
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A LEARNING-AUGMENTED OVERLAY NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies the integration of machine-learned advice in overlay networks to
improve the overall connectivity. Our algorithms are based on Skip List Networks
(SLN), which is natural extension of skip lists that supports pairwise communica-
tion. In particular, our work goes beyond learning-augmented single-source skip
lists (studied recently in ICLR 2025 by Fu et al. (2025) and ICML 2024 by Zeynali
et al. (2024)), considering a prediction model where each node of the network
individually receives a local prediction of its future communications to the rest of
the network. We utilize this model to develop a distributed, learning-augmented
SLN to optimize the serving of any weighted pairwise demand.
We first solve the optimization problem of finding an optimal SLN given a certain
demand, which we show is polynomial with a dynamic programming approach. We
then introduce a novel network structure called Continuous SLN, where the heights
of each node is relaxed to be any real number. Finally, we show how a random,
uniform noise on top of each node’s height makes the network robust against any
predictions, even adversarial, while the performances are kept unchanged when the
predictions are desired. Concretely, adversarial predictions can cause our network
to be a logarithmic factor away from any optimal network without prediction.
Furthermore, we show that, for highly sparse demands, a refined version of our
algorithm shows no drawbacks in asymptotics for any prediction and presents
exponential improvements when the predictions are good. Finally, we empirically
show that our learning-augmented overlay network demonstrate resistance against
small error with evaluations on synthetic and real-world data-sets.

1 INTRODUCTION

Overlay networks are one of the key technological advancements that allowed decentralized and
distributed systems to scale. A vast body of work has been devoted to optimize the efficiency of these
networks Lua et al. (2005); Ratnasamy et al. (2001); Aspnes & Shah (2003); Harvey et al. (2003);
Kiffer et al. (2021). Traditionally, the efficiency of an overlay network is estimated with two key
metrics which are the routing path length between a pair of nodes and the maximum degree of each
node in the network. State-of-the-art overlay networks achieve both a logarithmic routing path length
and a logarithmic maximum degree Stoica et al. (2003); Fraigniaud & Gauron (2006).

Up until recently, most work on overlay networks focused on demand-oblivious worst-case scenarios,
where no prior information about the possible future demand is known. However, a new line of work
studies demand-aware networks Schmid et al. (2016); Avin et al. (2020b); Figiel et al. (2025) which
can adapt their connectivity properties to better fit the current traffic. Noting that most networking
traffics are sparse and partly predictable Avin et al. (2020a), the idea is to detect the few highly
active nodes and move them topologically closer to reduce the overall delays. The model includes a
demand matrix which indicates the amount of traffic between any two nodes in the network; A goal
of a demand-aware protocol is then to minimize the total weighted path length Schmid et al. (2016).

This paper presents a peer-to-peer (P2P) overlay network design where each node can adapt its set of
neighbors to better fit the future traffic demands. We do not assume that the demand matrix is known
by the nodes; Rather, we stick with the distributed nature of overlay networks and assume that each
node has access to a local prediction about the future demands — the prediction may only consist of
partial information about the future traffic, an integer number in the case of this work. In our model,
a node may obtain a new prediction at any time to use at its own discretion, independently from the
other nodes. Crucially, the predictions are untrusted and we evaluate our overlay network in the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

learning-augmented setting with two metrics: consistency and robustness Lykouris & Vassilvitskii
(2018). The consistency of the algorithm is its performance when the predictions are always perfect,
its robustness is its performance when the predictions are worst possible.

1.1 OUR SETUP

Network and Demand. We model a network with an undirected graph with n nodes. An edge of
the graph means that the two end-nodes can communicate directly without the help of other nodes.
The graph is an abstract representation of the routing possibilities between the nodes and may be
different from the underlying, physical network that carries the communications.
At the considered time, we model a demand between the nodes with with a demand matrix W ∈
Mn(R), where W (u, v) is the frequency of communications from u to v.

P2P Network Protocols. A peer-to-peer (P2P) network protocol is an algorithm distributed over
multiple nodes that provides routing facilities. On top of the physical, static network, the P2P protocol
keeps track of local routing information stored inside each node.

Skip Lists and SLN. A skip list Pugh (1990) is a well-known data structure that consists of a set of
sparser and sparser chained lists. Each node u has an integer height parameter hu in [1, ⌈log n⌉] that
equals the number of lists the node belongs to. Skip lists come with a simple node-retrieval algorithm
that starts from the pointer of the data structure (node zero) and gradually dive into the denser lists to
find the queried item. The query time is provably optimal (for data structures with average constant
degree) when the heights are well-chosen, and optimal with high probability when the heights are
drawn from a geometric distribution.

A Skip List Network (SLN) Mandal et al. (2015) is a P2P design based skip lists which establishes
the routing informations solely based on the heights and ids of the nodes. This paper studies P2P
network protocols in which each node u holds a height variable hu and a unique identifier which
defines a total order at any time: for any two different nodes u and v, either u < v or v < u. In a
SLN, two nodes u and v form an edge, i.e., store each other’s id, if and only if there is no node x
such that u < x < v and hx ≥ min(hu, hv) (Definition 1).

Prediction Model. Our prediction model is the same as in Aradhya & Scheideler (2025). The origin
of the predictions is left intentionally unclear; it can be a central server that aggregates telemetry data,
predicts the demand and distributes the optimal heights to each node, or it can be a value computed
by each node itself based on the observed traffic. Most importantly, we assume that the predictions
are (1) distributed, each node receives its own and uses it at its own discretion, (2) repeated, the
node should be able to modify its topology at each update of the prediction, and (3) untrusted, the
predictions could be overall optimal, adversarial, and anything in between. For the P2P application,
the prediction is an argument of the initialization routine that the node runs before joining the network
— in case of a new prediction, the node leaves and reinitializes.

1.2 CONTRIBUTIONS AND TECHNICAL NOVELTY

The contributions of this paper are threefold. First, we formulate the Optimum Static Skip List
Network (OSSLN) problem and prove it can be solved in polynomial time, with an algorithm based
on dynamic programming (Theorem 1). This result extends the previous work of Martinez & Roura
(1995) to the case with pairwise demands in line with recent demand-aware results Schmid et al.
(2016). This algorithm demonstrates that the task of finding optimal predictions for our learning-
augmented P2P protocol is polynomial, which allowed us to run our evaluations.

As our second contribution, we present a new P2P design called Continuous Skip List Network
(Continuous SLN, Definition 8), which generalizes Skip List Networks Avin et al. (2020c) (SLN,
Definition 1) and skip lists Pugh (1990). We show that a SLN with real-valued heights enables
a functioning P2P protocol in that we implement the three basic primitives route, join and leave
with state-of-the-art, logarithmic message complexity. We note that all known P2P designs that
are based on skip lists Harvey et al. (2003); Fu et al. (2025); Aspnes & Shah (2003) historically
perceive it as chained lists stacked on each other and explicitly use that discrete nature in the protocol
implementation, we show that this is not necessary. We then present a Continuous SLN protocol

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

called UNIFORM that draws its heights uniformly at random in the interval (0, 1) and show that
UNIFORM matches the performances of state-of-the-art P2P protocols with both routing path lengths
and maximum degrees lower than O(log n) with high probability.

As our third contribution, we present a learning-augmented P2P protocol, LASLIN (Learning-
Augmented Skip List Network), which combines our UNIFORM protocol with a predicted SLN
to strike consistency and robustness guarantees (Definition 7). For each node, LASLIN takes as
prediction an integer between 1 and ⌈lnn⌉ and sets it as its integer heights at initialization time; it
then draws a number in (0, 1) uniformly at random and adds it to the integer heights to obtain its final
heights as a Continuous SLN. We show that LASLIN is comparable to an optimum static SLN when
the predictions are correct (O(1)-consistent) and at worst a O(log n) factor off a demand-oblivious
P2P protocol with arbitrary predictions (O(log2 n)-robust). Finally we show that, in the special
case of a very sparse demand matrix (Definition 9), the version of LASLIN with binary predictions
outperforms any demand-oblivious P2P protocol regardless of the prediction quality: LASLIN
obtains an exponentially better cost with correct predictions while it asymptotically matches the
cost of the state-of-the-art P2P protocols for arbitrary predictions (see Theorem 9). We provide
simulations to assess the performance of LASLIN on Zipfian demand matrices.

2 MODEL AND METRICS

In this section, we formally define our model and the metrics we use to evaluate our P2P protocols.
Definition 1 (SLN). A Skip List Network (SLN) N is a triple (V, h,E) where:

• V is a totally ordered set of node ids;

• h is a height function h : V −→ N+;

• E = {{u, v} | ∀x ∈ V s.t. u < x < v, hx < min(hu, hv)}.
Definition 2 (Neighbor and Degree). We say that two nodes u and v are neighbors in a SLN
N = (V, h,E) if {u, v} ∈ E. The degree of a node u is its number of neighbors.

We redefine the greedy, local routing path proper to SLN.
Definition 3 (Routing Path). Let N = (V, h,E) be a SLN and u, v ∈ V be two different nodes. The
routing path from u to v in N is the sequence of edges of E s = e1, e2 . . . ek such that: (1) u ∈ e1,
(2) v ∈ ek, and (3) ∀i ∈ [k], if u < v then ei = {x, y} where y is the largest node neighbor of x such
that x < y ≤ v, otherwise if v < u then ei = {x, y} where y is the smallest node neighbor of x such
that v ≤ y < x.

More intuitively, the routing path goes to the next neighbor that is the closest to the destination (in
terms of ids) without “flying over” the destination.
Definition 4 (Cost). Let N = (V, h,E) be an SLN and W be a demand matrix. The cost function
is:

Cost(N ,W) =
∑

u,v∈V

W (u, v) · dN (u, v),

where dN (u, v) is the routing path length between u and v in N .

0

1

1 2 3 4 5 6 7 8

Figure 1: A continuous SLN with real-valued heights in (0, 1).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 5 (Optimum Static Skip List Network (OSSLN) problem). Given a set of node ids V and
a demand matrix W , the objective of the Optimum Static Skip List Network (OSSLN) problem is to
find a height assignment h : V −→ N+ that minimizes the cost of the SLN N = (V, h,E).

Definition 6 (Learning-augmented P2P protocol). A learning-augmented P2P protocol ALG is a
P2P protocol whose initialization routine takes an additional parameter p, the prediction.

In our model, a node that wishes to update its prediction as it already joined the network simply
leaves, re-intializes and joins again.

Definition 7 (Consistency and Robustness). We say that a learning-augmented SLN protocol is

• α-consistent if, for all demand matrices, there exists an assignment of predictions to the
nodes such that the expected cost of the protocol is at most α times the cost of an optimal
optimum static SLN.

• β-robust if, for all demand matrices and for all assignment of predictions, the expected cost
of the protocol is at most β times the cost of an optimal optimum static SLN.

3 OPTIMUM STATIC SKIP LIST NETWORK (OSSLN)

Given a set of node ids V and a demand matrix W , the objective of the Optimum Static Skip List
Network (OSSLN) problem is to find a height assignment h : V −→ N+ that minimizes the total
communication cost (as defined in (4)) of the SLN N = (V, h,E) (as defined in (1)):

OSSLN(V,W) = min
h

Cost(N ,W). (1)

In Schmid et al. (2016), the authors presented a dynamic programming algorithm to find the Optimum
static distributed Binary Search Tree (OBST) in polynomial time (O(n3)). This algorithm leverages
a crucial property: once a vertex v is chosen as the root of a tree induced by the vertices in a given
interval, the subproblems induced by the vertex id intervals to the left and to the right of v can be
solved independently. The OSSLN problem exhibits a similar structure, but with a crucial difference.

If we define a pivot vertex x ∈ [l, r], 1 ≤ l ≤ r ≤ n, such that hx = maxw∈[l,r] hw, x also
partitions the OSSLN problem into two subproblems (on the intervals [l, v) and (v, r]). However,
a critical distinction arises when hx < maxw∈[l,r] hw, in which case x will not be a part of all the
paths between vertex pairs (u, v) u ∈ [l, x), v ∈ (x, r]. Specifically, for a vertex x ∈ [l + 1, r − 1]
such that hl, hr > hx, any path between vertices (u, v) where u ≤ l and v ≥ r does not include
x. This changes the optimal substructure of the problem, requiring a more sophisticated dynamic
programming approach.

Given a SLN N , we define a path Ph(l, r) to be the set of vertices in the routing path between the
vertices l and r (as defined in (3)), excluding l, i.e., l /∈ Ph(l, r). This is a crucial simplification that

0

1

2

3

4

1 2 3 4 5 6 7 8

Figure 2: A Continuous SLN obtained by adding node-by-node the heights of the SLN in Figure ??
and the heights of the Continuous SLN in Figure 1. This is a possible outcome of LASLIN where
the predicted heights are in green and the uniform, random heights are in orange.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0

1

2

1 2 3 4 5 6 7 8

Figure 3: A SLN with all equal heights, ef-
fectively turning the SLN into an inefficient
chained list with a routing path length linear
in n. This worst-case performance happens
when all the nodes get the same predicted
height.

0

1

2

1 2 3 4 5 6 7 8

Figure 4: The addition of continuous, ran-
dom heights restores the good performances.

allows the problem to be decomposed. Under this assumption, we have d(l, r) = |Ph(l, r)|. W.l.o.g.,
we assume that Ph(l, r) = Ph(r, l).

Next, we define L(x, h) = min{i ≤ x | hj ≤ hx, ∀j ∈ [i, x]}, i.e., the vertex of minimum id
between the set of all (consecutive) vertices of height lower or equal to hx, to the left of x, and,
analogously, R(x, h) = max{i ≥ x | hj ≤ hx, ∀j ∈ [x, i]}, i.e., the vertex with maximum id
between the set of all vertices of height lower or equal to hx, to the right of x. A vertex x ∈ V
belongs to a path Ph(u, v) if and only if there does not exist any pair of vertices (u′, v′) such that
u ≤ u′ < x, x < v′ ≤ v, and (both) hu′ , hv′ > hx.

Finally, given an arbitrary x ∈ V , we define Px(h) as the set of all pairs (u, v) ∈ V × V , such that
x ∈ Ph(u, v).

Lemma 1. If h is a solution for the OSSLN(V,W), then ∀x ∈ V we have that:

Px(h) = {(u, v) | (u < x) ∧ v ∈ [x,R(x, h)]} ∪ {(u, v) | u ∈ [L(x, h), x)] ∧ (v > R(x, h))}. (2)

Since d(u, v) = |Ph(u, v)|, we can now rewrite the total cost of an SLN N = (V, h,E) as:

Cost(N ,W) =
∑

u,v∈V

W (u, v) · d(u, v) =
∑

u,v∈V

∑
x∈Ph(u,v)

W (u, v) =
∑
x∈V

∑
(u,v)∈Px(h)

W (u, v).

This means that the total cost is equal to the sum of contributions of all vertices x ∈ V , where the
contribution of a vertex x to the total cost is defined as:∑

(u,v)∈Px(h)

W (u, v) (3)

OSSLN with Bounded Height: In the OSSLN with bounded height, the height assignment is of the
form h : V −→ [1, hmax], where hmax is a parameter, typically bounded by O(log n) or O(1).

Consider an interval [l, r], 1 ≤ l ≤ r ≤ n and a height bound h ∈ [1, hmax]. Let nl, 1 ≤ nl ≤ l,
denote the leftmost vertex id, such that ∀v ∈ [nl, l], hv ≤ h, and, similarly, let nr, r ≤ nr ≤ n,
denote the rightmost vertex id, such that ∀v ∈ [r, nr], hv ≤ h. Finally, let OSSLN(l, r, nl, nr, h,W)
denote the minimum total cost contributed by all vertices v ∈ [l, r].

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 1. If x ∈ [l, r] is a candidate pivot vertex with height h ∈ [1, hmax], then the following
recurrence relation holds ∀(nl, l, x, r, nr), 1 ≤ nl ≤ l ≤ x ≤ r ≤ nr ≤ n:

OSSLN(l, r, nl, nr, h,W) = min

{
OSSLN(l, r, l, r, h− 1,W), min

x∈[l,r]

[
OSSLN(l, x− 1, nl, nr, h,W) +

OSSLN(x+ 1, r, nl, nr, h,W) +
∑
u<x

∑
v∈[x,nr]

W (u, v) +
∑

u∈[nl,x)

∑
v>nr

W (u, v)

]}
.

The complexity of the above dynamic programming algorithm is O(n5 · hmax), if we pre-compute
an auxiliary matrix of aggregate weights W ′(x, y) =

∑
z≤y W (x, z),∀(x, y), 1 ≤ x ≤ y ≤ n.

OSSLN with Unbounded height (OSSLNU): We now present a dynamic programming algorithm
for the OSSLN problem with unbounded heights, i.e., when the height assignment is of the form
h : V −→ [1, n]. We show that, in this case, the algorithm’s complexity can be reduced to O(n3).

A crucial observation is that, for any solution to the OSSLNU problem, there exists a solution of
cost less than or equal to that of the former, in which, ∀[l, r], 1 ≤ l ≤ r ≤ n, there is a unique pivot
vertex, i.e., a unique vertex whose height is the maximum height in that interval.

Lemma 2. Let h be an optimum solution to OSSLNU(V,W). Then, there must exist a solution h′

such that Cost((V, h′, E′),W) ≤ Cost((V, h,E),W), where, for any interval [l, r], 1 ≤ l ≤ r ≤ n,
there is exactly one vertex x ∈ [l, r] with height h′

x = maxw∈[l,r] h
′
w.

In OSSLNU, because we are only interested in the relative order of vertex heights, rather than in their
absolute values, we have that (nl = l) and (nr = r), ∀[l, r], 1 ≤ l ≤ r ≤ n, and the height parameter
h becomes unnecessary. This simplifies the recurrence relation, reducing the complexity to O(n3).

Theorem 2. Consider an interval [l, r], 1 ≤ l ≤ r ≤ n. Let OSSLNU(l, r,W) denote the minimum
total cost contributed by all vertices v ∈ [l, r]. Let x ∈ [l, r] be a candidate pivot vertex. Define l as
the leftmost index such that ∀x,∈ [l, r],∀v ∈ [l, x], hv ≤ hx, and similarly define r as the rightmost
index such that ∀v ∈ [x, r], hv ≤ hx. Then, the recurrence relation OSSNU(l, r,W) =

min
x∈[l,r]

(
OSSNU(l, x− 1,W) + OSSNU(x+ 1, r,W) +

∑
u<x

∑
v∈[x,r]

W (u, v) +
∑

u∈[l,x)

∑
v>r

W (u, v)
)
.

4 CONTINUOUS SLN

This section introduces a generalization of SLN called Continuous SLN.

Definition 8 (Continuous SLN). A Continuous SLN N = (V, h,E) is an SLN (Definition 1) except
the height function h is defined over the real numbers, i.e., h : V −→ R.

In this section, we show that Continuous SLN offer a set of properties similar to classic SLN with
arguably simpler proofs. We provide the routines join and leave (Algorithms 2 and 4in the Appendix)
that are both core primitives of any P2P network, and we provide the routine route (Algorithm 1 in
the Appendix) used by both data structure and P2P applications. We then present a simple Continuous
SLN called UNIFORM whose heights are chosen uniformly at random in (0, 1). Finally, we show
that UNIFORM has performances matching those of skip lists at all levels as both a routing search
path and the maximum degree are logarithmic with high probability.

Protocol 1 (UNIFORM). UNIFORM is a Continuous SLN that sets its heights to a real number in
(0, 1) chosen uniformly at random.

Theorem 3 (Expected Routing Path Length). The routing path between any two nodes has length
smaller than 2 lnn on expectation.

Theorem 4 (Routing Path Length with High Probability). The routing path between any two nodes
has length smaller than 2e · lnn with probability greater than 1− 2

n .

Theorem 5 (Expected Degree). The expected degree of any node is lower than 4.

Theorem 6 (Maximum Degree with High Probability). The maximum degree is lower than 4 lnn
with probability greater than 1− 1

n3 .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: The costs of the Optimal static SLN, LASLIN with perfect predictions, and UNIFORM
against various demand matrices with increasing Zipf parameter. LASLIN almost matches the optimal
as it is O(1)-consistent. Very sparse demand matrices enable more efficient network optimization.

5 LEARNING-AUGMENTED CONTINUOUS SLN

In this section, we present LASLIN, a learning-augmented Continuous SLN protocol where each
node can obtain a prediction of the future demand matrix at any time.

We first show that, for general demands, any demand-oblivious P2P protocol can be off by a factor of
O(log n/ log log n) compared to an optimum static SLN. This result provides a comparison point
around which the consistency and robustness metrics of demand-aware algorithms can be evaluated.
Theorem 7. We consider any P2P protocol that is not learning-augmented (Definition 6). Then, there
exists a demand matrix W such that the considered protocol has a cost of Ω(log n/ log log n) · |W |
in expectation while an optimal static SLN protocol pays |W |, where |W | is the total sum of the
elements of W .
Protocol 2 (LASLIN). LASLIN is a Continuous SLN that takes an integer in [1, ⌈lnn⌉] as a
prediction. LASLIN initializes its heights by adding the input prediction with a real number in (0, 1)
chosen uniformly at random.

Theorem 8. LASLIN is a Continuous SLN that is O(1)-consistent and O(log2 n)-robust.

We now define the notion of super-sparse matrix, which indicates a concentration of the weights of
the matrix on a very small (logarithmic) number of coefficients.
Definition 9 (super-sparse matrix). A matrix W ∈Mn(R) is super-sparse if there exists a constant
c ≥ 1 and a restricted subset of node pairs S ⊆ V 2 such that:

|S| ≤ O(logc n) and
∑

(u,v)∈S

W (u, v) ≥ (1−O(1/ log n)) · |W |

Theorem 9. Assume that the demand matrix W is super-sparse. We consider the protocol Binary
LASLIN (B-LASLIN) where the input prediction p can only have two values, 1 or 2. B-LASLIN
is O(log log n)-consistent and O(log n)-robust.

In asymptotics, the performances are always comparable to any demand-oblivious protocol (Theo-
rem 7), with an exponential improvement in case of perfect predictions.

6 EXPERIMENTAL EVALUATION

Demand matrices. In our experiments, we generate communication demand based on the Zipfian
distribution Adamic & Huberman (2002), with parameter ζ > 1. Lower values of ζ result in a sparser
demand matrix as the distribution becomes less skewed. The number of nodes in all experiments was
set to n = 32, and each experiment was repeated 30 times.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: The costs of various protocols under different noises on the predictions.

Noise generation. We study the robustness of our algorithms by introducing noise in the predicted
data Lykouris & Vassilvitskii (2018). The most used type of noise is additive, often gaussian Purohit
et al. (2018) or lognormal Lykouris & Vassilvitskii (2018). Those types of noises however were
unrelevant for our case as they almost did not impact the performance of our algorithms. Instead,
we evaluate two noise models designed to simulate data imperfections. The first model, Swap
Noise, simulates outdated communication data by replacing the communication value for each pair of
vertices (u, v) with a value from a different workload (with similar properties), an event that occurs
with a probability equal to the noise percentage. This process mimics using stale information from a
previous time step. The second model, Prediction Noise, introduces errors in vertex height prediction
by resetting a vertex’s height attribute to 1 with noise probability. This process mimics adversarial
nodes in the network aiming to increase the communication path length.

The implementation of Swap Noise was adapted to the specific characteristics of each dataset. For the
pFabric traces, where only a single instance of each trace was available, stale communication values
were sourced from a different trace within the same collection; for instance, the communication value
for a pair (x, y) in the 0 1 trace might be replaced by the value for the same pair in the 0 5 trace. In
contrast, for the Zipf workloads, which provided numerous instances for each distribution, a single
workload was randomly selected at the outset of the experiment to serve as a fixed, global source of
outdated communication values.

Results. In Figure 5 we evaluate the consistency of LASLIN in scenarios where the demand
follows the Zipfian distribution, with varying parameter ζ ∈ [1.1, 2], and where the prediction advice
is perfect (i.e., there is zero noise in the demand matrix). We compare the total communication cost
(as defined in (4)) of LASLIN to that of the static optimum SLN and the demand-oblivious SLN
(UNIFORM) baselines. We can see that, in contrast to the demand-oblivious SLN, LASLIN obtains
close-to-optimum total communication cost in all workloads, regardless of their spatial locality, i.e.,
LASLIN is consistent.

In Figure 6 we evaluate the robustness of LASLIN in scenarios with increasing demand noise
(x-axis). “LASLIN demand error ratio” corresponds to LASLIN under swap noise, “LASLIN
against adversarial predictions” corresponds to LASLIN under prediction noise, finally, “SLN unit
height ratio” corresponds LASLIN under prediction noise but without the random noise added. We
can observe that the SLN performs increasingly worse (has higher cost) the greater the amount of
change (noise) in the input demand matrix. LASLIN, on the other hand, achieves consistently lower
communication cost (than the former), regardless of the type of noise and regardless of the prediction
fault probability, i.e., LASLIN is robust relative to both type and magnitude of prediction errors.

7 RELATED WORK

Improved designs of P2P networks. P2P networks have been the focus of computer scientists for a
long while (see Lua et al. (2005) for a detailed survey). In terms of P2P networks with constant degree,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7: The costs of the optimal SLN, LASLIN and UNIFORM on three pFabric traces.

the notable contribution of Naor & Wieder (2007) that extends the work of Fraigniaud & Gauron
(2006), giving a general P2P construction such that for a network with degree d and n nodes, you
can have guaranteed path length of Θ(logd n). Lately, improving the design of networks given prior
information about communication demand has grabbed the attention of researchers. In particular,
the work of Avin & Schmid (2018) set the scene for demand-aware network design, which was
then explored more with particular focus on datacenter networking de Oliviera Souza et al. (2022);
Pourdamghani et al. (2023); Figiel et al. (2025).

Works closest to ours are by Avin et al. (2020c); Ciriani et al. (2007) in which the authors discuss a
self-adjusting variant of skip list network: one that adjusts over time based on the incoming demand,
which is in contrast with our work that focuses on an optimal skip list network with static height
given the communication demand as the input. This is in particular important, as self-adjustments
can introduce additional cost (e.g., in terms of delay) to the system. Also, the work of Mandal et al.
(2015) discussed how a skip-list construction can be used for peer-to-peer communications, however
they do not provide any theoretical upper bound for the communication time. Lastly, we point out to
other extensions of skip list, namely Skip Graph Aspnes & Shah (2003) and SkipNet Harvey et al.
(2003) that, to facilitate P2P communications, consider expected degree to be O(log n), in contrast to
our design, which has a constant degree in expectation.

Learning-augmented algorithms. Given the rise of machine learning algorithms (that are prone
to inherent unbounded failures), and after the pioneering work of Purohit et al. (2018) on ski rental
& job scheduling, the focus has been shifted on studying consistency and robustness of algorithms
augmented with the learned advice. Such an approach has been used in various applications so
far†, for example caching Lykouris & Vassilvitskii (2018), online TSP Gouleakis et al. (2023), list
update Azar et al. (2025).

Some of the more recent works focus on improving single-source search data structures. Initially, the
works of Lin et al. (2022); Chen et al. (2025) provided learning-augmented search trees. The works
that are closest to our work are by Fu et al. (2025); Zeynali et al. (2024), which studied learning-
augmented single-source skip lists. In contrast, we consider a more challenging model, where the
focus is on pairwise communications rather than communication from a single source. Recently, we
became aware of a not peer-reviewed manuscript Aradhya & Scheideler (2025) that aims to augment
P2P networks with learned advice; however, this paper looks into improving self-stabilization and
recovery of P2P networks, not improving communication delay.

8 CONCLUSION

In this work, introduced a continuous variant of Skip List Network (SLN), Continuous SLN. This
variant is arguably easier to manipulate and analyze. In addition we show that we can use it to
reach strong robustness properties even in an adversarial, fully distributed setting. Lastly, through
experimental evaluation, we observed that our suggested algorithms outperform the theoretical results.
As a future work, one can think of an alternative algorithm for OSSLN with a lower computational
complexity.

†See a full list of recent works in the following website: algorithms-with-predictions.github.
io

9

algorithms-with-predictions.github.io
algorithms-with-predictions.github.io

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Lada A. Adamic and Bernardo A. Huberman. Zipf’s law and the internet. Glottometrics, 3:143–150,
2002.

Vijeth Aradhya and Christian Scheideler. Towards learning-augmented peer-to-peer networks: Self-
stabilizing graph linearization with untrusted advice. arXiv preprint arXiv:2504.02448, 2025.

James Aspnes and Gauri Shah. Skip graphs. In SODA, pp. 384–393. ACM/SIAM, 2003.

Chen Avin and Stefan Schmid. Toward demand-aware networking: a theory for self-adjusting
networks. ACM SIGCOMM CCR, 2018.

Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. On the complexity of traffic traces
and implications. Proc. ACM Meas. Anal. Comput. Syst., 4(1):20:1–20:29, 2020a.

Chen Avin, Kaushik Mondal, and Stefan Schmid. Demand-aware network designs of bounded degree.
Distributed Computing, 2020b.

Chen Avin, Iosif Salem, and Stefan Schmid. Working set theorems for routing in self-adjusting skip
list networks. In INFOCOM, pp. 2175–2184. IEEE, 2020c.

Yossi Azar, Shahar Lewkowicz, and Varun Suriyanarayana. List update with prediction. In AAAI, pp.
15436–15444. AAAI Press, 2025.

Jingbang Chen, Xinyuan Cao, Alicia Stepin, and Li Chen. On the power of learning-augmented
search trees. In ICML, 2025.

Valentina Ciriani, Paolo Ferragina, Fabrizio Luccio, and S. Muthukrishnan. A data structure for a
sequence of string accesses in external memory. ACM Trans. Algorithms, 3(1):6:1–6:23, 2007.

Otávio Augusto de Oliviera Souza, Olga Goussevskaia, and Stefan Schmid. Cbnet: Demand-aware
tree topologies for reconfigurable datacenter networks. Comput. Networks, 2022.

Aleksander Figiel, Darya Melnyk, Andre Nichterlein, Arash Pourdamghani, and Stefan Schmid.
Spiderdan: Matching augmentation in demand-aware networks. In SIAM Symposium on Algorithm
Engineering and Experiments (ALENEX), 2025.

Pierre Fraigniaud and Philippe Gauron. D2B: A de bruijn based content-addressable network. Theor.
Comput. Sci., 2006.

Chunkai Fu, Brandon G. Nguyen, Jung Hoon Seo, Ryan S. Zesch, and Samson Zhou. Learning-
augmented search data structures. In ICLR, 2025.

Themistoklis Gouleakis, Konstantinos Lakis, and Golnoosh Shahkarami. Learning-augmented
algorithms for online TSP on the line. In AAAI, pp. 11989–11996. AAAI Press, 2023.

Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec Wolman. Skipnet:
A scalable overlay network with practical locality properties. In USENIX Symposium on Internet
Technologies and Systems. USENIX, 2003.

Lucianna Kiffer, Asad Salman, Dave Levin, Alan Mislove, and Cristina Nita-Rotaru. Under the hood
of the ethereum gossip protocol. In Financial Cryptography (2), volume 12675 of Lecture Notes in
Computer Science, pp. 437–456. Springer, 2021.

Honghao Lin, Tian Luo, and David P. Woodruff. Learning augmented binary search trees. In ICML,
2022.

Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim. A survey and
comparison of peer-to-peer overlay network schemes. IEEE Commun. Surv. Tutorials, 2005.

Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. In
ICML, 2018.

Subhrangsu Mandal, Sandip Chakraborty, and Sushanta Karmakar. Distributed deterministic 1-2 skip
list for peer-to-peer system. Peer-to-Peer Netw. Appl., 8(1):63–86, 2015.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

C Martinez and S Roura. Optimal and nearly optimal static weighted skip lists. Technical report,
Technical report, Universitat Politecnica de Catalunya, 1995.

Moni Naor and Udi Wieder. Novel architectures for P2P applications: The continuous-discrete
approach. 2007.

Arash Pourdamghani, Chen Avin, Robert Sama, and Stefan Schmid. Seedtree: A dynamically optimal
and local self-adjusting tree. In IEEE INFOCOM, 2023.

William Pugh. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM, 33(6), 1990.
ISSN 0001-0782. doi: 10.1145/78973.78977. URL https://doi.org/10.1145/78973.
78977.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML predictions.
In NeurIPS, 2018.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and Scott Shenker. A scalable
content-addressable network. In SIGCOMM, pp. 161–172. ACM, 2001.

Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi
Lotker. Splaynet: Towards locally self-adjusting networks. IEEE/ACM Trans. Netw., 2016.

I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F. Dabek, and H. Balakrishnan.
Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Transactions
on Networking, 2003.

Ali Zeynali, Shahin Kamali, and Mohammad Hajiesmaili. Robust learning-augmented dictionaries.
In ICML, 2024.

11

https://doi.org/10.1145/78973.78977
https://doi.org/10.1145/78973.78977

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

9 APPENDIX

Proof of Lemma 1.

Proof. If u < x and x ≤ v ≤ R(x, h), then, by definition of R(x, h), hx ≥ hv ≥ min(hu, hv).
Since x lies between u and v and there are no edges “above” hx in the interval [u, v] (i.e., ̸ ∃(w, z) ∈
E, s.t. hw > hx and hz > hx, [w, z] ⊆ [u, v]), x must be a part of Ph(u, v).

Similarly, if L(x, h) ≤ u < x and v > R(x, h), then, again by definition of L(x, h), hx ≥ hu ≥
min(hu, hv). Since x lies between u and v and there are no edges ”above” hx in the interval [u, v], x
must be a part of Ph(u, v)

It remains to show that no other pair (u, v) belongs to Px(h). If u ≥ x, then by definition of
Ph(u, v), x /∈ P (u, v). Otherwise, suppose u < L(x, h) and v > R(x, h). Let u′ = L(x, h) − 1
and v′ = R(x, h)− 1, by definitions of L(x, h) and R(x, h), we have that hx < hu′ and hx < hv′ .
Since u ≤ u′ < x < v′ ≤ v, we have that:

|Ph(u, u
′) ∪ {v′} ∪ Ph(v

′, v)| < |Ph(u, x) ∪ {x} ∪ Ph(x, v)|.

Because Ph(u, v) is the shortest path from u to v, it follows that x /∈ Ph(u, v).

Proof of Theorem 1.

Proof. The proof is by strong induction on the size of the interval [l, r] ⊆ [1, n]:

Note that, by definition, nl = L(x, h) and nr = R(x, h) for any possible h. Furthermore, by
construction, for an interval induced by l, r, nl, nr with bounded height h, assigning a pivot vertex
with height equal to h− 1, we have nl′ = l and nr′ = r.

Base case (l = r): In this case, we have that (x = l) and the set of paths x belongs to is given by
Lemma 1. By setting nl = L(x, h) and nr = R(x, h) in the proof, the vertex contribution to the
total cost is given by: ∑

u<x

∑
v∈[x,nr]

W (u, v) +
∑

u∈[nl,x)

∑
v>nr

W (u, v) (4)

Induction step: For (h = 1), we can disregard the first half of the recursion, where we assign the
pivot vertex a height lower than h. The total contribution of all vertices to the cost becomes:

∑
x∈[l,r]

∑
u<x

∑
v∈[x,nr]

W (u, v) +
∑

u∈[nl,x)

∑
v>nr

W (u, v)

 ,

which, from the base case, is precisely what the second half of the recurrence equation will return for
any choice of the pivot vertex.

Let 1 ≤ l < r ≤ n and h ∈ [1, hmax]. Assume that the recurrence equation is true for all h′, l′, r′

such that (h′ < h) ∧ (r′ − l′) < (r − l). From previous step also assume that the equation is true
for (r′ − l′) = (r − l) with height (h′ < h).

Since, when assigning the pivot vertex with height lower than h, by construction, we have that
(nl = l) and (nr = r). The minimum cost for the solution for any nl and nr is the minimum between
keeping the height of the pivot, (hx = h), or decreasing it, hx ≤ (h − 1), which is given by the
minimum between:

min
x∈[l,r]

[
OSSLN(l, x− 1, nl, nr, h,W) + OSSLN(x+ 1, r, nl, nr, h,W) +

∑
u<x

∑
v∈[x,nr]

W (u, v) +
∑

u∈[nl,x)

∑
v>nr

W (u, v)

]

and OSSLN(l, r, l, r, h− 1,W), which is precisely what we want to prove.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Proof of Lemma 2.

Proof. Suppose, for contradiction, that any possible optimal solution contains at least one interval
[l, r] with at least two vertices x, y ∈ [l, r] with hx = hy = max(hl,r) and x ̸= y.

Define h′ as follows for any vertex v ∈ V :

h′
v =

{
hv + 1 if v = x or hv > hx

hv otherwise

Note that, while h′
x > h′

y , this height assignment is order preserving. If ha > hb then h′
a > h′

b.

If x /∈ Ph(u, v), since we preserved the order between x and all vertices taller than x, x cannot
appear as an obstacle between any such vertices. Analogously, since we preserved the order between
all vertices with at most the same height as x there can’t be any new edges between vertices with at
most the same height as x, so the path is unmodified.

If x ∈ Ph(u, v), we know that:

Ph(u, v) = Ph(u, x) ∪ {x} ∪ Ph(x, v).

From our definition of path, we know that x /∈ Ph(x, v), and therefore Ph(x, v) = Ph′(x, v). Now,
let’s consider a vertex z, such that u ≤ z < x and hz > hx. If such a vertex z does not exist, then we
can infer that Ph = Ph′ . Furthermore, if there does exist such a vertex z, then:

|Ph′ | = |Ph(u, z) ∪ {x} ∪ Ph(x, v)| ≤ |Ph|.

Since Cost((V, h,E),W) =
∑

(u,v)∈V W (u, v) · d(u, v) and d(u, v) = |Ph(u, v)|, and any path in
h′ is of at most the same size as in h, then, Cost((V, h′, E′),W) ≤ Cost((V, h,E),W). Hence, the
lemma holds.

Proof of Theorem 2.

Proof. The proof is by induction on the size of the interval [l, r].

Note that, by Lemma 2, once a pivot vertex x ∈ [l, r] is chosen as the highest vertex within the
interval [l, r], we can assume, without loss of generality, that all vertices in the optimal solutions to
the left subinterval [l, x− 1] and to the right subinterval [x+ 1, r] have heights strictly lower than hx.

Therefore, for a solution h to OSSLNU(l, r,W), it follows that l = L(x, h) and r = R(x, h).

Base Case (l = r): In this case, the interval contains a single vertex x = l = r. In this case, the cost
reduces to the contribution of x to the solution cost, which, from Lemma 1, and L(x, h) = l and
R(x, h) = r as we demonstrated above, it follows that this expression corresponds exactly to:∑

u<x

∑
v∈[x,r]

W (u, v) +
∑

u∈[l,x)

∑
v>r

W (u, v) (5)

Inductive Step: Suppose the recurrence holds for all subintervals of [l, r] of size less than (r− l+1).
For an interval [l, r] of size greater than one, we consider a candidate pivot vertex x ∈ [l, r].

The total cost of placing x as pivot of the interval [l, r] equals to the sum of:

• The optimal cost for the left subinterval [l, x− 1],

• The optimal cost for the right subinterval [x+ 1, r],

• The cost of all paths that include x, which by Lemma 1 is given by the Eq.(5).

Since we minimize this total over all pivot choices x ∈ [l, r], the recurrence holds.

Proof of Theorem 3.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. Let u and v be two nodes. We note X the random variable equal to the routing path length
between u and v. We note Xup the number of height increases along the path, likewise Xdown is the
number of path decreases. It holds that X = Xup +Xdown. We will give an upper bound of Xup, the
same upper bound will hold for Xdown by symmetry. Let w be a node between u and v in the SLN,
we note 1w the indicator random variable equal to 1 if (1) w is part of the path between u and v, and
(2) if the height increases when hoping to w. It holds Xup =

∑
w∈[u+1,v] 1w.

We now compute P [1w = 1] for any w ∈ [u+ 1, v]. w is part of the increasing path if and only if the
height of w is strictly greater than every other heights in [u,w − 1]. The probability that two uniform
random variables are equal is zero, hence there exists exactly one node with maximum height in
[u,w]. The heights are independent and uniformly distributed, hence w is the node with maximum
height with probability 1/(|w − u|+ 1):

∀w ∈ [u+ 1, v], P [1w = 1] =
1

|w − u|+ 1

Noticing that E[1w] = P [1w = 1] and gathering the two previous equalities gives:

E[Xup] =
∑

w∈[u+1,v]

1

|w − u|+ 1
=

|v−u|+1∑
i=2

1

i
≤ lnn

The last inequality holds as the harmonic sum until n, 1 + 1/2 + · · ·+ 1/n, is lower than 1 + lnn.
The claimed upper bound on the expected path length follows as the same reasoning can be done for
Xdown.

Proof of Theorem 4.

Proof. Let u and v be two nodes such that u < v, and let Xup be the random variable equal to the
increasing routing path length between u and v . Let w ∈ [u, v], we note 1w the indicator random
variable equal to 1 if w is part of the increasing path between u and v (see proof of Theorem 3).

We first show that all 1w are independent random variables. Let w and w′ be two nodes such that
u < w < w′, it holds:

P [1w′ = 1 | 1w = 1] = P [hx < hw′∀x ∈ [w + 1, w′ − 1] ∩ max
y∈[u,w]

hy < h′
w]

= P [hy < h′
w∀y ∈ [u,w′ − 1]]

= P [1w′ = 1]

Now that we showed independence, we use the following Chernoff’s bound: For Y the sum of
independent Bernoulli random variables (a Poisson trial) and µ = E[Y], ∀δ > 0 it holds that:

P (Y ≥ (1 + δ)µ) <

(
eδ

(1 + δ)1+δ

)µ

Replacing Y = Xup =
∑

w∈[u+1,v] 1w, µ = lnn and δ = e− 1 gives:

P (Xup ≥ e · lnn) < eδ·lnn

(1 + δ)(1+δ)·lnn

=
nδ

n(1+δ)·ln(1+δ)
=

1

n

By symmetry, the same result holds for Xdown. Finally, we obtain the desired result with a union
bound:

P (X ≥ 2e · lnn) ≤ P (Xup ≥ e · lnn ∪Xdown ≥ e · lnn)
≤ P (Xup ≥ e · lnn) + P (Xdown ≥ e · lnn)

<
2

n

Proof of Theorem 5.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. If u and w are two nodes, we define Nu the random variable equal to the number of neighbors
of u, and 1u,w the indicator random variable equal to one if u and w are neighbors. It holds
Nu =

∑
w ̸=u 1u,w. Two nodes u and w with u < w are neighbors if and only if u and w are the first

and second highest nodes in [u,w], hence it holds that E[1u,w] = 2
|w−u|·(|w−u|+1) . It therefore holds:

E[Nu] =
∑

w∈[1,n]\{u}

2

|w − u| · (|w − u|+ 1)
≤ 4 ·

n/2∑
i=1

1

i · (i+ 1)
= 4 ·

n/2∑
i=1

1

i
− 1

i+ 1

= 4 · (1− 1

n/2 + 1
) ≤ 4

Proof of Theorem 6.

Proof. Let u, w and w′ be three different nodes. We name 1u,w and 1u,w′ the indicator random
variables equal to 1 if u and w are neighbors, and if u and w′ are neighbors, respectively. We first
show that 1u,w and 1u,w′ are independent random variables: the proof is almost identical to the one
of Theorem 4.

We first establish that each node taken individually has a degree lower than lnn with probability
greater than 1− 1

n4 . Let Nu be the random variable equal to the number of neighbors of u, we use
the Chernov bound for Poisson trials used in the proof of Theorem 4:

P [Nu ≥ 4 lnn] <

(
e(lnn)−1

(lnn)lnn

)4

=
(n/e)4

n4 ln lnn
<

1

n4

This last equality holds when n is greater than a given constant, which is not a problem as we are
interested in cases when n is large. We conclude with a union bound: the probability that at least
one node has a degree greater than 4 lnn is upper bounded by

∑
v∈V P [Nv ≥ 4 lnn] ≤ 1

n3 and the
claim holds.

Proof of Theorem 7.

Proof. As the considered protocol has a logarithmic maximum degree with high probability, there
exists a constant c such that the generated network has a maximum degree lower than O(lnc n)
with probability greater than 1 − O(1/n). Let u be a node. We first cover the case when the
maximum degree is lower than lnc n, all the considered probabilities and expected values are therefore
conditional. In this case, we consider the disk centered around u with smallest radius such that it
contains no less than half of the nodes. The maximum distance between u and a node in that disk
is no lower than O(log n/ log log n) as the network has a polylogarithmic maximum degree — this
result can be easily obtained by upper bounding all the degrees by O(logc n). There exists another
node v such that v is at the border or outside of the disc with probability at least 1/2. We consider the
demand matrix that is zero everywhere except at the coefficient with row u and column v. An optimal
SLN protocol can clearly pay a cost of 1, the considered SLN therefore has an approximation ratio
worse of ω(log n/ log log n) for that demand matrix.
Finally, we cover the cases where the maximum degree is higher than lnc n: That case only contributes
with an additive constant to the distance between u and v as a distance is lower than n. We considered
all the cases and the claim follows.

Proof of Theorem 9.

Proof. We start by proving that the maximum degree in LASLIN is lower than 4 ln2 n with high
probability. Let u be a node, let pu ∈ [1, ⌈lnn⌉] be the predicted height of u and let ru ∈ (0, 1) be
the uniform random noise added on top of pu. We partition the neighbors of u into pu subsets called
S(1), S(2) . . . S(pu + 1): For all i ∈ [1, pu], S(i) contains the neighbors with height between i and
i+ 1, the last set S(pu + 1) contains the neighbors with height greater than pu + 1. According to
Theorem 6, each set from S(1) to S(pu) contains fewer than 4 lnn nodes with probability greater
than 1− 1

n4 (this is the result before the last paragraph in the proof) — the set S(pu + 1) contains
at most two nodes. We conclude with a union bound that u has fewer than 4 ln2 n with probability

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

greater than 1− 1
n3 , and that the maximum degree is lower than 4 ln2 n with probability greater than

1− 1
n2 also with a union bound.

The O(1)-consistency is direct as the comparative optimal static SLN has its heights within a O(log n)
factor without loss of generality as its maximum degree is bounded by O(log n) by assumption. We
now prove the robustness claim. A routing path between any two nodes u and v has two phases:
first ascending (the heights always increase) and then descending (the heights always decrease). For
both phase, the number of different encountered integer heights is upper-bounded by O(log n). For
each encountered integer height, the expected routing path length is upper-bounded by O(log n)
(Theorem 3). We finish the proof with an upper bound of each distance in the total weighted path
lengths:

∑
u,v∈V W (u, v) · d(u, v) ≤ O(log2 n) · |W | and the optimal static SLN pays at least

|W |.

Proof of Theorem 1.

Proof. We start by proving that the maximum degree of each node is lower than O(log n) with high
probability. As seen in the proof of Theorem 8, each node u has fewer than pu · lnn neighbors with
high probability, the claim follows since pu ≤ 2.

We prove that the expected total weighted path length is lower than O(log n) · |W | regardless of
the input predictions. The proof is similar to the proof of Theorem 8 except, as the predictions are
upper-bounded by a constant, we avoid the additional log n factor.

Finally, we prove that the expected total weighted path length is lower than O(log log n) · |W |. We
consider the following set of predictions: let S be the node pairs from Definition 9, we give prediction
2 to the nodes that have at least one coefficient from S in their row or column in W , otherwise
1. We call V2 (V1) the set of nodes that have prediction 2 (1). As W is super sparse, it holds that
|V2| ≤ O(logc n).∑

u,v

W (u, v) · d(u, v) =
∑

(u,v)∈S

W (u, v) · d(u, v) +
∑

(u,v)∈V 2\S

W (u, v) · d(u, v)

≤
∑

u,v∈V2

W (u, v) · d(u, v) +
∑

(u,v)∈V 2\S

W (u, v) · d(u, v)

≤ O(log log n) · |W |+O

(
1

log n

)
· |W | · lnn

= O(log log n) · |W |

To go from line 3 to 4 we used (1) Theorem 3 on the routing paths between the nodes of V2 — there
are O(polylog(n)) of those nodes, they have the largest heights of the SLN, so a path has expected
length lnO(polylog(n)) = O(log log n) — and on the routing paths from nodes in V 2 \ S, and (2)
we used Definition 9 to upper-bound the sum of coefficients in W outside of S.

We present the internal variables for the three below routines Route, Join and Leave. A node u holds
the variables:

• u: the unique id of the node

• hu: the height in R of node u

• Nu: the set of all neighbors of u

• Du: dictionary mapping a neighbor w ∈ Nu to its height

• anchoru: the node with an id closest to u, either the successor or predecessor of u.

Route. The route algorithm (Algorithm 1) takes the destination node id v and hops from node to
node until it finds the destination node, returning (v, True) or reaches a dead end in some node
w ̸= v, return (w,False).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1: route(v)
1 // code running at node u
2 if u = v then
3 return (u, True)
4 else if u < v then
5 S ← {x ∈ Nu|u < x ≤ v}
6 if S = ∅ then
7 return (u, False)
8 else
9 w ← maxS

10 return w.route(v)
11 else
12 S ← {x ∈ Nu|v ≤ x < u}
13 if S = ∅ then
14 return (u, False)
15 else
16 w ← minS
17 return w.route(v)

Join. The join algorithm (Algorithm 2) inserts the node inside the Continuous SLN based on its
anchor local variable. The potential neighbor changes of the other nodes propagate through the
network with the find neighbors algorithm (Algorithm 3).

Algorithm 2: join()
1 // code running at node u
2 if anchor < u then
3 S ← {x ∈ Nanchoru |anchor < x}
4 else
5 S ← {x ∈ Nanchoru |x < anchor}
6 if S = ∅ then
7 Nu ← Nu ∪ anchoru.find neighbors(u, hv,−∞)
8 Update Du

9 else
10 if anchor < u then
11 succ← minS
12 else
13 succ← maxS
14 Nu ← Nu ∪ anchoru.find neighbors(u, hv,−∞)
15 Nu ← Nu ∪ succ.find neighbors(u, hv,−∞)
16 Update Du

Leave. The leave algorithm (Algorithm 4, in this paper’s appendix) shows how an already-inserted
node can leave the network. The potential neighbor changes propagate through the network with the
delete neighbors algorithm (Algorithm 5, in this paper’s appendix).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 3: find neighbors(v, hv , current height)
1 // code running at node u
2 if current height = −∞ then
3 anchoru ← v
4 N ← ∅
5 if current height < hu then
6 N ← {u}
7 Nu ← Nu ∪ {v}
8 Update Du

9 if u < v then
10 N ← {x ∈ Nu|x ≤ v or (hv < Du[x] and hv < hu)}
11 for x ∈ Nu do
12 if x < u and hu ≤ Du[x] ≤ hv then
13 N ← N ∪ x.find neighbors(v, hv, hu)
14 else
15 N ← {x ∈ Nu|v ≤ x or (hv < Du[x] and hv < hu)}
16 for x ∈ Nu do
17 if u < x and hu ≤ Du[x] ≤ hv then
18 N ← N ∪ x.find neighbors(v, hv, hu)
19 return N

Algorithm 4: leave()
1 // code running at node u
2 if anchor < u then
3 S ← {x ∈ Nanchoru |anchor < x}
4 else
5 S ← {x ∈ Nanchoru |x < anchor}
6 if S = ∅ then
7 Nu ← Nu ∪ anchoru.delete node(u, hv,−∞)
8 Update Du

9 else
10 if anchor < u then
11 succ← minS
12 else
13 succ← maxS
14 Nu ← Nu ∪ anchoru.delete node(u, hv,−∞)
15 Nu ← Nu ∪ succ.delete node(u, hv,−∞)
16 Update Du

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 5: delete neighbors(v, hv , current height)
1 // code running at node u
2 N ← ∅
3 if current height < hu then
4 N ← {u}
5 Nu ← Nu \ {v}
6 Update Du

7 if u < v then
8 N ← {x ∈ Nu|x ≤ v or (hv < Du[x] and hv < hu)}
9 for x ∈ Nu do

10 if x < u and hu ≤ Du[x] ≤ hv then
11 N ← N ∪ x.delete node(v, hv, hu)
12 else
13 N ← {x ∈ Nu|v ≤ x or (hv < Du[x] and hv < hu)}
14 for x ∈ Nu do
15 if u < x and hu ≤ Du[x] ≤ hv then
16 N ← N ∪ x.delete node(v, hv, hu)
17 return N

19

	Introduction
	Our Setup
	Contributions and Technical Novelty

	Model and Metrics
	Optimum Static Skip List Network (OSSLN)
	Continuous SLN
	Learning-Augmented Continuous SLN
	Experimental Evaluation
	Related Work
	Conclusion
	Appendix

