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Abstract
The remarkable success of modern machine learn-
ing models on large datasets often demands ex-
tensive training time and resource consumption.
To save cost, a prevalent research line, known as
online batch selection, explores selecting informa-
tive subsets during the training process. Although
recent efforts achieve advancements by measuring
the impact of each sample on generalization, their
reliance on additional reference models inherently
limits their practical applications, when there are
no such ideal models available. On the other
hand, the vanilla reference-model-free methods
involve independently scoring and selecting data
in a sample-wise manner, which sacrifices the di-
versity and induces the redundancy. To tackle this
dilemma, we propose Diversified Batch Selection
(DivBS), which is reference-model-free and can
efficiently select diverse and representative sam-
ples. Specifically, we define a novel selection
objective that measures the group-wise orthogo-
nalized representativeness to combat the redun-
dancy issue of previous sample-wise criteria, and
provide a principled selection-efficient realiza-
tion. Extensive experiments across various tasks
demonstrate the significant superiority of DivBS
in the performance-speedup trade-off. The code
is publicly available.

1. Introduction
Deep learning, propelled by vast amounts of web-scraped
data, has led to significant advancements in models such
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as GPT-4 (OpenAI, 2023), CLIP (Radford et al., 2021),
SAM (Kirillov et al., 2023), and Stable Diffusion (Rom-
bach et al., 2022). However, the time-intensive training
process, lasting for weeks or even months, poses challenges
with extended development cycles and increased resource
consumption. Additionally, with a growing focus on data
quality in deep learning systems, given the prevalence of
low-quality, redundant, and biased data in real-world scenar-
ios (Xie et al., 2023; Deng et al., 2023), there is an increasing
need to select valuable training data for accelerating model
training while maintaining the performance.

Recent studies (Mindermann et al., 2022; Deng et al., 2023)
have achieved notable acceleration and convergence results
by employing the online batch selection (Loshchilov & Hut-
ter, 2015) paradigm, which involves selecting samples that
are most conducive to model convergence at the current
training stage. However, these reference-model-based meth-
ods rely on extra reference models, either trained from a con-
siderable amount of holdout data (Mindermann et al., 2022)
or a pre-trained zero-shot predictor (Deng et al., 2023). Ob-
taining such a reference model can be costly or challenging
in certain scenarios, especially for large-scale pre-training
tasks. On the other hand, reference-model-free online batch
selection methods (Jiang et al., 2019; Katharopoulos &
Fleuret, 2018b; Loshchilov & Hutter, 2015) prioritize chal-
lenging samples based on high loss or large gradient norm.
Despite their practicality and efficiency, they often fall short
in performance even compared to uniform selection (Min-
dermann et al., 2022; Deng et al., 2023).

In this paper, we focus on selecting a limited budget of
crucial samples in a reference-model-free batch selection
manner for training acceleration with negligible perfor-
mance drop. We contend that existing reference-model-free
selection methods adopt sample-wise strategies. Specifi-
cally, they independently apply predefined scoring criteria
to all samples and conduct the score-based selection. Such
sample-wise selection methods overlook the correlations
and redundancies among samples and may lead to poor
diversity, degrading the performance. When a sample is
selected based on a high score, similar (or even identical)
samples also receive similar scores. However, these samples
contribute negligible new information to model training. As
shown in Figure 1(c), samples selected based on train loss
exhibit significant overlap and poor coverage of the original
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Figure 1. Visualization of a toy motivating example, which is a 2D imbalanced four-class classification problem. Subfigure (a) represents
all the training data. Subfigures (b), (c), and (d) depict the subsets selected by the Uniform, Train Loss, and DivBS methods, with 10%
budget. For more details, please refer to Appendix C.1.

space. Zheng et al. (2023); Guo et al. (2022) have also dis-
cussed the negatives of such methods on subset diversity and
performance in the context of the one-shot coreset selection,
particularly with small budgets.

To tackle the diversity challenge, we propose a novel
reference-model-free batch selection method, Diversified
Batch Selection (DivBS). Our core concept encompasses
two aspects: (1) data selection should consider the selected
subset as a whole, rather than independently selecting data
on a sample-wise basis; (2) when assessing the overall rep-
resentativeness of a subset, the inter-sample redundancy
should be eliminated. Motivated by this, we introduce a
new objective for batch selection, aiming to maximize the
overall orthogonalized representativeness of the subset af-
ter removing the inter-sample redundancy (Equations (1)
and (2)). Through a principled simplification of the opti-
mization problem (Proposition 3.1), we propose a greedy
algorithm (Algorithm 1) that can theoretically achieve an
approximate ratio of 1 − e−1 w.r.t. the optimal objective
value (Proposition 3.3). We further streamline the selection
process (Algorithm 2), empirically achieving substantially
reduced time consumption with comparable performance.
We summarize the contributions as follows:

• We explore prioritizing samples that enhance model con-
vergence without extra reference models and highlight
the diversity challenge faced by current sample-wise
online batch selection methods.

• We propose to maximize the overall orthogonalized rep-
resentativeness of the subset rather than independently
sample-wise selection. Building on a greedy algorithm
with a 1 − e−1 approximate ratio, we present a more
efficient reference-model-free batch selection method,
Diversified Batch Selection (DivBS).

• We conduct extensive experiments, covering image clas-
sification, imbalanced learning, semantic segmentation,
cross-modal retrieval, and language model fine-tuning.
The results consistently demonstrate the superiority of

DivBS in accelerating training while maintaining the per-
formance, e.g., with 70% fewer iterations, classification
accuracy drops by under 0.5% on average, segmentation
mIoU decreases by under 1%, and cross-modal retrieval
performance improves.

2. Background: Online Batch Selection
We consider a task of learning a deep model fθ with param-
eters θ on training data D with stochastic gradient descent
(SGD). At each training step, we can access a data batch
B = {di}NB

i=1 with NB data points from D. In the online
batch selection scenario, we need to conduct a smaller batch
S ⊂ B with a fixed budget of sample number NS < NB to
update the model. The next large batch is then pre-sampled
from D without replacement of previously sampled points
in a same epoch.

Let U = g(B, θ) = {g(di, θ)}NB
i=1 denote the features used

for selection from B, where g denotes the mapping func-
tion from data points to the selection features given current
model fθ. Existing methods simplify the problem of se-
lecting a subset from B into a sample ranking problem.
Employing different scoring criteria s(u), u ∈ U , they se-
lect the top-NS samples from B to conduct S. Loshchilov
& Hutter (2015); Jiang et al. (2019) opt for high loss, where
U contains the outputs and labels, and s(·) is the loss func-
tion; Katharopoulos & Fleuret (2018b) select samples with
large gradient norm, where U is the sample-wise gradients,
and s(·) is the norm function; Mindermann et al. (2022);
Deng et al. (2023) leverage a reference model to compute
the score, where U contains the training model outputs, the
reference model outputs, and class labels, and s(·) is an ap-
proximate version of the generalization loss. These methods
select data in a sample-wise manner, without considering
the interactions and redundancy among samples when they
collectively update the model within a batch.
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Algorithm 1 The greedy algorithm.
1: Input: Batch B, current model fθ, budget number NS

2: Output: Selected mini batch S
3: S ← ∅, E ← ∅, Sum←

∑
u∈g(B,θ) u

4: repeat
5: ECand ← {

g(d,θ)−
∑

e∈E(e·g(d,θ))e
∥g(d,θ)−

∑
e∈E(e·g(d,θ))e∥ for d ∈ B}

// Candidate orthonormal basis
6: idx← argmaxi |ei · Sum|, ei ∈ ECand
7: S ← S ∪ {didx}
8: E ← E ∪ {eidx}
9: B ← B \ {didx}

10: until |S| = NS

3. Method: Diversified Batch Selection
3.1. Motivation

In Figure 1, we present a toy example involving an imbal-
anced four-class classification task and showcase subsets
selected by different batch selection methods. We can ob-
serve that the uniform sampling method (Figure 1(b)) does
not always achieve effective coverage of the original sample
space, especially for the low-density (yellow and green) re-
gions. The method of selecting challenging samples (Train
Loss) (Figure 1(c)) results in high redundancy, with many
points nearly overlapping. Additionally, the data distribution
deviates significantly from the overall distribution, leading
to inferior model convergence. We posit that this stems from
current methods independently scoring and selecting data
in a sample-wise manner. We propose that the overall evalu-
ation of the selected samples should be conducted instead
of sample-wise scoring, and the impact of inter-sample re-
dundancy should be removed. It is evident that the subset
selected by our proposed DivBS (Figure 1(d)) effectively
covers the original sample space and significantly enhances
the diversity of the selected samples.

3.2. Objective

Recall that our core ideas for addressing the diversity chal-
lenge of the reference-model-free batch selection are: (1)
we should consider the representativeness of the selected
subset as a whole, rather than evaluating data in a sample-
wise manner; (2) we should eliminate the impact of inter-
sample redundancy on the representativeness of the subset.
Motivated by these, we define a new measure, which char-
acterizes the group-wise orthogonalized representativeness
of subset S with respect to B as:

r(S,B, θ) = max
E∈E(g(S,θ))

∑
e∈E

∑
u∈g(B,θ)

e · u (1)

Here E(g(S, θ)) := {E = {e1, . . . e|E|}|∀ei, ej ∈ E, ei ·
ej = δij , span(E) = span(g(S, θ))} denotes the set of all

Algorithm 2 DivBS.
1: Input: Batch B, current model fθ, budget number NS

2: Output: Selected mini batch S
3: S ← ∅, E ← ∅, Sum←

∑
u∈g(B,θ) u

4: repeat
5: d← argmaxd∈B |g(d, θ) · Sum|
6: e← g(d,θ)−

∑
e∈E(e·g(d,θ))e

∥g(d,θ)−
∑

e∈E(e·g(d,θ))e∥
7: S ← S ∪ {d}
8: E ← E ∪ {e}
9: Sum ← Sum − (e · Sum)e // Subtracting

the orthogonal components of the
already selected samples from Sum.

10: B ← B \ {d}
11: until |S| = NS or Sum = 0

potential orthonormal bases for the subspace spanned by
g(S, θ), where δij is the Kronecker delta, taking the value
1 when i = j and 0 otherwise, and span(·) denotes the
subspace spanned by all elements in a set.

Generally, the design intuition of Eq. (1) involves removing
inter-sample redundancy in subset S through orthogonal-
ization. When calculating the contribution of an element
in the subset S to r, we subtract the redundant components
already presented by other elements in S and only consider
its unique part distinct from others. This prevents redun-
dant components between elements from contributing du-
plicate values to the orthogonalized representativeness r. In
contrast, in sample-wise selection, redundant elements con-
tribute duplicate scores because they are scored individually
and then directly added up. Therefore, based on Eq. (1), we
propose a new objective for online batch selection, aiming
to choose a subset S ⊂ B with the maximum orthogonal-
ized representativeness r(S,B, θ), under a specified budget
constraint |S| ≤ NS .

argmax
S⊂B

r(S,B, θ), s. t. |S| ≤ NS . (2)

3.3. Optimization

Directly optimizing Equation (2) encounters two immedi-
ate challenges: (1) directly traversing an infinite space of
orthonormal bases is clearly impractical; (2) the candidate
subset space with size O(NB

NS ) is also challenging to effi-
ciently solve. In the following, we present our development
to address these two challenges.

Simplify the optimization of the orthonormal basis
E ∈ E(g(S, θ)). To tackle the first challenge, we intro-
duce Proposition 3.1, which offers a simple computational
form for r(S,B, θ) w.r.t. any orthonormal basis for g(S, θ).
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Table 1. Final accuracy and wall-clock time of one epoch training
of different methods on CIFAR-10 with 10% budget.

Method Full Uniform Algorithm 1 Algorithm 2

Acc ↑ 95.50% 92.06% 94.57% 94.65%
Time ↓ 44.7s 13.2s 19.8s 13.9s

Proposition 3.1. ∀E ∈ E(g(S, θ)), we have√
|E|

∑
e∈E

(e ·
∑

u∈g(B,θ)

u)2 = r(S,B, θ).

The computational form for r(S,B, θ) in Proposition 3.1
enables us to freely choose the orthonormal basis without
affecting the optimization of the overall objective. There-
fore, we no longer need to consider the optimization of
E ∈ E(g(S, θ)) and can directly optimize S to maximize
r(S,B, θ). Please refer to Appendix B.1 for the proof.

Greedy algorithm and its approximation guarantee.
Moreover, we seek to streamline the optimization for subset
S ⊂ B. A straightforward approach involves sequentially
and greedily selecting data that maximizes r(S,B, θ) ac-
cording to the computational form in Proposition 3.1, as
depicted in Algorithm 1.

To analyze the theoretical guarantee of Algorithm 1 for the
optimization problem in Equation (2), we introduce an aux-
iliary function r′(S,B, θ) =

√∑
e∈E(e ·

∑
u∈g(B,θ) u)

2,

∀E ∈ E(g(S, θ)), which removes the |E| term from
r(S,B, θ) and also remains constant as E ∈ E(g(S, θ))
changes. In the following, we show Proposition 3.2, which
provides some favorable properties of r′(S,B, θ).

Proposition 3.2. Define r′ as r′(S,B, θ) =√∑
e∈E(e ·

∑
u∈g(B,θ) u)

2, ∀E ∈ E(g(S, θ)). r′(S,B, θ)

is submodular (Bach, 2013), normalized, and monotone
(referring to Definition B.1 for detailed definition).

As per Proposition 3.2, r′(S,B, θ) is submodular, nor-
malized, and monotone for S ⊂ B. Considering that
Algorithm 1 is also a greedy algorithm for maximizing
r′(S,B, θ), we can establish that Algorithm 1 has a 1− e−1

approximation ratio w.r.t. the optimal objective value for
maximizing r′(S,B, θ) (Nemhauser et al., 1978) (also re-
ferring to Lemma B.3 in Appendix).

Furthermore, by establishing the connection between the
optimal solutions for r(S,B, θ) and r′(S,B, θ), along with
the solutions output by Algorithm 1, and their corresponding
objective values, we present Proposition 3.3.

Proposition 3.3. Algorithm 1 returns a 1 − e−1 approxi-
mation for argmaxS⊂B r(S,B, θ), s. t. |S| ≤ NS . That is,

denote S∗ as the optimum subset for Equation (2), and S′

as the output of Algorithm 1, we have

r(S′, B, θ) ≥ (1− e−1)r(S∗, B, θ).

Proposition 3.3 provides the theoretical guarantee for Al-
gorithm 1 regarding the optimization problem defined in
Equation (2) with an approximation ratio of 1− e−1. This
enables us to effectively transform a subset optimization
problem into a sequential selection problem. Please refer to
Appendix B.3 for the detailed proof.

3.4. Realization

More Efficient Selection Process. In Algorithm 1, the
operation in line 5 involves subtracting the corresponding
components of E (an orthonormal basis of already selected
samples) in all elements of U = g(B, θ), and then normal-
izing them. We further simplify this step in Algorithm 2
by only subtracting the orthogonal components on the Sum
term, as shown in line 9. Please refer to Appendix B.4 for a
detailed plain-text description of Algorithms 1 and 2. Here,
we make an approximation by neglecting the normalization
operation in Algorithm 1’s line 5; refer to Appendix B.5 for
details. Basically, we simplify the process of orthogonaliza-
tion of |B| elements (line 5 of Algorithm 1) w.r.t. E to the
orthogonalization of only 1 element and a subtraction oper-
ation (line 6 and 9 of Algorithm 2), considerably reducing
the cost of selection. Empirically, we observed that Algo-
rithm 2 substantially reduces the selection time compared
to Algorithm 1 while achieving comparable performance,
as shown in Table 1.

Choice of selection features U . For the features U =
{g(di, θ)}NB

i=1 used in the selection, we leverage the gradient
of each sample at the final layer. This choice is motivated
by the following reasons: (1) Gradients directly capture
the influence of data on model training; (2) Gradients are
applicable to various supervised and unsupervised tasks
without relying on specific task requirements or annotations;
(3) The overhead of computing gradients at the final layer is
negligible compared to the overall training cost of the batch.

3.5. Discussion

Existing reference-model-free batch selection methods in-
dependently score and select data in a sample-wise manner.
Consequently, they cannot avoid selecting highly scored but
mutually redundant samples, leading to a lack of diversity.
In contrast, our DivBS evaluates the selected subset as a
whole and eliminates the impact of inter-sample redundancy,
ensuring the diversity of the selected samples. Addition-
ally, through theoretical analysis and approximation of the
objective function, we provide an efficient selection process.
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Table 2. Final accuracies (↑) of DivBS and various baseline methods on CIFAR-10, CIFAR-100 and Tiny ImageNet with different budget
ratio 10%, 20%, 30%. Bold indicates the best results. Experiments show that DivBS consistently outperforms all baselines.

Method CIFAR-10 CIFAR-100 Tiny ImageNet

Full Data Training 95.50% 77.28% 56.76%
Budget ratio 10% 20% 30% 10% 20% 30% 10% 20% 30%

Uniform 92.06% 93.76% 94.61% 70.61% 74.18% 75.98% 48.36% 51.71% 53.76%
Train Loss 92.73% 93.87% 94.54% 65.12% 69.34% 72.62% 37.12% 45.23% 47.72%
Grad Norm 65.23% 76.23% 82.34% 64.72% 69.23% 72.34% 37.24% 44.34% 48.24%
Grad Norm IS 92.51% 93.78% 94.41% 69.34% 72.71% 73.21% 42.79% 47.34% 50.23%
SVP 57.38% 73.87% 82.34% 31.23% 43.35% 50.73% 19.34% 28.97% 34.24%
Moderate-BS 92.32% 93.57% 94.36% 70.21% 74.35% 75.34% 48.92% 51.36% 54.23%
CCS-BS 92.61% 93.88% 94.81% 71.11% 74.42% 76.21% 49.18% 52.43% 54.17%
DivBS 94.65% 94.83% 95.07% 73.11% 76.10% 77.21% 50.84% 55.03% 55.94%

Table 3. Epochs (↓) required for DivBS and various baseline methods to reach given target test accuracies on CIFAR-100 with different
budget ratio 10%, 20%, 30%. The target accuracies are set at 80% and 90% of the full dataset training accuracy (77.28%), equivalent to
62% and 69%, respectively. NR indicates that the target accuracy is not reached. Bold indicates the best results.

Budget Target Acc Uniform Train Loss Grad Norm Grad Norm IS SVP Moderate-BS CCS-BS DivBS

10% 62% 150 172 174 163 NR 153 152 132
69% 177 NR NR 196 NR 179 174 165

20% 62% 118 153 155 143 NR 123 118 83
69% 148 195 194 182 NR 150 147 130

30% 62% 113 147 149 133 NR 111 114 52
69% 146 175 174 170 NR 148 145 111

4. Experiments
4.1. Experimental Setup

Datasets. We conduct experiments to evaluate our Di-
vBS on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), and Tiny ImageNet (Le &
Yang, 2015) for image classification. We then conduct ex-
periments in the context of class imabalance, specifically the
CIFAR-100-LT dataset with imbalance ratio 100, obtained
through exponential sampling (Cui et al., 2019). We further
conduct experiments on more tasks, including semantic seg-
mentation, cross-modal retrieval, and fine-tuning language
models, using datasets PASCAL VOC 2012 trainaug (Chen
et al., 2018), Wikipedia (Rasiwasia et al., 2010; Hu et al.,
2021), and E2E NLG Challenge (Novikova et al., 2017).

Baselines. In addition to uniform sampling, we compared
our DivBS with various reference-model-free baseline meth-
ods, including training loss (Kawaguchi & Lu, 2020), gradi-
ent norm (Katharopoulos & Fleuret, 2018a), gradient norm
with importance sampling (gradient norm IS) (Katharopou-
los & Fleuret, 2018a), and Selection-via-Proxy (SVP) (Cole-
man et al., 2020). Additionally, we applied the selection
strategies of Moderate (Xia et al., 2023) and CCS (Zheng
et al., 2023) in the online batch selection paradigm, re-
ferred to as Moderate-BS and CCS-BS. Both strategies have

demonstrated superior performance in one-shot coreset se-
lection with high pruning rates (Zheng et al., 2023).

Implementation details. For image classification, we use
18-layer ResNet as the backbone. The standard data aug-
mentations are applied as in Cubuk et al. (2020). Models
are trained using SGD with momentum of 0.9 and weight
decay of 0.005 as the optimizer. The initial learning rate is
set to 0.1. We train the model for 200 epochs with the co-
sine learning-rate scheduling. Following Mindermann et al.
(2022); Deng et al. (2023), we set the budget of batch sam-
ple number as NS = 32, and the budget ratio as NS

NB
= 10%

unless specified otherwise. Our implementations for seman-
tic segmentation, cross-modal retrieval, and language model
fine-tuning are aligned with the details in Chen et al. (2018),
Hu et al. (2021), and Hu et al. (2022), respectively.

4.2. Performance Evaluation on Image Classification

We first empirically evaluate DivBS on CIFAR-10, CIFAR-
100 and Tiny ImageNet. We report the final accuracy of dif-
ferent methods with budget ratio NS

NB
= {10%, 20%, 30%}

in Table 2. We can observe that DivBS significantly out-
performs all baselines under different budgets across the
three datasets. Furthermore, it is notable that no baseline
consistently outperforms uniform sampling. Techniques
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Table 4. Final accuracies of DivBS and baselines and epochs re-
quired to reach given target accuracies on CIFAR-100-LT (imbal-
ance ratio 100). The target accuracies are set at 60% and 80% of
the full dataset training accuracy (42.80%), equivalent to 26% and
35%, respectively. NR indicates that the target Acc is not reached.

Full Data Training Acc: 42.80%

Budget Method Final Acc ↑ Epochs to target Acc ↓
26% 35%

10%

Uniform 26.97% 177 NR
Moderate-BS 26.35% 183 NR

CCS-BS 27.43% 178 NR
DivBS 31.74% 145 NR

20%

Uniform 38.50% 95 144
Moderate-BS 37.78% 106 163

CCS-BS 38.72% 92 140
DivBS 39.46% 69 118

30%

Uniform 39.67% 54 113
Moderate-BS 39.43% 60 118

CCS-BS 40.28% 53 107
DivBS 42.41% 48 84

like Train Loss and Grad Norm, which focus on selecting
challenging samples, may exhibit decent performance in
certain CIFAR-10 scenarios but suffer significant perfor-
mance drops on more intricate datasets such as CIFAR-100
and Tiny ImageNet. Even with Moderate-BS and CCS-BS,
which employ strategies like selecting samples with inter-
mediate or diverse metrics, achieving results comparable to
uniform sampling, they still notably lag behind DivBS.

Moreover, Table 3 illustrates the number of epochs needed
to reach some given target accuracies. We can observe that
some baselines like Grad Norm IS and CCS-BS that achieve
slightly higher final accuracy compared to uniform sampling
in Table 2, do not gain an advantage in terms of convergence
speed. Remarkably, DivBS not only effectively boosts the
final accuracy but also expedites the model’s convergence.

4.3. Performance Evaluation under Class Imbalance

We further evaluate DivBS on a more challenging task of
imbalanced classification, a scenario often encountered in
the real world (Menon et al., 2021; Hong et al., 2023; Fan
et al., 2022; 2023; 2024). Class imbalance poses a greater
challenge to the diversity of data selection, as the already
scarce samples from the tail classes are more likely to be
completely absent in the selected subset. Specifically, we
experiment on CIFAR-100-LT (imbalance ratio 100) (Cui
et al., 2019; Zhou et al., 2022; 2023) with different budget
ratios 10%, 20%, 30%. We report the final accuracies and
the numbers of epochs required to reach the target accuracies
in Table 4. DivBS consistently outperforms baselines in both
final performance and convergence speed, demonstrating its
ability to ensure data diversity even under class imbalance.

Table 5. Final mIoUs of DivBS and various baseline methods and
epochs required to reach given target mIoUs on PASCAL VOC
2012 trainaug (Chen et al., 2018) with different budget ratio 10%,
20%, 30%. The target mIoUs are set at 80% and 90% of the
full dataset training mIoU (70.80%), equivalent to 57% and 64%,
respectively. NR indicates that the target accuracy is not reached.

Full Data Training mIoU: 70.80%

Budget Method Final mIoU ↑ Epochs to target mIoU ↓
57% 64%

10%

Uniform 63.72% 20 NR
Moderate-BS 63.27% 23 NR

CCS-BS 63.98% 21 NR
DivBS 65.45% 12 38

20%

Uniform 67.07% 8 25
Moderate-BS 66.83% 10 33

CCS-BS 67.22% 8 26
DivBS 68.13% 7 19

30%

Uniform 68.56% 8 19
Moderate-BS 68.34% 9 22

CCS-BS 68.47% 9 20
DivBS 69.85% 4 13

Table 6. Mean Average Precision (MAP) scores for both image →
text and text → image, along with their average on Wikipedia
with different budget ratio 10%, 20%, 30%. Bold indicates the
best results and red signifies improvements over full data training.

Budget Methods Img2Txt ↑ Txt2Img ↑ avg ↑

100% Full Data Training 0.525 0.464 0.4945

10% Uniform 0.508 0.457 0.4825
DivBS 0.512 0.462 0.487

20% Uniform 0.513 0.462 0.4875
DivBS 0.517 0.467 0.492

30% Uniform 0.518 0.464 0.491
DivBS 0.522 0.468 0.495

4.4. Performance Evaluation on Semantic Segmentation

We compare the performance of different methods on PAS-
CAL VOC 2012 trainaug dataset for semantic segmenta-
tion, which is a crucial and practical dense prediction task.
Specifically, we train the DeepLabV3 (Chen et al., 2017)
segmentation model with MobileNet (Howard et al., 2017)
as the backbone for 50 epochs, aligning with the details pro-
vided in Chen et al. (2018). For Moderate-BS and CCS-BS,
their original metrics, based on classification concepts, are
not directly applicable to segmentation tasks. We replace
them with training losses that similarly characterize the dif-
ficulty of samples, while retaining their selection strategies.
We report the results in Table 5. Still, our proposed DivBS
outperforms uniform sampling and other baseline methods
in aspects of both the speed to reach the target mIoUs and
the final mIoU for the semantic segmentation task.
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Figure 2. (a) Average mean feature cosine distance with the k-nearest neighbors for the selected data on CIFAR-10 (10% budget). (b)
Properties of 10 groups in the selected data on CIFAR-100-LT. (c) Performance comparison on CIFAR-10* and CIFAR-100*. Note that
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Table 7. Performance of GPT-2 medium (M) with LoRA finetuning
on the E2E NLG Challenge with budget ratio 20%.

GPT-2 M (LoRA) Full Data Training Uniform DivBS

BLEU ↑ 68.07% 66.14% 66.87%
NIST ↑ 8.726 8.624 8.685
MET ↑ 46.43% 44.26% 44.57%

ROUGE-L ↑ 69.44% 66.90% 67.83%
CIDEr ↑ 2.444 2.301 2.343

4.5. Performance Evaluation on Cross-Modal Retrieval

In addition to visual tasks, we extend our empirical re-
search to evaluate DivBS in the cross-modal retrieval task.
Specifically, we conduct experiments on Wikipedia with
different budget ratio 10%, 20%, 30%. We employ an
ImageNet-pretrained VGG-19 model (Simonyan & Zis-
serman, 2015) as the image backbone and a pre-trained
Doc2Vec model (Lau & Baldwin, 2016) for text. All other
implementation details align with Hu et al. (2021). In Ta-
ble 6, we report the Mean Average Precision (MAP) score
for both image→ text and text→ image retrieval, along
with their average. It can be observed that our DivBS con-
sistently outperforms uniform sampling in the cross-modal
retrieval task. More impressively, DivBS even surpasses
full-data training in terms of text → image MAP and av-
erage MAP at 20% and 30% budget ratios. This indicates
that our DivBS remains effective in selecting diverse and
high-quality subsets in the cross-modal retrieval task.

4.6. Performance Evaluation on LM Finetuning

We also validate the effectiveness of our DivBS on the
language model finetuning task. Specifically, we fine-
tune the GPT-2 Medium (M) model (Radford et al., 2019)
using LoRA (Hu et al., 2022) on the E2E NLG Chal-
lenge (Novikova et al., 2017), which is widely used dataset
for natural language generation evaluations. We finetune
GPT-2 M for 5 epochs with a minibatch size of 4, align-

Table 8. Wall-clock time (↓) per epoch of different methods on
CIFAR-10 and PASCAL VOC 2012 trainaug. The results are
averaged over ten epochs. The subscript indicates the percentage
of time saved compared to full data training.

CIFAR-10

Full data training Budget ratio Uniform DivBS

44.7s
10% 13.2s ↓70% 13.9s ↓69%
20% 17.4s ↓61% 18.5s ↓59%
30% 22.1s ↓51% 23.6s ↓47%

PASCAL VOC 2012 trainaug

Full data training Budget ratio Uniform DivBS

291.2s
10% 96.1s ↓67% 100.9s ↓65%
20% 125.3s ↓58% 132.4s ↓55%
30% 157.2s ↓46% 166.9s ↓43%

ing with the remaining implementation details in Hu et al.
(2022). We report the results of full data training, uniform
sampling and our DivBS with budget ratio 20% in Table 7.
We can observe that our DivBS consistently outperforms
uniform sampling across all 5 metrics, further demonstrating
its universality across different tasks and training paradigms.

4.7. Further Analysis

Properties of the Selected Data. In Figure 2(a), we com-
pare the average feature cosine distances to the k-nearest
neighbors (k = 1, 3, 5, 7, 9) of samples selected by different
methods on CIFAR-10. DivBS stands out with the largest
KNN distances, highlighting the reduced redundancy and
broader coverage of the selected samples. We then arrange
the classes of CIFAR-100-LT in descending order of sample
number, grouping every ten classes together, denoted as
groups 1-10. In Figure 2(b), we illustrate the proportion of
samples selected by uniform sampling and our DivBS for
each group. It is evident that DivBS consistently increases
the proportion of tail samples, demonstrating the effective
enhancement of diversity in the selected subset.
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Figure 3. Performance (↑) v.s. speedup (↑) on (a) CIFAR-10, (b) CIFAR-100, and (c) PASCAL VOC 2012 trainaug. The upper panel
displays the relationship between the performance (accuracy or mIoU) of different methods and the speedup w.r.t. the number of training
iterations. The lower panel illustrates the relationship between the performance and the speedup w.r.t. the wall-clock time.

Table 9. Final accuracies (↑) on CIFAR-100 with different budget
ratio 10%, 20%, 30% when using SGD and AdamW as optimizer.

SGD

Full data training Budget ratio Uniform DivBS

77.28%
10% 70.61% 73.11%
20% 74.18% 76.10%
30% 75.98% 77.21%

AdamW

Full data training Budget ratio Uniform DivBS

70.50%
10% 66.72% 69.07%
20% 68.93% 70.43%
30% 69.09% 70.47%

Wall-clock time. Compared to uniform sampling, our Di-
vBS incurs some additional overhead in the selection pro-
cess. While our research primarily investigates data selec-
tion strategies favorable for model convergence, we still
empirically measure and compare the practical impact of
different methods on training duration. In Table 8, we report
the wall-clock time per epoch on CIFAR-10 image classifi-
cation and PASCAL VOC 2012 trainaug semantic segmen-
tation. We can observe that the time proportion of uniform
sampling compared to full time training is greater than the
corresponding budget ratio. This discrepancy arises because
batch selection only reduces the data used for network up-

dates while operations like loading data, model validation,
and saving model files still require the same amount of time.
Our DivBS introduces additional overhead of less than 5%
total time compared to uniform sampling. There is potential
to further reduce this overhead using hardware techniques
or parallelization methods, as discussed in Section 5.

Robustness with different optimizers. We validate the
robustness of our DivBS under different optimizers. Table 9
showcases the performance of our DivBS on CIFAR-100
using both SGD and AdamW. DivBS consistently outper-
forms the baseline across various budget ratios. Moreover,
with both optimizers, DivBS exhibits minimal performance
loss at 30% budget compared to full dataset training.

Narrow the gap with methods involving extra reference
models. In Figure 2(c), we compare our DivBS with RHO-
LOSS (Mindermann et al., 2022) and Bayesian (Deng et al.,
2023), which utilize extra reference models for selection,
on CIFAR-10* and CIFAR-100* with 10% budget. The
implementation details are strictly aligned with those of
RHO-LOSS and Bayesian. CIFAR-10/100* are versions of
CIFAR-10/100, with only half of the data retained (Minder-
mann et al., 2022). Our DivBS significantly narrows the gap
with methods that utilize extra reference models.

Trade-off between performance and speedup. While our
primary aim is to reduce training costs while preserving
performance, there inherently exists a trade-off between
model performance and acceleration effects. In Figure 3, we
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present the trade-off between the performance and speedup
(w.r.t. training iterations and wall-clock time) of various
methods on CIFAR-10, CIFAR-100, and PASCAL VOC
2012 trainaug datasets. Points located in the upper-right cor-
ner of the subfigures indicate superior performance coupled
with enhanced acceleration effects. Notably, our DivBS ex-
cels in achieving a superior performance-speedup trade-off.

5. Related Work
Coreset selection (Mirzasoleiman et al., 2020; Xin et al.,
2024), also known as data pruning, aims to create a smaller
subset (coreset) of the original data that captures essential
patterns for efficient model training. Various metrics like
the entropy score (Coleman et al., 2020), EL2N score (Paul
et al., 2021), forgetting score (Toneva et al., 2019), and clas-
sification margin (Pleiss et al., 2020), are used to measure
individual differences among data points. Yet, selecting
samples with the highest scores can lead to diversity issues,
especially at high pruning rates, resulting in performance
degradation (Xia et al., 2023). Zheng et al. (2023); Xia et al.
(2023) propose strategies of selecting samples with inter-
mediate scores or with diverse scores, yielding promising
results under high pruning rates. However, coreset selec-
tion faces limitations in prioritizing samples with diverse
properties during different training stages. Moreover, the
acceleration benefits are noticeable only when the coreset is
repeatedly used to train various models, as the data selection
relies on a full data trained model.

Curriculum learning (Bengio et al., 2009) seeks to enhance
model performance with minimal computational costs by
prioritizing “easy” samples before uniformly training on the
entire dataset (Jiang et al., 2015; Sinha et al., 2020; Zhou
et al., 2020). Although curriculum learning can improve
model convergence, it may not efficiently reduce training
expenses. And they fall short in addressing the challenge of
skipping redundant points that have already been learned.

Online batch selection speeds up model training by using
only a portion of data in each batch. Jiang et al. (2019);
Katharopoulos & Fleuret (2018b); Loshchilov & Hutter
(2015) prioritize hard samples based on criteria like train-
ing loss or gradient norm, but these can hinder early-stage
model convergence and be sensitive to outliers. Minder-
mann et al. (2022) and Deng et al. (2023) achieve notable
speedup by leveraging additional reference models to select
valuable samples. However, their practical applications are
restricted by the availability of well-performing reference
models. Compared to prior methods, which score and select
data in a sample-wise manner, our reference-model-free Di-
vBS, excels in selecting high-quality and diverse samples
by optimizing the overall orthogonalized representativeness
of the subset after removing inter-sample redundancy.

Acceleration of the Selection Process. Except for uni-

form sampling, online batch selection methods generally
require an additional forward pass for each batch. Jouppi
et al. (2017) achieve nearly 10× acceleration in forward
propagation by leveraging low-precision cores on GPUs
or TPUs, grounded in the observation that forward prop-
agation exhibits higher tolerance to low precision. Alain
et al. (2015) utilize a group of workers to asynchronously
execute forward propagation and selection while the main
process trains on the recently chosen data, thereby saving
time of selection processes. Selection can also be cheaper by
reusing features, gradients, or losses computed in previous
epochs (Loshchilov & Hutter, 2015). Though our research
scope is limited to the effects of different selection strategies,
exploring the integration of these techniques for maximum
acceleration is a promising and noteworthy avenue.

6. Conclusion
We investigate the diversity challenge that may arise from
existing batch selection methods independently scoring and
selecting data in a sample-wise manner. We propose Diver-
sified Batch Selection (DivBS), which selects diverse and
representative subsets by optimizing the overall orthogonal-
ized representativeness after removing inter-sample redun-
dancy, thereby accelerating model training. Extensive exper-
iments validate the superiority of our DivBS in performance-
speedup tradeoff across various tasks.
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Kirsch, A., Xu, W., Höltgen, B., Gomez, A. N., Morisot,
A., Farquhar, S., and Gal, Y. Prioritized training on points
that are learnable, worth learning, and not yet learnt. In
ICML, volume 162 of Proceedings of Machine Learning
Research, pp. 15630–15649. PMLR, 17–23 Jul 2022.

Mirzasoleiman, B., Bilmes, J. A., and Leskovec, J. Coresets
for data-efficient training of machine learning models. In
ICML, volume 119 of Proceedings of Machine Learning
Research, pp. 6950–6960. PMLR, 2020.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functions - I. Math. Program., 14(1):265–294, 1978.

Novikova, J., Dusek, O., and Rieser, V. The E2E dataset:
New challenges for end-to-end generation. In Proceed-
ings of the 18th Annual SIGdial Meeting on Discourse
and Dialogue, pp. 201–206. Association for Computa-
tional Linguistics, 2017.

OpenAI. GPT-4 technical report. ArXiv, abs/2303.08774,
2023.

Paul, M., Ganguli, S., and Dziugaite, G. K. Deep learning on
a data diet: Finding important examples early in training.
In NeurIPS, pp. 20596–20607, 2021.

Pleiss, G., Zhang, T., Elenberg, E. R., and Weinberger,
K. Q. Identifying mislabeled data using the area under
the margin ranking. In NeurIPS, 2020.

Qin, Z., Wang, K., Zheng, Z., Gu, J., Peng, X., xu Zhao Pan,
Zhou, D., Shang, L., Sun, B., Xie, X., and You, Y. Info-
batch: Lossless training speed up by unbiased dynamic
data pruning. In ICLR, 2024.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision. In
ICML, volume 139 of Proceedings of Machine Learning
Research, pp. 8748–8763. PMLR, 2021.

Rasiwasia, N., Pereira, J. C., Coviello, E., Doyle, G., Lanck-
riet, G. R. G., Levy, R., and Vasconcelos, N. A new
approach to cross-modal multimedia retrieval. In Proceed-
ings of the 18th International Conference on Multimedia,
pp. 251–260. ACM, 2010.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta,
B. B., Chen, X., and Wang, X. A survey of deep active
learning. ACM computing surveys (CSUR), 54(9):1–40,
2021.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In CVPR, pp. 10684–10695, June 2022.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. In ICLR, 2018.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In ICLR,
2015.

Sinha, S., Garg, A., and Larochelle, H. Curriculum by
smoothing. In NeurIPS, 2020.

11



Diversified Batch Selection for Training Acceleration

Toneva, M., Sordoni, A., des Combes, R. T., Trischler, A.,
Bengio, Y., and Gordon, G. J. An empirical study of
example forgetting during deep neural network learning.
In ICLR. OpenReview.net, 2019.
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A. Notations
In Table 10, we summarize the notations used in this paper.

Table 10. Summary of notations

Category Notation Description

Data and Sets D Training data set
B (Large) training data batch
NB Size of B
d a data point
S ⊂ B A smaller subset of B
NS Budget of the size of S
U = g(B, θ) = {g(di, θ)}NB

i=1 Features used for selection from B
u ∈ U A feature in U
E(g(S, θ)) {E = {ei, . . . e|E|}|∀ei, ej ∈ E, ei · ej =

δij , span(E) = span(g(S, θ))}, Set of all
potential orthonormal bases for the subspace
spanned by g(S, θ)

E ∈ E(g(S, θ)) A orthonormal base for g(S, θ)
e ∈ E A unit vector in E
j, k ∈ B \ S Two data points not in S

Model and functions fθ a deep model with parameters θ
θ Model parameters
g(B, θ), g(d, θ) Mapping function from data points to the selection

features, given model parameters θ
s(u) Scoring function for sample-wise selection
r(S,B, θ) maxE∈E(g(S,θ))

∑
e∈E

∑
u∈g(B,θ) e · u, the

orthogonalized representativeness of subset S with
respect to B

δij Kronecker delta, taking the value 1 when i = j
and 0 otherwise

span(·) Subspace spanned by all elements in a set
r′(S,B, θ)

√∑
e∈E(e ·

∑
u∈g(B,θ) u)

2, ∀E ∈ GE(g(S, θ)),
an auxiliary function introduced to study
algorithm performance

F (·) A general set function
β̂(x)

√
a+ x−

√
x with a > 0

Others e Euler’s Number, approximately equal to 2.71828
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B. Technical Details
B.1. Proof of Proposition 3.1

Proof of Proposition 3.1.
Based on Equation (1):

r(S,B, θ) = max
E∈E(g(S,θ))

∑
e∈E

∑
u∈g(B,θ)

e · u

= max
E∈E(g(S,θ))

(
∑
e∈E

e) · (
∑

u∈g(B,θ)

u)

= max
E∈E(g(S,θ))

(
∑
e∈E

e) · (
∑
e∈E

(e ·
∑

u∈g(B,θ)

u)e)

(3)

where
∑

e∈E(e ·
∑

u∈g(B,θ) u)e is the projection of
∑

u∈g(B,θ) u onto the subspace spanned by g(S, θ), and it remains

constant with variations of E, with a length of
√∑

e∈E(e ·
∑

u∈g(B,θ) u)
2. The length of

∑
e∈E e is a constant

√
|E|, and

it can take any direction as E varies. Therefore, when E changes to align the directions of
∑

e∈E(e ·
∑

u∈g(B,θ) u)e and∑
e∈E e, the term (

∑
e∈E e)·(

∑
e∈E(e·

∑
u∈g(B,θ) u)e) achieves its maximum value

√∑
e∈E(e ·

∑
u∈g(B,θ) u)

2×
√
|E| =√

|E|
∑

e∈E(e ·
∑

u∈g(B,θ) u)
2, which remains constant as E changes in E(g(S, θ)). Thus, ∀E ∈ E(g(S, θ)), we have

√
|E|

∑
e∈E

(e ·
∑

u∈g(B,θ)

u)2 = r(S,B, θ). (4)

B.2. Proof of Proposition 3.2

Definition B.1 (Proposition 2.3 in Bach (2013)). The set-function F is submodular if and only if for all S ⊂ B, and
j, k ∈ B \ S, we have

F (S ∪ {k})− F (S) ≥ F (S ∪ {j, k})− F (S ∪ {j}).

And the function is called normalized if F (∅) = 0 and monotone if and only if F (S′) ≤ F (S), ∀S′ ⊂ S.

Proof of Proposition 3.2.
Given r′(S,B, θ) =

√∑
e∈E(e ·

∑
u∈g(B,θ) u)

2, ∀E ∈ E(g(S, θ)). Note that r′ remains constant for arbitrary choice of

the basis E spanned the same subspace. For all S ⊂ B, and j, k ∈ B \ S, we discuss this problem case by case.

(1) g(j, θ) is in the subspace spanned by g(S, θ), i.e., g(j, θ)−
∑

e∈E(e · g(j, θ))e = 0. we have

r′(S,B, θ) = r′(S ∪ {j}, B, θ)

r′(S ∪ {k}, B, θ) = r′(S ∪ {j, k}, B, θ)
(5)

Thus, we have
r′(S ∪ {k}, B, θ)− r′(S,B, θ) = r′(S ∪ {j, k}, B, θ)− r′(S ∪ {j}, B, θ). (6)

(2) g(j, θ) is not in the subspace spanned by g(S, θ), i.e., g(j, θ)−
∑

e∈E(e · g(j, θ))e ̸= 0. Define ej as

ej =
g(j, θ)−

∑
e∈E(e · g(j, θ))e

∥g(j, θ)−
∑

e∈E(e · g(j, θ))e∥
, (7)

we have E ∪ {ej} ∈ E(g(S ∪ {j}, θ)).
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(2a) g(k, θ) is in the subspace spanned by g(S ∪ {j}, θ). We have

r′(S ∪ {j, k}, B, θ)− r′(S ∪ {j}, B, θ) = 0

r′(S ∪ {k}, B, θ)− r′(S,B, θ) ≥ 0 = r′(S ∪ {j, k}, B, θ)− r′(S ∪ {j}, B, θ)
(8)

(2b) g(k, θ) is not in the subspace spanned by g(S ∪ {j}, θ). Define ek as

ek =
g(k, θ)−

∑
e∈E(e · g(k, θ))e− (ej · g(k, θ))ej

∥g(k, θ)−
∑

e∈E(e · g(k, θ))e− (ej · g(k, θ))ej∥
, (9)

we have

E ∪ {ek} ∈ E(g(S ∪ {k}, θ))
E ∪ {ej , ek} ∈ E(g(S ∪ {j, k}, θ))

(10)

Then

r′(S,B, θ) =

√∑
e∈E

(e ·
∑

u∈g(B,θ)

u)2

r′(S ∪ {k}, B, θ) =

√∑
e∈E

(e ·
∑

u∈g(B,θ)

u)2 + (ek ·
∑

u∈g(B,θ)

u)2

r′(S ∪ {j}, B, θ) =

√∑
e∈E

(e ·
∑

u∈g(B,θ)

u)2 + (ej ·
∑

u∈g(B,θ)

u)2

r′(S ∪ {j, k}, B, θ) =

√∑
e∈E

(e ·
∑

u∈g(B,θ)

u)2 + (ej ·
∑

u∈g(B,θ)

u)2 + (ek ·
∑

u∈g(B,θ)

u)2

(11)

Note that the function β̂(x) =
√
a+ x−

√
x with a > 0 is a decreasing function w.r.t. x. Let a = (ek ·

∑
u∈g(B,θ) u)

2,
x1 =

∑
e∈E(e ·

∑
u∈g(B,θ) u)

2 and x2 =
∑

e∈E(e ·
∑

u∈g(B,θ) u)
2 + (ej ·

∑
u∈g(B,θ) u)

2, we have x1 < x2 and

β̂(x1) > β̂(x2). It follows that

r′(S ∪ {k}, B, θ)− r′(S,B, θ) > r′(S ∪ {j, k}, B, θ)− r′(S ∪ {j}, B, θ) (12)

In summary, for all S ⊂ B, and j, k ∈ B \ S, we have

r′(S ∪ {k}, B, θ)− r′(S,B, θ) ≥ r′(S ∪ {j, k}, B, θ)− r′(S ∪ {j}, B, θ) (13)

And it’s obvious that r′(S,B, θ) is normalized and monotone.
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B.3. Proof of Proposition 3.3

Lemma B.2 (Nemhauser et al. (1978)). Greedy maximization of a monotone, submodular function returns a set with value
within a factor of 1− e−1 from the optimum set with the same size.

Lemma B.3. Algorithm 1 returns a 1 − e−1 approximation for argmaxS⊂B r′(S,B, θ), s. t. |S| ≤ NS . That is, denote
S∗∗ as the optimum subset for maximizing r′(S,B, θ), and S′ is the output of Algorithm 1, we have

r′(S′, B, θ) ≥ (1− e−1)r′(S∗∗, B, θ).

Proof of Lemma B.3.
Note that Algorithm 1 is also a greedy maximization of r′(S,B, θ), given Proposition 3.2 and Lemma B.2, the conclusion
can be drawn immediately.

Proof of Proposition 3.3.
Denote S∗ as the optimum subset for maximizing r(S,B, θ), S∗∗ as the optimum subset for maximizing r′(S,B, θ), and S′

as the output of Algorithm 1. Let E∗, E∗∗, E′ be orthonormal bases corresponding to S∗, S∗∗, S′, respectively. We can get

|E∗| = |E∗∗| = |E′| = min(rank(B), NS). (14)

Otherwise, If |E| < min(rank(B), NS), there must be at least one selected di that does not contribute to E, and an
unselected dj that can contribute a new element to E. Therefore, replacing di with dj further increases the objective value,
both from a global and a sequential greedy perspective.

Based on Lemma B.3, we have

r(S′, B.θ) =
√
min(rank(B), NS)r

′(S′, B.θ)

≥ (1− e−1)
√
min(rank(B), NS)r

′(S∗∗, B, θ)

≥ (1− e−1)
√
min(rank(B), NS)r

′(S∗, B, θ) (Definition of S∗∗)

= (1− e−1)r(S∗, B, θ)

(15)

B.4. Plain-text Description of Algorithms 1 and 2

Algorithm 1:

1. Initialize the selected subset S to an empty set and the corresponding orthonormal basis E to an empty set. Denote the
sum of all features of elements of batch B as Sum: S ← ∅, E ← ∅, Sum←

∑
u∈g(B,θ) u.

2. Add a sample to S that maximizes the current r(S,B, θ) =
√
|E|

∑
e∈E(e ·

∑
u∈g(B,θ) u)

2, where E ∈ E(g(S, θ)).

(a) Compute the contribution of each candidate sample when individually added to S to the orthonormal basis E:
ECand ←

g(d,θ)−
∑

e∈E(e·g(d,θ))e
|g(d,θ)−

∑
e∈E(e·g(d,θ))e| for d ∈ B

(b) Identify the sample that maximizes r: idx← argmaxi |ei · Sum|, ei ∈ ECand

(c) Update E, S, B: S ← S ∪ {didx}, E ← E ∪ {eidx}, B ← B \ {didx}

3. Repeat Step 2 until |S| = NS .

Algorithm 2:

1. Initialize the selected subset S to an empty set and the corresponding orthonormal basis E to an empty set. Initialize
Sum as the sum of all features of elements of batch B: ← ∅, E ← ∅, Sum←

∑
u∈g(B,θ) u.
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2. Add a sample to S that approximately maximizes the current r, referring to Appendix B.5 for the approximation.

(a) Select the sample d to be added at the current step: d← argmaxd∈B |g(d, θ) · Sum|
(b) Compute the contribution of sample d to the current orthonormal basis: e← g(d,θ)−

∑
e∈E(e·g(d,θ))e

|g(d,θ)−
∑

e∈E(e·g(d,θ))e|

(c) Update E, S, B: S ← S ∪ {d}, E ← E ∪ {e}, B ← B \ {d}

B.5. Approximation from Algorithm 1 to Algorithm 2

In Algorithm 1, we select dgreedy as follows :

dgreedy = argmax
d∈B
|
g(d, θ)−

∑
e∈E(e · g(d, θ))e

∥g(d, θ)−
∑

e∈E(e · g(d, θ))e∥
·

∑
u∈g(B,θ)

u| (16)

where E represents an orthogonal basis corresponding to the already selected samples (line 7,8 in Algorithm 1). If we
disregard the normalization term ∥g(d, θ)−

∑
e∈E(e · g(d, θ))e∥, then

|g(d, θ)−
∑
e∈E

(e · g(d, θ))e ·
∑

u∈g(B,θ)

u|

= |(g(d, θ)−
∑
e∈E

(e · g(d, θ))e) · (
∑

u∈g(B,θ)

u−
∑
e∈E

(e ·
∑

u∈g(B,θ)

u)e+
∑
e∈E

(e ·
∑

u∈g(B,θ)

u)e)|

= |(g(d, θ)−
∑
e∈E

(e · g(d, θ))e) · (
∑

u∈g(B,θ)

u−
∑
e∈E

(e ·
∑

u∈g(B,θ)

u)e|

= |g(d, θ) · (
∑

u∈g(B,θ)

u−
∑
e∈E

(e ·
∑

u∈g(B,θ)

u)e|

(17)

The third and fourth lines follow from the fact that for any ei ∈ E, we have (g(d, θ) −
∑

e∈E(e · g(d, θ))e) · ei = 0,
and (

∑
u∈g(B,θ) u −

∑
e∈E(e ·

∑
u∈g(B,θ) u)e) · ei = 0. Note that argmaxd∈B |g(d, θ) · (

∑
u∈g(B,θ) u −

∑
e∈E(e ·∑

u∈g(B,θ) u)e)| corresponds to line 5 of Algorithm 2 given Sum =
∑

u∈g(B,θ) u−
∑

e∈E(e ·
∑

u∈g(B,θ) u)e (line 6,8,9
of Algorithm 2), we can employ Algorithm 2 to approximate Algorithm 1.

C. Supplement for Experiments
C.1. Toy Example (Figure 1)

In Figure 1, we visualize a toy motivating example involving a four-class classification task among red, blue, green and
yellow points. Specifically, we sample 1000 red points, 300 blue points, 150 green points, and 20 yellow points from
following normal distributions: N([0, 0], [1, 1]), N([5, 0], [1, 1]), N([0, 5], [1, 1]), and N([5, 5], [1, 1]), respectively. We use
a two-layer MLP with 100 hidden neurons as the model for the toy study. We construct a batch B using all available training
data. The toy models are trained using Adam with learning rate 0.001 for 100 epochs. The budget ratio is set to 10%.

C.2. T-SNE Visualization

In Figure 4, we visualize subsets selected by different methods from the same batch of data on CIFAR-10. The batch size in
all the experiments is set to 320. 10%-budget, i.e., 32 samples are selected. The t-SNE (van der Maaten & Hinton, 2008)
visualization of the last layer features is shown in Figure 4. The red points represent the selected samples, and the gray
points represent the full data. We have circled highly redundant samples. It is evident that baseline methods tend to select
redundant samples, wasting data capacity, while our DivBS effectively avoids such issues.

C.3. Comparison with InfoBatch (Qin et al., 2024)

In this section, we compare the method InfoBatch (Qin et al., 2024). As it doesn’t originally operate with a fixed budget
(and the average budget exceeds our setup), we adapt it by using a percentile threshold based on the guidance1 from the

1https://github.com/NUS-HPC-AI-Lab/InfoBatch/issues/16#issuecomment-1903467666
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Grad Norm IS Train Loss

Uniform DivBS

Figure 4. T-SNE visualization of data selected by different methods on CIFAR-10 with 10% budget. Circles highlight redundant samples.

official repository to fix the budget ratio. The results are presented in Table 11. Note that, the results of InfoBatch are
significantly lower than those of Uniform Sampling. This is due to the rescaling operation in InfoBatch, which can lead to
unstable training, especially under the small budget. For example, with a budget of 10%, if we set the percentile threshold
for infobatch to 95%, then infobatch needs to assign a weight of 0.95

0.1−0.05 = 19 times to the selected low-loss samples,
which clearly destabilizes the training process. In contrast, the default threshold for InfoBatch is the mean, and it only clips
50% of samples below the mean, assigning a weight of 2 to low-loss samples. This may suggest that, rather than weighting
losses of samples, simply selecting a subset of samples may be safer for accelerating model training.

C.4. Comparison with K-means++ Initialization Method

Given that K-means++ initialization method is also build to sample diverse centers, we conduct comparison between DivBS
and k-means++ initialization method in Table 12. K-means++ initialization has shown comparable results to Uniform
sampling, achieving some improvement at 10% and 20% budget ratios. This can be attributed to K-means++ initialization
placing some emphasis on diversity, which may become more important as the budget decreases. However, DivBS still
outperforms K-means++ initialization significantly, possibly due to the following reasons: 1) K-means++ initialization, as a
heuristic algorithm, probabilistically samples points based on their distances from previously selected points, without a stable
performance guarantee; 2) K-means++ initialization only considers distances between subset elements without considering
the representativeness of the selected subset for the entire batch. In contrast, our proposed objective simultaneously considers
both the diversity within the subset and the representativeness of the subset.

C.5. Error Bars

We provide error bars of Table 2 in Table 13.
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Table 11. Accuracies on CIFAR-100 for different budget ratios.

Budget ratio 10% 20% 30%

Uniform 70.61% 74.18% 75.98%
InfoBatch 43.56% 68.22% 74.31%

DivBS 73.11% 76.10% 77.21%

Table 12. Final accuracies of DivBS and K-means++ initialization method on CIFAR-100 for different budget ratios. Full Data Training
achieves 77.28% accuracy.

Budget ratio 10% 20% 30%

Uniform 70.61% 74.18% 75.98%
k-means++ initialization 71.14% 74.35% 75.76%

DivBS 73.11% 76.10% 77.21%

D. Other Sampling Methods Involving Diversity or Submodularity
Curriculum learning involving redundency and diversity: self-paced learning with diversity (SPLD) (Jiang et al., 2014) is
the first work to introduce diversity into curriculum learning, formalizing preferences for simple and diverse samples as
a universal regularization term. MCL (Zhou & Bilmes, 2018) proposes that early training should focus on a small set of
diverse samples, while later stages should prioritize training on larger, more challenging, and more homogeneous samples.
Similar to MCL, DoCL (Zhou et al., 2021) promotes diversity through regularization using a submodular function.

Submodular coreset selection: Craig (Mirzasoleiman et al., 2020) attempt to find an coreset that approximates the gradients
of the full dataset. They achieve this by transforming the gradient matching problem into the maximization of a monotone
submodular. GLISTER (Killamsetty et al., 2021) formulates coreset selection as a mixed discrete-continuous bi-level
optimization problem. It aims to select a subset of the training data that maximizes the log-likelihood on a held-out validation
set. Additionally, GLISTER establishes connections to submodularity.

Submodular active learning: Wei et al. (2015) discusses the connection between likelihood functions and submodularity. It
demonstrates that under a cardinality constraint, maximizing the likelihood function is equivalent to maximizing submodular
functions for Naive Bayes or Nearest Neighbor classifiers. This naturally provides a powerful tool for coreset selection. By
introducing submodularity into Naive Bayes and Nearest Neighbor classifiers, they propose a novel framework for active
learning called Filtered Active Submodular Selection (Fass). CAL (Das et al., 2023) integrates continual learning techniques
into active learning to alleviate the high training costs associated with active learning. Similarly, it employs submodular
functions to regularize the sampling points.

Diversity-aware active learning: some sampling methods also focus on diversity of the chosen elements in the active learning
area (Ren et al., 2021), where a model proactively chooses and queries the most informative data points for annotation,
aiming to enhance its performance with minimal labeled examples. For example, Sener & Savarese (2018) theoretically
formalize the data selection process as a k-Center problem and introduce the CoreSet algorithm, while Agarwal et al. (2020)
substitute the Euclidean distance with context-aware KL-divergence. Determinantal Point Process (DPP) (Kulesza et al.,
2012; Tremblay et al., 2019) is also an effective sampling method for preventing redundancy.

Discussion: the majority of sampling methods involving diversity come with a high computational cost, requiring at least
O(N2) or O(N3) to calculate set properties (such as pairwise distances or determinants) and O(N2) or O(N3) to perform
the sampling process, where N is the number of all candidate elements. As a result, they are suitable only for small-scale
offline sampling and are not applicable for large-scale online selection. In contrast, our method has been demonstrated to be
sufficiently lightweight, enabling its application in accelerating training within the online batch selection paradigm.

E. Limitation and Future Work
Online batch selection methods require an additional forward pass for selecting a subset in each batch, which somewhat
limits the upper bound of acceleration, especially when the budget is small. Similar to previous research of online batch
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Table 13. Final accuracies (↑, mean ± std) of DivBS and various baseline methods on CIFAR-10, CIFAR-100 and Tiny ImageNet with
different budget ratio 10%, 20%, 30%. Bold indicates the best results. Experiments show that DivBS consistently outperforms all
baselines.

Method CIFAR-10 CIFAR-100 Tiny ImageNet

Full Data Training 95.50% 77.28% 56.76%
Budget ratio 10% 20% 30% 10% 20% 30% 10% 20% 30%

Uniform 92.06% 93.76% 94.61% 70.61% 74.18% 75.98% 48.36% 51.71% 53.76%
± 0.19% ± 0.14% ± 0.19% ± 0.34% ± 0.37% ± 0.31% ± 0.23% ± 0.28% ± 0.32%

Train Loss 92.73% 93.87% 94.54% 65.12% 69.34% 72.62% 37.12% 45.23% 47.72%
± 0.22% ± 0.16% ± 0.21% ± 0.36% ± 0.31% ± 0.37% ± 0.25% ± 0.30% ± 0.25%

Grad Norm 65.23% 76.23% 82.34% 64.72% 69.23% 72.34% 37.24% 44.34% 48.24%
± 0.17% ± 0.20% ± 0.24% ± 0.29% ± 0.34% ± 0.28% ± 0.21% ± 0.26% ± 0.31%

Grad Norm IS 92.51% 93.78% 94.41% 69.34% 72.71% 73.21% 42.79% 47.34% 50.23%
± 0.20% ± 0.25% ± 0.16% ± 0.35% ± 0.30% ± 0.26% ± 0.23% ± 0.28% ± 0.13%

SVP 57.38% 73.87% 82.34% 31.23% 43.35% 50.73% 19.34% 28.97% 34.24%
± 0.15% ± 0.08% ± 0.22% ± 0.27% ± 0.32% ± 0.26% ± 0.17% ± 0.22% ± 0.27%

Moderate-BS 92.32% 93.57% 94.36% 70.21% 74.35% 75.34% 48.92% 51.36% 54.23%
± 0.18% ± 0.23% ± 0.18% ± 0.23% ± 0.18% ± 0.24% ± 0.23% ± 0.20% ± 0.32%

CCS-BS 92.61% 93.88% 94.81% 71.11% 74.42% 76.21% 49.18% 52.43% 54.17%
± 0.21% ± 0.16% ± 0.11% ± 0.36% ± 0.31% ± 0.37% ± 0.26% ± 0.21% ± 0.36%

DivBS 94.65% 94.83% 95.07% 73.11% 76.10% 77.21% 50.84% 55.03% 55.94%
± 0.27% ± 0.22% ± 0.27% ± 0.12% ± 0.37% ± 0.23% ± 0.28% ± 0.23% ± 0.15%

selection, our scope is also limited to the effects of different selection strategies. Exploring the integration of techniques
discussed in Section 5 such as hardware acceleration for forward pass, parallelization, or leveraging historical training
information to avoid additional data loading and forward pass for maximum acceleration is a promising and noteworthy
avenue.
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