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Abstract

Automated architecture design methods, espe-
cially neural architecture search, have attracted
increasing attention. However, these methods nat-
urally need to evaluate numerous candidate ar-
chitectures during the search process, thus com-
putationally extensive and time-consuming. In
this paper, we propose a prior knowledge guided
neural architecture generation method to gener-
ate high-performance architectures without any
search and evaluation process. Specifically, in or-
der to identify valuable prior knowledge for archi-
tecture generation, we first quantify the contribu-
tion of each component within an architecture to
its overall performance. Subsequently, a diffusion
model guided by prior knowledge is presented,
which can easily generate high-performance ar-
chitectures for different computation tasks. Ex-
tensive experiments on new search spaces demon-
strate that our method achieves superior accuracy
over state-of-the-art methods. For example, we
only need 0.004 GPU Days to generate architec-
ture with 76.1% top-1 accuracy on ImageNet and
97.56% on CIFAR-10. Furthermore, we can find
competitive architecture for more unseen search
spaces, such as TransNAS-Bench-101 and NATS-
Bench, which demonstrates the broad applicabil-
ity of the proposed method.

1. Introduction
Neural Architecture Search (NAS) is an effective approach
to automatically designing neural architectures and has seen
success in diverse tasks. NAS generally involves three main
components (Elsken et al., 2019): search space defining pos-
sible architectures, search strategy exploring this vast space
to identify promising candidates, and performance evalu-
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Figure 1. Search cost and performance comparison of our proposed
PG-NAG method against the state-of-the-art NAS methods on
ImageNet.

ation assessing each architecture to find the optimal one.
However, the exhaustive search for an optimal architecture
is computationally demanding due to the vast search space,
which often contains over 1010 possible architectures (Cai
et al., 2019). Furthermore, evaluating each candidate archi-
tecture requires training from scratch on a dataset to obtain
accuracy, leading to significant time and resource costs.

To alleviate these costs, several methods have been intro-
duced to accelerate architecture evaluation, such as per-
formance predictors (Ji et al., 2024) and zero-shot meth-
ods (Peng et al., 2024). These methods aim to predict the
performance of architectures without training from scratch.
However, even with faster evaluations, current NAS meth-
ods still need to evaluate architectures individually, which
remains time-intensive, especially with a large number of
candidates. Therefore, minimizing computational costs re-
mains a central challenge in NAS research.

This leads to growing interest in the Neural Architecture
Generation (NAG) paradigm, which reduces costs by avoid-
ing the exhaustive search approach and instead focuses on
directly generating high-performance architectures. For in-
stance, AutoBuild (Mills et al., 2024) trains a predictor to
rank the performance of the modules in architecture, thus
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constructing architecture by combining high-valued mod-
ules in each layer. DiffusionNAG (An et al., 2024) trains a
diffusion model to generate architectures and utilizes a pre-
dictor to guide the generative direction to high-performance
architectures, thus achieving significant acceleration and
improving search performance.

However, these NAG methods still rely on predictors to
guide the generation, as they lack the methods to investigate
the search space toward optimal solutions systematically.
Without such predictors, these models would randomly se-
lect architecture components, resulting in inefficient explo-
ration. Furthermore, training these predictors will introduce
additional computational overhead.

This paper aims at generating promising architectures with-
out relying on additional predictors. Inspired by (Xiao et al.,
2022), we try to utilize prior knowledge to analyze the im-
portance of operations to improve the efficiency of NAG.
We propose a novel framework to generate architectures
with prior knowledge guidance rather than additional pre-
dictors, entitled PG-NAG. A key consideration for PG-NAG
is ensuring the quality of prior knowledge. This quality
contains two aspects: one is that prior knowledge should be
derived from reliable sources, and the other is that it should
accurately reflect the contributions of various components
within the architecture. PG-NAG not only provides rele-
vant and precise guidance but also allows us to effectively
generate architectures across various search spaces without
additional training.

As shown in Figure 1, PG-NAG can generate promising
architectures and significantly reduce computational com-
plexity. To achieve this, our method learns the key compo-
nents of high-performance architectures from benchmark
datasets to form prior knowledge, which then serves as a
guiding condition to construct the diffusion model. In the
meantime, architectures from benchmark datasets eliminate
the cost of training architectures to obtain accuracy. Notably,
PG-NAG achieves this efficiency with minimal computa-
tional resources, requiring only 0.004 GPU days to generate
well-performing architectures.

• We propose a novel method for neural architecture
generation, i.e., PG-NAG, relying on learning compo-
nent knowledge from high-performance architectures
sampled from benchmark datasets. Significantly differ-
ent from traditional automated design approaches, PG-
NAG generates high-performance architectures with-
out iterative search and additional training costs.

• We design a new diffusion model to generate archi-
tectures, which can leverage prior knowledge to guide
the generation of architectures. This helps generate
architectures that meet the needs of different tasks.

• Experimental results demonstrate that PG-NAG suc-
cessfully generates architectures across multiple un-
seen search spaces, achieving superior performance
compared to state-of-the-art NAS and NAG methods.
The generated architectures not only achieve 97.56%
accuracy on CIFAR-10, but also demonstrate 76.1%
top-1 accuracy when transferred to ImageNet.

2. Related Works
2.1. Neural Architecture Search (NAS)

NAS can discover the optimal architecture from a set of
possible architectures automatically and can be mainly clas-
sified into reinforcement learning-based NAS, evolutionary-
based NAS, and gradient-based NAS (Elsken et al., 2019).
However, regardless of which NAS algorithm is used, many
architectures require being evaluated, resulting in high eval-
uation costs. To alleviate this, various accelerating methods
have been proposed, such as performance predictor (Lu
et al., 2023) and zero-shot (Peng et al., 2024). In any case,
they still need to evaluate massive architectures iteratively,
PG-NAG bypasses this limitation and offers a more efficient
way to generate architectures automatically.

2.2. Diffusion Models

Diffusion models are probabilistic generative models that
progressively destroy data by injecting noise, then learn
to reverse this process for sample generation (Yang et al.,
2023a). Since the initial diffusion model is designed to learn
the data distribution at noise level, it is often modified for
adapting to various controlled generation scenarios. Pre-
vious studies have already made preliminary attempts to
control generation. For example, Classifier-free guidance
methods (Ho & Salimans, 2022) enhance the quality and
diversity of generated samples by mixing score estimates
from conditional and unconditional diffusion models. Fur-
thermore, the research (Vignac et al., 2022) has shown that
noise distributions closely resembling the sample data dis-
tribution can lead to improved performance. Building on
these findings, PG-NAG employs prior knowledge to modify
the noise distribution, thereby better guiding the diffusion
model in generating high-performance architectures.

3. Methods
In this section, we present PG-NAG, a method designed
to generate high-performance architectures for various
tasks by leveraging a small selection of pre-existing high-
performance architectures from benchmark datasets. We
first present the overview. Then, we show how to obtain
prior knowledge and the generation progress based on the
prior knowledge, as illustrated in Figure 2.
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Figure 2. An illustration of PG-NAG, which contains the preparation and utilization of architecture generation model, where the preparation
includes the preparation of prior knowledge and pretrain of the model.

Algorithm 1 Overall Framework of PG-NAG
Input: High-performance architecturesA from benchmarks,
parameter θ for diffusion model, the number of time steps T
Output: The resulting generated high-performance archi-
tecture A∗

1: Let architectures A represent as graphs, each can be
represented as GR = ⟨O, C⟩.

2: Obtain prior knowledge K = Shapley value (GR =
⟨O, C⟩) as Equation (3) and (4)

3: Sample t ∼ Uniform(1, . . . , T )
4: Sample ϵ ∼ N (0, I)
5: Take gradient step on At ∼ pθ(At−1|At,K, ϵ) as Equa-

tion (5)
6: Sample AT ∼ pθ(AT ) = N (0, I)
7: for t←− T to 1 do
8: Compute µt(AT , A, t) from ϵ(AT , A, t)
9: Sample At−1 ∼ qθ(At|At−1,K, µt) as Equation (6)

10: end for
11: return A∗ = A0

3.1. Overview

In PG-NAG, to avoid the computational cost of evaluating
pre-existing architectures, we utilize a subset of architec-
tures A from NAS benchmarks, which contains many archi-
tectures and corresponding accuracy values. We first obtain
prior knowledge K from these architectures using Shapley
values, which quantify the contribution of each operation

and connection in architectures. PG-NAG then proposes
a diffusion model to newly generate high-performance ar-
chitectures under the guidance of prior knowledge K, en-
suring that the generation process is both informed and
efficient, without further evaluations. As illustrated in Al-
gorithm 1, each architecture A ∈ A is represented as a
graph GR = ⟨O, C⟩, O = {o1, . . . , on} is a set of nodes,
C = {cij | (i, j) ⊆ |O| × |O|} is a set of edges, represent-
ing operations and connections between operations, respec-
tively.

Subsequently, we provide a explanation of the proposed
diffusion model. Considering this task in the Denoising
Diffusion Probabilistic Model (DDPM) (Ho et al., 2020),
a small Gaussian noise is gradually injected into data as
a Markov chain. This process ultimately converges into a
white noise distribution after T iterations, leading to the
following forward diffusion process:

q(A1:T |A0,K) =
T∏

t=1

q(At|At−1,K) (1)

where A0, . . . , AT denote a sequence of latent variables
with the same dimension, t is the index of diffusion steps,
as the data A0 ∼ q(A0).

In the reverse generative process, the noise is gradually re-
moved from the data to recover architecture A from the
white noise. This is achieved by iteratively applying a care-
fully designed reverse process that targets the original data
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distribution. Specifically, at each step t, we aim to approx-
imate the conditional distribution pθ(At−1|At,K), which
represents the probability of the architecture before noise
has been added. This distribution is calculated under the
condition of the current noisy state and the prior knowledge
K. Thus, this process is essentially a data generation process
as a reverse dynamics of the above diffusion process. The
reverse process with a neural network parameterized by θ is
represented by Equation (2).

pθ(A0:T−1, AT ) =

T∏
t=1

pθ(At−1|At,K) (2)

During this reverse process, the start of generating archi-
tectures pθ(AT ) is set as a standard Gaussian and then is
used as the prior distribution, i.e., from which new sam-
ples are generated. For an architecture, it can be gener-
ated by drawing chaotic statuses AT from pθ(AT ), and
then iteratively refined through the reverse Markov kernels
pθ{A0:T−1, AT }.

3.2. Prior Knowledge Learning

To effectively guide the generation process, PG-NAG lever-
ages prior knowledge obtained from high-performance ar-
chitectures in benchmark datasets, eliminating the need for
additional training. The process begins by sampling top-k
architectures from popular benchmarks to study the compo-
nents in high-performance architectures. With the Shapley
value evaluation, we quantify the contribution of each oper-
ation and connection to overall architecture performance.

Due to the interdependence between operations and con-
nections within an architecture, the Shapley values reflect
these interactions, treating the architecture as a coopera-
tive game. Specifically, we evaluate the contributions of
two components: operations and the connections between
operations. The connections are represented as edges. In
architecture, edges are directional to represent the flow of
information, and learning the interactions of operations is
critical to obtain important information contained in the
architecture (Chen et al., 2021b). While connections and
operations significantly impact architecture performance,
their individual contributions alone do not guarantee high-
performance architectures. Instead, we focus on learning
one-hop subgraphs for each node to effectively capture the
connections and their architectural relevance. The Shapley
value measures the average marginal contribution of oper-
ations and one-hop subgraphs to the overall performance
of an architecture. It is calculated by evaluating the per-
formance disparity between the complete architecture and
those without specific operations or subgraphs.

Specifically, each architecture A is represented as a graph,
which contains operations oi ∈ O and one-hop subgraphs
gj ∈ G. The Shapley value is utilized to distribute the total

performance gains V (N) to each operation and one-hop
subgraphs in N , while N represents the number of opera-
tions and subgraphs in this architecture. Therefore, a set of
individual operations NO and a set of individual subgraphs
NG can be modeled as players in the cooperative game,
where all players work together towards the architecture
performance V (N), with N = NO + NG . A value func-
tion V maps each subset of players S ⊆ N to a real value
V (S) which represents the expected payoff that the players
can obtain by cooperation. The Shapley value ϕi

o(P ) and
ϕj
g(P ) for an operation oi and a one-hop subgraph gj can

be computed as follows, respectively:

ϕi
o(P ) =

1

|NO|
∑

S⊆Noi

V (S ∪ {oi})− V (S)(
|NO|−1

|S|

) (3)

ϕj
g(P ) =

1

|NG |
∑

S⊆Ngj

V (S ∪ {gj})− V (S)(
|NG |−1

|S|

) (4)

After the validation accuracy is used as the value func-
tion V to measure the architecture performance, the perfor-
mance of the whole architecture is the sum of contributions
of operations and one-hop subgraphs, i.e.,

∑
oi∈NO

ϕi
o +∑

gj∈NG
ϕj
g = V (N). If the operation does not influence

performance, whether added or removed, its contribution
is considered zero and we define ϕi

o = 0. For instance, the
zeroize operation in NAS-Bench-201 and zero operation in
DARTS have no effect on the final performance. Further-
more, if two different operations or one-hop subgraphs have
the same impact on the performance of architecture, they are
assigned with equal contributions. Based on these proper-
ties, the Shapley value can quantify individual contributions
uniquely.

Based on the above calculation, we can quantify the specific
contribution of operations and connections to the perfor-
mance of architectures. This allows us to pinpoint the opera-
tions and connections that are important in the generation of
high-performance architectures. With a clear understanding
of these critical elements, we are better equipped to generate
high-performance architectures.

3.3. Diffusion Model with Prior Knowledge

To generate high-performance architectures, we design a
conditional diffusion model that incorporates prior knowl-
edge for guidance. The model operates as a latent variable
model with two processes: the forward diffusion process
and the reverse generative process. In the forward process,
Gaussian noise gradually injects the input architecture into
a white noise distribution over T iterations. The reverse
process then removes this noise step-by-step, recovering the
original architecture. By leveraging prior knowledge, the
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model can approximate the architecture distribution more
effectively than a pure Gaussian prior. During the reverse
generative process of the diffusion model, the prior knowl-
edge obtained from the Shapley value evaluation can guide
generated architectures that are closer to the original archi-
tecture.

We first formalize the prior knowledge to clearly demon-
strate the guiding role of prior knowledge in the conditional
diffusion model. The prior knowledge is formalized as a
set of data-dependent priors K =

{
Oi

1:N ;Gij1:N ,
∑

1:N

}
,

which includes operations and connections that have im-
portant contribution to high performance, N denotes the
number of prior knowledge components. Oi is prior opera-
tions and Gi is the one-hop subgraph around operation Oi

in high performance architectures, and
∑

1:N is the prior
covariance matrix.

Next, we will describe how the diffusion process and gener-
ative process will be adjusted under the guidance of prior
knowledge. Our diffusion model aims to build the distribu-
tion pθ(A) = pθ(A,K), as the process of operations O and
one-hop subgraph G are similar, we only focus the deriva-
tion on the diffusion and generative process of operations
O. For connections, we use the same method to get the
generated ones.

We follow the definition and notations related to the noise
schedule αt, βt, α̂t, β̂t in (Ho & Salimans, 2022). With prior
knowledge as guidance, the forward and reverse process can
be defined as follows:

q(At|At−1,K) =
NA∏
i=1

N∏
n=1

N

(
At,n;At−1,n, βt

∑
n

)
(5)

pθ(At−1|At,K) =
NA∏
i=1

N∏
n=1

N

(
At−1,n;

µ̃t (At,n, A0,n|K) , β̃t

∑
n

) (6)

where µ̃t (At,n, A0,n) =
√
αt(1−ᾱt−1)

1−ᾱt
At,n+

√
αt−1βt

1−ᾱt
A0,n.

The prior distribution in the forward diffusion process can
be expressed as:

p(AT |K) =
NA∏
i=1

N∏
n=1

N

(
AT ;µn,

∑
n

)
(7)

As illustrated in the above equations, the proposed diffusion
model learns the knowledge of architecture design based
on prior knowledge. To enable the learned prior knowl-
edge to be effectively utilized by the diffusion model, we
construct a graph convolutional network and multilayer per-
ceptron (MLP) to extract features of operations and one-hop

graphs, respectively. After completing the forward process
of the diffusion model, the diffusion model can probabilis-
tically select key operations and one-hop graphs around
the selected operations during the reverse process. In this
way, the proposed diffusion model can generate efficient
architectures optimized for specific task requirements.

4. Experiments
In this section, we evaluate PG-NAG on five new and
different search spaces, including DARTS (Liu et al.,
2018), NATS-Bench (Dong et al., 2021), TransNAS-Bench-
101 (Duan et al., 2021), NAS-Bench-ASR (Mehrotra et al.,
2021), and NAS-Bench-NLP (Klyuchnikov et al., 2022).
We first explain the experimental settings in Section 4.1,
then compare PG-NAG with state-of-the-art algorithms in
Section 4.2, and finally analyze the generated architectures
and perform an ablation study in Sections 4.3 and 4.4, re-
spectively. More experimental results on other search spaces
can be found in Appendix C.1 and Appendix C.2.

4.1. Experimental Settings

To generate high-performance architectures for new search
spaces and unseen tasks, we first learn prior knowledge
from three popular benchmarks. Specifically, we select
top-20 high-performance architectures from each of the
three popular benchmarks, which are NAS-Bench-101 (Ying
et al., 2019), NAS-Bench-201 (Dong & Yang, 2020b), and
NAS-Bench-301 (Zela et al., 2020). Please note that NAS-
Bench-101 and NAS-Bench-201 contain architecture with
accuracy, and NAS-Bench-301 contains accuracies of archi-
tectures in DARTS search space by using a proxy model to
evaluate architectures without training. Therefore, we can
learn the contribution of components to high-performance
architectures across different search spaces without addi-
tional training for architectures. To implement the PG-NAG
method, we integrate a graph convolution network with 64
hidden layers to extract operation features in our diffusion
model. Additionally, a three-layer MLP is utilized to cap-
ture knowledge of connections in architectures. To validate
the effectiveness of PG-NAG in five new search spaces,
we design five architectures for each search space. Subse-
quently, depending on the convention of the different search
spaces, we select the highest value or the average value of
these five architectures as the validation result. For different
search spaces, we used different methods to compare with
PG-NAG, including different search methods in NAS and
efficient evaluation methods in NAS. More details about
experimental implementation are in Appendix B.

4.2. Experimental Results of Search Spaces

Results on DARTS. Table 1 presents the results of architec-
tures generated by PG-NAG within the extensive DARTS
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Table 1. Performance comparison with state-of-the-art architectures on ImageNet and CIFAR-10 in DARTS search space.

METHODS
COST TEST ERROR (%) PARAMS FLOPS

(GPU-DAY) IMAGENET CIFAR-10 (M) (M)

DARTS (LIU ET AL., 2018) 4 73.3 / 91.3 97.24±0.09 4.7 574
SNAS (XIE ET AL., 2018) 1.5 72.7 / 90.8 97.15±0.02 4.3 474
P-DARTS (CHEN ET AL., 2019) 0.3 75.6 / 92.6 97.50 4.9 557
GDAS (DONG & YANG, 2019) 0.21 74.0 / 91.5 97.18 5.3 545
PC-DARTS (XU ET AL., 2020) 0.13 74.9 / 92.2 97.43±0.07 5.3 586
ISTA-NAS (YANG ET AL., 2020) 4.2 76.0 / 92.9 97.46±0.05 5.65 638
SDARTS-ADV (CHEN & HSIEH, 2020) 1.3 74.8 / 92.2 97.52±0.02 3.3 -
FAIR DARTS (CHU ET AL., 2020B) 0.4 75.1 / 92.5 97.46 4.8 541
DARTS+PT (WANG ET AL., 2021) 0.8 74.5 / 92.0 97.52 4.6 -
TE-NAS (CHEN ET AL., 2021A) 0.17 75.5 / 92.5 97.37±0.06 5.4 -
EOINAS (ZHOU ET AL., 2021) 0.6 74.4 / 91.7 97.50±0.10 5.0 -
BALENAS-TF (ZHANG ET AL., 2022) 0.6 75.8 / 92.7 97.5±0.07 5.3 597
PRE-NAS (PENG ET AL., 2022) 0.6 76.0 / 92.6 97.51±0.09 6.2 -
EAEPSO (YUAN ET AL., 2023) 4 73.1 / - 97.49 4.9 -
MOEA-PS (XUE ET AL., 2023) 2.6 73.6 / 91.5 97.23 4.7 -
ANGLELOSS (YANG ET AL., 2023B) 0.11 75.9 / 92.9 97.44 5.9 -
PIANT-T (LU ET AL., 2023) 0.11 75.1 / 92.5 97.46±0.08 5.2 583
SWD-NAS (XUE ET AL., 2024) 0.13 75.5 / 92.4 97.49 6.3 -
EG-NAS (CAI ET AL., 2024) 0.1 75.1 / - 97.47 5.2 -
IS-DARTS (HE ET AL., 2024A) 0.42 75.9 / 92.9 97.44±0.04 6.4 -

PG-NAG (AVERAGE) 0.004 - / - 97.48 ± 0.07 5.5 554
PG-NAG (BEST) 0.004 76.1 / 92.7 97.56 5.5 554

search space, which is evaluated on ImageNet (Deng et al.,
2009) and CIFAR-10 (Krizhevsky et al., 2009). All results
for SOTA methods in Table 1 are sourced directly from
their respective papers, where only the best accuracy (de-
noted as xxx) or the mean accuracy (denoted as xxx±xx) is
reported. PG-NAG achieves state-of-the-art performance,
with the highest ImageNet accuracy and CIFAR-10 accu-
racy. Remarkably, the architecture generated by PG-NAG
only needs 0.004 GPU days, or approximately 5.76 minutes.
In terms of model complexity, architectures generated by
PG-NAG maintain a competitive parameter size and FLOPs,
striking a balance between performance and resource effi-
ciency. These results highlight the effectiveness of PG-NAG
in generating high-quality architectures with minimal com-
putational resources. Further visualizations and architecture
stability analysis can be found in Appendix C.3 and Ap-
pendix C.4, respectively.

Table 2. Performance comparison with state-of-the-art architec-
tures in NATS-Bench search space.

METHODS COST (S) CIFAR-10 CIFAR-100 IMAGENET16-120
ENAS 13,315 93.76±0.00 70.67±0.62 41.44±0.00
BOHB 12, 000 93.94±0.28 72.00±0.86 45.70±0.86
RSPS 7, 587 91.05±0.66 68.26±0.96 40.69±0.36
DARTS 29, 902 65.38±7.84 60.49±4.95 36.79±7.59
GDAS 28, 926 93.23±0.58 68.17±2.50 39.40±0.00
SETN 31, 010 92.72±0.73 69.36±1.72 39.51±0.33

PG-NAG 4,147 93.91±0.08 70.96±0.14 44.73±0.35

Results on NATS-Bench. We evaluate PG-NAG within
the NATS-Bench search space sss to assess its efficiency
compared to several state-of-the-art NAS methods bench-
marked on NATS-Bench. These comparison methods em-
ploy a range of different search strategies, all aiming at
identifying high-performance architectures. As shown in
Table 2, PG-NAG achieves competitive performance across
three datasets—CIFAR-10, CIFAR-100, and ImageNet-16-
120 (Chrabaszcz et al., 2017) in NAS-Bench-201 search
space, demonstrating superior results without a search pro-
cess. In addition, the cost of PG-NAG maintains a signif-
icantly lower search cost of 4, 171 seconds compared to
other methods. The results demonstrate that PG-NAG can
generate architectures that achieve competitive accuracies,
highlighting its efficiency and effectiveness in neural archi-
tecture generation.

Results on TransNAS-Bench-101. In order to verify the
effectiveness and generability of the architecture generated
by PG-NAG on different visual tasks, we validate it on the
TransNAS-Bench-101 search space. We compare PG-NAG
with four NAS search methods (Duan et al., 2021) and one
NAS acceleration method (He et al., 2024b). As shown in
Table 3, PG-NAG shows strong performance in Class Object
and Room Layout. In order to use a metric to measure the
combined performance of the above methods on the seven
tasks, we add an average rank column to the right of Table 3.
Specifically, we compute the ranking of architectures for
each task. These rankings are then averaged to evaluate the
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Table 3. Performance comparison with state-of-the-art architectures in TransNAS-Bench-101 search space. Room layout’s L2 loss is mul-
tiplied by a factor of 100 for better readability. The rightmost column reports the average percentile rank of searched networks (Avg.Rank)
in the benchmark, averaged across all target tasks.

TASK
CLASS

OBJECT
CLASS
SCENE

AUTO-
ENCODING

SURFACE
NORMAL

SEMANTIC
SEGMENT

ROOM
LAYOUT

JIASAW
AVERAGE

RANK

METRIC ACC.↑ ACC.↑ SSIM↑ SSIM↑ MIOU↑ L2LOSS↓ ACC.↑
DT 42.03 49.80 51.20 55.03 22.45 66.98 88.95 42.53
RS 45.16 54.41 55.94 56.85 25.21 61.48 94.47 13.70
PPO-TFS 45.19 54.37 55.83 56.90 25.24 61.38 94.46 13.53
PPO-TRANSFER 44.81 54.15 55.70 56.60 24.89 62.01 - 14.26
ROBOT 45.59 54.87 55.42 57.44 26.27 61.16 94.82 16.43

PG-NAG 46.32 54.38 54.12 57.30 25.03 60.09 94.40 12.23

generalization and effectiveness of architectures searched
or generated by different methods. Although other methods
perform well on specific tasks, PG-NAG shows competi-
tive performance across the seven tasks, demonstrating its
excellent generalization capabilities across different tasks.

Table 4. Comparation of test validation analysis on NAS-Bench-
ASR and NAS-Bench-NLP.

METHODS
TEST PER (%) TEST LOG PERPLEXITY

MIN. MAX. AVG. MIN. MAX. AVG.
NASBOT 21.89 22.02 21.93±3.81 4.58 4.67 4.61±0.03
NPENAS 21.88 21.91 21.89±0.96 4.55 4.67 4.58±0.03

BANANAS 21.86 21.99 21.89±3.79 4.6 4.67 4.63±0.02
REA 21.90 22.25 21.95±0.10 4.62 4.67 4.63±0.02

PG-NAG 21.58 21.86 21.78±0.13 4.53 4.66 4.57±0.02

Results on NAS-Bench-ASR. In order to validate the per-
formance of PG-NAG on the unseen task of speech recog-
nition, we compare it with four different NAS methods on
the NAS-Bench-ASR search space. The architecture gen-
erated by PG-NAG will be validated on the TIMIT speech
recognition dataset (Garofolo et al., 1993), using Phoneme
Error Rate (PER) as the performance metric. As shown in
Table 4, architectures generated by PG-NAG have lower
error rates than other methods, consistently outperforming
them in terms of minimum, maximum, and average values.
Therefore, PG-NAG can generate architectures with more
stable results and lower speech recognition error rates.

Results on NAS-Bench-NLP. To evaluate the effectiveness
of the architectures generated by PG-NAG on the unseen
language modeling task, we conduct a comparison with four
other NAS methods within the NAS-Bench-NLP search
space. The architectures are tested on the Penn Tree Bank
dataset, with test log perplexity serving as the performance
metric. As illustrated in Table 4, PG-NAG achieves the
lowest test log perplexity. The variance in the performance
of architectures generated PG-NAG is also the lowest com-
pared to other methods, further suggesting that it generates
stable and reliable architectures.

Table 5. Statistics of the generated architectures. Each method
generates 1, 000 architectures.

DATASET STATES. RANDOM DIFFUSIONNAG PG-NAG

CIFAR-10
MAX 94.37 94.37 94.36

MEAN 87.12 94.13 94.15
MIN 10.00 86.44 87.08

CIFAR-100
MAX 72.74 73.51 73.51

MEAN 61.59 70.34 70.79
MIN 1.00 58.09 66.08

4.3. Distribution of generated architectures

We further explore the distribution of the accuracy of archi-
tectures generated by PG-NAG. Firstly, we compare the dis-
tribution of 1, 000 generated architectures with 1, 000 ran-
domly selected architectures in NAS-Bench-201, as shown
in Figure 3. Then, we compare the stability of the generated
architectures with random architecture sampling and Dif-
fusionNAG (An et al., 2024) in Table 5. The results show
that the distribution of the generated architectures has low
variance, indicating a concentrated distribution characteris-
tic with a tendency for clustering in the high-performance
part. Meanwhile, both the mean and the minimum of the
accuracy of the generated architectures are higher than that
of DiffusionNAG. This means that PG-NAG can target the
generation of high-performance architectures when deal-
ing with specific tasks. To make the comparison clearer,
we delete some low-performance architectures obtained by
random selection, the original figures are in Appendix C.6.

4.4. Ablation Study

Components of PG-NAG. We evaluate the impact of three
core components of PG-NAG: prior knowledge guidance,
operation feature extraction method, and connection feature
extraction method. The experimental results on CIFAR-
10, CIFAR-100, and ImageNet16-120 in NAS-Bench-201
are shown in Table 6. The prior knowledge denotes the
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Table 6. Abalation study about components of PG-NAG on NAS-Bench-201.

PRIOR
KNOWLEDGE

OPERATION
FEATURE

CONNECTION
FEATURE

CIFAR-10 CIFAR-100 IMAGENET16-120
VALID TEST VALID TEST VALID TEST

% GCN ! 90.45 93.31 71.17 71.13 45.63 45.77
! GIN ! 91.50 94.37 73.31 73.09 45.59 46.33
! GAT ! 91.34 94.00 72.98 72.48 45.23 46.20
! GCN % 91.35 94.30 72.77 72.30 45.53 46.44

! GCN ! 91.55 94.36 73.49 73.51 46.37 46.34

86 88 90 92 94
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Figure 3. The distribution of generated architectures.

generation of architectures without the guidance of prior
knowledge. The operation feature involves replacing the
original graph convolution network for operation extrac-
tion with a graph isomorphic network or a graph attention
network. The connection feature represents the learning
method of connections used by MLP for learning one-hop
subgraphs is replaced with a new MLP that learns for con-
nections only. These results highlight that prior knowledge
guidance leads to the greatest performance drop, indicating
its critical role in PG-NAG.

Table 7. Comparison with different diffusion models on NAS-
Bench-201.

METHODS
NOISE

SCHEDULE
NUMBER OF

TIMESTEP
CIFAR-10 CIFAR-100 IMAGENET

DDPM LINEAR 1, 000 93.28 70.23 41.88

PG-NAG

SIGMOID 500 92.73 69.38 42.83
SIGMOID 800 94.22 73.17 46.48
LINEAR 1, 000 93.42 70.90 45.33

SIGMOID 1, 000 94.36 73.51 46.34

Diffusion model. To evaluate the effectiveness of the diffu-
sion model in PG-NAG, we conduct a comparative analysis
with the standard DDPM diffusion model. Additionally,
we examine the impact of key components in our diffusion
model, i.e., the noise schedule and the number of time steps.
As shown in Table 7, PG-NAG significantly outperforms
DDPM on CIFAR-10, CIFAR-100, and ImageNet16-120.
For the noise schedule, PG-NAG utilizes a sigmoid sched-
ule, which we compare to the linear schedule used in DDPM.
Additionally, we test different time step settings, including

500, 800, and 1, 000 steps. While larger time steps generally
improve the accuracy of the sampling process, a larger time
step usually results in higher computational cost. Therefore,
in order to ensure the efficiency of architecture generation,
we strike a balance between computational efficiency and
the performance of architectures. These findings confirm
that the diffusion model designed in PG-NAG is highly
effective and well-suited for architecture generation tasks.

Table 8. Compare the quality and quantity prior knowledge on
NAS-Bench-201.

METHOD
CIFAR-10 CIFAR-100 IMAGENET16-120

VALID TEST VALID TEST VALID TEST

k=10 89.68 92.31 68.84 69.49 43.22 42.60
k=20 91.55 94.36 73.49 73.51 46.37 46.34
k=30 91.53 94.22 73.13 73.17 46.32 46.68
k=50 91.61 94.37 72.75 73.22 45.56 46.71

RANDOM 20 82.42 87.11 57.06 56.95 30.70 30.57

Prior knowledge. To verify the significance of prior knowl-
edge, we conduct ablation experiments on the quality and
quantity of the selected architectures in NAS-Bench-201.
Firstly, we evaluate the impact of varying the number of
high-performance architectures k used as prior knowledge
to guide the generation model. We evaluate PG-NAG with
k = 10, 20, 30, and 50 architectures. As shown in Table 8,
the results indicate that k = 50 yields the highest valid and
test accuracy in CIFAR-10 and test accuracy in ImagNet-
16-120. These results suggest that k = 20 is a practical and
effective choice, as it achieves near-optimal performance
across datasets. Increasing k to 30 or 50 provides an ad-
ditional benefit, causing unnecessary computational cost
when using larger prior knowledge sets. Instead, we select a
lower but effective number to learn prior knowledge.

Secondly, to evaluate the quality of selected architec-
tures, we select 20 random architectures instead of high-
performance architectures. We find that the perfor-
mance of architectures declines compared with using high-
performance architectures as prior knowledge. These
comparisons demonstrate that the quality of prior knowl-
edge is crucial for guiding the architecture generation pro-
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cess. High-performance architectures provide meaningful
insights that enable PG-NAG to achieve superior results,
whereas random architectures fail to provide such guidance.

5. Conclusion
In this paper, we propose a method to automatically generate
high-performance architectures guided by prior knowledge.
It leverages an analysis of high-performance architectures
to formulate prior knowledge. Then the knowledge serves
as a guiding principle for the diffusion model, enabling it to
automatically generate architectures optimized for various
tasks. Extensive experimental results on new search spaces
show that PG-NAG generation process is highly efficient on
unseen tasks without costly and time-consuming training.
In addition, the effectiveness of the components in PG-NAG
is verified by the ablation study.
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A. Details of PG-NAG.
A.1. Architectures Encoding for Different Search Spaces

Since we have chosen architectures from three different search spaces for learning prior knowledge, we first need a unified
representation of the architectures. To unify the architectures in different search spaces, we design a generalizable encoding
for different search spaces following the convention. Specifically, we encode all operations from different search spaces
into vectors using the one-hot encoding method. For operations in different search spaces but with similar functionality,
we use the same encoding. For instance, we encode max pooling in NAS-Bench-101 and avg pooling in NAS-Bench-201
with the same encoding. Additionally, NAS-Bench-101 has operations on nodes while NAS-Bench-201 and DARTS have
operations on edges. Therefore, we transfer operations on nodes to standardize. This encoding approach allows us to encode
architectures from three search spaces in a uniform standard.

A.2. Dependence on Prior Knowledge

The success of PG-NAG relies on the quality of the prior knowledge. As we all know, different operations in architecture are
not equally important (Chen et al., 2021b). Therefore, some methods have tried to analyze the operations in architecture,
such as (Wang et al., 2021; Xiao et al., 2022). Furthermore, by analyzing the effect of different operations in DARTS,
DARTS-(Chu et al., 2020a) discovers that skip connections have a clear advantage over other candidate operations and treats
it as prior knowledge. Therefore, this method adds a decaying auxiliary skip connection. Similarly, iDARTS (Zhang et al.,
2021) analyzes the preferences of different operations as prior knowledge. Based on prior knowledge, iDARTS interposes a
static BN layer between the node input and the operations to maintain the balance between different operations. Therefore,
prior knowledge has been used in the process of NAS to search for optimal architectures.

In this paper, we recognize that PG-NAG relies on carefully selected architectures to obtain prior knowledge. This knowledge
is derived from three search spaces of different sizes, while the architectures in these search spaces have been validated on
three different datasets, which provides us with a broad reference for generating new architectures. By learning from these
diverse architectures, we obtain representative prior knowledge, which enables our method to not only perform well in these
three search spaces but also to achieve good results in other unseen search spaces. This shows that the prior knowledge we
learned based on these architectures is highly generalizable and flexible.

B. Experimental Details
B.1. Search Spaces

In this section, we describe the search spaces that are used to verify the effectiveness of PG-NAG.

DARTS (Liu et al., 2018) search space is one of the most popular search space. It contains a total of 1018 unique architectures.
These architectures are always evaluated on three datasets: CIFAR-10, CIFAR-100, and ImageNet.

NAS-Bench-201 (Dong & Yang, 2020a) is a widely used benchmark that includes a total of 15, 625 unique architectures.
These architectures are trained and evaluated on CIFAR-10, CIFAR-100, and ImageNet16-120 datasets.

TransNAS-Bench-101 (Duan et al., 2021)is a relatively recent addition to NAS benchmarks. It evaluates architectures across
seven vision tasks: Scene Classification, Object Classification, Autoencoding, Surface Normal, Semantic Segmentation,
Room Layout, and Jigsaw Puzzle. A total of 51, 464 architectures are evaluated across these tasks with comprehensive
training details.

NAS-Bench-101 (Ying et al., 2019) is the first public architecture benchmark for NAS research. It consists of 423, 624
unique architectures, all of which are trained and fully evaluated multiple times on the CIFAR-10 dataset.

NAS-Bench-ASR (Mehrotra et al., 2021) is a NAS benchmark for Automatic Speech Recognition (ASR). It contains 8, 242
unique models trained on the TIMIT audio dataset for three different epochs, with each model starting from three different
initializations.

NAS-Bench-NLP (Klyuchnikov et al., 2022) is a NAS benchmark focused on the language modeling task in natural language
processing. It includes 14, 000 RNN-like architectures, each trained and validated on the Penn Tree Bank (PTB) dataset.
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B.2. Datasets

In this section, we describe the validation datasets that are used to verify the effectiveness of PG-NAG.

For computer vision validation datasets, we utilize three widely used datasets: CIFAR-10, CIFAR-100, and ImageNet, which
are all image classification datasets. The number of images in CIFAR-10 and CIFAR-100 is 60, 000. CIFAR-10 has ten
classes, each containing 6, 000 images. CIFAR-100 has 100 classes, each containing 600 images. ImageNet is a massive
dataset comprising over 12, 197, 122 images. ImageNet has 1000 classes, each contains images between 732 and 1, 300.
ImageNet-16-120 downsamples ImageNet to 16×16 pixels, from which selects all images with label ∈ [1, 120] to construct
ImageNet-16-120. ImageNet-16-120 contains 151, 700 training images, 3, 000 validation images, and 3, 000 test images
with 120 classes.

For the automatic speech recognition task, we valid architectures on TIMIT dataset. It consists of recordings of 630 speakers
of 8 dialects of American English each reading 10 phonetically rich sentences. It also comes with the word and phone-level
transcriptions of the speech.

For the natural language processing task, we valid architectures on PTB dataset, which is one of the most known and used
corpus for the evaluation of models for sequence labelling. It consists of annotating each word with its Part-of-Speech tag.
It has 38, 219 setences and 912, 344 tokens for training, 5, 527 sentences and 131, 768 tokens for validation, and 5, 462
sentences and 129, 654 tokens for testing.

B.3. Implementation Details

In the search process in NAS-Bench101, NAS-Bench-201, and TransNAS-Bench-101, we generate a cell and stack it into an
architecture according to the benchmark rules. In the DARTS search space, we generate a cell and set the number of initial
convolutional channels to 36. We optimize the architecture weights using stochastic gradient descent with an initial learning
rate of 0.025 and a single Consine annealing learning rate schedule. All experiments were done on Linux Ubuntu 18.04,
using Nvidia 3090 GPUs.

C. Additional Experimental Results
C.1. Results on NAS-Bench-201

Table 9. Performance comparison with state-of-the-art architectures on CIFAR-10, CIFAR-100, and ImageNet16-120 in NAS-Bench-201
search space.

METHODS
CIFAR-10 CIFAR-100 IMAGENET16-120

VALID TEST VALID TEST VALID TEST

DARTS 39.77 54.30 38.57 38.97 18.87 18.41
SGNAS 90.18 93.53 70.28 70.31 44.65 44.98
PC-DARTS 89.96 93.41 67.12 67.48 40.83 41.31
IDARTS 89.96 93.58 70.57 70.83 40.38 40.89
DRNAS 91.55 94.36 73.49 73.51 46.37 46.34
FAIRNAS 90.97 93.23 70.94 71.00 41.09 42.19
BANANAS - 94.37 - 73.51 - -
ANGELLOSS 90.19 93.16 71.70 70.48 41.93 43.04
EG-NAS 90.17 93.58 70.90 70.98 45.18 46.59
L2NAS 91.47 94.28 73.02 73.09 46.58 47.03
DIFFUSIONNAG - 94.37 - 73.51 - -

PG-NAG 91.55 94.36 73.49 73.51 46.37 46.34

We applied PG-NAG to NAS-Bench-201 to automatically generate high-performance architecture. We compare PG-NAG
against various popular NAS algorithms and one NAG method: DARTS and its variants (Liu et al., 2018; Xu et al., 2020;
Zhang et al., 2021; Chu et al., 2021), SGNAS (Huang & Chu, 2021), DrNAS (Chen et al., 2020), BANANAS (White et al.,
2021), AngelLoss (Yang et al., 2023b), EG-NAS (Cai et al., 2024), L2NAS (Mills et al., 2021), and DiffutionNAG (An
et al., 2024). As shown in Table 9, all searches or generates are performed on CIFAR-10, and the output architecture is then
trained and evaluated on each of CIFAR-10, CIFAR-100, and ImageNet16-120. These comprehensive experimental results
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indicate that our method surpasses the other baselines.

C.2. Results on NAS-Bench-101

Table 10. Comparison with other NAS methods on CIFAR-10 using the NAS-Bench-101 search space.

METHODS RANKING (%) TEST ACC (%)
REA 0.384 93.64
ANGELLOSS 0.242 93.70
E2EPP 0.132 93.77
HAAP 0.004 94.09
RENAS 0.011 94.01
SEMINAS 0.011 94.01
NPENAS 0.002 94.14
AG-NAS 0.002 94.18
BRP-NAS 0.001 94.22
BANANAS 0.004 94.08
GMAE-NAS 0.002 94.14
BONAS 0.002 94.14

PG-NAG 0.001 94.23

We evaluate the architecture generated by PG-NAG on NAS-Bench-101. We compare PG-NAG with 12 NAS methods. As
outlined in Table 10, the generated architecture demonstrates a performance improvement over previous methods such as
REA (Real et al., 2019), AngelLoss (Yang et al., 2023b), and E2EPP (Sun et al., 2019). To set up a basic benchmark, we also
compare PG-NAG with HAAP (Liu et al., 2021), ReNAS (Xu et al., 2021), SemiNAS (Tang et al., 2020), NPENAS (Wei
et al., 2022), AG-NAS (Lukasik et al., 2022), BRP-NAS (Dudziak et al., 2020), BANANAS (White et al., 2021), GMAE-
NAS (Jing et al., 2022), and BONAS (Shi et al., 2020). Moreover, the proposed method PG-NAG achieved the highest
accuracy architecture 94.23% in this search space.

C.3. Architecture Generated for DARTS and NAS-Bench-201 Search Space
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Figure 4. Cell architecture found by PG-NAG on CIFAR-10 and
ImageNet datasets.
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Figure 5. Architecture found by PG-NAG for NAS-Bench-201
search space.

We use our PG-NAG to generate high-performance architecture in the DARTS search space based on the CIFAR-10 dataset
at first. Then we transfer this architecture to the ImageNet dataset in the DARTS search space. Figures 4 demonstrate
the neural architectures generated by PG-NAG for the CIFAR-10 and ImageNet datasets. The generated architectures
contains three dil conv 3× 3 and two dil conv5 × 5, and only one skip connect. This is consistent with the fact that the
high-performance architectures searched by existing NAS methods contain a large number of convolutional operations.

Similarly, Figures 5 demonstrates the neural architectures generated by PG-NAG for the CIFAR-10, CIFAR-100, and
ImageNet datasets. The generated architecture consists of four nor conv 3 × 3 and one skip connect, which closely
resembles the high-performing architectures observed in NAS-Bench-201. Specifically, these architectures often include
multiple 3× 3 convolutions, highlighting the potential for similar performance patterns in the generated design.
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C.4. Architecture Stability Analysis
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Figure 6. Comparison results on existing methods on CIFAR-10 on DARTS search spaces.

To verify the stability of the architectures generated by PG-NAG, we designed five different architectures for the CIFAR-10
dataset in the DARTS search space. We run these architectures five times and calculate their performance variance. In
addition, we utilize the architectures generated by DARTS and CDP method (Liu et al., 2022), which performs well in the
DARTS search space. All experiments are run five times independently to ensure the reliability of the results. As shown in
Figure 6, it can be seen that the PG-NAG achieves the best performance and demonstrates remarkable stability.

C.5. Visualization for Architecture Accuracy Drop
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Figure 7. Visualization of operation influence on architetcure performance in different search space.

To better understand how different operations affect the performance of architectures, which can help explain the selection
of operations in our generated architectures. We remove operations in NAS-Bench-101 and NAS-Bench-201 to observe
the impact of different operations on the performance of the architecture. Specifically, for each architecture, we compute
performance by removing one operation at a time, progressively eliminating each operation individually (e.g., first removing
the first operation, then the second, and so on).
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As shown in Figure 7(a) for NAS-Bench-101, the Conv 3x3 operation has the most significant impact on performance,
underscoring its importance in achieving high accuracy. A similar trend is observed in NAS-Bench-201 in Figure 7(b),
where the 3× 3 convolution operation enhances model performance. These findings help us make informed decisions in
selecting the most effective operations for generating high-performing architectures.

C.6. Architecture Distribution of Generated Architectures

To demonstrate the effectiveness of PG-NAG in generating high-performance architectures stably, we conducted an
experiment where 1, 000 architectures were generated using PG-NAG within the NAS-Bench-201 search space. Additionally,
we randomly selected 1, 000 architectures from the same search space for comparison.Then we evaluate these architecutes
on CIFAR-10 and CIFAR-100 datasets. As shown in the Figure 8, the two figures are a more complete distribution map than
the Figure 3 in the main text Section 4.3. Architectures generated by PG-NAG consistently exhibit high accuracy, indicating
that PG-NAG is capable of generating a large number of architectures with competitive performance stably. In contrast,
the randomly selected architectures demonstrate a broader range of performance, with some architectures performing
significantly worse. This demonstrates the ability of PG-NAG to stably generate high-performance architectures.
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Figure 8. The distribution of generated architectures on CIFAR-10 and CIFAR-100 in NAS-Bench-201.
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