight w(v) ∈ R+.
The WVC problem seeks a vertex subset with minimum
total weight such that every edge is incident to at least one
vertex in the subset.

• Set Cover Let U be a finite set of elements, and let
S1, . . . , Sn ⊆ U be a collection of subsets. The Set Cover
(SC) problem seeks a collection of the minimum number
of subsets whose union is U . For reasons that will become
clear when we clarify the prediction model for the SC
problem, we view each subset Si as a “vertex” and each
element u ∈ U as a hyperedge that spans the subsets con-
taining u. Hence, without loss of generality, we assume
U = [m].

• Maximum Independent Set Given an input graph G, the
Maximum Independent Set (MIS) problem seeks a maxi-
mum cardinality vertex subset such that no two vertices
in the subset are adjacent.

• MaxCut Given an input graph G, a max cut is a partition
(S, T ) of the vertices V such that the number of edges
between S and T is maximized.

3. Related Work
(Weighted) Vertex Cover. Khot and Regev (2008) proved
that, assuming the Unique Games Conjecture and P ̸=NP, the
(Weighted) Vertex Cover problem cannot be approximated
within a factor of 2 − ε for any ε > 0. Antoniadis, Eliáš,
Polak, and Venzin (2024) studied approximation algorithms
for the weighted version of this problem under a prediction
oracle that provides a predicted vertex set X̂ of the optimal
solution X∗. This framework generalizes the vertex-based
model, which predicts the membership of each vertex inde-
pendently. Their algorithm achieves an approximation ratio
of 1+(η++η−)/OPT, where η+ .

= w(X̂ \X∗) is the total
weight of false positives, and η−

.
= w(X∗ \ X̂) is the total

weight of false negatives. They further show that, assuming
the Unique Games Conjecture and (η+ + η−)/OPT ≤ 1,
this bound is tight.
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Set Cover Dinur and Steurer (2014) proved that approxi-
mating the Set Cover problem within a factor of (1−ε) lnm
is NP-hard for any ε > 0. For instances where each set has
size at most ∆, there exist (1 + ln∆)-approximation algo-
rithms (Johnson, 1974; Lovász, 1975; Chvátal, 1979). On
the other hand, Trevisan (2001) showed that, for such in-
stances, the problem is hard to approximate within a factor
of ln∆−O(ln ln∆) unless P=NP.

Maximum Independent Set (MIS). The MIS problem
is NP-hard to approximate within a factor of n1−δ for any
δ > 0 (Håstad, 1996b). Braverman et al. (2024) attempt to
bypass this barrier using the vertex prediction model. Their
algorithm achieves an approximation ratio of Õ(

√
∆/ε),

where ∆ is the maximum degree of the graph.

Max Cut. For the classical MAXCUT problem, the cele-
brated work of Goemans and Williamson (1995) achieved
an approximation factor of αGW ≈ 0.878, which is the best
possible under the Unique Games Conjecture (UGC).

Recent research has explored methods to surpass this com-
putational barrier using machine learning oracles. Cohen-
Addad, d’Orsi, Gupta, Lee, and Panigrahi (2024) studied
MAXCUT under a vertex-based prediction model, where
the oracle predicts each vertex’s label for the MAXCUT so-
lution with probability 1/2 + ε. Their algorithm achieves
an approximation ratio of αGW + Ω̃(ε4). In contrast, our
edge-based prediction model improves this approximation
ratio to αGW + Ω̃(ε2).

Ghoshal, Markarychev, and Markarychev (2025) also in-
vestigated the MAXCUT problem under the vertex-based
prediction model. Their algorithms achieve an approxima-

tion ratio of 1−O

(
1

ε
√

2m/n

)
for unweighted graphs and

an error bound of at most OPT − 1
ε

√
n
∑

i,j w
2
i,j for the

weighted case.

Bampis, Escoffier, and Xefteris (2024) demonstrated that the
αGW barrier can be surpassed for a restricted class of dense
graphs under the vertex-based prediction model. Instead of
querying the prediction oracle for every vertex, their algo-
rithm queries only a sampled set S of size Θ

(
lnn
α3δ4

)
. For a

graph with edge density δ = 2|E|
n(n−1) , their polynomial-time

algorithm achieves an approximation factor of 1−α−8 error
δ|S| ,

where error denotes the number of mispredicted vertices
in S. Although their approach requires only a sublinear
number of predictions, their approach necessitates the error
rate to be close to 0 to surpass the αGW barrier.

Predictions for Other NP-Hard Problems Lastly, we
remark that (Ergun et al.) and (Gamlath et al., 2022) have
also studied learning-augmented algorithms for NP-hard

clustering problems where noisy cluster labels are revealed.

4. Vertex Cover
In this section, we present Algorithm 1 for VC under the pre-
diction model of Definition 1.1, achieving an approximation
ratio better than 2.

Theorem 4.1. Algorithm 1 returns a vertex cover with an
approximation ratio of 2− Ω

(
log log 1/ε
log 1/ε

)
in expectation.

Remark. For any C > 0, the bound 2 − εC ∈ 2−
Ω
(

log log 1/ε
log 1/ε

)
holds for sufficiently small ε, implying our

approximation factor surpasses 2− poly(ε). Moreover, as-
suming the Unique Games Conjecture and P ̸=NP, VC re-
mains inapproximable within 2− ε for any ε > 0 (Khot &
Regev, 2008).

Algorithm 1 LearnedVC
1: S0 ← ∅, ∆← 100 log(1/ε)/ε2

2: for v ∈ V with deg(v) ≥ ∆ do
3: mv ← Majority({bv(e)}e∈E,v∈e) ▷ 0 if tie
4: end for
5: for v with deg(v) ≥ ∆ do
6: if mv = 1 and all neighbors u of v satisfy deg(u) ≥

∆ and mu = 1 then
7: Skip v
8: else if mv = 1 then
9: S0 ← S0 ∪ {v}

10: else if mv = 0 then
11: S0 ← S0 ∪ {N(v)} ▷N(v) is the neighboring

vertices of v
12: end if
13: end for
14: S1 ← 2-approximate VC for heavy-heavy and heavy-

light edges not covered by S0

15: S2 ←a
(
2− 2 log log∆

log∆

)
-approximate VC for edges not

covered by S0 ∪ S1

16: S ← S0 ∪ S1 ∪ S2

17: Return S ▷Our VC approximation

Algorithm Given a threshold ∆ ∈ Θ(1/ε2 ln(1/ε)), Al-
gorithm 1 classifies edges into three types:

Definition 4.2. For an edge e = (u, v) ∈ E with deg(u) ≤
deg(v), we define:

heavy-heavy if deg(u) ≥ ∆,

heavy-light if deg(v) ≥ ∆ and deg(u) < ∆,

light-light if deg(v) < ∆.

Algorithm 1 proceeds in three stages. In the first stage, it
tries to cover all heavy-heavy and heavy-light edges using
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a vertex subset S0 based on predicted information. Specif-
ically, for each vertex v with deg(v) ≥ ∆, a predicted bit
mv is computed. If mv = 1, indicating v is likely in the
optimal solution (C), then v is added to S0. Otherwise, all
its neighbors N(v) are added to S0, since if v /∈ C, it must
be that N(v) ⊆ C.

An exception in stage one occurs when a vertex v and all
its neighbors u ∈ N(v) have predicted bits mv = 1 and
mu = 1,∀u ∈ N(v). Since v ∈ C and N(v) ⊆ C cannot
hold simultaneously, Algorithm 1 defers the decision on v.
Instead, in stage two (Line 14), it applies a conventional
2-approximation algorithm (Williamson & Shmoys, 2011)
to identify a set S1 such that S0∪S1 covers all heavy-heavy
and heavy-light edges.

After the first two stages, the remaining uncovered
edges are light-light edges. Algorithm 1 then applies
a
(
2− 2 log log∆

log∆

)
-approximate VC algorithm (Halperin,

2002) to cover them.

Analysis To prove Theorem 4.1, we establish the follow-
ing lemmas, each bounding the size of ‘bad’ events through-
out the execution of Algorithm 1.

Lemma 4.3 (False Vertices due to Prediction).

E [|S0 \ C|] ≤ ε10 · |C| .

Lemma 4.4 (Fix for Predicted Set). Let C≥∆
.
= {v ∈ C :

deg(v) ≥ ∆}. Then

E[|S1|] ≤ 2 · ε200 · |C≥∆| .

Lemma 4.5 (Cover for Light Edges). Let C<∆
.
= C \ C≥∆.

Then

E[|S2|] ≤ E
[
|C<∆ \ (S0 ∪ S1)| ·

(
2− 2

log log∆

log∆

)]
.

The complete proofs of them are included in Appendix E.
Here, we provide brief, intuitive explanations.

Lemma 4.3 states that Algorithm 1 does not add too many
vertices outside C into S0. This can occur in two cases:

Case One: A vertex v ∈ C≥∆ with mv = 0 causes its
neighbors N(v), including vertices outside C, to be added
to S0. To bound the expected number of such vertices,
it suffices to show deg(v) · Pr [mv = 0] ∈ o(1). Us-
ing standard concentration inequalities, we establish that
Pr [mv = 0] ∈ o(1/ deg(v)). Summing over all v ∈ C≥∆

then bounds the number of added vertices by o(|C≥∆|).

Case Two: A vertex v /∈ C with deg(v) ≥ ∆ and mv = 1
is directly added to S0. To count such vertices, we use a
“charging argument”: we charge the cost of adding v to a
neighboring vertex u /∈ S0. Since v /∈ C, it must be that

u ∈ C. Through careful analysis, we show that each u ∈ C
is charged at most deg(u) times, with each charge occurring
with probability o(1/ deg(u)). Summing over all u ∈ C
bounds the total ”charging cost” by o(|C|).

Lemma 4.4 bounds the size of S1. First, we show that
C≥∆ ∪ S0 covers all heavy-heavy and heavy-light edges.
Thus, adding C≥∆ \ S0 to S0 ensures full coverage of these
edges.

Next, we prove that E [|C≥∆ \ S0|] ≤ ε200 · |C≥∆|. This
follows because if v ∈ C≥∆ is not in S0, then either mv = 0,
which happens with probability Pr[mu = 0] = O(ε200),
or it has been skipped at step 7. Since v has a neighbor
u /∈ C (otherwise, v could be removed from C), and skipping
occurs only if deg(u) ≥ ∆ and mu = 1, the probability of
skipping v is bounded by Pr[mu = 1] = O(ε200).

Finally, the size bound of S1 in Lemma 4.4 follows from S1

being a 2-approximate solution.

Lemma 4.5 follows from: 1) C<∆ covers all light-light
edges, and 2) the edges remaining after selecting S0 ∪ S1

are exclusively light-light edges. Thus, C<∆ \ (S0 ∪ S1)
forms a valid cover for these edges. Consequently, the
expected size of S2 is at most

(
2− 2 log log∆

log∆

)
times the

size of C<∆ \ (S0 ∪ S1).

Remark 4.6. We assume full independence in the prediction
model of Definition 1.1 to simplify the analysis. In fact,
4-wise independence suffices to the lemmas. See the discus-
sion after the formal proof of Lemma 4.3 in Appendix E for
example.

Proof Sketch of Theorem 4.1. Since S2 covers all edges not
covered by S0∪S1, S .

= S0∪S1∪S2 is a VC. The expected
cost is bounded by

E [|S|] ≤ E [|S0|] + E [|S1|] + E [|S2|] .

E [|S0|] can be decomposed into E [|S0 ∩ C|]+E [|S0 \ C|] .
Bounding E [|S1|] by O(ε200 · |C≥∆|) with Lemma 4.4,
E [|S0 \ C|] by ε10 · |C| with Lemma 4.3, and E [|S2|] by
E
[
|C \ S0| ·

(
2− 2 log log∆

log∆

)]
with Lemma 4.5, and sum-

ming up the upper bounds of E [|S1|], E [|S0 \ C|] and
E [|S0 ∩ C|] + E [|S2|], proving the theorem.

5. Maximum Independent Set
We now present our prediction-based algorithm for approxi-
mating maximum independent set. For a graph G = (V,E),
we denote α(G) the size of a maximum independent set
of G. Our goal is to find an independent set which is not
much smaller than α(G). In general, α(G) cannot be ap-
proximated in polynomial time within multiplicative n1−γ
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Algorithm 2 Learned Maximum Independent Set
1: ∆← 3 log(1/ε)/ε2

2: V≤∆ ← {v ∈ V |dv ≤ ∆}
3: V>∆ ← V \ V≤∆

4: C1 ← an Ω(
(

log∆
∆ log log∆

)
-approximate maximum inde-

pendent set of G[V≤∆]
5: for v ∈ V>∆ do
6: mv ← Majority({bv(e)}e∈E,v∈e) ▷ 0 if tie
7: end for
8: S ← {v ∈ V>∆ | mv = 1}
9: while G[S] has an edge e = (u, v) do

10: S ← S \ {u, v}
11: end while
12: C2 ← S
13: if |C2| ≥ |C1| then
14: return C2
15: end if
16: return C1

for any fixed γ > 0 unless ZZP = NP 1 (Håstad, 1996a).
However, for bounded degree graphs, there are approxima-
tion algorithms where the approximation factor depends
only on the maximum degree. We will use the following
theorem (Halldórsson, 1998) for handling such bounded
degree graphs.

Theorem 5.1 ((Halldórsson, 1998)). Maximum independent
set can be approximated within Ω( log∆

∆ log log∆ ) with high
probability in polynomial time for graphs with maximum
degree at most ∆.

We assume access to edge predictions as before.

Definition 5.2 (Prediction Model). Given an input un-
weighted and undirected graph G, we fix some maximum
independent set C∗ of G. Every edge e = (u, v) outputs two
bits (bu(e), bv(e)) of predictions. If u ∈ C∗ then bu(e) = 1
with probability 1/2 + ε and 0 otherwise. bv(e) is similarly
sampled and all predictions are i.i.d. across all edges and
bits.

With access to ε-accurate predictions, our algorithm es-
sentially achieves approximation Ω̃(ε2) (note that without
predictions, we cannot hope for any constant factor ap-
proximation). It is presented in Algorithm 2 and works
as follows. We define ∆ = 3 log(1/ε)/ε2, and further,
V≤∆ = {v ∈ V | dv ≤ ∆}, V>∆ = V \ V≤∆,
G1 = G[V≤∆] and G2 = G[V>∆]. For G1 we use the
algorithms from Theorem 5.1 finding an approximate maxi-
mum independent set C1. On the other hand, for the graph
G2, for each vertex v ∈ V>∆, we include it in a preliminary

1ZZP is the class of problems that can be solved in expected
polynomial time by a Las Vegas algorithm. The conjecture P ̸=
NP is almost as strong as ZZP ̸= NP

set S using the majority vote of all the incident edges. Note
that two adjacent notes in G2 may both be included in S
during this process. To form an independent set we update S
via the following clean-up process: As long as the induced
graph G[S] contains an edge, we pick any such edge and
remove both endpoints from S. We denote the resulting set
after this removal process by C2. The algorithm outputs the
independent set C defined to be whichever of C1 or C2 that
has the largest cardinality.

For the analysis of this algorithm, we require the classic
Caro-Wei bound on α(G) to ‘certify’ that the actual optimal
solution is sufficiently large. This is crucial for our charging
argument of Theorem 5.4.
Lemma 5.3 (Caro-Wei). Let G = (V,E) be a graph and de-
note by dv the degree of v ∈ V . Then α(G) ≥

∑
v∈V

1
1+dv

.

Our main theorem on Algorithm 2 is as follows.
Theorem 5.4. Suppose ε ≤ 1/4. The expected size of
the maximum independent set output by Algorithm 2, is
Ω
(
α(G) · ε2

log log 1/ε

)
Proof of Theorem 5.4. Define T = V>∆ \ C∗ and call a
vertex v ∈ T bad if v voted to be in S. We claim that
the expected number of bad vertices is at most εα(G). To
see this, define Xv = [v is voted into S] for v ∈ V>∆ and
X =

∑
v∈T Xv . By Hoeffding’s inequality over the voting,

Pr[Xv = 1] ≤ exp(−2ε2dv), and using the fact that ex ≥
2x for all x ∈ R, we obtain that

Pr[Xv = 1] ≤ 1

exp(ε2dv)2ε2dv
.

Finally, using that v ∈ V>∆ and thus has degree at least ∆,
it follows that exp(ε2dv) ≥ ε−3 and thus,

Pr[Xv = 1] ≤ ε

2dv
≤ ε

1 + dv
.

By Lemma 5.3 and linearity of expectation, it follows that
the expected number of bad vertices is at most ε · α(G),
as claimed. Additionally, note that for v ∈ V>∆ ∩ C∗, by
Hoeffding’s inequality Pr[Xv = 0] ≤ exp(−2ε2dv) ≤ ε6.
Now during the clean-up phase, whenever we remove two
nodes from S, one of them must have been bad. Indeed, two
such nodes were included by majority vote into S but only
one of them could have been in C∗ since they are connected
by an edge. Thus

E[|C2|] ≥ (1− ε6)|C∗ ∩ V>∆| − 2ε · α(G). (1)

Moreover, by Theorem 5.1

E[|C1|] =Ω

(
log∆

∆ log log∆
α(G1)

)
=Ω

(
log∆

∆ log log∆
· |C∗ ∩ V≤∆|

)
. (2)

7
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Now

E[|C|] = E[max(|C1|, |C2|)] ≥ max(E |[C1|],E[|C2|]).

If |C∗ ∩ V≤∆| ≥ |C∗|/2 = α(G)/2, then (2) gives that

E[|C|] = Ω

(
log∆

∆ log log∆
· α(G)

)
.

If not, then |C∗ ∩ V>∆| ≥ α(G)/2 and thus by (1),

E[|C|] ≥ α(G) ·
(
1

2
− ε− ε6

2

)
≥ α(G)

5
.

We finish by plugging in the value of ∆ in the first bound.

6. Experiments
We complement our theoretical results with an empirical
evaluation for Maximum Independent Set (MIS, Section 5).
The two core component to implement the algorithms in
our learning-augmented setting are predictions and an ap-
proximation algorithm. In order to test our algorithms, we
consider moderately-sized graphs on which we can solve
MIS using a commercial integer program solver. We gen-
erate edge predictions according to the ε-accurate model
based on these ground truth labels for varying ε. Then, we
utilize our high/low degree MIS algorithm using the greedy
MIS approximation algorithm which iteratively picks the
lowest degree node which is still available.

Hardware We perform all experiments on a physical
workstation with an AMD Ryzen 5900X CPU and 32 GB
of RAM. Deriving optimal solutions for a MIS instance re-
quires solving an integer linear program, which is NP-hard.
In practice, solvers exist that can exploit certain structures
and leverage hardware to overcome the worst-case barrier
for this problem. We use the CPLEX 22.1 solver (CPLEX,
2025) under an academic license.

Datasets We use three graphs of varying sizes represent-
ing real social networks: facebook (Leskovec & Mcauley,
2012), congress (Fink et al., 2023), and twitch (Rozem-
berczki & Sarkar, 2021). The facebook graph has nodes
representing real anonymized profiles from Facebook, with
nodes representing connections between friends. It has 4039
nodes and 88234 edges; the graph has an average degree
of 43.69, a median degree of 25, and a maximum degree
of 1045. The congress graph represents the interactions
between members of the 117th Congress on Twitter: nodes
correspond to the accounts of specific members of the 117th
Congress, and edges correspond to mentions of other mem-
bers of Congress from a given account. This graph has 475
nodes and 13289 edges, with an maximum degree of 214,

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
Epsilon ( )

0.6

0.7

0.8

0.9

1.0

Ap
pr

ox
im

at
io

n 
Ra

tio

Independent Set Approximation Ratios vs. Epsilon: Congress

Learning-Augmented
Predictions Only
OPT
Greedy

0.10 0.15 0.20 0.25 0.30 0.35
Epsilon ( )

0.5

0.6

0.7

0.8

0.9

1.0
Ap

pr
ox

im
at

io
n 

Ra
tio

Independent Set Approximation Ratios vs. Epsilon: Facebook

Learning-Augmented
Predictions Only
OPT
Greedy

0.10 0.15 0.20 0.25 0.30 0.35
Epsilon ( )

0.6

0.7

0.8

0.9

1.0

Ap
pr

ox
im

at
io

n 
Ra

tio

Independent Set Approximation Ratios vs. Epsilon: Twitch

Learning-Augmented
Predictions Only
OPT
Greedy

Figure 2. Comparison of learning-augmented frequency estimation
algorithms. Top: congress, Middle: facebook, Bottom: twitch. The
plots compare Algorithm 2 with the optimal solution, the standard
greedy approximation of MIS, and a degree-agnostic “predictions-
only” heuristic. The algorithms are averaged across 10 trials.
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average degree of 43.04, and a median degree of 38. The
twitch graph represents Twitch users and their shared sub-
scriptions: nodes represent the users, and an edge between
users represent whether or not the users follow a common
streamer on the platform. The resulting graph is strongly
connected and has 168,114 nodes and 6,797,557 edges. For
the purposes of our experiment, we prune the original graph
down to 50,000 nodes and around 1.1 million edges in order
to make the integer linear program for finding the optimal
solution feasible.

Algorithms and Baselines Alongside the implementation
of Algorithm 2, we also include 3 baselines: the optimal
solution for MIS, given by an integer linear program, a
“prediction-only” heuristic, which employs the use of the
edge-prediction model on the entire graph agnostic to de-
gree, and a standard greedy algorithm approximation cour-
tesy of Halldórsson.

Setup For the facebook and twitch graphs, we fix the
degree threshold for Algorithm 2 to be 10, and vary ε from
0.10 to 0.35. For the congress graph, we fix the degree
threshold, we fix the degree threshold to 15, and vary epsilon
from 0.10 to 0.25. At the upper end of these ranges of ε
both our algorithm and the predictions-only algorithm come
close to approximation ratios of 1. Due to the inherent
randomness in making the edge predictions, we repeat each
algorithm k = 10 times for each ε and report the mean ratio.

Results Across varying ε, our algorithm outperforms the
predictions-only baseline. This validates our theoretical
findings where we leverage the fact that predictions are
highly accurate for high degree vertices but very noisy for
low degree vertices. Compared to the baseline approxi-
mation algorithm, as ε (which corresponds to prediction
quality) increases, we see the learning-based algorithms
eventually outperforming the baseline approximation algo-
rithm. For both datasets, we show that for an appropriate ε,
our learning-augmented algorithm achieves the best perfor-
mance with our algorithm on both graphs.
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A. Weighted Vertex Cover
In this section, we present an algorithm for the weighted vertex cover problem, based on predictions. The main result is as
follows.

Theorem A.1. The set S outputted by Algorithm 3 is a valid vertex cover for the input graph G. Furthermore,

E[w(S)] ≤
(
2− Ω

(
log log(1/ε)

log(1/ε)

))
· OPT.

Algorithm 3 Learned-WeightedVC
1: S0 ← ∅, ∆← 100 log(1/ε)/ε2

2: for v ∈ V with deg(v) ≥ ∆ do
3: mv ← Majority({bv(e)}e∈E,v∈e) ▷ 0 if tie
4: end for
5: for v with deg(v) ≥ ∆ do
6: N−(v)← {u ∈ N(v) : mu = 0 or deg(u) < ∆}
7: if mv = 1 then
8: if ∀u ∈ N(v): deg(u) ≥ ∆ and mu = 1 then
9: Skip v

10: else if w(v) < w(N−(v))/ε10 then
11: S0 ← S0 ∪ {v}
12: else if w(v) ≥ w(N−(v))/ε10 then
13: S0 ← S0 ∪N−(v)
14: end if
15: else if mv = 0 then
16: if w(v) < ε10 · w(N−(v)) then
17: S0 ← S0 ∪ {v}
18: else if w(v) ≥ ε10 · w(N−(v)) then
19: S0 ← S0 ∪N−(v)
20: end if
21: end if
22: end for
23: S1 ← 2-approximate VC for heavy-heavy and heavy-light edges not covered by S0

24: S2 ←a
(
2− 2 log log∆

log∆

)
-approximate VC for edges not covered by S0 ∪ S1

25: S ← S0 ∪ S1 ∪ S2

26: Return S ▷Our VC approximation

Before we dive into the analysis, we briefly discuss the ways in which Algorithm 3 differs from Algorithm 1. The main
difference is that for unweighted vertex cover, it is fine if some vertices which are not in the optimal cover are voted (by our
majority vote over bits) to be in the cover we output, as long as their total cardinality is small. However for weighted vertex
cover, this is no longer sufficient, because even a single mistake can harm us, since we may include vertices of extremely
high weight. Thus, we need to perform appropriate ‘sanity checks’ throughout our execution and check if we can ever make
a ‘swap’ (where we swap a vertex in our current cover with all of its uncovered neighbors). This ensures that we never add a
vertex that has unreasonably high weight (formalized in the charging lemma below). One complication is that this may
prevent us from adding vertices which are actually in the true optimal solution to our cover, if its (uncovered so far in the
execution) neighborhood has smaller weight. However, we can also deal with this event by recognizing that this must mean
one of its neighbors is misclassified, and use this event (which we show has appropriately low probability) in our charging
scheme.

Recall that C is an optimal cover, and C̄ .
= V \ C. Further, define V≥∆

.
= {v ∈ V : deg(v) ≥ ∆}, and V<∆

.
= V \ V≥∆. To

prove Theorem A.1, we establish the following lemmas.

Lemma A.2 (False-Positive-Weight).
E [w(S0 \ C)] ≤ ε8 · w(C).

12



Improved Approximations for Hard Graph Problems using Predictions

Lemma A.3 (VC-Heavy-Fix-Weight). Then

E [w(S1)] ≤ ε200 · w(C).

Lemma A.4 (VC-Light-Weight). Let C<∆
.
= C \ C≥∆. Then

E [w(S2)] ≤ E
[
w(C<∆ \ (S0 ∪ S1)) ·

(
2− 2

log log∆

log∆

)]
.

Before we prove these lemmas, we apply them to finish the proof of Theorem A.1.

Proof of Theorem A.1. Since S2 covers all edges not covered by S0 ∪ S1, S .
= S0 ∪ S1 ∪ S2 is a VC. The expected cost is

bounded by

E [w(S)] ≤ E [w(S0)] + E [w(S1)] + E [w(S2)] .

E [w(S1)] can be bounded by ε200 ·w(C≥∆) according to Lemma A.3. The sum E [w(S0)] +E [w(S2)] can be decomposed
into

E [w(S0 ∩ C)] + E [w(S0 \ C)] + E [w(S2)] ,

where E [w(S0 \ C)] can be bounded by ε8 · w(C) according to Lemma A.2. Finally, based on Lemma A.4,

E [w(S2)] ≤ E
[
w(C \ S0) ·

(
2− 2

log log∆

log∆

)]
,

hence

E [w(S0 ∩ C)] + E [w(S2)] ≤ w(C) ·
(
2− 2

log log∆

log∆

)
.

Summing up the upper bounds of E [w(S1)], E [w(S0 \ C)] and E [w(S0 ∩ C)] + E [w(S2)] proves the lemma.

Proof of Lemma A.2. To prove Lemma A.2, we need to analyze four cases where vertices not in C are added to S0, each
addressed by the following four lemmas (Lemmas A.5 to A.8). The size bound of Lemma A.2 follows directly from the sum
of size bounds of the following four lemmas.

Lemma A.5. Let U1 be the set of vertices from V≥∆ \ C that get added in Line 11 of Algorithm 3. We have

E [w(U1)] ∈ O
(
ε100 · OPT

)
.

Lemma A.6. Let U2 be the set of vertices that get added in Line 13 of Algorithm 3 as a result of a vertex v ∈ C. We have

E [w(U2)] ∈ O(ε10 · OPT).

Lemma A.7. Let U3 be the set of vertices from C̄ that we add to S0 in Line 17 of Algorithm 3. We have

E[w(U3)] ∈ O(ε8 · OPT).

Lemma A.8. Let U4 be the set of vertices from C̄ get added in Line 19 of Algorithm 3. We have

E[w(U4)] ∈ O(ε100 · OPT).

The proofs of Lemmas A.5 to A.8 are presented after those of Lemmas A.3 and A.4.

Proof of Lemma A.3. To prove Lemma A.3, we need one additional lemma.

13
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Lemma A.9. Let U5
.
= C≥∆ \ S0. We have

E [w(U5)] ∈ O
(
ε100 · OPT

)
. (3)

The proof of Lemma A.9 is deferred those of Lemmas A.5 to A.8.

Now, to prove Lemma A.3, we will show that augmenting S0 with an additional set U5, ensures that all edges incident to at
least one vertex in V≥∆ are covered. It follows that

E [w(S1)] ≤ E [2 · w(U5)] ∈ O(ε200 · OPT).

Clearly, S0 ∪ U5 covers any edge incident to any vertex in C≥∆.

It remains to consider an edge (u, v) such that v ∈ V≥∆ \ C and u ∈ V<∆. If v is added to S0, then (u, v) is covered and we
are done. Otherwise, since u ∈ V<∆, v cannot be skipped at step 9. If v is not added to S0, the algorithm must have added
N−(v) to S0. Noting that u ∈ N−(v) completes the proof.

Proof of Lemmas A.5 to A.9

Proof of Lemma A.4. This simply follows from the fact that C<∆ \ (S0 ∪S1), which is a subset of the optimal cover, already
covers all edges not covered by S0 ∪ S1. Furthermore, after removing the edges covered by S0 ∪ S1, the graph has degree
bounded by ∆, so we can run the

(
2− 2 log log∆

log∆

)
approximation algorithm on this graph from (Halperin, 2002).

Proof of Lemma A.5. First, since v ∈ C̄, all its neighbors must belong to C.

We charge the cost w(v) of selecting v ∈ V≥∆ \ C in Line 11 of Algorithm 3 to its neighbors in N−(v).

For each u ∈ N−(v), we charge at most w(u)/ε10, ensuring that the total charge is at most w(N−(v))/ε10, which covers
w(v). Define an indicator Xv→u for this event. If u ∈ C<∆, Lemma E.1 gives:

Pr [Xv→u = 1] ≤ Pr [mv = 1]

= exp
(
−2 · deg(v) · ε2

)
≤ exp

(
−2 ·∆ · ε2

)
.

If u ∈ C≥∆, then u ∈ N−(v) implies mu = 0, yielding:

Pr [Xv→u = 1] ≤ Pr [mu = 0] = exp
(
−2 · deg(u) · ε2

)
.

Set Xv→u
.
= 0 in all other cases.

Now, for each u ∈ C, define Xu
.
=
∑

v∈N(u) Xv→u. Thus, we bound w(U1) by:

∑
u∈C<∆

w(u)

ε10
·Xu +

∑
u∈C≥∆

w(u)

ε10
·Xu.

For each u ∈ C<∆, since ∆ = 100 log(1/ε)/ε2,

E
[
w(u)

ε10
·Xu

]
≤ w(u)

ε10
·∆ · exp

(
−2 ·∆ · ε2

)
≤ w(u) · ε100.

For each u ∈ C≥∆,

E
[
w(u)

ε10
·Xu

]
≤ w(u)

ε10
· deg(u) · exp

(
−2 · deg(u) · ε2

)
≤ w(u) · ε100.

14
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Therefore,

E [w(U1)] ≤ E

 ∑
u∈C<∆

w(u)

ε10
·Xu +

∑
u∈C≥∆

w(u)

ε10
·Xu

 ∈ O(ε100 · OPT).

Proof of Lemma A.6. Every time we add N−(v) in Line 13, the total weight of this set is at most ε10w(v). We can do this
at most once per vertex v ∈ C, so the lemma follows.

Proof of Lemma A.7. First, since v ∈ C̄, all its neighbors must belong to C.

We charge the cost w(v) of selecting v ∈ V≥∆ \ C in Line 17 of Algorithm 3 to its neighbors in N−(v).

For each u ∈ N−(v), we charge at most ε10 · w(u), ensuring that the total charge is at most ε10 · w(N−(v)), which covers
w(v). Define an indicator Xv→u for this event. If u ∈ C<∆,

Pr [Xv→u = 1] ≤ 1.

If u ∈ C≥∆, then u ∈ N−(v) implies mu = 0, yielding:

Pr [Xv→u = 1] ≤ Pr [mu = 0] = exp
(
−2 · deg(u) · ε2

)
.

Set Xv→u
.
= 0 in all other cases.

Now, for each u ∈ C, define Xu
.
=
∑

v∈N(u) Xv→u. Thus, we bound w(U1) by:∑
u∈C<∆

ε10 · w(u) ·Xu +
∑

u∈C≥∆

ε10 · w(u) ·Xu.

For each u ∈ C<∆, since ∆ = 100 log(1/ε)/ε2,

E
[
ε10 · w(u) ·Xu

]
≤ ε10 · w(u) ·∆ ≤ 100 · ε8 · w(u).

For each u ∈ C≥∆,

E
[
ε10 · w(u) ·Xu

]
≤ ε10 · w(u) · deg(u) · exp

(
−2 · deg(u) · ε2

)
≤ w(u) · ε110.

Therefore,

E [w(U1)] ≤ E

 ∑
u∈C<∆

ε10 · w(u) ·Xu +
∑

u∈C≥∆

ε10 · w(u) ·Xu

 ∈ O(ε8 · OPT).

Proof of Lemma A.8. Let v ∈ C≥∆. Since deg(v) ≥ ∆ = 100 log(1/ε)/ε2, The probability of it being misclassified is at
most ε200 from Lemma E.1. Furthermore, we only add N−(v) in Line 19 if w(v) ≥ ε10 ·N−(v). Thus, if we add N−(v),
then we add weight at most w(v)/ε10. Altogether, this means that

E[w(U4)] ≤
∑

v∈C≥∆

Pr(v is misclassified) · w(v)
ε10

≤ O(ε100 · OPT).
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Proof of Lemma A.9. A v ∈ C≥∆ can be skipped at step 9, step 13 or step 19.

First, consider a vertex v ∈ C≥∆ is skipped at step 9. For each vertex v ∈ C, it has at least one neighbor in C̄. Denote this
neighbor as u. Then we know deg(u) ≥ ∆ and mu = 1. Therefore, based on Lemma E.1, and given that deg(u) ≥ ∆ =
100/ε2 · log(1/ε), we obtain

Pr [v is skipped at step 9 ] ≤ Pr [mu = 1] ≤ exp
(
−2 · deg(u) · ε2

)
≤ ε200. (4)

Next, consider v ∈ C≥∆ is skipped at step 12. Since v ∈ C, it holds that

w(v) ≤
∑

u∈N(v)\C

w(u),

as otherwise (C ∪ (N(v) \ C)) \ {v} is a better vertex cover than C, a contradiction. For each u ∈ N(v) \ C, define the
indicator Yu for u being in N−(v). Note that if deg(u) < ∆, then we must have Yu = 1 and Var [Yu] = 0. If deg(u) ≥ ∆,
then based on Lemma E.1,

Pr [Yu = 1] = Pr [mu = 0] ≥ 1− exp(−2ε2 deg(u)) ≥ 1− ε200, Var [Yu] ≤ ε200. (5)

Further,

E

 ∑
u∈N(v)\C

w(u) · Yu

 ≥ (1− ε200) ·
∑

u∈N(v)\C

w(u) ≥ (1− ε200) · w(v).

Now, v is skipped at step 12, which implies that

w(v) ≥ w(N−(v))

ε10
≥ 1

ε10

∑
u∈N(v)\C

w(u) · Yu. (6)

Therefore,

Pr

 ∑
u∈N(v)\C

w(u) · Yu ≤ ε10 · w(v)

 (7)

≤ Pr

∣∣∣∣∣∣
∑

u∈N(v)\C

w(u) · Yu − E

 ∑
u∈N(v)\C

w(u) · Yu

∣∣∣∣∣∣ ≥ (1− ε200 − ε10) · w(v)

 (8)

≤
∑

u∈N(v)\C w(u)
2 · Var [Yu]

((1− ε200 − ε10) · w(v))2
(9)

≤
ε200

(∑
u∈N(v)\C w(u)

)2
((1− ε200 − ε10) · w(v))2

(10)

≤ ε100. (11)

Finally, consider a vertex v ∈ C≥∆ is skipped at step 19. This can be bounded by the probability Pr [mv = 0] ≤ ε200.

Thus,

E [w(U5)] ≤ ε100
∑

v∈C≥∆

w(v) ≤ ε100 · OPT. (12)
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B. Set Cover
In this section, we present Algorithm 4 for SC, achieving an approximation ratio better than lnm. We first extend the
edge-based prediction model from Definition 1.1 to SC. Recall from Section 2 that in the SC problem, we treat subsets as
“vertices” and elements as “edges”.

Definition B.1 (Prediction Model). Given a family of subsets S1, . . . , Sn ⊆ [m], let J ∗ ⊆ [n] be a fixed optimal set cover.
Each element i ∈ [m] outputs a bit bj(i) for every subset Sj containing i. If j ∈ J ∗, then bj(i) = 1 with probability 1/2+ ε
and 0 otherwise. All bits are independent across predictions.

The main result is as follows. Recall that approximating the Set Cover problem (without prediction) within a factor of
(1− δ) lnm is NP-hard for any δ > 0 (Dinur & Steurer, 2014).

Theorem B.2 (Learned Set Cover). Let ∆ .
= 100/ε2 ln(1/ε), and J ∗ be an optimal solution. Algorithm 4 returns a

solution J satisfying
E [|J |] ≤

(
1 + ε10 + ln∆

)
· |J ∗| . (13)

Observe that, for a given ε, (1 + ε10 + ln∆) is a constant which does not depend on m.

Algorithm Algorithm 4 follows a similar philosophy to Algorithm 1. It first determines whether to include subsets of size
at least ∆ in the solution based on predicted information. However, unlike Algorithm 1, it simply ignores large subsets
when predictions suggest they are not part of the optimal solution.

After selecting large subsets, Algorithm 4 applies the (1 + ln∆)-approximation algorithm (Lovász, 1975) to small
subsets, aiming to cover as many uncovered elements as possible. Finally, it covers any remaining elements using an
lnm-approximation algorithm (Lovász, 1975) with all available subsets.

Algorithm 4 Learned Set Cover
1: Jlearned ← ∅, ∆← 100 log(1/ε)/ε2

2: Sort the Sj’s in decreasing order according to |Sj |
3: for j ∈ [n] with |Sj | ≥ ∆ do
4: bj ← Majority({bj(i)}i∈Sj

) ▷ 0 if tie
5: if bj = 1 and Sj ⊈ ∪j′∈Jlearned

Sj′ then
6: Jlearned ← Jlearned ∪ {j}
7: end if
8: end for
9: Ulearned ← ∪j∈Jlearned

Sj

10: I<∆ ← {j ∈ [n] : |Sj | < ∆}
11: Uapprox ← (∪j∈I<∆

Sj) \ Ulearned

12: Japprox ← a (1 + log∆)-approximate Set Cover on (Uapprox, I<∆)
13: Jfix ← a (lnm)-approximate Set Cover on ([m] \ (Ulearned ∪ Uapprox), [n])
14: return Jlearned ∪ Japprox ∪ Jfix

Analysis The proof of Theorem B.2 relies on the following lemmas. At a high level, the proofs of the lemmas involve
bounding the expected number of optimal subsets not selected by Algorithm 4 due to prediction errors (False Negatives), and
applying a “charging argument” to bound the expected number of non-optimal subsets incorrectly selected (False Positives).

Lemma B.3 (False Positive). Define J ∗
≥∆

.
= {j ∈ J ∗ : |Sj | ≥ ∆}, and JFP

.
= Jlearned \ J ∗

≥∆.

E [|JFP |] ≤ ε10 · |J ∗| . (14)

Lemma B.4 (False Negative Neighbors). Define J ∗
≥∆

.
= {j ∈ J ∗ : |Sj | ≥ ∆}, and JFN

.
= J ∗

≥∆ \ Jlearned. Then

E

 ∑
j∈JFN

|Sj |

 ≤ ε10 ·
∣∣J ∗

≥∆

∣∣ .
17



Improved Approximations for Hard Graph Problems using Predictions

Lemma B.5. Let J ∗
approx be the optimal set cover for (Uapprox, I<∆). Then

E
[∣∣J ∗

approx

∣∣] ≤ J ∗
<∆ + ε10 ·

∣∣J ∗
≥∆

∣∣ . (15)

Lemma B.6. Define Ufix
.
= [m] \ ∪j∈Jlearned∪Japprox

Sj .

E [|Ufix|] ≤ ε10 ·
∣∣J ∗

≥∆

∣∣ . (16)

Before we prove Lemmas B.3 to B.6, we apply them to finish the proof of our main result Theorem B.2.

Proof of Theorem B.2. Observe that

|J | ≤ |Jlearned|+ |Japprox|+ |Jfix| ≤
∣∣J ∗

≥∆

∣∣+ ∣∣Jlearned \ J ∗
≥∆

∣∣+ |Japprox|+ |Jfix| .
Bounding the second term with Lemma B.4, the third term with Lemma B.5 and that Japprox being an (1 + log∆)
approximate solution, and the last term with Lemma B.6 gives

|J | ≤
∣∣J ∗

≥∆

∣∣+ ε10 · |J ∗|+ (1 + ln∆)
(
J ∗
<∆ + ε10 ·

∣∣J ∗
≥∆

∣∣)+ ε10 ·
∣∣J ∗

≥∆

∣∣ ≤ (1 + ε10 + ln∆
)
· |J ∗| .

Proof of Lemmas B.3 to B.6

In order to prove these four lemmas, we require the following technical result.

Lemma B.7 (Incorrect predictions). For each j ∈ [n] s.t., |Sj | ≥ ∆, it holds that

Pr
[
1[j∈Jlearned] ̸= 1[j∈J ∗]

]
≤ 2 · exp

(
−2 · |Sj | · ε2

)
. (17)

Proof of Lemma B.7. For each i ∈ Sj , let Xi ∈ {0, 1} be the prediction by element i of the event j ∈ J ∗.

We consider two cases. If j /∈ J ∗, then bj ̸= 1[j∈J ∗] if
∑

i∈Sj
Xi > |Sj | /2. Note that E

[∑
i∈Sj

Xi

]
= |Sj | · (1/2− ε).

By Hoeffding’s inequality, when |Sj | ≥ ∆:

Pr
[
bj ̸= 1[j∈J ∗]

]
= Pr

∑
i∈Sj

Xi > |Sj | /2

 ≤ exp

(
−2 · |Sj |2 · ε2

|Sj |

)
= exp

(
−2 · |Sj | · ε2

)
.

Therefore,
Pr
[
1[j∈Jlearned] ̸= 1[j∈J ∗]

]
= Pr [j ∈ Jlearned] ≤ Pr [bj = 1] ≤ exp

(
−2 · |Sj | · ε2

)
. (18)

If j ∈ J ∗, then bj ̸= 1[j∈J ∗] if
∑

i∈Sj
Xi ≤ |Sj | /2. Note that E

[∑
i∈Sj

Xi

]
= |Sj | · (1/2 + ε). By Hoeffding’s

inequality, when |Sj | ≥ ∆:

Pr
[
bj ̸= 1[j∈J ∗]

]
= Pr

∑
i∈Sj

Xi ≤ |Sj | /2

 ≤ exp

(
−2 · |Sj |2 · ε2

|Sj |

)
= exp

(
−2 · |Sj | · ε2

)
.

Observe that

Pr
[
1[j∈Jlearned] ̸= 1[j∈J ∗]

]
= Pr [j /∈ Jlearned] (19)
= Pr [j /∈ Jlearned ∧ bj = 0] + Pr [j /∈ Jlearned ∧ bj = 1] . (20)

The former probability is bounded by

Pr [j /∈ Jlearned ∧ bj = 0] = Pr [bj = 0] ≤ exp
(
−2 · |Sj | · ε2

)
.

18
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When bj = 1, the algorithm decides not to add j to Jlearned (therefore j /∈ Jlearned) if Sj ⊆
⋃

j′∈Jlearned
Sj′ . However, for

the optimal cover J ∗, it holds that Sj ⊈ ∪j′∈J ∗\{j}Sj′ , as otherwise we can remove j from J ∗. Therefore, Jlearned\J ∗ ̸=
∅. Let j′ be some index from Jlearned \ J ∗. It is added to Jlearned only if bj′ = 1. As j′ is processed before j, we have
|Sj′ | ≥ |Sj |. It concludes that

Pr [j /∈ Jlearned ∧ bj = 1] ≤ Pr [bj′ = 1] ≤ exp
(
−2 · |Sj′ | · ε2

)
≤ Pr [bj = 1] ≤ exp

(
−2 · |Sj | · ε2

)
.

We can now provide the proofs of Lemmas B.3 to B.6.

Proof of Lemma B.3. Define B .
= {j ∈ [n] \ J ∗ : |Sj | ≥ ∆}. We are going to charge the cost of selecting sets from B,

to sets in J ∗, as follows: Consider a fix j ∈ B and assume that j is selected into Jlearned. Since j is selected only if
Sj ⊈

⋃
j′∈Jlearned

Sj′ (at the time j is selected), there exists i ∈ Sj \
(⋃

j′∈Jlearned
Sj′

)
.

Further, there exists some Sj′ for j′ ∈ J ∗ which covers element i. It is easy to see j′ /∈
⋃

j′∈Jlearned
Sj′ when j is selected.

We will charge the cost selecting set Sj to Sj′ , by setting Xj,j′ = 1. Since Algorithm 4 selects sets into Jlearned in
decreasing order according to their sizes, either of one the following happens:

1. |Sj′ | ≤ |Sj |, then Pr [Xj,j′ = 1] ≤ Pr [bj = 1] ≤ exp
(
−2 · |Sj | · ε2

)
≤ exp

(
−2 ·∆ · ε2

)
.

2. |Sj′ | > |Sj | and j′ /∈ Jlearned, then Pr [Xj,j′ = 1] ≤ Pr [j′ /∈ Jlearned] ≤ exp
(
−2 · |Sj′ | · ε2

)
.

To make Xj,j′ well defined, we set Xj,j′ = 0 for all other cases. Combining both cases, we have

Pr [Xj,j′ = 1] ≤ exp
(
−2 ·max {|Sj | , |Sj′ | ,∆} · ε2

)
. (21)

Finally, since,

|JFP | =
∑

j∈B,j′∈J ∗

Xj,j′ =
∑

j′∈J ∗

∑
j∈B

Xj,j′

.

we conclude that

E [|JFP |] ≤
∑

j′∈J ∗

|Sj′ | · exp
(
−2 ·max {|Sj | , |Sj′ | ,∆} · ε2

)
≤ |J ∗| · ε10. (22)

Proof of Lemma B.4. Consider a fixed j ∈ J ∗
≥∆. Via Lemma B.7, it holds that

E[1[j∈JFN ] · |Sj |] = |Sj | · Pr
[
1[j∈Jlearned] ̸= 1[j∈J ∗]

]
≤ |Sj | · exp

(
−2 · |Sj | · ε2

)
≤ ∆ · exp

(
−2 ·∆ · ε2

)
,

where the final inequality holds since y = −2 · x · ε2 + lnx decreases when x ≥ 1/(2 · ε2), and |Sj | ≥ ∆ ≥ 1/(2 · ε2). It
follows that

E

 ∑
j∈JFN

|Sj |

 = E

 ∑
j∈J ∗

≥∆

1[j∈JFN ] · |Sj |

 ≤ ∣∣J ∗
≥∆

∣∣ ·∆ · exp (−2 ·∆ · ε2) ≤ ∣∣J ∗
≥∆

∣∣ · ε10, (23)

where the final inequality holds since ∆ ≥ 100/ε2 · log(1/ε).

Proof of Lemma B.5. Define U∗
≥∆

.
=
⋃

j∈J ∗
≥∆

Sj , U∗
<∆

.
=
⋃

j∈J ∗
<∆

Sj . Then U∗
≥∆ and U∗

<∆ is a partition of [m]. Since
J ∗
≥∆ ⊆ Jlearned ∪ JFN , it holds that

[m] \
⋃

j∈Jlearned

Sj ⊆ U∗
<∆ ∪ (∪j∈JFN

Sj). (24)
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Since J ∗
<∆ covers U∗

<∆, and ∪j∈JFN
Sj can be covered by at most

∑
j∈JFN

|Sj | sets,∣∣J ∗
approx

∣∣ ≤ |J ∗
<∆|+

∑
j∈JFN

|Sj | . (25)

Taking expectation of both sides and applying Lemma B.4 finish the proof.

Proof of Lemma B.6. Since
Ufix = [m] \ (Ulearned ∪ Uapprox) ⊆ ∪j∈JFN

Sj , (26)

we have
|Ufix| ≤

∑
j∈JFN

|Sj | . (27)

Taking expectation of both sides and applying Lemma B.4 finish the proof.
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C. Maximum Cut
Let G = (V,E) be a undirected and weighted graph without self loops, and A ∈ Rn×n

≥0 be a symmetric adjacent matrix,
where Ai,j = wi,j ≥ 0, the weight of edge (i, j) if it exists, and 0 otherwise. The MAXCUT problem looks for the cut with
maximum edge weight, and can be formulated as the following maximization problem

max
x∈{−1,1}n

(1/4) ·
∑

i,j∈[n]

wi,j · (xi − xj)
2
. (28)

Definition C.1 (Prediction Model). Given an input weight and undirected graph G, we fix some optimal solution b∗ =
(b∗1, . . . , b

∗
n) ∈ {−1, 1}

n
. Every edge e = (i, j) outputs two bits (bi(e), bj(e)) of predictions. bi(e) = b∗i with probability

1/2 + ε and −b∗i otherwise. bj(e) is similarly sampled and all predictions are i.i.d. across all edges and bits.

Our main result is stated as follows.

Theorem C.2. There is a randomized algorithm for the MAXCUT problem under our prediction model which achieve
approximation ratio of αGW + Ω̃(ε2).

C.1. Algorithm

We present the road-map of the proof for the Theorem C.2. Let ∆ ∈ N+, η ∈ (0, 1) be fixed parameters to be set later.

Definition C.3. For each vertex i ∈ [n], the ∆-prefix for i comprises the ∆ heaviest edges incident to i (breaking ties
arbitrarily), while the ∆-suffix comprises the remaining edges.

Definition C.4 ((∆, η)-Narrow/Wide Vertex). A vertex i is (∆, η)-wide if the total weight of edges in its ∆-prefix is at
most η ·Wi, where Wi

.
=
∑

j∈N(i) Aij is the weighted degree of i. Otherwise, the vertex i is (∆, η)-narrow.

Intuitively, a (∆, η)-wide vertex is one where the weights of the edges incident to i are evenly distributed.

Definition C.5 ((∆, η)-Narrow/Wide Graph). A graph is (∆, η)-wide if the sum of weighted degrees of (∆, η)-narrow
vertices is at most η ·W , where W

.
=
∑

i∈[n] Wi. Otherwise, the graph i is (∆, η)-narrow.

(∆, η)-Narrow Graph. We apply the following result from (Cohen-Addad et al., 2024), which does not rely on the
predicted information.

Proposition C.6 ((Cohen-Addad et al., 2024)). Given a (∆, η)-narrow graph, there is a randomized algorithm for the
MAXCUT problem with an (expected) approximation ratio of αGW + Ω̃

(
η5/∆2

)
.

(∆, η)-Wide Graph. We are going to prove the following key result. Algorithm 5 is adapted from (Ghoshal et al., 2025).
The original work is based on the vertex prediction model and does not include a proof for (∆, η)-wide graphs. We extend
their proof to cover this case.

Theorem C.7. Given a (∆, η)-wide graph and the prediction model of Definition C.1, there is a randomized algorithm
(Algorithm 5) for the MAXCUT problem with an (expected) approximation ratio of

1−O

( √
η

ε ·∆
+ η

)
(29)

Proof of Theorem C.2. Combining Proposition C.6 and Theorem C.7, and by setting η to be suitably small universal
constant, and setting ∆ = 1/(c · ε) for some suitably small universal constant c finish the proof.

Remark C.8. The paper (Cohen-Addad et al., 2024) achieves a ration of

0.98

(
1−O

(
1

ε ·
√
∆

+ η

))
+ 0.02 · αGW (30)

for (∆, η)-wide graphs. Therefore, they need to set ∆ = 1/(cε2), resulting in a final ratio of αGW +Ω̃(ε4) for (∆, η)-narrow
graphs.

The proof of Theorem C.7 relies on the following lemmas.
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Algorithm 5 Learning Based MAXCUT

1: Truncation. Define the matrix Ãi,j by

Ãi,j =

{
0, ∀j ∈ [n], if i is (∆, η)-narrow
min {Ai,j , η ·Wi/∆} , ∀j ∈ [n], if i is (∆, η)-wide

(31)

2: Prediction.
∀i ∈ [n], zi

.
=

1

deg(i)
·
∑

e∈E,i∈e

bi(e)

2ε
. (32)

3: Optimization. Solve the convex optimization problem

min
x∈[−1,1]n

xT Ãz +
∥∥∥Ãz − Ãx

∥∥∥
1

(33)

4: Rounding. For each i ∈ [n], choose yi ∈ {−1, 1}, which minimizes

(y1:i−1, yi, xi+1:n)
T Ã (y1:i−1, yi, xi+1:n), (34)

where (y1:i−1, yi, xi+1:n) is the vector whose first i− 1 entries comprise the chosen y1, . . . , yi−1, the i(th) entry is yi,
and the remaining entries are xi+1, . . . , xn.

Lemma C.9. and let Err .
=
∑

i∈[n]

√∑
j∈[n] Ã

2
i,j · Var [zj ]. Algorithm 5 returns a solution y′ satisfying

E
z

[
yTAy − (b∗)TAb∗

]
≤ 2ηW + Err. (35)

Lemma C.10. Given prediction model in Definition C.1, and an (∆, η)-wide graph, it holds that

Err ≤
√
η

ε ·∆
·W (36)

Proof of Theorem C.7. First, since (b∗i )
2
= y2i = 1, we have∑

i ̸=j

wi,j(b
∗
i − b∗j )

2 =
∑
i ̸=j

wi,j

(
(b∗i )

2
+
(
b∗j
)2 − 2 · b∗i · b∗j

)
=
∑
i ̸=j

wi,j

(
y2i + y2j − 2 · b∗i · b∗j

)
=
∑
i ̸=j

wi,j

(
y2i + y2j − 2 · yi · yj + 2 · yi · yj − 2 · b∗i · b∗j

)
=
∑
i ̸=j

wi,j(yi − yj)
2 + 2 · yTAy − 2 · (b∗)TAb∗.

Therefore,

1

4
·
∑
i ̸=j

wi,j(yi − yj)
2 =

1

4

∑
i ̸=j

wi,j(b
∗
i − b∗j )

2 − 1

2
·
(
yTAy − (b∗)TAb∗

)
= opt− 1

2
·
(
yTAy − (b∗)TAb∗

)
.

Combing Lemmas C.9 and C.10 and noting that opt ≥W/2 gives

yTAy − (b∗)TAb∗ ∈ O

(( √
η

ε ·∆
+ η

)
· opt

)
, (37)

which proves the claim.

To prove Lemma C.9, we need the following lemmas.

Lemma C.11.
E
[∥∥∥Ãb∗ − Ãz

∥∥∥
1

]
≤ Err (38)
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Lemma C.12 (Rounding Error).

yT Ãy ≤ xT Ãx. (39)

Proof of Lemma C.9: First, note that

yTAy − (b∗)TAb∗ =
∑
i ̸=j

Ai,j

(
yi · yj − b∗i · b∗j

)
=
∑
i ̸=j

(
Ai,j − Ãi,j

)
·
(
yi · yj − b∗i · b∗j

)
+
∑
i̸=j

Ãi,j

(
yi · yj − b∗i · b∗j

)
≤ 2 ·

∑
i̸=j

(
Ai,j − Ãi,j

)
+
∑
i ̸=j

Ãi,j

(
yi · yj − b∗i · b∗j

)
We will bound

∑
i ̸=j

(
Ai,j − Ãi,j

)
by η, and

∑
i ̸=j Ãi,j

(
yi · yj − b∗i · b∗j

)
by Err, which proves Lemma C.9.

Bounding
∑

i ̸=j

(
Ai,j − Ãi,j

)
. Denote V> the collection of (∆, η)-narrow vertices. Since the graph is (∆, η)-wide, we

have For each i ∈ V>, ∑
i∈V>

∑
j∈[n]

Ai,j =
∑
i∈V>

Wi ≤ η ·W. (40)

Next, consider a (∆, η)-wide vertex i. It holds that deg(i) ≥ ∆, and the maximum edge weight in its ∆-suffix is bounded
by η ·Wi/∆. Since

Ãi,j = min {Ai,j , η ·Wi/∆} , ∀j ∈ [n], (41)

Ai,j − Ãi,j = 0 for each j in the ∆-suffix. Therefore, the gap
∑

i ̸=j

(
Ai,j − Ãi,j

)
is at most the total weight of edges in

its ∆-prefix, which is at most η ·Wi. It follows that∑
i∈[n]\V>

∑
j∈[n]\{i}

(
Ai,j − Ãi,j

)
≤

∑
i∈[n]\V>

η ·Wi ≤ η ·W. (42)

Bounding
∑

i ̸=j Ãi,j

(
yi · yj − b∗i · b∗j

)
. First, based on Lemma C.12:

yT Ãy − (b∗)T Ãb∗ = yT Ãy − xT Ãx+ xT Ãx− (b∗)T Ãb∗ ≤ xT Ãx− (b∗)T Ãb∗.

It remains to bound xT Ãx − (b∗)T Ãb∗. First, observe that b∗ is also solution for the optimization problem specified in
Equation (33). Since x is the optimal one,

xT Ãz +
∥∥∥Ãz − Ãx

∥∥∥
1
≤ (b∗)T Ãz +

∥∥∥Ãz − Ãb∗
∥∥∥
1

Further, since x ∈ {−1, 1}n,

xT Ãx− xT Ãz = xT (Ãx− Ãz) ≤ ∥x∥∞ ·
∥∥∥Ãx− Ãz

∥∥∥
1
≤
∥∥∥Ãx− Ãz

∥∥∥
1
.

Therefore,

xT Ãx− (b∗)T Ãb∗ = xT Ãx− xT Ãz + xT Ãz − (b∗)T Ãb∗

≤
∥∥∥Ãx− Ãz

∥∥∥
1
+ xT Ãz − (b∗)T Ãb∗ ≤ (b∗)T Ãz +

∥∥∥Ãz − Ãb∗
∥∥∥
1
− (b∗)T Ãb∗.

Taking expectation of both sides and observing that E [zi] = b∗i gives

E
[
xT Ãx− (b∗)T Ãb∗

]
≤ E

[∥∥∥Ãz − Ãb∗
∥∥∥
1

]
.

Applying Lemma C.11 finishes the proof.
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Proof of Lemma C.11. First, note that ∀i ∈ [n], it holds that

E [zi] = b∗i ,

E
[
(Ãz)i

]
= E

∑
j∈[n]

Ãi,jzj

 = (Ãb∗)i.

Since the bi(e)’s are at least pairwise independent, so are the zj . Therefore,

Var
[
(Ãz)i

]
=
∑
j∈[n]

Ã2
i,j · Var [zj ] .

By Jensen’s inequality

E

[√∣∣∣(Ãz)i − (Ãb∗)i

∣∣∣2] ≤√E
[∣∣∣(Ãz)i − (Ãb∗)i

∣∣∣2] =√E
[∣∣∣(Ãz)i − E

[
(Ãz)i

]∣∣∣2] =√∑
j∈[n]

Ã2
i,j · Var [zj ].

Finally,

E
[∥∥∥Ãb∗ − Ãz

∥∥∥
1

]
=
∑
i∈[n]

E
[∣∣∣(Ãb∗)i − (Ãz)i

∣∣∣] ≤ ∑
i∈[n]

√∑
j∈[n]

Ã2
i,j · Var [zj ].

Proof of Lemma C.10. First, the variance of the zi satisfies

Var [zi] ∈ O

(
1

deg(i) · ε2

)
.

Therefore,

Err =
∑
i∈[n]

√∑
j∈[n]

Ã2
i,j · Var [zj ] ∈ O

1

ε

∑
i∈[n]

√√√√∑
j∈[n]

Ã2
i,j

deg(j)

.

Denote V> the collection of (∆, η)-narrow vertices. For each i ∈ V>, since Ãi,j = 0,√√√√∑
j∈[n]

Ã2
i,j

deg(j)
= 0. (43)

On the other hand, for each (∆, η)-wide vertex i, it holds that deg(i) ≥ ∆, and

max
j∈[n]

Ãi,j ≤ η ·Wi/∆. (44)

Therefore, √√√√∑
j∈[n]

Ã2
i,j

deg(j)
≤

√√√√∑
j∈[n]

Ã2
i,j

∆
≤

√√√√∑
j∈[n]

Ãi,j · η ·Wi

∆2
≤
√
η ·Wi

∆
.

And

∑
i/∈V>

√√√√∑
j∈[n]

Ã2
i,j

deg(j)
≤
∑
i/∈V>

∑
j∈[n]

√
η ·Wi

∆
≤
√
η ·W
∆

.
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Proof of Lemma C.12. We prove by induction on i that

(y1:i−1, yi, xi+1:n)
T Ã (y1:i−1, yi, xi+1:n) ≤ xT Ãx. (45)

When i = 1, since Ã1,1 = 0, it holds that

f(y1) = (y1, x2:n)
T Ã (y1, x2:n) = y1 ·

∑
i̸=1

2Ã1,ixi + C,

where C does not depend on y1. Therefore, f is linearly in y1, and either f(−1) ≤ f(x1) or f(1) ≤ f(x1) holds. We can
pick y1 ∈ {−1, 1} so that f(y1) ≤ f(x1).

Via similar argument, for each i > 1, either:

(y1:i−1,−1, xi+1:n)
T Ã (y1:i−1,−1, xi+1:n) ≤ (y1:i−1, xi:n)

T Ã (y1:i−1, xi:n) ≤ xT Ãx,

or

(y1:i−1, 1, xi+1:n)
T Ã (y1:i−1, 1, xi+1:n) ≤ (y1:i−1, xi:n)

T Ã (y1:i−1, xi:n) ≤ xT Ãx.

hold. This proves our claim.

25



Improved Approximations for Hard Graph Problems using Predictions

D. Probability Facts
Fact D.1. Let X1, . . . , Xn be 4-wise independent random variables with mean 0. Then for each t ∈ R≥0,

Pr

∣∣∣∣∣∣
∑
i∈[n]

Xi

∣∣∣∣∣∣ ≥ t

 ≤ ∑i∈[n] E[X4
i ] + 6 ·

∑
i ̸=j E[X2

i ]E[X2
j ]

t4
. (46)

Proof. By Markov’s inequality,

Pr

∣∣∣∣∣∣
∑
i∈[n]

Xi

∣∣∣∣∣∣ ≥ t

 ≤ E
[∣∣∣∑i∈[n] Xi

∣∣∣4]
t4

. (47)

On the other hand, since the Xi are 4-wise independent mean zero random variables,

E


∣∣∣∣∣∣
∑
i∈[n]

Xi

∣∣∣∣∣∣
4
 = E

∑
i∈[n]

X4
i +

(
4

2

)
·
∑
i̸=j

X2
i X

2
j + 2 ·

(
4

2

) ∑
i ̸=j ̸=k

XiXjX
2
k +

(
4

1

)
·
∑
i ̸=j

XiX
3
j

 (48)

=
∑
i∈[n]

E[X4
i ] +

(
4

2

)
·
∑
i ̸=j

E[X2
i ]E[X2

j ]. (49)

E. Proofs from Section 4
Proof of Theorem 4.1. We first claim that S ← S0 ∪S1 ∪S2 is a vertex cover. This claim is straightforward: S0 ∪S1 forms
a vertex cover for heavy-heavy and heavy-light edges, while S2 covers light-light edges. Together, they cover all edges.

Next, combining Lemma 4.3, Lemma 4.4, and Lemma 4.5 yields:

E[|S|] ≤ E[|S0|+ |S1|+ |S2|] (50)
≤ E[|S0 ∩ C|+ |S0 \ C|+ |S1|+ |S2|] (51)

≤ E
[
|S0 ∩ C|+ |S0 \ C|+ |S1|+ |C<∆ \ (S0 ∪ S1)| ·

(
2− 2

log log∆

log∆

)]
(52)

≤ E
[
|S0 ∩ C|+ |C<∆ \ (S0 ∪ S1)| ·

(
2− 2

log log∆

log∆

)]
+ ε10 · |C|+ 2 · ε200 · |C≥∆| (53)

≤ |C| ·
(
2− 2

log log∆

log∆

)
+ ε10 · |C|+ 2 · ε200 · |C≥∆| (54)

≤ |C| ·
(
2 + 3 · ε10 − 2

log log∆

log∆

)
= |C| ·

(
2− Ω

(
log log 1/ε

log 1/ε

))
. (55)

Proving Lemmas 4.3 to 4.5 require the following additional lemma.

Lemma E.1. Let v be a fixed vertex satisfying deg(v) ≥ ∆. Then

Pr
[
mv ̸= 1[v∈C]

]
≤ exp

(
−2 · deg(v) · ε2

)
. (56)

Proof of Lemma E.1. Without loss of generality, assume that v ∈ C. For each u ∈ N(v), let Xu ∈ {0, 1} be the
prediction of whether v ∈ C, by the edge e = (u, v). Then mv ̸= 1[v∈C] if

∑
u∈N(v) Xu ≤ deg(v)/2. Note that
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E
[∑

u∈N(v) Xu

]
= deg(v) · (1/2 + ε). By Hoeffding’s inequality, when deg(v) ≥ ∆

Pr

 ∑
u∈N(v)

Xu ≤ deg(v)/2

 ≤ exp

(
−2 · deg(v)

2 · ε2

deg(v)

)
= exp

(
−2 · deg(v) · ε2

)
.

We are ready to prove Lemmas 4.3 to 4.5.

Proof of Lemma 4.3. Vertices from V \ C are added to S0 when one of the following events occurs:

(1) There exists a vertex v ∈ C≥∆ such that mv = 0. In this case, Algorithm 1, line 12 adds N(v) to S0, which may
include vertices from V \ C.

(2) A vertex v /∈ C with deg(v) ≥ ∆ and mv = 1 can also be added to S0 in Algorithm 1, line 10. This occurs only if
either:

(a) v has a neighbor u with deg(u) < ∆; or
(b) all its neighbors u satisfy deg(u) ≥ ∆, but at least one neighbor u has mu = 0. In this case, v is also added to S0

when Algorithm 1 adds N(u) to S0. This is already accounted for in Case (1).

To bound the number of vertices added to S0 from V \ C, it suffices to separately bound the numbers added from cases (1)
and (2.a).

Case (1): In this case, based on Lemma E.1, the expected number is bounded by

E

 ∑
v∈C≥∆

1[mv=0] · deg(v)

 =
∑

v∈C≥∆

Pr [mv = 0] · deg(v) (57)

≤
∑

v∈C≥∆

exp
(
−2 · deg(v) · ε2

)
· deg(v) (58)

≤ |C≥∆| · exp
(
−2 ·∆ · ε2

)
·∆ (59)

≤ ε10 · |C≥∆| , (60)

where Equation (59) follows since the function y = x · exp (−2 · x · ε2) decreases when x ≥ 1/(2 · ε2), and Equation (60)
follows since ∆ ≥ 1/ε2, for moderately small ε, it holds that exp

(
−2 ·∆ · ε2

)
·∆ ≤ ε10.

Case (2.a): We partition the vertices v added to S0 in the this case, into a collection of |C| subsets, denoted as
{Pu : u ∈ C<∆}, as follows. Since v /∈ C, it holds that N(v) ⊆ C, otherwise the edges incident to v are not cov-
ered. Therefore, N(v)∩C<∆ ̸= ∅. We pick an arbitrary vertex u ∈ N(v)∩C<∆ and place v into Pu. Based on Lemma E.1,
we see that

Pr [v ∈ Pu] ≤ Pr [mv = 1] ≤ exp
(
−2 ·∆ · ε2

)
.

It remains to bound
∑

u∈C<∆
|Pu| . Since each |Pu| can be viewed as a sum of at most deg(u) ≤ ∆ indicator random

variables, each taking one with probability at most exp
(
−2 ·∆ · ε2

)
, it concludes that∑

u∈C<∆

E[|Pu|] =
∑

u∈C<∆

∆ · exp
(
−2 ·∆ · ε2

)
≤ ε10 · |C<∆| , (61)

where the last inequality holds if ε is moderately small.

Case (2.b): Note that such a vertex v is already accounted for in Case (1) since it has neighbor u ∈ C≥∆ with mu = 0.
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Remark E.2. Indeed 4-wise independence in the prediction model of Definition 1.1 is enough to establish this proof. For
example, let v ∈ C≥∆, and we would like to prove that

deg(v) · Pr [mv = 0] ∈ o(1). (62)

Let Xu
.
= 1[bv((u,v))=0] −

(
1
2 − ε

)
, u ∈ N(v) be 4-wise independent random variables, where bv((u, v)) is the prediction

of v from the edge (u, v). Then

E [Xu] = 0,

E[X2
u] =

(
1

2
+ ε

)(
1

2
− ε

)
,

E[X4
u] =

(
1

2
+ ε

)
·
(
1

2
− ε

)4

+

(
1

2
− ε

)
·
(
1

2
+ ε

)4

=

(
1

2
+ ε

)
·
(
1

2
− ε

)
· 2 ·

(
1

4
+ ε2

)
≤ 1

8
.

Based on Fact D.1, there exists some universal constant c > 0, s.t.,

Pr [mv = 0] · deg(v) = Pr

 ∑
u∈N(v)

Xu ≥ deg(v) · ε

 · deg(v)
≤ deg(v)/8 + 6 · deg(v) · (deg(v)− 1)/16

deg(v)4ε4
· deg(v) ≤ c

deg(v)ε4
.

If we pick a threshold ∆ properly, e.g., ∆ ∈ Ω(1/ε14, then deg(v) ≥ ∆ implies that

c

deg(v)ε4
∈ O(ε10). (63)

Proof of Lemma 4.4. We will show that

(1) C≥∆ ∪ S0 covers all heavy-heavy and heavy-light edges, and

(2) E[|C≥∆ \ S0|] ≤ ε200 · |C≥∆|.

Let C1 be the optimal vertex cover for the collection of edges that are incident to at most one vertex with degree ≥ ∆ and
not covered by S0. It follows that |C1| ≤ |C≥∆ \ S0|

E[|S1|] ≤ E[2 · |C1|] ≤ E[2 · |C≥∆ \ S0|] ≤ 2 · ε200 · |C≥∆| . (64)

Proving (1): Each heavy-heavy edge is trivially covered by C≥∆, as at least one of its endpoints belongs to C and,
consequently, to C≥∆. For each heavy-light edge (u, v), if one of its endpoints belongs to C≥∆, then the edge is covered.
Otherwise, without loss of generality, assume deg(v) ≥ ∆ and v /∈ C≥∆. We claim that (v, u) must already be covered by
S0.

Note that v does not satisfy Line 7 of Algorithm 1, as one of its neighbors, u, has degree deg(u) < ∆. Therefore, Algorithm 1
either adds v to S0, or it adds N(v) to S0. In both cases, (v, u) is covered by S0.

Proving (2): Consider a fixed v ∈ C≥∆. If v /∈ S0, then either

• mv = 0, which happens with probability (according to Lemma E.1)

Pr [mv = 0] ≤ exp
(
−2 · deg(v) · ε2

)
≤ exp

(
−2 ·∆ · ε2

)
. (65)

• Or all its neighbors u have degree ≥ ∆ and mu = 1. In this case, at least one neighbor u /∈ C, as otherwise, we could
remove v from C while maintaining it as a valid cover. Hence,

Pr [v /∈ S0] ≤ Pr [mu = 1] ≤ exp
(
−2 · deg(u) · ε2

)
≤ exp

(
−2 ·∆ · ε2

)
.
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We conclude that

E[|C \ S0|] =
∑

v∈C≥∆

E[1[v/∈S0]] ≤ |C≥∆| · exp
(
−2 ·∆ · ε2

)
= |C≥∆| · exp (−200 · ln(1/ε)) ≤ |C≥∆| · ε200.

Proof of Lemma 4.5. By definition, S0 ∪ S1 covers all heavy-heavy and heavy-light edges. Since C<∆ is a cover for the
light-light edges, it also covers any edges not covered by S0 ∪ S1. Furthermore, since S2 is a

(
2− 2 log log∆

log∆

)
-approximate

cover for the edges not covered by S0 ∪ S1, the claim follows.
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