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ABSTRACT

This paper studies the integration of machine-learned advice in overlay networks to
improve the overall connectivity. Our algorithms are based on Skip List Networks
(SLN), which is natural extension of skip lists that supports pairwise communica-
tion. In particular, our work goes beyond learning-augmented single-source skip
lists (studied recently in ICLR 2025 by |Fu et al.{(2025)) and ICML 2024 by Zeynali
et al.|[(2024)), considering a prediction model where each node of the network
individually receives a local prediction of its future communications to the rest of
the network. We utilize this model to develop a distributed, learning-augmented
SLN to optimize the serving of any weighted pairwise demand.

We first solve the optimization problem of finding an optimal SLN given a certain
demand, which we show is polynomial with a dynamic programming approach. We
then introduce a novel network structure called Continuous SLN, where the heights
of each node is relaxed to be any real number. Finally, we show how a random,
uniform noise on top of each node’s height makes the network robust against any
predictions, even adversarial, while the performances are kept unchanged when the
predictions are desired. Concretely, adversarial predictions can cause our network
to be a logarithmic factor away from any optimal network without prediction.
Furthermore, we show that, for highly sparse demands, a refined version of our
algorithm shows no drawbacks in asymptotics for any prediction and presents
exponential improvements when the predictions are good. Finally, we empirically
show that our learning-augmented overlay network demonstrate resistance against
small error with evaluations on synthetic and real-world data-sets.

1 INTRODUCTION

Overlay networks are one of the key technological advancements that allowed decentralized and
distributed systems to scale. A vast body of work has been devoted to optimize the efficiency of these
networks |Lua et al.|(2005); [Ratnasamy et al.|(2001); |Aspnes & Shah|(2003); Harvey et al.[(2003);
Kiffer et al.| (2021). Traditionally, the efficiency of an overlay network is estimated with two key
metrics which are the routing path length between a pair of nodes and the maximum degree of each
node in the network. State-of-the-art overlay networks achieve both a logarithmic routing path length
and a logarithmic maximum degree Stoica et al.|(2003)); Fraigniaud & Gauron|(2006).

Up until recently, most work on overlay networks focused on demand-oblivious worst-case scenarios,
where no prior information about the possible future demand is known. However, a new line of work
studies demand-aware networks [Schmid et al.| (2016)); /Avin et al.|(2020b); |[Figiel et al.| (2025) which
can adapt their connectivity properties to better fit the current traffic. Noting that most networking
traffics are sparse and partly predictable |Avin et al.| (2020a)), the idea is to detect the few highly
active nodes and move them topologically closer to reduce the overall delays. The model includes a
demand matrix which indicates the amount of traffic between any two nodes in the network; A goal
of a demand-aware protocol is then to minimize the fotal weighted path length|Schmid et al.|(2016).

This paper presents a peer-to-peer (P2P) overlay network design where each node can adapt its set of
neighbors to better fit the future traffic demands. We do not assume that the demand matrix is known
by the nodes; Rather, we stick with the distributed nature of overlay networks and assume that each
node has access to a local prediction about the future demands — the prediction may only consist of
partial information about the future traffic, an integer number in the case of this work. In our model,
a node may obtain a new prediction at any time to use at its own discretion, independently from the
other nodes. Crucially, the predictions are untrusted and we evaluate our overlay network in the
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learning-augmented setting with two metrics: consistency and robustness Lykouris & Vassilvitskii
(2018)). The consistency of the algorithm is its performance when the predictions are always perfect,
its robustness is its performance when the predictions are worst possible.

1.1 OUR SETUP

Network and Demand. We model a network with an undirected graph with n nodes. An edge of
the graph means that the two end-nodes can communicate directly without the help of other nodes.
The graph is an abstract representation of the routing possibilities between the nodes and may be
different from the underlying, physical network that carries the communications.

At the considered time, we model a demand between the nodes with with a demand matrix W &
M, (R), where W (u, v) is the frequency of communications from v to v.

P2P Network Protocols. A peer-to-peer (P2P) network protocol is an algorithm distributed over
multiple nodes that provides routing facilities. On top of the physical, static network, the P2P protocol
keeps track of local routing information stored inside each node.

Skip Lists and SLN. A skip list|Pugh| (1990) is a well-known data structure that consists of a set of
sparser and sparser chained lists. Each node u has an integer height parameter h,, in [1, [log n]] that
equals the number of lists the node belongs to. Skip lists come with a simple node-retrieval algorithm
that starts from the pointer of the data structure (node zero) and gradually dive into the denser lists to
find the queried item. The query time is provably optimal (for data structures with average constant
degree) when the heights are well-chosen, and optimal with high probability when the heights are
drawn from a geometric distribution.

A Skip List Network (SLN) Mandal et al.| (2015) is a P2P design based skip lists which establishes
the routing informations solely based on the heights and ids of the nodes. This paper studies P2P
network protocols in which each node w holds a height variable h,, and a unique identifier which
defines a total order at any time: for any two different nodes u and v, either u < v or v < u. Ina
SLN, two nodes w and v form an edge, i.e., store each other’s id, if and only if there is no node x

such that u < 2 < v and h,, > min(h,,, h,) (Definition I.

Prediction Model. Our prediction model is the same as in|/Aradhya & Scheideler (2025). The origin
of the predictions is left intentionally unclear; it can be a central server that aggregates telemetry data,
predicts the demand and distributes the optimal heights to each node, or it can be a value computed
by each node itself based on the observed traffic. Most importantly, we assume that the predictions
are (1) distributed, each node receives its own and uses it at its own discretion, (2) repeated, the
node should be able to modify its topology at each update of the prediction, and (3) untrusted, the
predictions could be overall optimal, adversarial, and anything in between. For the P2P application,
the prediction is an argument of the initialization routine that the node runs before joining the network
— in case of a new prediction, the node leaves and reinitializes.

1.2 CONTRIBUTIONS AND TECHNICAL NOVELTY

The contributions of this paper are threefold. First, we formulate the Optimum Static Skip List
Network (OSSLN) problem and prove it can be solved in polynomial time, with an algorithm based
on dynamic programming (Theorem|[T). This result extends the previous work of Martinez & Roura
(1995)) to the case with pairwise demands in line with recent demand-aware results |Schmid et al.
(2016). This algorithm demonstrates that the task of finding optimal predictions for our learning-
augmented P2P protocol is polynomial, which allowed us to run our evaluations.

As our second contribution, we present a new P2P design called Continuous Skip List Network
(Continuous SLN, Definition , which generalizes Skip List Networks |Avin et al.| (2020c) (SLN,
Definition [T)) and skip lists [Pugh| (1990). We show that a SLN with real-valued heights enables
a functioning P2P protocol in that we implement the three basic primitives route, join and leave
with state-of-the-art, logarithmic message complexity. We note that all known P2P designs that
are based on skip lists [Harvey et al.| (2003); [Fu et al.| (2025)); Aspnes & Shah| (2003) historically
perceive it as chained lists stacked on each other and explicitly use that discrete nature in the protocol
implementation, we show that this is not necessary. We then present a Continuous SLN protocol
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called UNIFORM that draws its heights uniformly at random in the interval (0, 1) and show that
UNIFORM matches the performances of state-of-the-art P2P protocols with both routing path lengths
and maximum degrees lower than O(logn) with high probability.

As our third contribution, we present a learning-augmented P2P protocol, LASLIN (Learning-
Augmented Skip List Network), which combines our UNIFORM protocol with a predicted SLN
to strike consistency and robustness guarantees (Definition [7). For each node, LASLIN takes as
prediction an integer between 1 and [lnn] and sets it as its infeger heights at initialization time; it
then draws a number in (0, 1) uniformly at random and adds it to the integer heights to obtain its final
heights as a Continuous SLN. We show that LASLIN is comparable to an optimum static SLN when
the predictions are correct (O(1)-consistent) and at worst a O(log n) factor off a demand-oblivious
P2P protocol with arbitrary predictions (O(log2 n)-robust). Finally we show that, in the special
case of a very sparse demand matrix (Definition [J), the version of LASLIN with binary predictions
outperforms any demand-oblivious P2P protocol regardless of the prediction quality: LASLIN
obtains an exponentially better cost with correct predictions while it asymptotically matches the
cost of the state-of-the-art P2P protocols for arbitrary predictions (see Theorem [9). We provide
simulations to assess the performance of LASLIN on Zipfian demand matrices.

2 MODEL AND METRICS

In this section, we formally define our model and the metrics we use to evaluate our P2P protocols.
Definition 1 (SLN). A Skip List Network (SLN) N is a triple (V, h, E) where:

* V is a totally ordered set of node ids;
e his a height function h : V — NT;

o E={{u,v} |Vx eV st.u <z <wv, hy <min(hy, h,)}

Definition 2 (Neighbor and Degree). We say that two nodes u and v are neighbors in a SLN
N = (V,h, E) if {u,v} € E. The degree of a node u is its number of neighbors.

We redefine the greedy, local routing path proper to SLN.

Definition 3 (Routing Path). Let N' = (V, h, E) be a SLN and u,v € V be two different nodes. The
routing path from u to v in N is the sequence of edges of E s = ey, ea . .. ey, such that: (1) u € eq,
(2)v € ey, and (3) Vi € [k], if u < v then e; = {x, y} where y is the largest node neighbor of x such
that x < y < v, otherwise if v < u then e; = {x,y} where y is the smallest node neighbor of x such
thatv <y < x.

More intuitively, the routing path goes to the next neighbor that is the closest to the destination (in
terms of ids) without “flying over” the destination.

Definition 4 (Cost). Let N' = (V, h, E) be an SLN and W be a demand matrix. The cost function
is:
Cost(N, W) = Z W (u,v) - dy(u,v),
u,veV
where dar(u,v) is the routing path length between u and v in N

0__

1 2 3 4 5 6 7 8

Figure 1: A continuous SLN with real-valued heights in (0, 1).
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Definition 5 (Optimum Static Skip List Network (OSSLN) problem). Given a set of node ids V and
a demand matrix W, the objective of the Optimum Static Skip List Network (OSSLN) problem is to
find a height assignment h : V. — N that minimizes the cost of the SLN N = (V, h, E).

Definition 6 (Learning-augmented P2P protocol). A learning-augmented P2P protocol ALG is a
P2P protocol whose initialization routine takes an additional parameter p, the prediction.

In our model, a node that wishes to update its prediction as it already joined the network simply
leaves, re-intializes and joins again.

Definition 7 (Consistency and Robustness). We say that a learning-augmented SLN protocol is

* «-consistent if, for all demand matrices, there exists an assignment of predictions to the
nodes such that the expected cost of the protocol is at most o times the cost of an optimal
optimum static SLN.

* (B-robust if, for all demand matrices and for all assignment of predictions, the expected cost
of the protocol is at most § times the cost of an optimal optimum static SLN.

3  OPTIMUM STATIC SKIP LIST NETWORK (OSSLN)

Given a set of node ids V' and a demand matrix W, the objective of the Optimum Static Skip List
Network (OSSLN) problem is to find a height assignment & : V' — N7 that minimizes the total
communication cost (as defined in ) of the SLN A = (V, h, E) (as defined in ):

OSSLN(V,W) = mhin Cost(N,W). ()

In[Schmid et al| (2016), the authors presented a dynamic programming algorithm to find the Optimum
static distributed Binary Search Tree (OBST) in polynomial time (O(n?)). This algorithm leverages
a crucial property: once a vertex v is chosen as the root of a tree induced by the vertices in a given
interval, the subproblems induced by the vertex id intervals to the left and to the right of v can be
solved independently. The OSSLN problem exhibits a similar structure, but with a crucial difference.

If we define a pivot vertex v € [I,7], 1 < [ < r < n, such that h, = max,c[,,] hw, T also
partitions the OSSLN problem into two subproblems (on the intervals [/, v) and (v, r]). However,
a critical distinction arises when h, < max,e[;,r) hw, in which case x will not be a part of all the
paths between vertex pairs (u,v) u € [I,z),v € (z,r]. Specifically, for a vertex x € [l + 1,r — 1]
such that hy, h, > h,, any path between vertices (u,v) where v < [ and v > r does not include
z. This changes the optimal substructure of the problem, requiring a more sophisticated dynamic
programming approach.

Given a SLN N, we define a path P, ([, r) to be the set of vertices in the routing path between the
vertices  and 7 (as defined in (3)), excluding I, i.e.,{ ¢ P, (I, r). This is a crucial simplification that

1 2 3 4 5 6 7 8

Figure 2: A Continuous SLN obtained by adding node-by-node the heights of the SLN in Figure ??
and the heights of the Continuous SLN in Figure[T] This is a possible outcome of LASLIN where
the predicted heights are in green and the uniform, random heights are in orange.
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Figure 3: A SLN with all equal heights, ef- Figure 4: The addition of continuous, ran-
fectively turning the SLN into an inefficient dom heights restores the good performances.

chained list with a routing path length linear
in n. This worst-case performance happens
when all the nodes get the same predicted
height.

allows the problem to be decomposed. Under this assumption, we have d(I,r) = |Py(l,r)|. W.l.o.g.,
we assume that Py, (1, r) = Pp(r,1).

Next, we define L(x,h) = min{i < x | h; < hy, Vj € [i,2]}, ie., the vertex of minimum id
between the set of all (consecutive) vertices of height lower or equal to h,, to the left of x, and,
analogously, R(z,h) = max{i > x | h; < h,, Vj € [z,i]}, i.e., the vertex with maximum id
between the set of all vertices of height lower or equal to h, to the right of z. A vertex x € V
belongs to a path Py (u,v) if and only if there does not exist any pair of vertices (u’, v") such that
u<u <z, x<v <wv,and (both) hy/, hy > hy.

Finally, given an arbitrary = € V, we define P, (h) as the set of all pairs (u,v) € V' x V, such that
x € Pp(u,v).

Lemma 1. If h is a solution for the OSSLN (V, W), then Yx € V we have that:

Py(h) = {(w,0) | (u <) Aw € [z, R(z, h)]} U{(w,0) | w € [L{z, h), 2)] A (v > R(z, h))}. (2)
Since d(u,v) = |Pp(u, v)|, we can now rewrite the total cost of an SLN N = (V, i, E) as:

Cost(N, W) = Z W(u,v) - d(u,v) = Z Z W (u,v) = Z Z W (u,v).

u,veV u,v€EV x€ Py (u,v) €V (u,v)EP,(h)

This means that the total cost is equal to the sum of contributions of all vertices x € V, where the
contribution of a vertex x to the total cost is defined as:

Z W (u,v) 3)

(u,v)EP,(h)

OSSLN with Bounded Height: In the OSSLN with bounded height, the height assignment is of the
form h : V. — [1, hiax], where hnax is a parameter, typically bounded by O(logn) or O(1).

Consider an interval [I,7], 1 <1 < r < n and a height bound h € [1, hyax). Letnl, 1 < nl <1,
denote the leftmost vertex id, such that Vo € [nl, ], h, < h, and, similarly, let nr, r < nr < n,
denote the rightmost vertex id, such that Vv € [r, nr], h, < h. Finally, let OSSLN({, r, nl, nr, h, W)
denote the minimum total cost contributed by all vertices v € [, r].
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Theorem 1. [f x € [l, 7] is a candidate pivot vertex with height h € [1, hyax|, then the following
recurrence relation holds ¥ (nl, L, z,r,nr), 1 <nl <l <zx <r<nr<n:

OSSLN(l,r,nl,nr,h, W) = min {OSSLN(Z, ryr,h — 1L, W), mﬁn] OSSLN(l,x — 1,nl,nr,h, W) +
ze|l,r

OSSLN(xz + 1,r,nl,nr,h, W) + Z Z W (u,v) + Z Z W (u, v)} }

u<z vE([z,nr) u€[nl,x) v>nr

The complexity of the above dynamic programming algorithm is O(n° - hpax), if We pre-compute

an auxiliary matrix of aggregate weights W'(z,y) = > ., W(z,2),V(z,y),1 <2 <y <n.

OSSLN with Unbounded height (OSSLNU): We now present a dynamic programming algorithm
for the OSSLN problem with unbounded heights, i.e., when the height assignment is of the form
h : V — [1,n]. We show that, in this case, the algorithm’s complexity can be reduced to O(n?).

A crucial observation is that, for any solution to the OSSLNU problem, there exists a solution of
cost less than or equal to that of the former, in which, V[, 7],1 <1 < r < n, there is a unique pivot
vertex, i.e., a unique vertex whose height is the maximum height in that interval.

Lemma 2. Let h be an optimum solution to OSSLNU (V,W). Then, there must exist a solution h’
such that Cost((V, 1/, E"),W) < Cost((V, h, E), W), where, for any interval [l,7],1 <1 < r <n,
there is exactly one vertex x € [, 7] with height hl, = max,,ci,, hy,.
In OSSLNU, because we are only interested in the relative order of vertex heights, rather than in their
absolute values, we have that (nl = 1) and (nr = r), V[l,7],1 <[ < r < n, and the height parameter
h becomes unnecessary. This simplifies the recurrence relation, reducing the complexity to O(n?).

Theorem 2. Consider an interval [l,r], 1 <1 <r <mn. Let OSSLNU(l,r, W) denote the minimum
total cost contributed by all vertices v € [l,r]. Let x: € [l,r] be a candidate pivot vertex. Define | as
the leftmost index such that Vx, € [I,r],Yv € [l, ], hy < hy, and similarly define r as the rightmost
index such that Vv € [x,r], hy < hy. Then, the recurrence relation OSSNU(l,r, W) =

Iél[ilnl <OSSNU(Z, x—1,W)+ OSSNU(z + 1,7, W) + Z Z W (u,v) + Z ZW(u, v))
TEIT u<z velr,r] u€ll,x) v>r

4 CONTINUOUS SLN

This section introduces a generalization of SLN called Continuous SLN.

Definition 8 (Continuous SLN). A Continuous SLN N = (V, h, E) is an SLN (Definition|[I)) except
the height function h is defined over the real numbers, i.e., h : V — R.

In this section, we show that Continuous SLN offer a set of properties similar to classic SLN with
arguably simpler proofs. We provide the routines join and leave (Algorithms[2]and fjn the Appendix)
that are both core primitives of any P2P network, and we provide the routine route (Algorithm [I)in
the Appendix) used by both data structure and P2P applications. We then present a simple Continuous
SLN called UNIFORM whose heights are chosen uniformly at random in (0, 1). Finally, we show
that UNIFORM has performances matching those of skip lists at all levels as both a routing search
path and the maximum degree are logarithmic with high probability.

Protocol 1 (UNIFORM). UNIFORM is a Continuous SLN that sets its heights to a real number in
(0,1) chosen uniformly at random.

Theorem 3 (Expected Routing Path Length). The routing path between any two nodes has length
smaller than 2 Inn on expectation.

Theorem 4 (Routing Path Length with High Probability). The routing path between any two nodes
has length smaller than 2e - Inn with probability greater than 1 — %

Theorem 5 (Expected Degree). The expected degree of any node is lower than 4.

Theorem 6 (Maximum Degree with High Probability). The maximum degree is lower than 41nn
with probability greater than 1 — %
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Figure 5: The costs of the Optimal static SLN, LASLIN with perfect predictions, and UNIFORM
against various demand matrices with increasing Zipf parameter. LASLIN almost matches the optimal
as it is O(1)-consistent. Very sparse demand matrices enable more efficient network optimization.

5 LEARNING-AUGMENTED CONTINUOUS SLN

In this section, we present LASLIN, a learning-augmented Continuous SLN protocol where each
node can obtain a prediction of the future demand matrix at any time.

We first show that, for general demands, any demand-oblivious P2P protocol can be off by a factor of
O(logn/loglogn) compared to an optimum static SLN. This result provides a comparison point
around which the consistency and robustness metrics of demand-aware algorithms can be evaluated.
Theorem 7. We consider any P2P protocol that is not learning-augmented (Definition[6). Then, there
exists a demand matrix W such that the considered protocol has a cost of QX(logn/loglogn) - |W|
in expectation while an optimal static SLN protocol pays |W|, where |W | is the total sum of the
elements of W.

Protocol 2 (LASLIN). LASLIN is a Continuous SLN that takes an integer in [1, [lnn]] as a
prediction. LASLIN initializes its heights by adding the input prediction with a real number in (0, 1)
chosen uniformly at random.

Theorem 8. LASLIN is a Continuous SLN that is O(1)-consistent and O(log® n)-robust.

We now define the notion of super-sparse matrix, which indicates a concentration of the weights of
the matrix on a very small (logarithmic) number of coefficients.

Definition 9 (super-sparse matrix). A matrix W € M,,(R) is super-sparse if there exists a constant
¢ > 1 and a restricted subset of node pairs S C V2 such that:

|S| < O(logn) and Z W(u,v) > (1 —0(1/logn)) - |W|
(u,w)eS
Theorem 9. Assume that the demand matrix W is super-sparse. We consider the protocol Binary

LASLIN (B-LASLIN) where the input prediction p can only have two values, 1 or 2. B-LASLIN
is O(log log n)-consistent and O(log n)-robust.

In asymptotics, the performances are always comparable to any demand-oblivious protocol
rem 7)), with an exponential improvement in case of perfect predictions.

6 EXPERIMENTAL EVALUATION

Demand matrices. In our experiments, we generate communication demand based on the Zipfian
distribution|Adamic & Huberman| (2002)), with parameter ¢ > 1. Lower values of ¢ result in a sparser
demand matrix as the distribution becomes less skewed. The number of nodes in all experiments was
set to n = 32, and each experiment was repeated 30 times.
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Figure 6: The costs of various protocols under different noises on the predictions.

Noise generation. We study the robustness of our algorithms by introducing noise in the predicted
data|Lykouris & Vassilvitskiil (2018). The most used type of noise is additive, often gaussian [Purohit
et al.| (2018) or lognormal [Lykouris & Vassilvitskii| (2018). Those types of noises however were
unrelevant for our case as they almost did not impact the performance of our algorithms. Instead,
we evaluate two noise models designed to simulate data imperfections. The first model, Swap
Noise, simulates outdated communication data by replacing the communication value for each pair of
vertices (u, v) with a value from a different workload (with similar properties), an event that occurs
with a probability equal to the noise percentage. This process mimics using stale information from a
previous time step. The second model, Prediction Noise, introduces errors in vertex height prediction
by resetting a vertex’s height attribute to 1 with noise probability. This process mimics adversarial
nodes in the network aiming to increase the communication path length.

The implementation of Swap Noise was adapted to the specific characteristics of each dataset. For the
pFabric traces, where only a single instance of each trace was available, stale communication values
were sourced from a different trace within the same collection; for instance, the communication value
for a pair (x,y) in the 0_1 trace might be replaced by the value for the same pair in the 0_5 trace. In
contrast, for the Zipf workloads, which provided numerous instances for each distribution, a single
workload was randomly selected at the outset of the experiment to serve as a fixed, global source of
outdated communication values.

Results. In Figure [5] we evaluate the consistency of LASLIN in scenarios where the demand
follows the Zipfian distribution, with varying parameter ¢ € [1.1, 2], and where the prediction advice
is perfect (i.e., there is zero noise in the demand matrix). We compare the total communication cost
(as defined in @)) of LASLIN to that of the static optimum SLN and the demand-oblivious SLN
(UNIFORM) baselines. We can see that, in contrast to the demand-oblivious SLN, LASLIN obtains
close-to-optimum total communication cost in all workloads, regardless of their spatial locality, i.e.,
LASLIN is consistent.

In Figure [6] we evaluate the robustness of LASLIN in scenarios with increasing demand noise
(x-axis). “LASLIN demand error ratio” corresponds to LASLIN under swap noise, “LASLIN
against adversarial predictions” corresponds to LASLIN under prediction noise, finally, “SLN unit
height ratio” corresponds LASLIN under prediction noise but without the random noise added. We
can observe that the SLN performs increasingly worse (has higher cost) the greater the amount of
change (noise) in the input demand matrix. LASLIN, on the other hand, achieves consistently lower
communication cost (than the former), regardless of the type of noise and regardless of the prediction
fault probability, i.e., LASLIN is robust relative to both type and magnitude of prediction errors.

7 RELATED WORK

Improved designs of P2P networks. P2P networks have been the focus of computer scientists for a
long while (see|Lua et al.|(2005) for a detailed survey). In terms of P2P networks with constant degree,



Under review as a conference paper at ICLR 2026

A Optimal Static SLN [0 LASLIN E= Uniform

o

w

IS

Total Cost
w

N

trace_0_1

trace_0_5
pFabric Trace

trace_0_8

Figure 7: The costs of the optimal SLN, LASLIN and UNIFORM on three pFabric traces.

the notable contribution of [Naor & Wieder| (2007) that extends the work of [Fraigniaud & Gauron|
(2000), giving a general P2P construction such that for a network with degree d and n nodes, you
can have guaranteed path length of ©(log, n). Lately, improving the design of networks given prior
information about communication demand has grabbed the attention of researchers. In particular,
the work of [Avin & Schmid| (2018) set the scene for demand-aware network design, which was
then explored more with particular focus on datacenter networking|de Oliviera Souza et al.|(2022);

[Pourdamghani et al.| (2023); [Figiel et al.| (2025).
Works closest to ours are by [Avin et al.| (2020c); [Ciriani et al.| (2007) in which the authors discuss a

self-adjusting variant of skip list network: one that adjusts over time based on the incoming demand,
which is in contrast with our work that focuses on an optimal skip list network with static height

given the communication demand as the input. This is in particular important, as self-adjustments

can introduce additional cost (e.g., in terms of delay) to the system. Also, the work of
discussed how a skip-list construction can be used for peer-to-peer communications, however

they do not provide any theoretical upper bound for the communication time. Lastly, we point out to

other extensions of skip list, namely Skip Graph|Aspnes & Shah|(2003) and SkipNet|[Harvey et al |
that, to facilitate P2P communications, consider expected degree to be O(logn), in contrast to

our design, which has a constant degree in expectation.

Learning-augmented algorithms. Given the rise of machine learning algorithms (that are prone
to inherent unbounded failures), and after the pioneering work of [Purohit et al.| (2018)) on ski rental
& job scheduling, the focus has been shifted on studying consistency and robustness of algorithms
augmented with the learned advice. Such an approach has been used in various applications so
far'l for example caching [Lykouris & Vassilvitskii| (2018}, online TSP |Gouleakis et al.|(2023), list

update (2025).

Some of the more recent works focus on improving single-source search data structures. Initially, the
works of [Lin et al.| (2022)); /Chen et al.| (2025)) provided learning-augmented search trees. The works
that are closest to our work are by |[Fu et al|(2025); [Zeynali et al.| (2024), which studied learning-
augmented single-source skip lists. In contrast, we consider a more challenging model, where the
focus is on pairwise communications rather than communication from a single source. Recently, we
became aware of a not peer-reviewed manuscript|Aradhya & Scheideler| (2025) that aims to augment
P2P networks with learned advice; however, this paper looks into improving self-stabilization and
recovery of P2P networks, not improving communication delay.

8 CONCLUSION

In this work, introduced a continuous variant of Skip List Network (SLN), Continuous SLN. This
variant is arguably easier to manipulate and analyze. In addition we show that we can use it to
reach strong robustness properties even in an adversarial, fully distributed setting. Lastly, through
experimental evaluation, we observed that our suggested algorithms outperform the theoretical results.
As a future work, one can think of an alternative algorithm for OSSLN with a lower computational
complexity.

*See a full list of recent works in the following website: algorithms-with-predictions.github)
io
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9 APPENDIX
Proof of [Cemma 1]

Proof. If u < x and z < v < R(z,h), then, by definition of R(xz, h), hy > hy, > min(hy, hy).
Since x lies between u and v and there are no edges “above” h,, in the interval [u, v] (i.e., A(w, z) €
E,s.t. hy > hgyand b, > hy, [w, 2] C [u,v]), 2 must be a part of Py, (u,v).

Similarly, if L(z,h) < u < x and v > R(z, h), then, again by definition of L(x, h), hy > h, >
min(hy, b, ). Since x lies between u and v and there are no edges “above” h,, in the interval [u, v], =
must be a part of Py (u,v)

It remains to show that no other pair (u,v) belongs to P,(h). If u > x, then by definition of
Pp(u,v), x ¢ P(u,v). Otherwise, suppose u < L(z,h) and v > R(x,h). Letw’ = L(z,h) — 1
and v' = R(z, h) — 1, by definitions of L(z, h) and R(x, h), we have that h, < h,s and h, < h,.
Since u < v’ < x < v’ < v, we have that:

| P (u,u’) U{v'}U Py (v, 0)] < |Pr(u,z) U {x} U Py(z,v)|

Because P, (u, v) is the shortest path from w to v, it follows that x ¢ Py (u, v). O
Proof of Theorem 1l

Proof. The proof is by strong induction on the size of the interval [/, 7] C [1,n]:

Note that, by definition, nl = L(z,h) and nr = R(z, h) for any possible h. Furthermore, by
construction, for an interval induced by [, r, nl, nr with bounded height h, assigning a pivot vertex
with height equal to h — 1, we have nl’ = [ and nr’ = r.

Base case (I = r): In this case, we have that (z = [) and the set of paths « belongs to is given by
Lemmall] By setting nl = L(x, h) and nr = R(z, h) in the proof, the vertex contribution to the

total cost is given by:
DD W+ 3 > Www) )

u<T vE(z,nr) u€[nl,z) v>nr

Induction step: For (h = 1), we can disregard the first half of the recursion, where we assign the
pivot vertex a height lower than h. The total contribution of all vertices to the cost becomes:

Z Z Z W (u,v) + Z ZW(u,v) )

z€[l,r] \u<zvelz,nr u€nl,x) v>nr

which, from the base case, is precisely what the second half of the recurrence equation will return for
any choice of the pivot vertex.

Letl <l <r <mnandh € [1, hyax|. Assume that the recurrence equation is true for all ', I’ r’

such that (R < h) A (' —1") < (r — ). From previous step also assume that the equation is true
for (r' —I') = (r — ) with height (b’ < h).

Since, when assigning the pivot vertex with height lower than h, by construction, we have that
(nl = 1) and (nr = 7). The minimum cost for the solution for any nl and nr is the minimum between
keeping the height of the pivot, (h, = h), or decreasing it, h, < (h — 1), which is given by the
minimum between:

min |OSSLN(l,z — 1,nl,nr, h, W) + OSSLN(z + 1,7, nl,nr,h, W) +

z€(l,r]

Z Z W (u,v) + Z ZW(u,v)

u<z ve(z,nr) u€lnl,x) v>nr

and OSSLN(l,r,l,r,h — 1, W), which is precisely what we want to prove. O

12
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Proof of

Proof. Suppose, for contradiction, that any possible optimal solution contains at least one interval
[{, r] with at least two vertices x, y € [I,r] with h, = h,, = max(h; ) and = # y.

Define h' as follows for any vertex v € V:

{thrl ifv=xorh, > hy

h =
hy otherwise

v

Note that, while h, > h;, this height assignment is order preserving. If hy > hy, then hy, > hj.

If z ¢ Py(u,v), since we preserved the order between x and all vertices taller than x, x cannot
appear as an obstacle between any such vertices. Analogously, since we preserved the order between
all vertices with at most the same height as x there can’t be any new edges between vertices with at
most the same height as x, so the path is unmodified.

If x € Pp,(u,v), we know that:
Py, (u,v) = Pp(u,z) U{z} U Py(z,v).

From our definition of path, we know that x ¢ P, (x,v), and therefore Py (x,v) = Py (z,v). Now,
let’s consider a vertex z, such that u < z < x and h, > h,. If such a vertex z does not exist, then we
can infer that P, = Py/. Furthermore, if there does exist such a vertex z, then:

|Ph/| = |Ph(u,z) U{Q’J} UPh(LL',U)| < |Ph‘

Since Cost((V, h, E), W) = 3=, yev W(u,v) - d(u,v) and d(u,v) = |Py(u,v)|, and any path in
1/ is of at most the same size as in h, then, Cost((V, h', E"), W) < Cost((V, h, E), W). Hence, the
lemma holds. [

Proof of

Proof. The proof is by induction on the size of the interval [, r].

Note that, by Lemma once a pivot vertex x € [l,r] is chosen as the highest vertex within the
interval [l, r], we can assume, without loss of generality, that all vertices in the optimal solutions to
the left subinterval [/, z — 1] and to the right subinterval [z 4 1, r] have heights strictly lower than h,.

Therefore, for a solution h to OSSLNU(I, r, W), it follows that [ = L(x, h) and r = R(z, h).

Base Case (! = r): In this case, the interval contains a single vertex © = [ = r. In this case, the cost
reduces to the contribution of z to the solution cost, which, from Lemma|l} and L(x, h) = [ and
R(x, h) = r as we demonstrated above, it follows that this expression corresponds exactly to:

Z Z W (u,v) + Z ZW(u,v) 3)

u<z ve(z,r) u€ll,x) v>r

Inductive Step: Suppose the recurrence holds for all subintervals of [I, r] of size less than (r — 1+ 1).
For an interval [I, r] of size greater than one, we consider a candidate pivot vertex = € [I,7].

The total cost of placing x as pivot of the interval [I, ] equals to the sum of:

* The optimal cost for the left subinterval [I, z — 1],
* The optimal cost for the right subinterval [z + 1, r],

* The cost of all paths that include x, which by Lemmal[]is given by the Eq.().

Since we minimize this total over all pivot choices x € [I, 7], the recurrence holds. O

Proof of [Theorem 3

13
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Proof. Let u and v be two nodes. We note X the random variable equal to the routing path length
between v and v. We note X, the number of height increases along the path, likewise Xgown is the
number of path decreases. It holds that X = X, + Xaown. We will give an upper bound of X, the
same upper bound will hold for X4ow, by symmetry. Let w be a node between u and v in the SLN,
we note 1,, the indicator random variable equal to 1 if (1) w is part of the path between v and v, and
(2) if the height increases when hoping to w. It holds X, = Zw lut1,0] 1,.

We now compute P[1,, = 1] for any w € [u+ 1, v]. w is part of the increasing path if and only if the
height of w is strictly greater than every other heights in [u, w — 1]. The probability that two uniform
random variables are equal is zero, hence there exists exactly one node with maximum height in
[u, w]. The heights are independent and uniformly distributed, hence w is the node with maximum
height with probability 1/(Jw — u| + 1):

1

Noticing that E[1,,] = P[1,, = 1] and gathering the two previous equalities gives:
1 lv—u|+1 1
E[ Xy = _ = - <1
Ko Z |w—u|+1 Z g =
we[u+1,v] 1=2

The last inequality holds as the harmonic sum until n, 1 +1/2 + -+ - + 1/n, is lower than 1 + Inn.
The claimed upper bound on the expected path length follows as the same reasoning can be done for
Xdown- O

Proof of

Proof. Let u and v be two nodes such that u < v, and let X, be the random variable equal to the
increasing routing path length between « and v . Let w € [u, v], we note 1,, the indicator random
variable equal to 1 if w is part of the increasing path between v and v (see proof of Theorem [3).

We first show that all 1,, are independent random variables. Let w and w’ be two nodes such that
u < w < w, it holds:

Plly =1|1y =1] = Plhy < hyVo € [w+ 10" — 1] N n%ax]hy < hl]
yelu,w

= Plhy < hl,Yy € [u,w" —1]]
— Pl = 1]

Now that we showed independence, we use the following Chernoff’s bound: For Y the sum of
independent Bernoulli random variables (a Poisson trial) and ;¢ = E[Y], ¥ > 0 it holds that:

65 a
PY > (1+0)u) < ((1+5)1+5)

Replacing Y = X, = > 1y, =Innand 6 = e — 1 gives:

we [u+1,v]
eé‘lnn
P(XUPZe-lnn) < W
n? 1

= paro) (v p

By symmetry, the same result holds for X4ow,. Finally, we obtain the desired result with a union
bound:

P(X >2e-1lnn) (Xup > e-InnU Xgown > e-1nn)

P
P(Xyp > e-Inn) + P(Xgown > €-1nn)
2
n

Proof of

14
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Proof. If u and w are two nodes, we define N, the random variable equal to the number of neighbors
of u, and 1,,, the indicator random variable equal to one if v and w are neighbors. It holds
N, = Zw 2u 14,w- Two nodes u and w with u < w are neighbors if and only if  and w are the first

and second highest nodes in [u, w], hence it holds that E[1,, ,,] = m It therefore holds:
n/2 n/2
2 1 1 1
EN= ) ST D PF R
weltaguy 1@ 74l (o=l +1) perR AU ot it
1
=4.-(1——) <4 O
( n/2+ 1) -

Proof of

Proof. Let u, w and w’ be three different nodes. We name 1,, ,, and 1,, . the indicator random
variables equal to 1 if u and w are neighbors, and if u and w’ are neighbors, respectively. We first
show that 1,, ,, and 1,, ,,» are independent random variables: the proof is almost identical to the one
of Theorem

We first establish that each node taken individually has a degree lower than Inn with probability
greater than 1 — % Let V,, be the random variable equal to the number of neighbors of u, we use
the Chernov bound for Poisson trials used in the proof of Theorem 4

(Inn)—1 4 ( / )4 1
& n/e

P|N, > 41 = _

[ U = nn] < <(1nn)lnn> né4lnlnn < nt

This last equality holds when n is greater than a given constant, which is not a problem as we are
interested in cases when n is large. We conclude with a union bound: the probability that at least
one node has a degree greater than 4 In n is upper bounded by >~ .\, P[N,, > 4Inn] < % and the
claim holds. O

Proof of

Proof. As the considered protocol has a logarithmic maximum degree with high probability, there
exists a constant ¢ such that the generated network has a maximum degree lower than O(In®n)
with probability greater than 1 — O(1/n). Let u be a node. We first cover the case when the
maximum degree is lower than In® n, all the considered probabilities and expected values are therefore
conditional. In this case, we consider the disk centered around v with smallest radius such that it
contains no less than half of the nodes. The maximum distance between « and a node in that disk
is no lower than O(logn/loglog n) as the network has a polylogarithmic maximum degree — this
result can be easily obtained by upper bounding all the degrees by O(log® n). There exists another
node v such that v is at the border or outside of the disc with probability at least 1/2. We consider the
demand matrix that is zero everywhere except at the coefficient with row u and column v. An optimal
SLN protocol can clearly pay a cost of 1, the considered SLN therefore has an approximation ratio
worse of w(log n/loglogn) for that demand matrix.

Finally, we cover the cases where the maximum degree is higher than In® n: That case only contributes
with an additive constant to the distance between u and v as a distance is lower than n. We considered
all the cases and the claim follows. O

Proof of

Proof. We start by proving that the maximum degree in LASLIN is lower than 4 In” n with high
probability. Let u be a node, let p,, € [1, [Inn]] be the predicted height of v and let r,, € (0,1) be
the uniform random noise added on top of p,,. We partition the neighbors of « into p,, subsets called
S(1),5(2)...S(py + 1): Forall i € [1,p,], S(¢) contains the neighbors with height between 4 and
1 + 1, the last set S(p, + 1) contains the neighbors with height greater than p,, + 1. According to
Theorem |6} each set from S(1) to S(p,,) contains fewer than 4 In n nodes with probability greater
than 1 — - (this is the result before the last paragraph in the proof) — the set S(p,, + 1) contains

at most two nodes. We conclude with a union bound that v has fewer than 4 In* n with probability
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greater than 1 — %, and that the maximum degree is lower than 4 In? nn with probability greater than
1 — -% also with a union bound.

The O(1)-consistency is direct as the comparative optimal static SLN has its heights within a O(logn)
factor without loss of generality as its maximum degree is bounded by O(logn) by assumption. We
now prove the robustness claim. A routing path between any two nodes v and v has two phases:
first ascending (the heights always increase) and then descending (the heights always decrease). For
both phase, the number of different encountered integer heights is upper-bounded by O(logn). For
each encountered integer height, the expected routing path length is upper-bounded by O(logn)
(Theorem [3)). We finish the proof with an upper bound of each distance in the total weighted path
lengths: > oy W(u,v) - d(u,v) < O(log®n) - |[W| and the optimal static SLN pays at least
|[W|. O

Proof of

Proof. We start by proving that the maximum degree of each node is lower than O(log n) with high
probability. As seen in the proof of Theorem [8] each node u has fewer than p,, - In n neighbors with
high probability, the claim follows since p,, < 2.

We prove that the expected total weighted path length is lower than O(logn) - |W| regardless of
the input predictions. The proof is similar to the proof of Theorem [§except, as the predictions are
upper-bounded by a constant, we avoid the additional log n factor.

Finally, we prove that the expected total weighted path length is lower than O(loglogn) - |WW|. We
consider the following set of predictions: let S be the node pairs from Definition[9] we give prediction
2 to the nodes that have at least one coefficient from S in their row or column in W, otherwise
1. We call V5 (V1) the set of nodes that have prediction 2 (1). As W is super sparse, it holds that
V2| < O(log®n).

Z W(u,v) - d(u,v) = Z W (u,v) - d(u,v) + Z W (u,v) - d(u,v)

u,v (u,w)eS (u,v)EVZ\S
< Z W (u,v) - d(u,v) + Z W(u,v) - d(u,v)
u,vEVa (u,)EVZ\S

1
< O(loglogn) - [W|+ O () -[W|-1nn
logn

= O(loglogn) - |W|

To go from line 3 to 4 we used (1) Theorem [3|on the routing paths between the nodes of V, — there
are O(polylog(n)) of those nodes, they have the largest heights of the SLN, so a path has expected
length In O(polylog(n)) = O(loglogn) — and on the routing paths from nodes in V2 \ S, and (2)
we used Definition [9]to upper-bound the sum of coefficients in W outside of S. [

We present the internal variables for the three below routines Route, Join and Leave. A node u holds
the variables:

* u: the unique id of the node

* h,: the height in R of node u

* N,: the set of all neighbors of u

* D, dictionary mapping a neighbor w € N,, to its height

* anchor,: the node with an id closest to u, either the successor or predecessor of u.

Route. The route algorithm (Algorithm|I)) takes the destination node id v and hops from node to
node until it finds the destination node, returning (v, True) or reaches a dead end in some node
w # v, return (w, False).

16
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Algorithm 1: route(v)

// code running at node u
if u = v then
return (u, True)
else if u < v then
S {zx e NyJu<z<v}
if S = () then
return (u, False)
else
w < max S
return w.route(v)
else
S {z e Nyv <z <u}
if S = () then
return (u, False)
else
w < min S
return w.route(v)

Join. The join algorithm (Algorithm [2) inserts the node inside the Continuous SLN based on its
anchor local variable. The potential neighbor changes of the other nodes propagate through the
network with the find_neighbors algorithm (Algorithm 3).

DT B I N

—
>

11

Algorithm 2: join()

// code running at node u
if anchor < u then
S + {2 € Nanchor, |anchor < x}
else
S {‘T S Nanchoru
if S = () then
N, + N, U anchor,_find_neighbors(u, h,,, —00)
Update D,,
else
if anchor < u then
succ <— min S
else
succ < max S
N, + N, U anchor,,find_neighbors(u, h,,, —00)
N, < N, U succ.find_neighbors(u, h,, —c0)
Update D,,

@ < anchor}

Leave. The leave algorithm (Algorithm[d] in this paper’s appendix) shows how an already-inserted
node can leave the network. The potential neighbor changes propagate through the network with the
delete_neighbors algorithm (Algorithm 3} in this paper’s appendix).
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Algorithm 3: find_neighbors(v, h,, current_height)

// code running at node u
if current_height = —oo then
anchor,, < v
N+
if current_height < h,, then
N+ {u}
Ny < N, U{v}
Update D,,
if u < v then

N+ {z € Ny|zr <wvor (h, < Dylz]and h,, < hy)}

for z € N, do
if z < wand h, < Dy[z] < h, then
N <« N U z.find_neighbors(v, b, hy,)
else

N+ {z e Nyjv <zor(h, < Dyfz] and h, < hy)}

for r € N, do
ifu <z andh, < D,[z] < h, then
N + N U z.find_neighbors(v, h, h.,)

return N

Algorithm 4: leave()

// code running at node u
if anchor < u then
S + {x € Nynchor, |anchor < z}
else
S« {x € Nynchor, |z < anchor}
if S = () then
N, < N, U anchor,,.delete_node(u, h,, —00)
Update D,,
else
if anchor < u then
succ < min S
else
succ < max S
N, < N, U anchor,,.delete_node(u, h,, —00)
N, + N, U succ.delete_node(u, h,, —00)
Update D,,

18
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Algorithm 5: delete_neighbors(v, h,, current_height)

1 // code running at node u

: N+ 0

3 if current_height < h,, then

4 N « {u}

5 Ny + N, \ {v}

6 Update D,,

7 if u < v then

8 N+ {z e N,z <vor (h, < Dy[z] and h, < hy)}
9 for z € N, do

10 if v <wandh, < D,[z] < h, then
1 N < N U z.delete_node(v, hy, hy,)
12 else

13 N+ {z € Ny|Jv <z or (h, < Dy[z] and h, < hy)}
14 for x € N, do

15 if u < x and h,, < Dy[z] < h, then
16 N < N U z.delete_node(v, h,, hy,)
17 return N
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