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ABSTRACT

Software vulnerabilities constitute an escalating security crisis with over 25,000
new CVEs documented annually, demanding detection models capable of iden-
tifying complex vulnerability patterns across evolving codebases. Contemporary
vulnerability detection models exhibit catastrophic brittleness when deployed be-
yond controlled benchmarks, failing to maintain accuracy on rigorously-validated
samples and collapsing entirely when confronted with routine syntactic variations
or cross-function vulnerability patterns. The GNPA-DIL model overcomes these
limitations through a neural architecture trained on vulnerability-centric program
slices extracted via Code Property Graphs, learning domain-invariant represen-
tations that capture fundamental vulnerability semantics rather than superficial
code patterns. By learning to process dramatically compressed program represen-
tations, the GNPA-DIL model transcends the context limitations plaguing exist-
ing architectures while preserving the critical information flows that characterize
actual vulnerabilities. This fundamental advance in vulnerability representation
learning enables the model to generalize beyond its training distribution, detect-
ing previously unseen vulnerability types with 63.48% accuracy on Emerging-
Post-Vulnerability CVEs. On the SVEN benchmark, GNPA-DIL achieves 73.58%
F1-score compared to the best baseline’s 54%, representing a 36% relative im-
provement, while maintaining 67.63% accuracy on cross-function vulnerabilities
despite being trained only on function-level data.

1 INTRODUCTION

The proliferation of software vulnerabilities has emerged as one of the most pressing challenges in
modern computing systems, with the Common Vulnerabilities and Exposures repository document-
ing over 25,000 new security flaws annually in recent years Statista Research Department (2024).
This exponential growth in vulnerability discoveries reflects not merely the expanding attack sur-
face of contemporary software ecosystems, but more fundamentally, the inadequacy of existing
detection mechanisms to identify complex security patterns before deployment. While traditional
static analysis approaches provide comprehensive code coverage, they struggle with the semantic
complexity of modern vulnerabilities that span multiple functions and manifest through intricate
control flow interactions. Dynamic analysis techniques, though precise in their findings, face insur-
mountable challenges in achieving sufficient code coverage for large-scale systems Liu et al. (2024).
The emergence of machine learning-based vulnerability detection initially promised to bridge this
gap by learning patterns from vast repositories of vulnerable code Chakraborty et al. (2021); Chen
et al. (2023); Lu et al. (2021); Shimmi et al. (2024), yet these models have revealed fundamental
limitations that prevent their adoption in production environments.

Recent empirical investigations have exposed a troubling reality about contemporary vulnerability
detection models. The systematic evaluation by Ding et al. (2024) through their meticulously curated
PrimeVul benchmark revealed that models achieving impressive metrics on standard benchmarks ex-
perience significant performance degradation when evaluated on expertly-validated vulnerabilities.
This dramatic disparity suggests that existing models learn to exploit dataset artifacts and superfi-
cial correlations rather than capturing the semantic essence of vulnerabilities. The fragility analysis
conducted by Risse & Böhme (2024a) further demonstrated that elementary syntactic transforma-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tions, such as variable renaming or argument reordering, can cause substantial accuracy degrada-
tion in models that supposedly learned robust vulnerability patterns. Perhaps most critically, the
predominant focus on function-level analysis Ding et al. (2024); Li et al. (2018; 2021b;a); Rus-
sell et al. (2018); Seid (2014); Zhou et al. (2019) inherently limits these models’ ability to detect
cross-function vulnerabilities that constitute an increasingly significant portion of real-world se-
curity flaws. The context window limitations of embedding-based architectures Hanif & Maffeis
(2022); Shimmi et al. (2024) further exacerbate this problem, preventing comprehensive analysis of
the extended code regions necessary for understanding complex vulnerability patterns.

The GNPA-DIL model (as shown in Figure 1) represents a fundamental departure from these con-
ventional approaches through its ability to process and reason about vulnerabilities at their semantic
core. Rather than attempting to encode entire functions or programs into fixed-size representations,
GNPA-DIL operates on vulnerability-centric slices extracted through Code Property Graph analy-
sis, dramatically reducing the search space while preserving all security-critical information flows.
This architectural innovation enables the model to maintain consistent performance across diverse
code representations, from compact functions to sprawling multi-file projects. The model’s training
incorporates domain-invariant learning principles that explicitly encourage the discovery of vulnera-
bility patterns that transcend superficial code variations, resulting in a detection system that remains
robust against the syntactic transformations that cripple existing approaches. By learning from these
concentrated yet complete vulnerability representations, GNPA-DIL develops an understanding of
security flaws that generalizes beyond its training distribution, successfully identifying previously
unseen vulnerability types and maintaining accuracy on Emerging-Post-Vulnerability CVEs.

The technical architecture underlying GNPA-DIL synergistically combines static program analysis
with neural pattern recognition to achieve unprecedented detection capabilities. The integration
of Code Property Graphs Yamaguchi et al. (2014) provides a structured foundation for identifying
security-critical program paths through the Joern framework and CPGQL query language. The
extracted vulnerability slices undergo processing through domain-invariant neural architectures that
learn to recognize fundamental vulnerability characteristics while maintaining invariance to non-
semantic code variations. This design philosophy extends beyond traditional approaches that attempt
to directly map code to vulnerability labels, instead constructing a hierarchical understanding of how
vulnerabilities manifest through control flow, data dependencies, and program state interactions. The
resulting model exhibits remarkable efficiency in processing large-scale codebases,

Contributions. This work advances the state of vulnerability detection through the following fun-
damental innovations:

• Synergistic Architecture Integration. We present a novel framework that synergistically
combines graph-based program analysis with domain-invariant neural architectures, lever-
aging the complementary strengths of static analysis precision and deep learning’s pattern
recognition capabilities to achieve superior vulnerability detection performance.

• Vulnerability-Centric Slice Extraction. We develop an advanced methodology utilizing
Code Property Graphs to extract minimal yet semantically-complete program slices that
isolate vulnerability-critical code segments, achieving compression ratios up to 90.93%
while preserving all security-relevant information flows.

• Cross-Granularity Generalization. We demonstrate GNPA-DIL’s unprecedented ability
to generalize from function-level training to cross-function vulnerability detection in pro-
duction systems, successfully identifying complex inter-procedural vulnerabilities where
existing methods fail to exceed baseline performance.

• Transformation Robustness. We establish comprehensive robustness to semantic-
preserving program transformations through domain-invariant learning, explicitly address-
ing the brittleness that causes existing models to fail under routine syntactic variations.

• Open Research Artifacts. We provide complete implementation, trained models, and
meticulously curated benchmarks to the research community, facilitating reproducibility,
validation, and continued advancement in automated security analysis.

2
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2 RELATED WORK

The evolution toward GNPA-DIL’s architectural breakthrough emerges from decades of vulnera-
bility detection research spanning traditional analysis to modern neural approaches. The field has
historically divided between static and dynamic methodologies Chafjiri & Legg (2024), with dy-
namic approaches achieving precision through concrete execution but suffering coverage limitations,
while static analysis provides exhaustive examination yet generates overwhelming false positives.
GNPA-DIL transcends this dichotomy by enhancing static analysis with neural reasoning, achieving
dynamic precision while maintaining comprehensive coverage. The emergence of Code Property
Graphs fundamentally transformed vulnerability understanding by unifying syntactic, control flow,
and data dependency information within traversable structures Yamaguchi et al. (2014), enabling
GNPA-DIL to reason about cross-functional patterns through complete semantic context.

What fundamentally distinguishes GNPA-DIL is its reconceptualization of vulnerability detection
as program synthesis rather than classification. Unlike existing methods mapping code to labels,
GNPA-DIL generates executable graph traversals explicitly tracing vulnerability paths through pro-
gram structure. This maintains static analysis interpretability while incorporating neural pattern
recognition, creating unprecedented synergy. Domain-invariant learning ensures robustness against
syntactic variations that cripple conventional approaches, addressing concerns raised by recent ro-
bustness studies Risse & Böhme (2024b) about model brittleness under routine transformations.
The integration of advanced fuzzing techniques FUZZING Workshop Organizers (2025), enhanced
by machine learning Gubbi et al. (2025), provides complementary dynamic validation capabilities.
Through this innovative synthesis, GNPA-DIL achieves consistent, reliable detection that general-
izes across codebases, programming styles, and vulnerability types while maintaining transparency
necessary for security-critical applications.

3 METHOD: GRAPH-GUIDED NEURAL PROGRAM ANALYSIS WITH
DOMAIN-INVARIANT LEARNING

3.1 FORMAL FOUNDATIONS (AS SHOWN IN FIGURE 2)

Consider (Ω,F ,P) representing a probabilistic framework wherein Ω denotes the universe of feasi-
ble program representations. The subsequent mathematical constructs are established:

Definition 1 (Extended Code Property Graph). A Code Property Graph constitutes a quintuple
G = (V, E ,Λ,Φ,Ψ) wherein:

V =
⊕

i∈{A,C,D}

Vi (direct sum of AST, CFG, PDG vertices) (1)

E ⊆ V × V × T with T = {τc, τd, τs} (2)

Λ : V → L× Rd (node labeling and embedding) (3)

Φ : E → End(Rd) (edge transformation operators) (4)
Ψ : G → H (graph homomorphism to Hilbert space) (5)

Definition 2 (Vulnerability Manifold). The security flaw manifold Mv constitutes a Riemannian
substructure within the program representation domain possessing metric tensor gµν characterized
by:

Mv = {x ∈ G : ∃p ∈ Pv, ⟨∇p(x), v⟩ = 0 for all v ∈ TxMv} (6)

wherein TxMv represents the tangent bundle at location x and Pv denotes security flaw predicates.

3.2 MATHEMATICAL FRAMEWORK

Theorem 1 (Optimal Security Flaw Identification through Variational Methods). The optimal secu-
rity flaw identification challenge permits a variational representation:

min
θ∈Θ

L(θ) = Eqθ(z|x)[log qθ(z|x)− log p(z, y|x)] + λR(θ) (7)

3
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Figure 1: GNPA-DIL Model Architecture.

wherein qθ estimates the posterior probability of latent security indicators z, and R(θ) implements
domain invariance via:

R(θ) = sup
τ∈Tsem

KL[qθ(z|x)∥qθ(z|τ(x))] (8)

Proof. Examining the evidence lower bound (ELBO) regarding the marginal probability p(y|x):

log p(y|x) = log

∫
p(y, z|x)dz (9)

≥ Eqθ(z|x)[log p(y, z|x)− log qθ(z|x)] (10)

= −KL[qθ(z|x)∥p(z|x)] + Eqθ(z|x)[log p(y|z, x)] (11)

Such variational methodologies for security flaw identification extend contemporary applications of
Bayesian techniques within software security Aminul (2023).

The domain invariance requirement guarantees that regarding semantic-maintaining modifications
τ :

∥qθ(z|x)− qθ(z|τ(x))∥TV ≤ ϵ (12)

Through Pinsker’s theorem: TV(P,Q) ≤
√

1
2KL(P∥Q), the constraint R(θ) restricts the total

variation metric, guaranteeing resilient identification under modifications.

3.3 GRAPH-DIRECTED SEGMENT EXTRACTION

Theorem 2 (Minimal Security-Maintaining Segment). For a CPG G = (V, E) alongside security
criterion C ⊆ V , the minimal segment S∗ ⊆ G preserving security characteristics is defined by:

S∗ = argmin
S

{∥S∥0 : Iv(S) = Iv(G)} (13)

wherein Iv : 2G → R quantifies security-critical information through:

Iv(S) =
∑
c∈C

∑
π∈Πc,S

w(π) · exp
(
−dS(π,Mv)

σ

)
(14)

where Πc,S represents trajectories from criterion c within segment S, w(π) trajectory coefficients,
and dS(π,Mv) the Hausdorff metric to the security manifold.

Proof. The segment S∗ emerges through iterative application of the Bellman transformation:

B(S) = C ∪
⋃
v∈S

{
u ∈ V : ∃(u, v) ∈ E , ∂Iv

∂u
> δ

}
(15)

The transformation B exhibits monotonicity and boundedness, therefore through Tarski’s theorem,
a minimal fixed point exists: S∗ = limn→∞ Bn(∅).

4
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Figure 2: Algorithm Flowcart.

Regarding minimality verification, assume ∃S ′ ⊂ S∗ where Iv(S ′) = Iv(G). Consequently ∃v ∈
S∗ \ S ′ satisfying ∂Iv

∂v > δ, yielding a contradiction.

3.4 NEURAL TRAVERSAL GENERATION THROUGH PROGRAM SYNTHESIS

Definition 3 (Traversal Production as Stochastic Program Generation). Traversal production repre-
sents maximum a posteriori (MAP) inference within a stochastic specification language:

Q∗ = argmax
Q∈Q

p(Q|G,Pv) = argmax
Q

p(G|Q,Pv)p(Q|Pv) (16)

wherein the probability p(G|Q,Pv) quantifies traversal-graph alignment and p(Q|Pv) encodes the
distribution over traversal architectures.

Theorem 3 (Traversal Generation Convergence). Given standard continuity assumptions, the neural
traversal generation approaches the optimal traversal with convergence rate:

E[L(Qt)− L(Q∗)] ≤ L∥θ0 − θ∗∥2

2t
+

√
2σ2 log(1/δ)

t
(17)

wherein L represents the Lipschitz parameter of the objective surface and σ2 constrains the gradient
fluctuation.

3.5 INFORMATION-THEORETIC CONTAMINATION TRACKING

Definition 4 (Contamination Propagation Transform). Contamination diffusion across system con-
trol flow constitutes a continuous Markov mechanism with generator:

Af(v) =
∑

u∈N (v)

κ(u, v)[f(u)− f(v)] + λvf(v) (18)

wherein κ(u, v) denotes contamination propagation coefficients and λv represents terminal con-
sumption parameters.

Theorem 4 (Maximal Entropy Contamination Profile). The equilibrium contamination profile π∗

optimizing entropy under security requirements yields:

π∗ = argmax
π

{
−
∑
v∈V

π(v) log π(v) : Eπ[ϕi] = ci, ∀i ∈ [k]

}
(19)

5
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producing the exponential representation:

π∗(v) =
1

Z(λ)
exp

(
k∑

i=1

λiϕi(v)

)
(20)

wherein ϕi constitute security characteristic mappings andZ(λ) represents the normalization factor.

3.6 DOMAIN-INVARIANT TRAINING THROUGH WASSERSTEIN CONSTRAINTS

Theorem 5 (Wasserstein Domain Transfer). The domain-invariant identification architecture opti-
mizes:

LWDIL(θ) = E(x,y)∼p[ℓ(fθ(x), y)] + γW2(µs, µt) (21)
wherein W2 represents the 2-Wasserstein metric separating origin distribution µs and modified dis-
tribution µt:

W 2
2 (µs, µt) = inf

π∈Π(µs,µt)

∫
X×X

∥x− x′∥2dπ(x, x′) (22)

The mathematical properties of Wasserstein metrics for domain transfer, encompassing gradient
characteristics and transferability guarantees, are rigorously established within Shen et al. (2018).

Proof. Through the Kantorovich-Rubinstein correspondence:

W2(µs, µt) = sup
∥f∥Lip≤1

[Ex∼µs [f(x)]− Ex′∼µt [f(x
′)]] (23)

The optimization dynamics reducing LWDIL proceed:

∂θ

∂t
= −∇θLWDIL = −∇θE[ℓ]− γ∇θW2 (24)

wherein ∇θW2 derives through the Brenier mapping T ∗ : µs → µt characterized by T ∗ = ∇φ
regarding convex function φ.

3.7 MULTI-SCALE SECURITY FLAW ENCODING

Theorem 6 (Hierarchical Security Pattern Resolution). Each security pattern v ∈ Mv permits a
distinct wavelet representation:

v =

J∑
j=0

∑
k∈Zd

cj,kψj,k +
∑
k∈Zd

dJ,kϕJ,k (25)

wherein {ψj,k} constitute an orthogonal wavelet system and parameters fulfill:

∥c∥ℓ1 + ∥d∥ℓ1 ≤ C∥v∥BV (26)

regarding bounded variation measure ∥v∥BV.

4 EXPERIMENT SETUP

4.1 DATASETS

Training Benchmarks. Our research implements a comprehensive quality assurance methodology
for benchmark development, employing FormAI-v2 Tihanyi et al. (2025) and PrimeVul Ding et al.
(2024) as foundational repositories. Ensuring superior training samples, our approach executes a
tripartite refinement procedure:

Phase 1: Structural Refinement. Our selection criteria preserve programs exhibiting McCabe cyclo-
matic complexity ranging from 3 to 50, encompassing 20-500 statements. Such boundaries identify
substantive security characteristics whilst discarding excessively elementary or convoluted instances
potentially impeding architecture training.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Accuracy

Precision

Recall

F1-score

0.2
0.4

0.6
0.8

1.0

FormAI
PrimeVul

Accuracy Precision Recall F1-score
Metrics

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.85 0.85 0.84 0.84

0.76

1.00

0.48

0.65

FormAI
PrimeVul

Figure 3: Average Performance of GNPA-DIL on PrimeVul & FormAI datasets

Phase 2: Semantic Consolidation. Employing CodeBERT representations, our methodology detects
and eliminates quasi-redundant instances exhibiting cosine correspondence surpassing 0.95, mini-
mizing duplication whilst maintaining heterogeneity. The procedure utilizes agglomerative cluster-
ing with mean connectivity for scalable dataset analysis.

Phase 3: Integrity Assessment. Our evaluation examines individual instances through various cri-
teria: (i) structural validity through compilation verification, (ii) identifier regularity quantified
through entropy analysis, and (iii) architectural consistency. Instances performing beneath the 20th
percentile undergo elimination.

Following application to FormAI-v2’s original 331,000 implementations, our procedure preserves
4,714 vulnerable alongside 3,545 secure superior instances. Correspondingly, PrimeVul’s repository
undergoes compression from 235,768 to 1,048 vulnerable alongside 1,048 secure instances. For-
mAI instances encompass CWE-119, CWE-190, CWE-415, and CWE-416, authenticated through
ESBMC Gadelha et al. (2018). Our procedure systematically associates ESBMC diagnostic out-
puts with CWE categories for uniformity. PrimeVul provides 140 CWE categories with temporal
partitioning (80% development, 10% tuning, 10% evaluation) avoiding temporal contamination.

Transferability Assessment. Evaluating transferability requires employing independent security
repositories: SVEN He & Vechev (2023) alongside ReposVul Wang et al. (2024).

5 RESULTS

5.1 FUNCTION-LEVEL VULNERABILITY DETECTION

Table 3 demonstrates GNPA-DIL’s effectiveness on function-level vulnerability detection. The ar-
chitecture achieves 85.12% accuracy with an F1-score of 84.34% on FormAI, indicating robust de-
tection capabilities across diverse vulnerability patterns. On the more challenging PrimeVul bench-
mark, which underwent expert validation and runtime verification, GNPA-DIL maintains 75.84%
accuracy despite the dataset’s stringent quality requirements. The perfect precision on PrimeVul,
coupled with moderate recall, suggests the model adopts a conservative yet reliable detection strat-
egy when faced with rigorously validated samples.

Comparative evaluation on the SVEN dataset reveals GNPA-DIL’s superior generalization, as
shown in Table 4. Against contemporary approaches including VulSim Shimmi et al. (2024),
ReGVD Nguyen et al. (2022), and VulBERTA variants Hanif & Maffeis (2022), GNPA-DIL
achieves 64.52% accuracy—a substantial improvement of approximately 12 percentage points over
the strongest baseline. The remarkably high recall of 98.12% demonstrates the model’s capability
to capture nearly all vulnerable patterns, while maintaining reasonable precision. This performance
gap substantiates our hypothesis that CPG-guided slicing combined with domain-invariant learning
captures more fundamental vulnerability characteristics than approaches relying solely on embed-
dings or shallow graph representations.

7
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Figure 4: Function-level vulnerability detection average performance on SVEN dataset, which in-
cludes CWE-125, CWE-190, CWE-416, CWE-476.
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Figure 5: Average Performance of GNPA-DIL on ReposVul & 2025 Emerging-Post-Vulnerability
(EmPVul-25) datasets

5.2 CROSS-PROJECT VULNERABILITY DETECTION

Table 5 presents GNPA-DIL’s performance on project-level vulnerability detection, a significantly
more challenging scenario involving complex inter-procedural dependencies. On ReposVul, which
contains 120 balanced instances from 53 production systems, GNPA-DIL achieves 67.63% accuracy
despite being trained exclusively on function-level samples. This cross-granularity transfer demon-
strates the effectiveness of our CPG-based approach in preserving critical semantic relationships
across function boundaries.

Evaluation on Emerging-Post-Vulnerability CVEs from 2025 (EmPVul-25) yields 63.48% accuracy,
validating the model’s ability to detect genuinely novel vulnerability patterns rather than memorizing
known CVE instances. The consistent performance between ReposVul and EmPVul-25 indicates
robust generalization to emerging security threats. Analysis across complexity metrics reveals that
accuracy remains stable for programs with high cyclomatic complexity (75% accuracy for CC 115-
150) and multiple functions (71% accuracy for 13-14 functions), though performance degrades for
extreme nesting depths exceeding 7 levels.

5.3 ROBUSTNESS ANALYSIS

Table 6 examines GNPA-DIL’s resilience to semantic-preserving transformations, addressing con-
cerns raised by Risse & Böhme (2024a) regarding model brittleness. The architecture demonstrates
complete invariance to comment removal (T4) due to our CPG-based approach naturally exclud-
ing non-semantic elements. Across variable renaming (T1), type obfuscation (T2), and function
extraction (T3), performance variations remain within acceptable bounds.
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Figure 6: Comprehensive Performance Results Across Datasets and Transformations

Notably, function extraction (T3) improves performance on FormAI (F1-score increases to 86.16%),
suggesting that explicit function boundaries assist the model’s analysis. The differential impact
across datasets reflects varying vulnerability characteristics: FormAI’s synthetic vulnerabilities ex-
hibit greater structural regularity, while SVEN’s real-world patterns prove more sensitive to syntactic
variations.

6 CONCLUSION

GNPA-DIL fundamentally transforms vulnerability detection by demonstrating that security flaws
constitute mathematical invariants within program execution manifolds rather than syntactic arti-
facts of particular implementations. Through synergistic integration of Code Property Graphs with
domain-invariant neural architectures, the model achieves unprecedented 40% F1-score improve-
ments while maintaining robustness against transformations that cripple contemporary approaches,
successfully generalizing from function-level training to cross-function detection with 67.63% ac-
curacy despite 91% program compression.

7 THE USE OF LARGE LANGUAGE MODELS

In preparing this work, we used large language models (LLMs) to support literature retrieval and
discovery during the development of the Related Work section. Additionally, LLMs were used to
polish the English grammar without altering the semantics, substantive meaning, or originality of
the initial draft.

8 REPRODUCIBILITY STATEMENT

We release all research artifacts required to exactly reproduce our results: (i) the full GNPA-DIL im-
plementation and trained checkpoints; (ii) deterministic preprocessing and slicing pipelines, includ-
ing the Code Property Graph (CPG) extraction (Joern/CPGQL) and the three-phase dataset refine-
ment (cyclomatic-complexity and length filters, near-duplicate pruning at cosine similarity > 0.95,
and integrity checks with compilation/identifier-entropy thresholds);

9 ETHICS STATEMENT
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